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Abstract

We revisit the notion of tracial approximation for unital simple C*-algebras. We show
that a unital simple separable infinite dimensional C*-algebra A is asymptotically tracially
in the class of C*-algebras with finite nuclear dimension if and only if A is asymptotically
tracially in the class of nuclear Z-stable C'*-algebras.

1 Introduction

Nuclear dimension for C*-algebras was first introduced in [72]. Over the time, this notion
becomes increasingly important in the study of C*-algebras in the connection with the Elliott
program [16], the program of classification of separable simple amenable C*-algebras by the
Elliott invariant, a set of K-theory related invariant. The part of the Toms-Winter conjecture
(see [72, Conjecture 9.3]) states that a unital simple nuclear separable C*-algebra A has finite
nuclear dimension if and only if A is Z-stable, ie., A® Z = A, where Z is the Jiang-Su
algebra, a unital separable and infinite dimensional simple C*-algebra which has Ky(Z) = Z
(as an ordered group), K;(Z) = {0} and a unique tracial state (see [31]). This part of the
Toms-Winter conjecture is now a theorem (see [69], [10], see also [50]).

On the other hand tracial rank was introduced in [41] (and see also [40]). C*-algebras with
tracial rank zero are also called C*-algebras which are tracially AF. Amenable tracially AF-
algebras and C*-algebras of tracial rank one were classified in [42] and [43] with the presence
of UCT (these classification results were preceded by [17] and [18], respectively). These had
been generalized to the classification of the class of amenable simple C*-algebras which have
rationally generalized tracial rank at most one satisfying the UCT (see [26], and [27], see also
[44], [70], [45], and [47]). In [19], it is proved that all unital separable simple C*-algebras with
finite nuclear dimension in the UCT class in fact have rationally generalized tracial rank at
most one (using [60]). In other words, all unital separable simple C*-algebras with finite nuclear
dimension satisfying the UCT are classified (up to isomorphism) by their Elliott invariant. This
can also be restated, by the proof of Toms-Winter conjecture as mentioned above, that all unital
separable amenable simple Z-stable C*-algebras satisfying the UCT are classified.

The beginning point of this paper is to search a tracial version of a part of Toms-Winter
conjecture, i.e., a separable amenable simple unital C*-algebra is Z-stable if and only if it has
finite nuclear dimension (which is now a theorem). We revisit a version of tracial approxima-
tion (see Definition 3.1 and Proposition 3.10 below). The main results include the following
statement: A unital separable infinite dimensional simple C*-algebra A which is asymptotically
tracially in Nz (the class of all nuclear Z-stable C*-algebras) if and only if A is asymptotically
tracially in N, (the class of all C*-algebras with nuclear dimension at most n) for some integer
n > 0 (see Theorem 9.3 below). It is also shown that a unital separable simple C*-algebra
A which is asymptotically tracially in Cz s (the class of all separable Z-stable C*-algebras), is
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either purely infinite, or has stable rank one (see Theorem 9.1). Moreover, A has strict com-
parison (for positive elements). Furthermore, it is shown that if A is a unital separable simple
C*-algebra which is asymptotically tracially in N (the class of all nuclear C*-algebras) and A
is asymptotically tracially in Cz s, then A is asymptotically tracially in Nz (see Theorem 8.7).
As one expects, in the case that A is a unital separable nuclear simple C*-algebra, then A is
asymptotically tracially in N, if and only if it is asymptotically tracially in Cz s, and, if and
only if A has finite nuclear dimension and Z-stable. A number of other related results are also
obtained. In Example 9.17, a large number of unital non-exact separable simple C*-algebras
which are asymptotically tracially in N,, are presented. It should be mentioned that if a unital
simple C*-algebra A is asymptotically tracially in the class of finite dimensional C*-algebras
then A has tracial rank zero, and if A is asymptotically tracially in the class of C*-algebras
which are 1-dimensional NCCW complexes then A has generalized tracial rank at most one.

The organization of this paper is as follows. Section 2 serves as a preliminary. We fix
some frequently used notations and concepts there. Section 3 studies some basic properties of
asymptotical tracial approximation. Section 4 gives some useful properties that are preserved
by asymptotical tracial approximation. One of the results is that, if A is a unital separable
simple C*-algebra which is asymptotically tracially in the class of exact C*-algebras, then every
2-quasitrace of A is a trace (see Corollary 4.7). Section 5 is a preparation for Section 6 which gives
a sufficient and necessary condition for a c.p.c. generalized inductive limit to have finite nuclear
dimension (Theorem 6.5). Section 7 shows that every unital infinite dimensional separable
simple C*-algebra which is asymptotically tracially in A, is asymptotically tracially in Nz (see
Theorem 7.18). In Section 8, we show that a separable simple unital infinite dimensional C*-
algebra which is asymptotically tracially in A and is also asymptotically tracially in Cz s, then
it is asymptotically tracially in Nz (Theorem 8.7). In Section 9, we summarize and combine
some of the results. Theorem 9.11 shows that asymptotical tracial approximation behaves well
under the spatial tensor products. As a consequence, a variety of examples can be produced.
For example, if A is any unital separable simple C*-algebra and B is a unital infinite dimensional
separable simple C*-algebra which is asymptotically tracially in the class of Z-stable C*-algebras,
then the spatial tensor product A ® B is asymptotically tracially in the class of Z-stable C*-
algebras. If both A and B are asymptotically tracially in N, then the spatial tensor product
A ® B is also asymptotically tracially in N, (see Corollary 9.12).
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2 Preliminary

Notation 2.1. Let X be a normed space and 0 < r < s be real numbers. Set B, ((X) := {z €
X :7 <|z| < s}. Denote by X the closed unit ball By 1(X) of X.

Let a,b € X and let € > 0, we write a ~, b if ||a —b|| < e. Let Y, Z C X and let ¢ > 0, we
say Y is an e-net of Z, and denoted by Z C. Y, if, for all z € Z, there is y € Y such that z =, y.

Notation 2.2. Let A and B be C*-algebras, let ¢ : A — B be a map, let 7 C A, and let
e > 0. The map ¢ is called (F,e€)-multiplicative, or called e-multiplicative on F, if for any



z,y € F, o(zy) =c p(z)p(y). If, in addition, for any = € F, ||¢(x)| = ||z||, then we say ¢ is an
(F, e)-approximate embedding.

Notation 2.3. Let A and B be C*-algebras. The spatial tensor product of A and B is denoted
by A® B.

Notation 2.4. Let N = {1,2,---} be the set of natural numbers. Let M}, denote the algebra of k
by k complex matrices (k € N). Let {eg})} denote the canonical matrix units of My, (1 <1i,j < k
and k € N). If F is a finite dimensional C*-algebra, then G denotes the standard generating
set of I, i.e., the union of canonical matrix units of each direct summand of F'. Note that the
standard generating set of F is in the unit ball of ' and is also a linear generating set .

Notation 2.5. Let A be a C*-algebra and let S, C A be subsets of A. Set S-T := {st:s €

S,t € T} and set S* := {a € A:as =0 = sa,¥s € S}. Let 5" be the norm closure of 8.
Denote by Her4(S) (or just Her(S)) the hereditary C*-subalgebra of A generated by S. Let
C*(S) be the C*-subalgebra of A generated by S. Denote by Ay the set of all positive elements
in A, by A}F = A, N A' and by Ay, the set of all self-adjoint elements in A. Denote by M(A)
the multiplier algebra of A. For z € A, the spectrum of x is denoted by sp 4(x), or just sp(x).

Notation 2.6. Let A; be C*-algebras (i € N). Set [[:2; 4; = {{a1,a2,---} : a; € A,
sup;en [|lail| < oo}, and set @io Ai = {{a1,a2, -} : a; € Aj, lim;_, ||ai]] = 0}. Denote by
Too : [ Loy Ai — T1oy Ai/ D52, Ai the quotient map. We also use the notation [*°(A) := ]2, A
and ¢o(A) := @;2, A. Define ¢ : A — [*°(A) by (a) = {a,a,-- -}, the constant sequence, for all
a € A. Define 14 = 7o 0 ¢.

Let h: B — [[;2 Ai/ @2, A; be a *-homomorphism. The map h is called a strict embed-
ding, if for any b € B, there exists {b1, b, -} € [[72; A; such that h(b) = moo({b1,b2,-- }) and
6] = liminf; oo ||bi]]. If C C ]2, Ai/ D;2, Ai is a C*-subalgebra and the embedding map
v:C = [[;2, Ai/ D52, A; is a strict embedding, then we say C is strictly embedded.

(1) Note that, if C' C I*°(A)/co(A) is full in I*°(A)/co(A), then C is strictly embedded (see
also Proposition 2.7).

(2) For a C*-algebra A, the map ¢4 defined above is a strict embedding, and the map
i:A—=1°(A)/co(A), a— 1x({a,0,a,0,a,0,---}) is not.

Proposition 2.7. Let Ay, A, -+ be C*-algebras and let A be a simple C*-algebra. Let h :
A — [[:2, A/ B2, Ai be an embedding. If for some nonzero element a € A\{0}, there exists
a; € A; (i € N) such that h(a) = 7o({a1,a2,---}) and liminf; , ||a;|| > O hold, then h is a
strict embedding.

Proof. 1If h is not a strict embedding, then we can choose ¢ € A and natural numbers i; < i9 <
-+, and ¢ € 4; (i € N) such that h(c) = 7o ({c1,c2,- -+ }) and lim, o0 ||cs, || < Il €]

Let m : [[72, Ai/ Doy Ai — T Ai./ D, Ai, be the quotient map induced by the
quotient map mo : [[;2; A;i — [[,~, Ai,. By the assumption of this proposition, || o h(a)|| =

|0 ({@iy s @iy, - -+ })|| = liminf,o0l|as, || > 0. It follows that 71 oh is a nonzero *-homomorphism.
Since A is simple, m o h is an embedding. However, by the choice of ¢, we have ||m o h(c)|| =
|0 ({Ciy s Cigy -+ Pl = limy 00 ||ci, || < |||, which is contradicted to that 71 oh is an embedding.

Thus h is a strict embedding.
O

Notation 2.8. Let € > 0. Define a continuous function f. : [0, +0c0) — [0, 1] by

0 t €[0,¢,
ft)y=41 t € [2¢,00),
linear ¢ € [e, 2¢].
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Notation 2.9. Let ¢ : A — B be a linear map. The map ¢ is positive, if p(A;) C B4 and
@ is completely positive, abbreviated as c.p., if p ® id : A ® M, — B ® M, are positive for all
n € N. If ¢ is positive linear and ||¢|| < 1, then it is called positive contractive, abbreviated as
p.c., if ¢ is c.p. and ||| < 1, then ¢ is completely positive contractive, abbreviated as c.p.c.. If
¢ is c.p.c. and p(14) = 1p, then ¢ is call unital completely positive, abbreviated as u.c.p..

The following lemma is a well known corollary of Stinespring’s theorem (cf. [35, Lemma
7.11)):

Lemma 2.10. Let ¢ : A — B be a c.p.c. map from C*-algebra A to C*-algebra B. Then
le(zy) — (@)W < lle(zz*) — p(@)p(@)||ly|| for all z,y € A.

The following lemma is taken from [36, Lemma 3.5].

Lemma 2.11. Let A, B,C be C*-algebras, let a € Agq, and let € > 0. Suppose that ¢ : A — B
and ¢ : B — C are c.p.c. maps and ||¢ o (a®) — pop(a)?|| < e. Then, for allb € B,

lo(w(@)b) — p((a))p(®)]| < 2[lb]| and [lp(bi(a)) = (b)((a))l < '/2|b].

Proof. We will only show the first inequality. The proof of the second is similar. We have

0 < p(1(a)®) — o(1h(a)® < p(¥(a®)) — p((a))® < e

Thus [p(¥(a)?) — ¢(¥(a))?|| < e. By Lemma 2.10 we have [|l¢(v(a)b) — (¥ (a))p(b)]| < 61/zllbg

Some versions of the following statements are well known (which can also be derived by using
Lemma 2.11 in the case of c.p.c. maps).

Lemma 2.12. For any C*-algebras A and B, any p.c. map (resp. c.p.c. map) ¢ : A — B, any
projection p € A, any § € (0,1/8), if |lo(p) — ©(p)?|| < 8, then there exists a p.c. map (resp.
c.p.c. map) ¢ : A — B satisfying

(1) ¥(p) is a projection in C*(¢(p)), and

(2) (¢ = ) lpapll < 5612,

Proof. If ||p(p) — o(p)?|| < 6 < 1/8, one has sp(p(p)) C [0,1] U[1 —n, 1], where n = 1+\;f_—45 <
46
3" Then
[0, for t € [0, 7],
ht) = { 1/t1/2) for t € [1 —n,1]
is a continuous function on sp(¢(p)). Let ¢ := h(p(p)). Define a positive linear map (resp.

c.p. map) ¥ : A — B by x + cp(prp)c for all x € A. Then e = 9(p) = h(v(p))?p(p) is a
projection in C’*(np(p)). It follows from [58, Corollary 1] that ¢ is a p.c. map (resp. c.p.c map).
For x € (pAp)!,, by Kadison’s generalized Schwarz inequality ([32, Theorem 1]),

sa’

11 = @) = 11 = )p(x)*(1 = )l < (1 = e)p(®) (1 = )| < (1 = Jp(p)(1 — )| < n.

Then, for z € (pAp).,, one estimates

sa’

1

le(x) — (@) = (@) — co(@)el| < [[(1 = e)p(@)]| + llelllle@) (1 = o)l < n'/?(1 + m)-
Therefore, ||(¢ — ¥)|papll < 2771/2(1 + \/11—7): \/2:/5(1 + \/11_7)51/2 < 561/2, .



Definition 2.13. Let A be a C*-algebra and let My (A) 1 := U,ey Mn(A)4. For x € M,(A),
we identify x with diag(z,0) € M, 4,(A) for all m € N. Let a € M, (A)+ and b € M,,(A)+.
Define a®b := diag(a,b) € My4m(A)+. If a,b € M, (A), we write a <4 bif there are x; € M, (A)
such that lim; o [|a — 27bx;|| = 0. If such {z;} does not exist, then we write a 4 b. We write
a~bifa<pband b Sy ahold. The Cuntz relation ~ is an equivalence relation. We also write
a Sband a~ b, when A is given and there is no confusion. Set W (A) := My (A)1+/ ~4a. Let
(a) denote the equivalence class of a. We write (a) < (b) if a Sx b. (W(A), <) is a partially
ordered abelian semigroup. W (A) is called almost unperforated, if for any (a), (b) € W(A), and
for any k € N, if (k + 1){a) < k(b), then (a) < (b) (see [54]).

Let £ € N be an integer. We write k(a)Z (b) if Her(b) contains k mutually orthogonal
elements by, ba,- - -, b such that a < b;, i =1,2,--- k.

If B C Ais a hereditary C*-subalgebra, a,b € By, thena Sab< a Spb.

Definition 2.14. Denote by QT'(A) the set of 2-quasitraces of A with ||7|| = 7(14) =1 (see [2,
IT 1.1, IT 2.3]) and by T'(A) the set of all tracial states on A. We will also use T(A) as well as
QT (A) for the extensions on My (A) for each k. For 7 € QT (A), define a lower semi-continuous
function d; : Mg(A)y — C, a = limy 00 7(f1/n(a)). The function d; is called the dimension
function induced by 7.

Definition 2.15. Let A be a unital C*-algebra. We say that A has strict comparison (for positive
elements), if, for all a,b € My(A)+, a S b, whenever d,(a) < d,(b) holds for all 7 € QT'(A).

3 Asymptotical tracial approximation

Definition 3.1 (Asymptotical tracial approximation). Let A be a unital simple C*-algebra, let
P be a class of C*-algebras. We say A is asymptotically tracially in P, if for any finite subset
F C A, any € > 0, and any a € A4 \{0}, there exist a C*-algebra B in P, c.p.c. maps o : A — B,
Bn:B— A and v, : A — A (n € N), such that

(1) z =c yn(z) + Br o a(z) for all x € F and for all n € N,

(2) a is an (F, €)-approximate embedding,

(3) limp—oo || Bn(xy) — Bn(x)Br(y)|| = 0 and lim, o0 || Bn(x)|| = ||z|| for all z,y € B, and

(4) Yn(14) Saa for all n € N.

Remark 3.2. Let us point out that in the definition above, we may assume that F is a finite
subset of AL, e € (0,1), and ||a|| = 1, without loss of generality.

Asymptotical tracial approximation may also be defined for non-unital C*-algebras as well
as for non-simple C*-algebras. These will be discussed in a subsequent paper.

Suppose that P has the property that, if A € P, then M,,(A) € P for all integer n > 1. Then,
it is easy to see that, if A is asymptotically tracially in P, then M, (A) is also asymptotically
tracially in P (cf. [39, Theorem 3.7.3]). Also see Theorem 9.11.

There are a number of properties in the C*-algebra theory which are known to be preserved
by asymptotic approxiamtion. We would like to exploit this further by studying asymptotic
tracial approximation as define in 3.1. We show that some of these properties are even preserved
by asymptotic tracial approximation. Section 4 gives an incomplete list of them. Theorem 9.5
further reinforce this point of view.

One may notice that, in Definition 3.1, B is not a C*-subalgebra of A. This is different from
the conventional tracial approximation. On the other hand, Proposition 3.10 shows the sim-
ilarity between asymptotic tracial approximation and the conventional tracial approximation.
Proposition 3.10 also justifies the terminology. This may also partially explain our motivation. It



is worth to point out that the condition (2) in Proposition 3.10 shows that the map ~, is approx-
imately orthogonal to 5, o a. Moreover, as in the conventional tracial approximation, if A does
not have (SP) property, then asymptotic tracial approximation becomes local approximation, a
fact that will be used several times in this paper.

Remark 3.3. Let Py be the class of finite dimensional C*-algebras and let P; be the class of
C*-algebras of 1-dimensional NCCW complexes (see [15] for definition of 1-dimensional NCCW
complexes) respectively. Since C*-algebras in Py as well as in P; are semiprojective (see [15]),
we will show in Proposition 3.11 that A is asymptotically tracially in Py is equivalent to that A
has tracial rank zero (or A is tracially AF), and A is asymptotically tracially in P; is equivalent
to that A has generalized tracial rank one.

Definition 3.4. Denote by £ the class of exact C*-algebras and by N the class of nuclear
C*-algebras. For each n € NU {0}, let AV, be the class of C*-algebras with nuclear dimension
at most n (see 5.11 below). Let Cz be the class of Z-stable C*-algebras, let Cz s (and Cz s )
be the class of separable (and simple) Z-stable C*-algebras, let Nz be the class of nuclear Z-
stable C*-algebras, let Nz,s (and NV z s,s) be the class of separable (and simple) nuclear Z-stable
C*-algebras, respectively.

Example 3.5. Let A be a unital separable residually finite dimensional C*-algebra, i.e. there
exists a sequence of finite dimensional representations {m;} of A such that {m;} separates the
points in A. Let us recall the construction in [14] below. For instance, A can be the full group
C*-algebra of the free group of two generators. Let n; be the dimension of 7; (i € N), let m; =1
and let m; = H;;ll (nj + 1) for i > 2. For each i € N, define an injective *-homomorphism

hi : AQ My, - A My, T—2® (75 ®idei)(:c).

Let B := lim;_,00(A® M, hi), then B is simple separable unital with tracial rank zero ([14], see
also [39, Example 3.7.7]). In particular, B is asymptotically tracially in Ny. In fact, Dadarlat
showed that, for any unital infinite dimensional simple AF-algebra C, one can produce a unital
separable simple non-exact C*-algebra B with tracial rank zero such that Ky(B) = Ky(C) as
ordered groups (see [14, Proposition 9]). In [51], Niu and Wang showed that, for some choices of
A, B can be constructed to be a simple separable unital exact C*-algebra with tracial rank zero
but not Z-stable (so it is asymptotically tracially in Ny but not Z-stable). However, we will see
later that B is asymptotically tracially in Cz ;. Actually, every simple separable unital infinite
dimensional C*-algebra which is asymptotically tracially in N,, is asymptotically tracially in
Nz s s (see Theorem 7.18).

Definition 3.6. A class of C*-algebras P is said to have property (H), if, for any B € P and
any nonzero projection e € B, eBe € P.

The following lemma is well known.

Lemma 3.7. For any € > 0, there exists 6 > 0 such that, for any unital C*-algebras A, and
B, any C*-algebra C, and, any p.c. maps (resp. c.p.c. maps) ¢ : A — C and b : B — C, if
lo(la) —@(14)?]] < 6 and [(p(1a) +4¥(1B)) — (0(14)+(1B))2|| < 6, then there exist p.c. maps
(resp. c.p.c. maps) p: A— C and: B — C, satisfying

(1) (1), ¥(1p) are projections and ¢(14) Ly (1p), and

(2) lle —oll < e and || — 9| <e.
Moreover, if p(14) is a projection, one can take @ = .



Proof. Let ¢ > 0. Put e; = min{e/(1441/2),1/4}. There exists a universal constant § € (0,<1/16)
such that if [[p(La) — o(1a)?]| < 6 and [[(5(La) + $(15)) — (o(La) + $(15))2]| < &, then

lW(1p) = »(1p)*|| < (61/5)* and o(1a)(1p)l| < (e1/5)°. (e3.1)

By Lemma 2.12 and (e 3.1), there exist p.c. maps (resp. c.p.c. maps) @: A — C and ¢ : B — C,
such that

(i) @(14) and ¥(1p) are projections, and

(i) o — @Il < €1, and [[§— 9| < e1.
Note that if ©(14) is a projection, then one can simply take ¢ = ¢. By (e3.1) and (ii), one has
le(1a)Y(1B)]| < (e1/5)% + 261 < 3e1. Then

19(1s) — (1= (14))d(1)(1 — @(1a))]| < 6e1. (€3.2)

Thus ((1-@¢(14))d(15)(1 - (14)))? F1se, (1-@(14))d(15)(1—3(14)). Then (see 39, Lemma
2.5.5], for example) there is a projection g € C*((1 — ¢(14))1(15)(1 — @(14))) such that

lg — ¥ (1p)|| < 36¢1. (3.3)

Therefore (see [39, Lemma 2.5.1], for example) there exists a unitary u € C (or in C, when
C' is unital) such that |15 — u| < 36v2e; < £/4 and u*(1p)u = g. Define ¢ : B — C by
¥(x) := u*h(z)u for all 2 € A. One then verifies that @ and ¢ meet the requirements.

O

Proposition 3.8. Let P be a class of C*-algebras. Let A be a unital simple C*-algebra which
is asymptotically tracially in P. Then the following conditions hold: For any unital hereditary
C*-subalgebra B C A, any finite subset F C B, any € > 0 and any b € B:\{0}, there ezist a C*-
algebra C in P, a unital hereditary C*-subalgebra C of C, c.p.c. maps o: B — C, 3, : C = B,
and Yn : B — BN B,(C)* (n € N), such that

(1) the map « is u.c.p., Bu(le), Yn(1p) are projections, and 1 = Bn(1c) + vn(1p) for all
n €N,

(2) x = Yu(x) + B o a(x) for all x € F and for all n € N,

(3) a is an (F,€)-approximate embedding,

(4) Tt 1Ba(zy) — Ba(@)Ba(y)]| = 0 and limy o | 8u(@)]| = |l2]) for all 2,y € C, and

(5) (1) <p b for alln € N.
If, in addition, P has property (H), then C is in P, whence every unital hereditary C*-subalgebra
of A is also asymptotically tracially in P.

Proof. Without loss of generality, we may assume that 13 € F C B! and € < 1. Let 0; < £/64
be the universal constant (in place of d) in Lemma 3.7 associated with /64 (in the place of ).
Let 6 := 13z min{e, (61/5)%, 1}

Since A is asymptotically tracially in P, there exist a C*-algebra C in P and c.p.c maps
a:A—C,B,:C— A and 7, : A — A (n € N) such that

(1) z =5 An(x) + By o a(z) for all z € F and for all n € N,

(2") @& is an (F, d)-approximate embedding,

(3") Ty o0 [ Bn(2y) — Bn () Bn(y)l] = 0, limp o0 [|Bn(@)[| = [|z]| for all 2,y € C'; and

(4") An(14) Sa b, for all n € N.
Since ||a(1g) —a(1)?|| < & (see (2')), by Lemma 2.12, there exists a c.p.c. map « : A — C such
that a(1p) is a projection and

5
a(z) — afz)] < §1||x\| for all z € 15Alz = B. (e3.4)



Let C := a(1g)Ca(lp) be a unital hereditary C*-subalgebra of C. We may view a as a map
from B to C. Then, by (2'), (e 3.4), and by the choice of ¢, « is an (F, )-approximate embedding.
Thus (3) in the proposition holds.

By (3'), we have lim, e ||3:(1c) — Bn(1¢)?|| = 0. Then, by Lemma 2.12, there exist
c.p.c. maps (3 : C — A such that Bn(lc) are projections and

1Bnlc = Bull = 0 (as n — o). (e3.5)
By (e3.4) and (e3.5), without loss of generality, we may assume that, for all n € N,
By 0 a(x) 25, /3 Bn o a(x) for all z € F. (e3.6)
Then, from (e3.6) and (1'),

13 (15) + Bn 0 a(18)) = (u(1B) + Ba 0 (1)) < b1.

By Lemma 3.7 and the choice of d1, for each n € N, there exists a c.p.c. map 4, : A — A such
that

(i) An(1p) is a projection and 4, (15) L3, o a(14), and

(i) |9 — nll < e/64. .
By (ii), (¢3.6) and (1), we have 1p ~./32 Yn(1B) + Bn © @(1p). Then there exist unitaries
U, € A (n € N) such that |14 — un|| < v2¢/32 and u*(3,(18) + Bn 0 a(18))u, = 1p (see [39,
Lemma 2.5.1]). Define c.p.c. maps 7, : B — B by v,(z) := u)n(z)uy, and define c.p.c. maps
Bn: C — B by B(x) := u* Bn(x)u,. Then (1) in the proposition holds. By (3'), (e3.5) and the
fact that w, are unitaries, condition (4) in the proposition holds.

By (ii) and the fact that |14 — u,| < v/2¢/32, we have

Iy = Fnll < /4 and ||, — Ball < e/4. (€3.7)

Then, by (€3.7), (€3.6) and (1), condition (2) in the proposition holds.

By the fact that v, (1p) is a projection, (e3.7), and [54, Proposition 2.2], we have 7, (1p) ~
#)
fi/a(m(1B)) S An(1p) < b. Thus (5) in the proposition holds. The proposition follows.
O

The following lemma is well known.

Lemma 3.9. Let A be a C*-algebra, a € Ay and let p € A be a projection with p <4 a. Then
there exists s € A such that p = s*as. Moreover, if {an} € [*°(A)+ and {p,} € [*°(A) is a
projection such that Too({Pn}) Siee(4)/co(A) Too({an}), then there exists {sn} € 1°°(A) such that
Sk sy = pn and syps; € Her(ay,) for all large n.

Proof. Since p Sa a, there exists r € A such that ||p — r*ar| < 1/2. Then |p — pr*arp|| < 1/2.
Therefore pr*arp is an invertible positive element in pAp. Hence, by functional calculus there
exists b € (pAp), with ||b]] < /2 such that p = bpr*arpb. Choose s = rpb. Then p = s*as.

For “Moreover” part, by what has been proved, thereis t € {°°(A)/cyo(A) such that oo ({pn}) =
t*14(a)t. Then there exists {t,,} € [°°(A) such that ||p, — (tn)*at,|| < 1/2 for all large n. Thus,
by what has been proved, there is 7, € A (||ry|| < V2||ta||) such that p, = riar, for all large n.
Let s, = a}/2rn. Then s} s, = p, and g, := sps;, = a}n/anr;fLakﬂ € Her(ay).

O]

The following proposition provides another picture of Definition 3.1.



Proposition 3.10. Let A be a simple unital C*-algebra and P be a class of separable C*-algebras
with Property (H). If A is asymptotically tracially in P, then the following holds:

For any finite subset F C A, any € > 0, and any a € AL\{0}, there exists a C*-subalgebra
B C I?®(A)/co(A) with unit 15 which is strictly embedded such that B in P, and (recall notations
defined in Notation 2.6)

(1) 1pta(x) =c ta(x)lp for allx € F,

(2) 1gta(z)lp € B and ||[1gta(x)1g|| > ||z|| — € for allx € F, and

(3) ta(la) — 1B Sieo(A)/eo(a) La(a).
If P is a class of separable nuclear C*-algebras, then converse also holds.

Proof. Assume that A is asymptotically tracially in P. Let F C A be a finite subset with
1a € F,let e € (0,1), let a € A, with ||al| = 1, and let § := €2/4. By Proposition 3.8, there
exist a unital C*-algebra B in P, c.p.c. maps a: A — B, 3, : B — A, and v, : A — ANB,(B)*
(n € N) such that
(1) ais u.c.p., Bn(1p) and v,(14) are projections, and 14 = B, (15) +yn(14) for all n € N,
(2") & ~5 Y (x) + By o a(x) for all z € F and for all n € N,
(3') « is an (F, §)-approximate embedding,
(4) limy o0 || Bn(zy) — Bn(z)Bn(y)|| = 0 and lim, oo || Bn(z)|| = ||z|| for all z,y € B, and
(5") m(14) Sa fij2(a) for all n € N.
Note that (4') induces a strict embedding 8 : B — [*°(A)/co(A), © — moo({Bn(z)}), and that
(2") shows that, for any = € F,

160 )ea(z) = ta(@)B(1p)|| =limsup By 0 a(la)z — 6 o a(la)]
< 20 +limsup |5, 0 a(La)(3n(x) + Bn © al)) = (Y (2) + fn 0 &())n 0 (L4

= 26+ limsup |5 a(14)Fn(a(e) — fula(2))n 0 alL)]
= 20+ hgﬂ_}sol(l)p 18n(a(1a)a(x) — a(x)a(la))]] < 46 < e.

Thus (1) of the proposition holds. For any = € F,

18(A)ea(x)B(1p) = foa(x)]| = fim sup 18n(1B)26n(18) = Bn o alz)||
< O+limsup 180 (1) (Wn(2) + Bn 0 a(x))Bn(1B) — Bn o ()]

= J+ lim_}sup 18n(18)Bn 0 a(z)Bn(1p) — Brn o alx)||= 46 < e.

Thus B(1p)ea(x)B(1B) € S(B). By the estimation above, (4'), and by (3’), we also have
1B(B)ea(@)B(p)ll = (|80 ()] =6 = la(@)]| =6 = [lz] =26 > [|lz]| —e.

Thus (2) of the proposition holds.

By (1), (5), and Lemma 3.9, there exist partial isometries s,, € A such that 14 — 8,(15) =
sysn and s,sy, € Hera(f1/2(a)) for all large n. Let s = {s,} € I°°(A). Then 7meo(s)* Moo (s) =
1a(la) — B(1p) and, since f1/4(a)fi/2(a) = fi/2(a),

Too(8)Too(8)" = Too({snsp}) = Too({f1/4(a)sn sy f1/4(a)}) (e3.8)
= f1/4(ta(a))moo(ss™) fi/a(tala)) € Herpoo(4y/co(a)(ta(a)), — (e3.9)

which implies that (3) of the proposition holds. This proves the first part of the proposition.
For the second part, let us assume that P is a class of separable nuclear C*-algebras and
consider the converse. Let F C A! be a finite subset, let € > 0, and let a € A, with [ja| = 1.



Let 0 := 155 and let F := F U (F - F). Suppose that (1), (2) and (3) hold for F, 4, a, and some
unital separable nuclear C*-algebra B € P. By (2) and the fact that B is nuclear, and by a

consequence of Arveson’s extension theorem (see [39, Theorem 2.3.13]), there exists a c.p.c. map
o' :1°(A)/co(A) — B such that

1pLa(z)1p ~os o/ (1gta(x)1p) for all z € F. (e3.10)

Define a c¢.p.c. map « : A — B by z — o/(1gta(z)1p). For z,y € F, by (¢3.10) and (2), we
have |la(x)| > || 1gta(z)1lg| — 20 > ||z|| — 3d, and

(€3.10) (1) (e3.10)
a(z)a(y) ~45 1pta(z)lpea(y)lp ~s lpta(zy)lp ~a5 a(zy).

Thus (2) in Definition 3.1 holds. Since B is nuclear and separable, by the Choi-Effors Lifting
Theorem (see [11, Theorem 3.10]), there exists a c.p.c. map 3 : B — [°°(A) such that 7o 0 5 =
idp. Let 5, : B — A be the n-th component of 8. Applying Lemma 2.12, we may also assume
that 5,(1p) is a projection for all large n. Since 8 is a strict embedding, {3,} satisfies (3) in
Definition 3.1.

Define a c.p.c. map v, : A — Aby x — (14 — Bn(1p))x(14 — Bn(1p)). Note that v,(14) is a
projection for all large n, and moo({7n(14)}) = ¢(14) — 1. By (3) and Lemma 3.9, we may also
assume, for all large n, 7,(14) Sa a. Hence (4) in Definition 3.1 holds for all large n.

By (1), for all z € F,

ta(z) a5 (ba(la) = 1p)ea(x)(ta(la) — 1) + (1gea(x)lp)
~os (ta(la) — 1B)ea(z)(ba(la) — 1B) + a(x)
= moo({la = Bn(1B)ea(@)mc ({14 — Bn(1B)}) + a(x)
= moo({(1a = Bu(1p))2(1a — Bn(1B))} + B o a())
(

oo ({7 (%) + Bn 0 a(x)}).

Therefore = 45 yn(x) + Bra(z) for all large n. Hence (1) in Definition 3.1 holds for all large n.
It follows that A is asymptotically tracially in P.

|
3

O

Proposition 3.11. Let Py be the class of finite dimensional C*-algebras and Py be the class
of 1-dimensional NCCW complexes. Suppose that A is a unital simple C*-algebra. Then A
is asymptotically tracially in Py if and only A has tracial rank zero, and, A is asymptotically
tracially in Py if and only if A has generalized tracial rank at most one.

Proof. Tt is clear, from the definition (see Theorem 6.13 and Lemma 5.5 of [41] and Definition
9.2, Remark 9.3 and 9.5 of [26]), if A has tracial rank zero, then A is asymptotically tracially in
Py, and, if A has generalized tracial rank at most one, then A is asymptotically tracially in P;.
We will show the converse of these statements.

Suppose that A is asymptotically tracially in P; (i = 0,1). Let F C A,e > 0and a € A;\{0}.
By Proposition 3.10, there is B € P; such that (1), (2) and (3) in Proposition 3.10 hold for £/4
(in place of €).

Let « : B — [®°(A)/co(A) be the embedding. Since C*-algebras in both Py and P; are
semiprojective (see Theorem 6.22 of [15]), there is a homomorphism ¢ : B — A such that, with
p=¢(1p),

(i) px =~ xp for all x € F,

(ii) prp €./9 ¢(B) and ||pzpl| > ||z|| — ¢ for all z € F, and

(iii) 1 —p < a (see Lemma 3.9).
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If i = 0, then B is finite dimensional, so is ¢(B). Therefore, by (i), (ii) and (iii) above, A
has tracial rank zero.
If i = 1, then ¢(B) is a quotient of a B. Then, by Lemma 3.20 of [26], there is a unital
C*-algebra By C ¢(B) which is in P; such that
(i’) pxp € By for all x € F. Therefore, A has generalized tracial rank at most one (see ).
U

The proof of the following is standard and can be found in [41, Theorem 5.3] (see also [39,
Lemma 3.6.5]).

Proposition 3.12. Let P be a class of unital C*-algebras which satisfy property (H). Let A be
a unital simple C*-algebra which satisfies the first part of the conclusion of Proposition 3.10
(associated with P). Then any unital hereditary C*-subalgebra C of A also satisfies the first
part of the conclusion of Proposition 3.10 associated with P, i.e., for any finite subset F C C,
any € > 0, and any a € C4\{0}, there exists a C*-subalgebra B C [*°(C)/co(C) with unit 1p
which is strictly embedded such that B in P, and

(1) 1pta(x) =c ta(z)lp for allx € F,

(2) 1pia(x)lp €. B and |[1gta(x)1g|| > ||z] — € for all x € F, and

(3) ta(la) — 1B Sieo(a)/eo(a) La(a).

4 Properties passing by asymptotical tracial approximations

In this section, it will be shown that, for certain classes of C*-algebras P, if a unital simple
C*-algebra A is asymptotically tracially in P, then A is actually in P.

Definition 4.1. Recall that a unital C*-algebra A is finite, if for any nonzero projection p € A,
14 <4 pimplies p = 14. A is called stably finite, if A ® M, is finite for all n € N.

Proposition 4.2. Let A be a unital separable simple C*-algebra.

(a) Let Py be the class of unial finite C*-algebras. If A is asymptotically tracially in Py,
then A € Py.

(b) Let Psy be the class of unial stably finite C*-algebras. If A is asymptotically tracially in
Py, then A € Py.

(c) Let Q be the class of separable quasidiagonal C*-algebras. If A is asymptotically tracially
in Q, then A € O.

Proof. For (a), assuming otherwise and that there is a projection p € A and there is v € A such

that v*v = 14 and vv* := p # 14. Since A is asymptotically tracially in Py, and Py has property

(H), then by Proposition 3.8, for any £ > 0, with F = {14,p,v,v*, 1 — p}, there is a u.c.p. map

a: A — B for some unital finite C*-algebra B which is an (F,)-approximate embedding.
With sufficiently small £, we may assume that there is a projection e € B such that

la(la) = a(p)l = 1 —1/64, (e4.1)
a(v)a(v) 2164 @(la) = 1p and a(v)a(v)” = /64 a(p) =1 /64 € (e4.2)

It follows from (e4.2) that 15 and e are equivalent in B, and from (e4.1) that |15 —e|| > 1/2,
which contradicts the assumption that B is finite. In other words, A is in Py.

For (b), note that B in Py implies M, (B) in Py for all n € N. Therefore (b) follows from
(a) and Remark 3.2.

For (c), let F C A! be a finite subset and let € > 0. By Proposition 3.8, there is a unital
quasidiagonal C*-algebra B and a c.p.c. map « : A — B such that

la(a)]] > (1 —e/4)||lal| and |a(ab) — ala)a(d)|| < e/4 for all a,be F. (e4.3)
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Since B is quasidiagonal, by [65, Theorem 1], there is a c.p.c. map 5 : B — F (for some finite
dimensional C*-algebra F') such that ||5(y)|| > ||y|| — /16 and ||5(zy) — B(x)B(y)|| < €/16 for
all z,y € a(F). Let ¢ = foa. Then ¢ is a c.p.c. map from A to F. For all a € F,

le(a)ll =B ea(a)ll = [lafa)l — /16 > (1 —e/4)lall — /16 > |lal| —&. (e4.4)
Moreover, for all a,b € F.

p(ab) = Blafab)) ~e/q Blala)a(b)) eji6 Bla(a))Bla(b)) = ¢(a)p(b). (e4.5)

It follows from [65, Theorem 1] that A is quasidiagonal.

The following is taken from the proof of [38, Lemma 2.4].

Lemma 4.3 (cf. [38, Lemma 2.4]). Let A be a separable non-elementary simple C*-algebra.
Then there exists a sequence {d,} in Ay such that ||dy] = 1, (n+ 1)(dp+1) Z (dn) (recall the
Definition 2.13) (n € N), and, for any v € A4 \ {0}, there exists N € N such that (dy) < (z).

Proof. The proof is contained in the proof of [38, Lemma 2.4]. Let {z,} be a dense sequence
of the unit sphere of A, let z, = (zXz,)"/? and y, = fi/2(zn), n € N. The proof of [38, Lemma
2.4] shows that, for any = € A1 \ {0}, (we may assume that ||z|| = 1) there exists N such that
yn < x. Indeed, as exactly in the proof of [38, Lemma 2.4], there is an integer N such that
||z — zn|| is sufficiently small, and, with 1/8 > & > 0,

1fe(x) = fe(an)l] < /4.

By [54, Proposition 2.2],

yn S frja(en) S fepp(fe(an)) S felo) S . (e4.6)

Now let di = y1/[|y1]|. There are 2 mutually orthogonal nonzero elements 21,212 € Her(d;)+
(as in the proof of [38, Lemma 2.4]). By [38, Lemma 2.3], for example, there is do € Her(d;)+
such that ||d2|| = 1 and da S y2, 211, 21,2. It follows that 2(d2) Z (d1).

Suppose di,ds,---,d, have been chosen so that ||d;|| =1, d; S y; (j = 1,2,---,n), and
(G +D{dj+1) 2(dj) (j =1,2,---,n—1). There are n + 1 mutually orthogonal nonzero elements
Zn1sZn2, s Znnt1 € Her(dy)+ (as in the proof of [38, Lemma 2.4]). By [38, Lemma 2.3], for
example, there is d,4+1 € Her(d),)+ such that ||dp11|| = 1 and dpt1 S Ynt1, 2nji, @ = 1,2, -, n+1.
It follows that (n + 1)(dp+1) Z (dn)-

By the induction, we obtain a sequence {d,, } such that ||d,|| = 1, d,, < yn, and n{d,,11) Z (dy),
n € N. By (e4.6), for any = € A} \ {0}, there is N such that dy S yn S .

O

Proposition 4.4. Let P be the class of separable purely infinite simple C*-algebra. Suppose
that A is a unital simple C*-algebra which is asymptotically tracially in P. Then A is a purely
infinite simple C*-algebra.

Proof. We may assume that A is not elementary. Let a € Ay \ {0}. It suffices to show that
14 < a ([13], see also [48]). We may assume that ||a|| = 1. By applying Lemma 4.3 to Her(a),
we obtain two nonzero mutually orthogonal elements ag and a; with ||ag|| = 1 and ||a1]] = 1
such that ap + a1 < a. Let b= fi/5(a1) and let ¢ := 1/2'9. Since A is asymptotically tracially in
P, by Proposition 3.10, there exists a unital C*-subalgebra B C [*°(A)/co(A) which is strictly
embedded such that B in P, and
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1) 1BLA(b) e LA(b)lg,

2) 1pta(b)lp € B, ||[1pta(b)1p| > ||b]| — €, and
3) ta(la) — 1 Sieo(a)/eo(a) Lalf1/2(a0))-

By (2), there exists an element b; € By such that

|1pea(b)lp — by|| < e =1/2°. (e4.7)

Since B is purely infinite, by [55, Proposition 4.1.1], there is x € B such that z* f1 5(b1)x = 1.
There exists a sequence of projections p, € A such that 7o ({p,}) = 1p, where 7 : I*°(A) —
[°°(A)/co(A) is the quotient map. Then we obtain {z,},{bin} € [*°(A) (with 7oc({zn}) = =
and by = 7o ({b1,n})) such that

ILm 25 f1/2(01,0) %0 — poll = 0 and limsup |[pybpn — b1yl < e. (e4.8)

Then (e4.8) (see [54, Proposition 2.2] again) implies that, for large n,

Pn S fl/Z(bl,n) and f1/2<b1,n) < Pnbpn. (e4.9)

On the other hand, by (3) and Lemma 3.9, 1 — p,, S fi/2(ao) for all large n. It follows that, for
all sufficiently large n,

La=(1=pn) +pn S frj2(a0) + b= fi2(a0) + fi/2(a1) < a. (e4.10)
O

Remark 4.5. Let A be a unital separable simple C*-algebra and let P be the class of unital
purely infinite simple C*-algebras. Suppose that A satisfies the conclusion of the first part of
Proposition 3.10 with P above. Then the proof of Proposition 4.4 shows that A is purely infinite.

Theorem 4.6. Let T be the class of unital C*-algebras B such that every 2-quasitrace of B is
a trace. Suppose that A is a unital separable C*-algebra satisfying the following conditions: For
any € > 0, any n > 0, and any finite subset F C A, there exist a unital C*-algebra B in T, and
c.p.cmapsa:A— B, B,: B— A, and v, : A— A (n € N) such that

(1) ¢ =y yn(c) + Pnoalc) for allc € F and n € N,

(2) a is an (F,n)-approzimate embedding,

(3) limn_mo H,@n<blbg) — 571([)1)5”(132)“ =0 and limn_wo Hﬂn(bl)” = Hblu fOT' all bl,bg S B,
and

(4) sup{7(¥n(14)) : T € QT(A)} < & for all n € N.
Then A e T.

In particular, if A is a unital separable simple C*-algebra which is asymptotically tracially
inT, then A€ T.

Proof. Let 7 € QT'(A). Fix z,y € Agq and fix 1/2 > ¢ > 0. Choose 0 < § < € which satisfies the
condition in [2, II. 2.6].

Fix 0 < n < 4. Choose F = {14,2,y,x + y}. Let B, a, 5, and -, be as above associated
with ¢, 7 and F. By Lemma 3.7, we may also assume, without loss of generality,

(5) |vn(a)Bn o ala) — By o ala)yn(a)|| < d for all a € F and all n € N.
Let w be a free ultra filter on N. Let J := {{a,} € [*°(A) : lim, ||la,|| = 0}. Note that J is an
ideal of [*°(A). Let m, : [*°(A) — [*°(A)/J be the quotient map. Let 7, : {*(A)/J — C be
defined by 7, (7, ({an})) := lim,—, 7(ay) for all {a,} € [°°(A). Note that 7, € QT(I*°(A)/J)
(see the paragraph above [2, Corollary I1.2.6]).
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Define an injective *-homomorphism from S : B — A, by 5(z) = 7, ({B1(x), B2(x),- - - }) for
all x € B. Then 7, 0 3 is a 2-quasitrace on B (with |7, o 8|| < 1). Since B is in T,

lim 70 Bi(a(z) + a(y)) = 7o pfla(z)+aly) = 1o fla(r)) + 7, 0 Blaly)) (e4.11)

= lim 70 fi(a(x)) + lim 7 0 Bi(a(y)) (e4.12)
= lim(r o fi(a(x)) + 7o fila(y)) (e4.13)

Therefore there exists m € N, such that

70 fm(a(z) + a(y)) =5 7o fm(alz)) + 7o fm(a(y)). (e4.14)

Note that, for any a € A, [|7(a)|| < ||7]|]la]l < ||a|| (see [2, I1.2.5, (iii)]). Then

T+ y) + ym(z +y))
+ ) + 7(vm(x +y))

(by (5) and [2 I12.6])) ~|piyle 7T(Bmoa
by (4) o
(by (e4.14))

Rlotylle  T(Bmo
~n TOo 6m(0€ X
Rzl +lyle T © Bm(alz
(by (5) and [2, IL2.6]) Rt ylhe  T(Bm(a(z)
(by (1)) Aoy 7(x) 4+ ().

Let €, n — 0. We have 7(x +vy) = 7(z) + 7(y). It follows that 7 is linear. In other words, 7 is a
trace.

To see the last part, assume that A is a unital separable simple C*-algebra which is asymp-
totically tracially in 7. We may assume that A is infinite dimensional. Then, for any ¢ > 0,
by Lemma 4.3 (cf. [39, 3.5.7]), there is a nonzero positive element a € A with ||a|| = 1 such
that sup{d-(a) : 7 € QT(A)} < €. By the Definition 3.1 and applying what has been proved, we
conclude that every 2-quasitrace of A is a trace.

+ 70 Bm(a(y))
+7(ym(x)) + 70 B (a(y)) + 7 (v (¥))

+ Ym(2)) + 7(Bm(a(y)) + ym(¥))
(e4.15)

O
Corollary 4.7. If A is asymptotically tracially in £, in particularly, in N, then QT (A) = T(A).

The proof of the following is taken from the proof of [39, 3.6.10] (see also [40, Theorem 3.4],
[21, 3.3], and [20, 4.3]). Recall that a C*-algebra A is called has (SP) property, if every nonzero
hereditary C*-subalgebra of A contains a nonzero projection.

Theorem 4.8 (cf. [39, Theorem 3.6.10]). Let S be the class of unital C*-algebras with stable
rank one. Suppose that A is a unital simple C*-algebra satisfying the following condition: For
any finite subset F C A, any € > 0, and any a € A4\{0}, there exists a unital C*-subalgebra
B C1*°(A)/co(A) which is strictly embedded such that B in S, and

(1) 1gta(z) =c ta(x)lp for all z € F,

(2) 1pta(z)lp €c B and ||[1pta(z)lp|| > ||z|| — € for all z € F, and

(3) ta(la) = 1B Siee(A)/eo(a) La(a).
Then A in S. Consequently, if A is asymptotically tracially in S, then A in S.

Proof. Note that C*-algebras in S are stably finite (see [39, Proposition 3.3.4]). One may assume
that A is infinite dimensional. Let 2 € A. It will be shown that, for any € € (0,1/2), there exists
an invertible element y € A such that ||z — y|| < e. One may assume that ||z <1 and z is not
invertible. As A is stably finite (see part (b) of Proposition 4.2), one may assume that x is not
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one-sided invertible. To show that z is a norm limit of invertible elements, it suffices to show
that ux is a norm limit of invertible elements for some unitary u € A. Thus, by [39, Lemma
3.6.9] (also see [53, Lemma 3.5]), one may assume that there exists a nonzero element ¢; € A4
such that c;z = xc; = 0.

First consider the case that A has (SP) property. Then, by [39, Lemma 3.6.6], there are
nonzero mutually orthogonal projections p1,p2 € Her(cp). Consider Ay = (1 — p1)A(1 — p1).
Since A is simple and has (SP) property, there is a nonzero projection pj € Ay such that pj < p;
(see, for example, [39, Lemma 3.5.6]). Note x € A;. Since S has property (H) (see [9, Corollary
3.6]), by Proposition 3.12, A; has the same property that A has, namely, there is a projection
q € 1°(A1)/co(Ar) and a C*-subalgebra B of 1°°(A1)/co(A1) with B € S and with 15 = ¢ such
that

(V) Nlgea, (@) — o, (2)all < /32,

(2) qea, (z)q €e/32 B, and

(3) vy (La;) = @ Sice(ar) feo(Ar) bA1 (P1) Sise(4)/co(4) LA(P1)-

Write 21 = qua, (z)q and zo = (14,(14,) — q@)ta, ()(ta, (14, — q). Then, by (1’), one has

lea, (@) — (21 + 22)|| < £/16. (e4.16)
Since B € S, there is an invertible element y; € B such that
Hl’l — ylH < 5/16. (84.17)

By (3'), there is v € 1°°(A)/co(A) such that v*'v = 14,(14,)—q = ta(1a—p1)—q and vv* < 14(p1).
Set yo 1= xo+ (¢/16)v+ (¢/16)v* + (¢/16) (¢ a(p1) — vv*). Note that y3 := z2+ (¢/16)v+ (/16)v*

has the form .
(i 0"):

One checks that ys is invertible in Herjeo(4) /o (4)((tA(1a—p1)—q)+vv*). Therefore ys is invertible
in Herjoo (4)/co(4)(tA(14) — q). Hence y1 + y2 is invertible in [°°(A)/co(A). Moreover,

||ZL'2 — y2|| < 8/8. (64.18)
Finally, one has (by (e4.16), (e4.17) and (e4.18))

lea(@) = (1 +y2)l < llea(@) = (21 + 22) | + 21 = 91l + [l22 — w2l
< €/16+¢/16 +¢/8 =¢/4. (e4.19)

Let z € I°°(A)/co(A) be such that z(y1 + y2) = (Y1 + y2)2z = Liso(a)/co(4)- Let {2(n)}, {y(n)} €
[*°(A) such that 7o ({z(n)}) = 2z and 7o ({y(n)}) = y1 + y2. Then, for all large n, ||z(n)y(n) —
14]] < 1/2 and |ly(n)z(n) — 1]| < 1/2. It follows that y(n) is invertible for all sufficiently large
n. By (e4.19), for all sufficiently large n,

[z —y(n)ll <e.

This proves the case that A has (SP) property.

If A does not have (SP) property, one does not choose p; and ps. However, there is a €
A4 \ {0} such that Her(a) has no nonzero projection. Replacing p; by a above. Since v,(14) is
a projection, v,(14) < @ implies that there is s € A such that s*s = v,(14) and ss* € Her(a)
(see Lemma 3.9) which forces 7,(14) = 0. Thus, in this case, one may assume that v, = 0.
Argument becomes simpler. Indeed, choosing A; = A, then x ~, /15 21 ~./16 Y1-

The last part of the statement follows the first part and Proposition 3.10. O
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Lemma 4.9. Let W be the class of unital C*-algebras whose Cuntz semigroup is almost un-
perforated (recall Definition 2.13). Let A be a unital simple C*-algebra which is asymptotically
tracially in W and a,b,c € A \{0}. Suppose that there exists n € N satisfying (n+1)(a) < n(b).
Then, for any € > 0, there exist a1,as € A+ and a projection p € A such that

(1) a =, a1 + ag,

(2) a1 Sab, and

(3) as < lallp Sa c.

Proof. Without loss of generality, one may assume that a,b,c € AL\{0} and € < 1/2. Let
{e;,j} be a set of matrix units of My41. Then a ® Zi:l €ii SA@Mpsy DO Y i€ Let r =
Z?;r:ll Ti; ®ei; € A® Myiq such that a ® Z?jll Cii Resoa T (b® S eiq)r. Set

Fi={a, b} U{rijri; 14,5 =1,2,-- n+1}.

Let M =1+ ||r|| and choose d; := m. Note that
n+1 n+1
r*(b® Z €ii)T Resa T ((b—01)4 ® Z €ii)r. (e4.20)
i=1 i=1

Note that W has property (H) (see the line following Definition 2.13). Since A is asymptotically
tracially in W, by Proposition 3.8, for any J > 0, there exist a unital C*-algebra B with almost
unperforated W (B), c.p.c. maps a: A — B, 3;: B— A, and vy; : A — AN B;(B)* (i € N) such
that
(1') « is a u.c.p. map, B;(1p) and ~;(14) are projections, and 14 = 5;(15) + 7;(14) for all
(2’) x =5 vi(z) + fioa(x) for all z € F and all i € N,
(3) ais an (F,d)-approximate embedding,
(4") lim; 00 || Bi(2y) — Bi(2)Bi(y)]| = 0 and lim,,—, || Bi(z)]| = ||z|| for all z,y € B, and
(5") 1(14) SacforallieN.
(3"

By (3) and (e4.20), for some sufficiently small ¢ (< (W)‘L), one has
n+1 n+1 n+1
®Ze” e (Y alriy) ®eig) ((ab) - 6 +®Ze” Y alriy) ®eiy).
7.] 1 ,j 1

By [54, Proposition 2.2|, with R := (E:‘j’ll a(rij) ®e;j), in B® My,

n+1 n+1

(a(a)_6/8)+®zei,i: ®Ze” —€/8)4
S RY((ab) —61) +®Zeu S (a *51)+®Zei7i.

Since W(B) is almost unperforated, one obtains (a(a) — €/8)1 <Sp (a(b) — d1)+. Hence there
exists s € B such that

(ala) — €/8)4 ejon 5*(a(b) — )45
Then, by (4'), there exists N € N such that

(Bn(afa)) —€/8)+ mez2 An((ala) —€/8)4) meyzo An(s™ (D) —01)1s)  (e4.21)
Resz2 P (s7)(Bn (b)) — 61)+ BN (s). (e4.22)
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Applying [54, Proposition 2.2], one has

(Bn(a(a)) — €/4)4+ Sa BN (sT)(Br (b)) — 61)+Bn(s) Sa (Bn(a(b)) —61)+.  (ed.23)

Since By (a(b)) + vn(b) =5 b, with § < 1, applying [54, Proposition 2.2] again (noting vy (b) L
Bn(B)), one has

(B (b)) = 61)+ < (Bv(a(b)) = 8)4 < ((Bn(a(b)) = 6)4 + v (b)) = 0) Sa b (e4.24)

Choose a1 := (Bn(a(a)) —€/4) 4, az := yn(a) and p := yn(14). Then, by (e4.23) and (e4.24),
one has a; <4 b. Note that (5) shows as < [la||p Sa ¢. Thus ay, ag, p satisfy (2) and (3) of the
lemma. By (2'),

a s yn(a) + By (a(a) mea v (a) + (By(afa) — €/4)4 = az + a1.

So (1) of the lemma is also satisfied and the lemma follows.
O

Theorem 4.10. Let A be a unital simple C*-algebra which is asymptotically tracially in W (see
Lemma 4.9). Then A € W.

Proof. Let a,b € M,,(A)+ \ {0} with |la|]| = 1 = [|b|| for some integer m > 1. Let n € N and
assume (n + 1){a) < n(b). To prove the theorem, it suffices to prove that a < b.

Note that, if B € W, then, for each integer m, M,,(B) € W. It follows that M,,(A) is
asymptotically tracially in W. To simplify notation, without loss of generality, one may assume
a,be Ay

First consider the case that A has (SP) property. By Lemma 4.3, Her(f;,4(b))+ contains
2n + 1 nonzero mutually orthogonal elements by, by ,- - -, ba,, such that (b;) = (bg), i =1,2,---,2n.
Since A has (SP) property, choose a nonzero projection ey € Her(by). Replacing b by ¢(b) for
some g € Cp((0,1]), one may assume that beg = epb = ey. Put ¢ = b — ¢p. Keep in mind that
b=c+ep, c L eg, and 2n(ep) < ¢ =b— eg. One has

(2n 4+ 2)(a) < 2n(b) = 2n({b — eg) + (e0)) < 2n{c) + (c) = (2n + 1){c). (e4.25)

By Lemma 4.9, for any ¢ € (0,1/2), there exist a;,a2 € A4 such that
(i) a Ne/Q a1 + ag,
(i) a1 Sa ¢, and
(iii) a2 < [lallp Sa eo-
By (i), (ii) and (iii), and applying [54, Proposition 2.2], one obtains (recall bey = egb = ep)

(a—¢e)y Sar+axSc+e=0b. (e4.26)

Since this holds for every ¢ € (0,1/2), one concludes that a < b.

If A does not have (SP) property, choose by € A4 \ {0} such that Her(by) has no nonzero
projections. From (n+1)(a) < n(b), Lemma 4.9 implies that a ~ a1+a2, a1 S band as < p < b.
Projectionlessness of Her(bg) forces p = 0, whence ag = 0. Thus one arrives

(a—¢e)y Sap S (e4.27)

It follows a < b and the lemma follows.
O
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5 Order zero maps and nuclear dimension

Definition 5.1 ([71, Definition 2.3]). Recall that a c.p. map ¢ : A — B has order zero, if, for
any a,b € Ay with a-b =0, one has ¢(a) - ¢(b) = 0.

We would like to recall the following theorem.

Theorem 5.2 ([71, Theorem 3.3]). Let A and B be C*-algebras, and let ¢ : A — B be a
completely positive order zero map. Let C' := C*(¢(A)) C B. Then there exists a positive
element h € M(C)NC" with ||h|| = ||¢|| and a *homomorphism w, : A — M(C) N {h} such
that p(a) = my(a)h for all a € A. If, in addition, A is unital, then h = o(14) € C.

Proposition 5.3. Let ¢ : A — B be a c.p. order zero map. Let h and m, be as in Theorem 5.2.
If A is simple, then the map a®@x — my(a)-x defines an isomorphism v : AQC*(h) = C*(p(A)).
Moreover, for all a € A, ||p(a)|| = |l¢|l - [lall-

Proof. 1f ||¢|| = 0, then h = 0 and there is nothing to prove. Assume that ||¢|| # 0. Since A is
simple, 7, is injective and 7,(A) is also simple.

By (the proof of) [71, Corollary 4.1], v gives a *-homomorphism from A®C*(h) to C*(¢(A)).
Since p(A) C v(A ® C*(h)), v is surjective.

Let us show that 7 is injective. Since A is simple, kery = A® I, where I is an ideal of C*(h)
(see [5, Proposition 2.16.(2) and Proposition 2.17(2)]). Let f(h) € I for some f € Cy(sp(h)\{0}).
Then a ® f(h) € A® I =ker+y for all a € A, which implies that 7,(a)f(h) =0 for all a € A. It
follows that p(a)f(h) = my(a)hf(h) = f(h)mys(a)h = f(h)e(a) and p(a)f(h) = my(a)f(h)h = 0.
Thus f(h) L C*(¢(A)) = C. Since f(h) € M(C), this implies f(h) = 0. Thus I = {0}. In other
words, v is injective.

Moreover, recall, from Theorem 5.2, |||l = ||k||. Then, for a € A, |¢(a)|| = ||h- 7p(a)|| =
I (mo(@) @ W)l = Impla) @ hll = [ p(a)] - I1hl] = ] - ¢l ]

Remark 5.4. (1) For the case that A is a matrix algebra, the proposition above was obtained
in the proof of [36, Proposition 5.1].

(2) Consider ¢ : CEC — CaC, (x,y) — (x,y/2). Then ¢ is an injective norm one c.p.c. order
zero map, but ¢ is not an isometry since [|¢((1,2))|| =1 < 2 = ||(1,2)]|. Thus the last statement
of Proposition 5.3 would fail without the assumption that A is simple.

The following proposition shows the existence of inverse *-homomorphism for norm one
c.p. order zero map from simple C*-algebras.

Proposition 5.5. Let A be a simple C*-algebra, B be another C*-algebra, and let ¢ : A — B
be a nonzero c.p. order zero map. Then there ezists a *~homomorphism ¢ : C*(p(A)) — A such

that 1o o = [lol| -ida and @ o Plya) = [l - idga)-

Proof. We will use the same notation as in Proposition 5.3, such as h, 7, and the isomorphism:
v:A®C*(h) = C*(p(A)), a®@z — my(a) - x.

Note that C*(h) = Cp(sp(h)\{0}) and ||¢|| = ||h|. Define a *-homomorphism 7' : A ®
C*(h) = A by ¢/'(a® f(h)) = f(||h]|)a for all @ € A and f € Co(sp(h)\{0}), and define
Y =1 oyt C*(¢(A)) — A. Then, with the identity function 2 : sp(h) — sp(h), for any a € A4,

Yop(a) =9 oy my(a)h) = ¢'(a® ) = al|hl| = [|¢l|a.

Therefore, for a € A, po(p(a)) = poy) oy~ (my(a)h) = poy'(a@h) = ¢(llella) = |¢lle(a).
The proposition follows. O
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Proposition 5.6. Let A be a C*-algebra, F be a (nonzero) finite dimensional C*-algebra, and
let a: F'— A be an injective c.p. order zero map. Then there exists a c.p. map B : A — F such
that 8o =idp.

Moreover, if o is an isometry, one may choose B to be a c.p.c. map.

Proof. Write F' = My, & --- @& My, (n,ki,---,k, € N) and o; := O‘|Mk-i Mg, — A (i =
1,2,---,n). Then, by Proposition 5.5, there exists a *-homomorphism f; : C*(a;(Mg,)) — M,
such that ”a—liHBioai = idpy,,. Then the map 3 : C* (a1 (Mk,))®- - ®C* (o (Mg,)) = F = My, @

-+ @® My, defined by B((z1,--- ,2n)) = (ﬁllo(zflll)’ o Hmiﬁ)) is a ¢.p. map. Since « is a c.p. order
zero map, C*(a;(My,)) are mutually orthogonal (i = 1,2,---,n). Thus C*(ay(Mg,)) ® -+ ®
C*(an(My,)) is a C*-subalgebra of A. By Arveson’s extension theorem, 3 has a c.p. extension
B: A — F with foa = idp. Moreover, if a is an isometry, then /3 is a *-homomorphism. Hence

the extension 8 can be chosen to be a c.p.c. map. O

Definition 5.7. Let F' = My, & --- @& My, be a finite dimensional C*-algebra. Let A be a
C*-algebra and ¢ : F' — A be a linear map. Define

llplll == max{[|@la [ 8 =1,2,--- ,n}.

Definition 5.8. Let A be a C*-algebra and F be a finite dimensional C*-algebra and let
¢ : F — Abeacp. map. Fix n € N. Recall that the map ¢ is called n-decomposable (see
[36, Definition 2.2]), if F' can be written as F' = Fy @ --- @ F),, (where F; is a finite dimensional
C*-algebra) such that ¢|r, is a c.p. order zero map (i =0, 1,--- ,n). If, in addition, each ¢|F, is
assumed to be contractive, then ¢ is called piecewise contractive n-decomposable map.

Remark 5.9. Note that Theorem 5.2 implies the kernel of a c.p. order zero map is always an
ideal (also see [37, Lemma 2.7]). Thus, for a c.p. order zero map ¢ : F — A, where F is finite
dimensional, one can write F' = ker ¢ @ Fi, where F) is an ideal of F. Note that ¢|r, is injective.

Proposition 5.10. Let A and C be C*-algebras, and B be a finite dimensional C*-algebra.
Suppose that o« : A — B and 8 : B — C are c.p. maps such that 3 is n- decomposable Then
there exist n < n € NU {0}, a finite dimensional C*-algebra B = By @ --- @ By which is a
summand of B, a c¢.p. map & : A — B, and a c.p. i-decomposable map B : B — C such that

(1) foa=foa,
(2) llall < min{[5 o o, (o - [[|8]l}, and
(3) B|g, is a c.p.c. order zero isometry (i =0,1,--- 7).

Proof. Let n be the minimal integer such that 8 is n-decomposable. Then we can write B =
By & --- @ Bi (where each B; is a direct summand of B) such that |p, is a nonzero c.p. order
zero map. By Remark 5.9, we can write B; = ker(8|p,) ® B;, where B; is direct summand of B;.
Then 3|, is a nonzero injective c.p. order zero map (i = 0,1,--- ,7n). Define B:=By®---®B;.
Note that B is a direct summand of B.

Write B = My, ®---® My, , where m, ky,- -, kp € N. Let Pj: B — My, be the projection
map. Set o) = Pj o« and BU) = 6]M (j =1,2,---, ) Note that each 8U) is a c.p. order
zero map. Define al¥) := = |5 J)||a(3 and B IIB(J)Hﬁ = 1,2,---,m. By Proposition 5.3,

each BU) is a c.p.c. order zero isometry. Note that

Boalx Zﬁ oo\ (z 25(3 oa(z) for all z € A. (eb5.1)

7=1

Define c.p. maps @ : A — B = My, @ -+ @ M, by = — (@D(z),---,a™(x)) and § : B =
Mk1 P @Mkm — A by (l’l,' e ,l’m) — Z;nzl 5(])(1'])
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Write, for each i, B; = Ds, My, where S; is a subset of {1,2,---,m}. Again, since |5, is a
c.p. order zero map, B(My,) L B(My,,), if j # j and j,j € S; for each i € {0,1,---,72}. In other
words, | B, 1s a sum of mutually orthogonal c.p.c. order zero isometries. Hence B B, 1s still a
c.p.c. order zero isometry. Therefore (3) holds.

For any = € A, by (e5.1), we have Boa(x) = Py B (a9 (x)) = Boa(z). Thus (1) holds.

Let a € Afr. Recall that 3 is a c.p.c order zero isometry (j=1,2,--- ,;m). We have
_ (e5.1)
[ (a)]| = (189 (aV H<||ZB” = [[Beal(a)| <[[Boall

Thus ||@(a)| = max{||[a?)(a)| : j =1,2,--- ,m} < ||f o, which implies ||a| < ||8 o «l|. Also
note that

lafl = max{lla¥]:j=1,2,--- ,m} = max{||aD] - |8V] : j = 1,2,--- ,m}
< max{lla?| 1 j =1,2,---;m} - |||BII] < |l - 11| (€5.2)

So (2) holds. O

Definition 5.11 ([59, Definition 2.2] and [72, Definition 2.1]). Let A and B be C*-algebras
and let A : A — B be a *-homomorphism. Recall that h has nuclear dimension at most n, and
denote by dimyyu. h < n, if the following conditions hold:

For any finite subset 7 C A and any € > 0, there exist finite dimensional C*-algebras
o, ,Fpoand, cp.maps p: A > Fg@---dF,and ¢ : Fy @ --- @ F,, — B such that

(1) o(x) = h(x) for all z € F,

2) Il < 1, and

(3) ¢¥|F, is a c.p.c. order zero map, i =0,1,--- ,n.
We say A has nuclear dimension at most n, and denoted by dimp,c A < n, if dimpyidg < n.

The following may be known to experts.

Proposition 5.12. Let h: A — B be a *-homomorphism of C*-algebras and n € NU{0}. Then
dimpee b < n if and only if the following holds: For any finite subset F C A and any € > 0,
there exist a finite dimensional C*-algebra F, c.p. maps ¢ : A — F and ¢ : F — B such that
(1) ¥ o p(x) =~ h(z) for all x € F, and
(2) 4 is n-decomposable (see Definition 5.8).

Proof. The “only if” part is trivial. For the “if” part, let 7 C A be a finite subset and let € > 0.
Set § := W Choose ¢ € A}F such that exe ~;5 x for all x € F.

By our assumption, there exist a finite dimensional C*-algebra F, c.p. maps ¢ : A — F and
1 : ' — B such that

(1) ¢ o @(x) ~5 h(x) for all x € {eye : y € F} U {e?}, and

(2") 1 is n-decomposable.

Define a ¢.p. map ¢ : A — F by = — %Hgo(exe) for all z € A. Then, for any a € A,

1/

(by (1)) 1
v 0 $(a)] = [boe(ell < Toshe)] +8) <1

It follows

14 o p(eae)

1+5 ”—1+5

Yol <1 (e5.3)

By Proposition 5.10, there exist a finite dimensional C*-algebra F, and c.p. maps @ : A — F
and 1 : F — B, such that
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(1" pop=10g,
(2") llell < [[Y o ¢l <1, and
(3") 1) is a piecewise contractive n-decomposable c.p. map.
Then, by (2”) and (3”), 1, ¢ and F satisfy (2) and (3) of Definition 5.11. For all z € F,

T (by (1)) 5 1 (by (1)) 1 N 1 N
Yo p(x) = "Yop(x)= mwo p(exe) N% mh(exe) NL& 1 +5h( ) N%Hx” h(z).

By the choice of 6, we have h(z) =~ v o ¢(x). Then, by Definition 5.11, we have dimy,.h < n.
O

Corollary 5.13. Let A be a C*-algebra and let n € N. Then dimpy,. A < n if and only if
the following conditions hold: For any finite subset F C A and any € > 0, there exist a finite
dimensional C*-algebra F' and c.p. maps ¢ : A = F and ¢ : F' — A such that

(1) Yo p(x) = x for all x € F and

(2) ¥ is n-decomposable.

Proposition 5.14. Let A, B, and C be C*-algebras, {ex}rea be an approzimate identity of A,
0:A— B,y : B — C be c.p. maps with ||t o || <1, and let € > 0. Suppose that a € Ay such
that ||v o p(a?) — o p(a)?|| < e and b € B such that b commutes with {¢(ex)}ren. Then

lim sup I (p(a)b) = (w(a))d(w(ex)b)l] < e"/?|[b] and
lim sup Il (b)) = (p(ex)b)ib(w(a))l] < /2 [b]. (e5.4)

Proof. We will show that the first inequality holds. The second one holds by taking conjugate
of the first one. Put M := ||al| + ||a||?>. Let § > 0. Choose J > 0 be such that

(51wl + 1w lllell + 1) + VM + DT+ 18 +¢) o] < /2] +6. (e5.5)

Let A\; € A such that, for any A > A1, any z € {a, a?},

e}\/2xe)\/ ~sx and Yo cp(e}\ﬂa:e)\/ ) ~s o p(x). (€5.6)

Fix A > A\;. Note, for any x € A, we have 0 < (P(CA/Q.Z‘C)\/ ) < ||z||¢(ex). Thus <p(e)\/ :Ue}\/Q) €
Herp(p(ey)). Note that {E, := (1/n + ¢(ex)) " o(en) }nen forms an approximate identity for

Herp(p(ey)). It follows that lim,, 0 ||<,0(ei/2acei/2) 71/2(,0(61\/2 1/2)E71/2H = 0. Therefore there

exists 17 > 0 such that, for x € {a, a?},
pley*eey™) m5 o(ex) 2 + p(en) ™ - ol *aey?) - (1 + plea) T 2p(en) . (e5.7)
Define the following c.p. maps:

p: A= B, e (n+een) V2 ple)*we)?) (14 plex) V2 and  (e5.8)
V:B—C, z+ ¢(¢(6A)1/%<p(@)1/?). (€5.9)

We claim that [|¢|| < 1. Indeed, for any = € AL,

@@l = 11+ plex)) "2 - o(e) *wey/®) - (7 + wlex)) V2|
<1+ lex) ™2 pler) - (n+ wlen) 2 = le(er) - (n+ ¢lex)) | < 1. (e5.10)
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We also claim that ||| < 1. Indeed, for any z € B, |[¢(x)]| = [[¢(e(ex)2zp(ex)/?)|| <

[ (p(e)]l < [l o @llflex]] < 1. Thus || < 1.
Note that, by (e5.7) and (e5.6), for = € {a,a®}, we have

o G(x) M5 ¥ o wley “wey/?) ms ¥ o p(a). (e5.11)

Then we have, applying (e5.11),

vo@(a)®  ~upi+ns Yo @(a) -1 op(a)
(by (e5.11) and [[¢ o pf| < 1) Ru(el+ns o ()’ ¢ o p(d?)
(by (e5.11)) ~l+ns Vo @(a?). (€5.12)
Then
D(p(a)) - p(p(er)b) = v o play(p(en)?bp(ex)'?)
= Yo p(a)y(b)
(by (e5.11)) R (1l+1)3]/b]l Yo p(a)(b)
(by (e5.12) and Lemma 2.11) N b))/ (G157 P(p(a)b)
= P(plen)?@(a)bo(er)'’?)
= P(plen)*@(a)p(er)/?d)
(by (5.7)) bl ¥ (1p(ey/*acy/*)b)
(by (e5.6)) Rl loll1bll6 ¥(p(a)d). (€5.13)

By (e5.5), we have ¢(¢(a)) - h(p(ex)b) ~a/zyg P(p(a)b). Thus
lim sup 1 (2(a)b) — (@) ((en)d)] < (€72 +)|[b].
Let 8 — 0. The proposition then follows. O

Theorem 5.15. Let A and B be C*-algebras, h : A — B be a *-homomorphism, and let
n € NU{0}. Then dimp,h < n if and only if the following condition holds: For any finite
subset G C Ay and any € > 0, there exist a C*-algebra C, a finite subset G C Cy, a finite
dimensional C*-algebra F' and, c.p. maps ¢ : C — F' and ¢ : F — B such that

(1) M(G) Ce o p(9),
(2) ¥ is n-decomposable, and

(3) Y op(ay) e pop(a)-yoply) forallz,y € GU(G-G).

Proof. For the “only if” part, let C = A, let G = G and let M := {||z|| : z € GU (G - G)}. Put
0 := min{1, 2(M76+1)} Since dimyy,e A < n, by Definition 5.11, we can choose a finite dimensional
C*-algebra F' and, c.p.c. maps ¢ : A — F and ¥ : F' — B such that

(1) h(x) = 1p o p(z) for all x € GU (G - G) and

(2") 9 is n-decomposable.
Then, by (1), we have

(3) ¥ op(xy) ~o h(zy) = h(2)M(y) Rareyp ¥ o p(z)Y o p(y) for ally € GU (G - G).
Note that, by the choice of 6, we have (2M + 1 4 0)6 < e. Thus the “only if” part holds.

For the “if” part, let G C A}F be a finite subset and let € > 0. There exists d; > 0 such that,
for all x € AL and for all y € A with ||y|| < 2, if yz ~5, zy, then a2y gt/? Ne/a(n+1) Y- Choose

d = min{ﬁ, (m)z, (%)2} Let e € A} be such that

ere =5 x for all z € GU(G-G). (e5.14)
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By our assumption, there exist a C*-algebra C, a finite subset GC C4, and a finite dimensional
C*-algebra F' and, c.p. maps ¢ : C — F and ¢ : F' — B, such that

(1) h(G U {e}) Cs 0 B(G).

(2") ¢ is n-decomposable, and o

(3") 1o @(zy) ~s o p(x)-1po@(y) for all z,y € GU (G - G).
By Proposition 5.10, there exist 7 < n, a finite dimensional C*-algebra F' = Fy @ --- @ Fj, and
c.p. maps ¢ : C — F and ¢ : F — B, such that
(1) oo = o @ and
(2"") 4|F, is a c.p.c. order zero isometry, i =0, 1, - - -7 )
(17), for each x € h(G U {e}), there exists a(x) € G such that = =5 1) o p(a(x)). Then, by
)

boplalx)) ~sa for all z € h(GU {e}). (e5.15)
Note that G € AL. Then, by (e5.15),
1 o (a(y))]| <146 for all y € h(GU {e}). (e 5.16)
Combining (3”), (1”), (e5.15) and (e5.16), for any z,y € h(G), we have
Yo p(a(z)a(y)) =s ¢ o p(a())P o pla(y)) Ratss v¢ o plaly)) ~5 zy. (e5.17)
In particular,
19 0 pla(z)a(y))| <14 (3+8)d for all z,y € h(G). (e5.18)

Define a c.p. map ¢ : C' — F by z — mgp(a(h(e))xa(h(e))). Then, for any z € C1, by
(e5.18), we have

_ Il (elalh(e)zalheNIl _ lv(elalh(e))]

e @@l 1+G+os - 1+@+os

Thus
Yool <1 (€5.19)

Let x € h(G). Then

¥ o @(a(x)) = Mqﬂ o p(a(h(e))a(z)a(h(e)))

(by (3") and (1)) s Mib o p(a(h(e))y o p(a(z)a(hle)))
(y (3. (") mnd (€516) R~ g o elalle))ve ela)ie ea(he)
N h(e)xzh(e)
(by (e5.15)) N(1+5)12J;5(Jg(+1$§)5+5 m
(by (e5.14)) ~s ﬁ s . (e5.20)
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Also, for x € h(G), we have
1

veda@?) = gyt eelalhie)al) alh)
(y @) and (1) 5 e eelhe)a) - ve pla(zalh(e)
(by (8"), (1), (¢5.18), (¢5.16)) a5 Mw o p(a(h(e))) - o p(a(2))? - ¥ o plalh(e)))
by (©515) =un e
(by (€5.14)) = (‘;:5)5 g 22 (e5.21)

By (e5.21) and (e5.20), we have

Yo @(a(z)?) ~R125(146) z? R105(2+46) ¥ © @(a(x))? for all € h(G). (e5.22)

Let p; be the unit of F;, i =0,1,--- ,n. Then each p; is a central projection of F. We now apply
Proposition 5.14. Recall ¢ : C' — F and ¢ : F — B are c.p. maps such that || o ¢|| <1 (see
(e5.19)). Thus, by (e5.22) and Proposition 5.14, there exists a positive element ¢ € C} such
that, for z € h(G), the following hold (note, (6(32 + 226))'/? < 65'/2):

(@) - v(p()pi) ~esirz Y(P(a(z))pi)
= Ypip(a())) =gz p(@(c)pi) - Y(plalz))).  (e5.23)
Note that 1(@(c)p;) = (@(c)/*p;p(c)'/?) is a positive element, and, by (e5.19),

(@il = [1¥(@(e)*pip(e) )| < [ (@(e)]] < llefl < 1. (e5.24)
Also note that |9 (@(a(z)))|| < 146 < 2 for all x € h(G). By (e5.23), ¥(¢(c)p;) approximately
commutes with {1)(@(a(z))) : & € h(G)} within 126'/2, and, by the choice of § and &;, we have

V(@) - d(@(a(@) - b(@ep)? ~ e v(p(a() - v(@(c)p)
megs D(@((@)p) for all z € h(G). (€5.25)
By (2”") and by Proposition 5.6, there exists c.p.c. maps 3; : B — F; such that
Biolp, =idp;, i=0,1,-- 7. (€5.26)
Define c¢.p. maps (¢ =0,1,--- ,n) v; : A — F; by . — 5; (¢(gb(c)pi)1/2 -h(z) - w(@(c)pi)lﬂ) and
define c.p. map v: A =+ F=Fy®---® Fy by = (y(x), - ,va(z)). For z € G,

=3 Yon(@) = > v o B (L(@E@p) - (@) - w(@(e)p)?)
i=0 i=0

(By (€5:20), (¢5.24))  ~omany v b (¥(@(0p)? - w(@(a(h(@) - (p(ep:)?)
=0

(By (0525) =, . 0 > o f (W(p(alhx)m)
4 i=0
((€5.26), p(a(h(x)))pi € Fi) = Ziﬁ(@(a(h(x)))m): Y(g(a(h(z))))
(By (e5.20)) ~2105 h(z). (e5.27)
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Note, by the choice of 4 (< (m)Q), we have 10(n+1)6+ §+6(n+ 1)6% +108 < e. Thus there
exist a c.p. map v : A — F and a c.p. n-decomposable map 1) : F' — A such that h(x) =~ o~y(x)
for all x € G. Finally, by Proposition 5.12, dimy,. h < n.

O]

Proposition 5.16. Let A and B be C*-algebras, h : A — B be a *~homomorphism and let
t: h(A) — B be the embedding. Then dimp,c h = dimyyc ¢.

Proof. First, we note dimyye h = dimpyc(c 0 h) < dimpyc ¢

Next, if dimpye h = 00, then we are done. Hence we may assume that dimy,. h = n for some
n € NU{0}. Let G C h(A)4+ be a finite subset and let € > 0. Then there exists a finite subset
G C A, such that

UG) = G = h(G). (5.28)

Choose M = max{||z||+1:z € G} and § := ;?}\r/ll{fll)}g Since dimyyue b < n, there exist a finite

dimensional C*-algebra F), and c.p. maps ¢ : A — F and ¢ : I' — B such that
(1) Yop(x) =5 h(x) =t(h(x)) forallz € GU(G-G)U(G-G-G)U(G-G-G-G), and
(2) v is n-decomposable.

Then (e5.28) and (1) show

UG) Cepop(G). (5.29)
By (1), for all z € GU (G - G), we have
I 0 (@)l < 6+ [lh(z)]| < &+ M2 (€5.30)

Therefore, using (1) and (e5.30), we have

Yo p(xy) =5 h(zy) = h(@)h(y) =215 M@)o 0(y) Hsarzys) ¥ o p(2)P 0 p(y).

Then, by the choice of §, we have

o p(zy) me ¥ o p(x)op(y) for all z,y e GU(G-Q). (e5.31)

Then (e5.29), (2), together with (e5.31), show that (with A in place of C'), the conditions of
Theorem 5.15 are satisfied. Therefore we have dimp,. ¢ < n = dimpye h.
O

The following corollary shows that the image of a *-homomorphism of finite nuclear dimen-
sion must be exact.

Corollary 5.17. Let A and B be C*-algebras. If h : A — B is a *~homomorphism with
dimyye b < 00, then h(A) is exact.

Proof. By Proposition 5.16, the embedding ¢ : h(A) — B satisfies dimyyc ¢ = dimp,c h < 0.
Thus ¢ is a nuclear map. It follows that h(A) is exact (see [55, 6.1.11]).
O

By [33, Theorem 2.8], every separable exact C*-algebra admits an embedding into the Cuntz
algebra Q. By [72, Theorem 7.4], one has dimp,. O2 = 1. Thus every embedding of separable
exact C*-algebra into O has nuclear dimension at most 1. Therefore, it seems to be interesting
to observe the following statement.
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Proposition 5.18. Let h : A — B be a *-homomorphism such that h(A) is a hereditary C*-
subalgebra of B. Then dimp,c h = dimyye h(A). Moreover, if B is separable and h(A) is a full
hereditary C*-subalgebra of B, then dimyye h = dimp,e B

Proof. First, let us assume that h is surjective. Then the embedding ¢ : h(A) — B is the identity
map idg. By Proposition 5.16, we have dim,. h = dimpyc ¢t = dimpye idg = dimyye B.

Now we assume that C' := h(A) is a hereditary C*-subalgebra of B. Then by [7, Propo-
sition 1.6] (also see [59, Proposition 2.4]), dimyyeh = dimp,c h¢, where h¢ : A — C is the
homomorphism defined by h%(a) := h(a) for all @ € A (but h : A — B). Now since h®
is surjective, by what we have proved, dimuuch = dimpue h¢ = dimpye R(A). Moreover, if B
is separable and h(A) is a full hereditary C*-subalgebra of B, by [72, Corollary 2.8], then
dimpye B = dimpye h(A) = dimpyc h.

O

Corollary 5.19. Let A be a C*-algebra and I C A be a closed ideal. If the quotient map
m: A — A/l has finite nuclear dimension, then A/I also has finite nuclear dimension.

6 A criterion for generalized inductive limits becoming finite
nuclear dimension

Definition 6.1 ([3] Generalized inductive system). Let A, be a sequence of C*-algebras and
Omn : Am — Ap be amap (m < n). We say (Ay, pm.n) forms a generalized inductive system if
the following hold: For any k € N, any x,y € Ay, any A € C, and any € > 0, there exists M € N
such that, for any n > m > M,

(1) [lemn(@rm(@) + Crm¥)) = (Lrn(@) + Cen @) <€

(2) ”(Pm n(Aka m(T)) — A‘Pk,m(‘r)u <k,

(3) HSOm n(‘Pkm ) ) - @k,n(m)*” <k,

(4) [ omm(Prm(T)0km(Y)) = Crn(T)orn(y)|| < € and

(5) sup, [[prr(z) < oco.
The system is called p.c. (or c.p.c.), if all ¢, are p.c. maps (or c.p.c. maps).

If (A, @m,n) forms a generalized inductive system, then the following is a C*-algebra which
we call it the generalized inductive limit of (A, Ym n):

(A, @) = (Too(lgn1(@), pna(@), 1) n € N,a € 4,} 1 ¢ H An/ @An,
" n=1
where @, == 0 for m > n, and ¢, := ida,. For i € N, define (see [3, 2.1.2, 2.1.3]) @i :
Ai = limp (Ap, omm) by T = Too({@i1(2), pi2(x), - }).
Notation 6.2. Given a sequence of C*-algebras A,, and a sequence of maps ¢, : A, = Ant1,
for m < n, define ¢, to be the composition of @, Y41, Pn—1:

Pmmn ‘= Pn—10Pn-20 " 0Py Ap — Ap,

and define ¢y, », := 0 for m > n, and define ¢, 5, :=ida,. We say (A, ¢,) forms a generalized
inductive system, if (A, @m ) forms a generalized inductive system. Accordingly lim,, (A, ©m n)
will be denoted by lim, (A, vn).

Lemma 6.3. Let A, be C*-algebras and p, : A, — Apy1 be p.c. maps (or c.p.c. maps),
n=12---.Let oy be defined as in Notation 6.2. If, for any k € N, any e > 0, and any z,y €
A}H, there exists m > k such that, for alln > m, @pn(2)rn(Y) Fe Pmn(@km(T)Prm(y)), then
(An, pn) forms a p.c. (or c.p.c.) generalized inductive system.
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Proof. Since ¢,, are p.c. (or c.p.c.) maps, (1), (2), (3) and (5) in Definition 6.1 are satisfied. It
remains to show that (4) in Definition 6.1 holds.

Let k € N, let a,b € A,1€+ and let € > 0. By the assumption, there exists M € N such that,
for any i > M, ¢ i(a) - ¢r,i(b) /2 omi(prn(a) - @r (b)) Then, for any n > m > M, we have

me,n(gpk,m(a) : (Pk,m(b)) Re/2 @m,n(@M,m(‘pk,M(a) : (:Ok,M(b)))
= omn(@rar(a) (b)) Rej2 Prn(a) - Prn(b).
Thus (4) in Definition 6.1 holds for any a,b € Agy. Since A,lCJr generates Ay as linear space,

then (4) in Definition 6.1 holds for any a,b € Aj. Lemma follows.
O

Lemma 6.4. Let (A;, ;i) be a p.c. generalized inductive system of C*-algebras. Then, for any
n,k € N, any finite subset F C Ak, and any € > 0, there exists M > k(€ N) such that, for any
j>1>M, any mi,ma <n €N, and any 1,22, , Tm Y1, Y2, s Yms € F,

mi mo mi m2
i j (H oni(y) - H‘Pk,i(?]r)) e Pi (H ‘Pk,i(«%ﬂ)) i (H (Pk,i(yr)> :
r=1 r=1 r=1 r=1

Proof. Tt suffices to show that, for any k,n € N, any € > 0, and any finite subset F € A,lc, there
exists M > 0 such that (1 <1 <n), for j >i> M,

l !
i ([ enilar)) ~e [ erlar) for all 1,25, 2 € F. (e6.1)

r=1 r=1

This follows from Definition 6.1 and the induction on n immediately. The case n = 2 follows
from (4) in Definition 6.1. Assume the above holds for 2,3,---,n — 1. Then, for § = ¢/3, there
exists My > 0 such that, for any j > ¢ > My,

U U
cpm(H ri(xr)) Rs H ¢k j(zy) for all z, € F(1<r<l'<n-1). (e6.2)

r=1 r=1

For all z, € F, with y = lelzl oki(xr) and z = g i(zp41) (1 <V <U'4+1 <n), there is My >0
such that, for K > j > M, @j,K(SOi,j(y)SOi,j(z)) 7 (p%K(y)(p%K(z) Then

I'+1 I'+1
(e6.2) (e6.2)
oin([] eri(z) = s 0in(0iiW)ei(2) =5 ik Wein(z) =~ 5 [ ersla).
r=1 r=1

O]

We end this section with a sufficient and necessary condition for a c.p.c. generalized inductive
limit having finite nuclear dimension.

Theorem 6.5. Let n € NU {0}. Let (A, i) be a c.p.c. generalized inductive system of
C*-algebras. Let A = lim;(A;, i ;). Then dimy,e A < n if and only if the following hold:

For any i € N, any finite subset G C A;, and any € > 0, there exist a finite dimensional
C*-algebra F', a c.p. map o : A; — F, and an n-decomposable c.p. map B : F — A such that

ioo(x) = foa(x) for all z€g.
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Proof. For the “only if” part, let us assume that dimp,. A < n. Let i € N, let G C A; be a finite
subset, and let € > 0. There exist a finite dimensional C*-algebra F', a c.p.c. map o/ : A — F,
and an n-decomposable c.p. map 3 : F' — A such that, for all © € G, ¢; oo(z) ~e S0 (i 0o()).
Define a c.p.c. map « := &/ 0 ; oo. Then, for all z € G, ¢; () = B0 & (pioc(z)) = o ().
For the “if” part, we will apply Theorem 5.15 to show that dimpyyidg < n.
Let G C A, be a finite subset and let € > 0. Choose N := 1 + max{||z| : z € G} and choose

 := min{1, m} There exist k € N and a finite subset G C (Ag)sq such that

{a1? 12 € G} Cs Proo(G). (€6.3)

Since A = lim;(A;, ¢; ;) is a generalized inductive system, there exists M; > k € N such that,
for any j > ¢ > M; € Nand any z € G,

i, (ori()) — ()] < 0. (¢6.4)
Hence, for any ¢ > M; € N, we have
1©i.00(9ki (%)) = @hoo(x)| < 6 for all z € G. (€6.5)

By Lemma 6.4, there exists M > M; € N, such that, for any j > M, any 1 < mj,me <4 €N,
and any 1,2, ;Tm> Y1, Y2, 3 Ymy € gu

P (H Pr,m(2r) - H@k,M(?ﬁ)) R P (H <Pk,M(fCr)> CPM,j (H wk,M(yr)> - (€6.6)
r=1 r=1 r=1 r=1

Let G := {@p.n(2)? : 2 € G} C (Apn)+. Then, by (¢6.6), we have
om,j(zy) =s o j(@)en;(y) for all 2,y € GU (G - G) and for all j > M. (€6.7)
Consequently, we have
Moo (TY) A5 PM,00(2) M 00 (y) for all 2,y € GU (G - G). (€6.8)

Let N1 := 1+ max{sup;-p{ll¢m ()l : 2 € GU(G-G)}}. By the assumption of the theorem,
there exists a finite dimensional C*-algebra F, a c.p. map « : Ayy — F, and an n-decomposable
c.p. map S : F — A such that

OM,00(T) %Ni Boa(x)foralze GU(G-G)U(G-G-G)U(G-G-G-G). (e6.9)
For any a € G, by (e6.3), there exists x, € G such that al/? ©k,00(Zq). Then
a=(a'"?)? Raniss Phoo(Ta)’ (by (e6.3))
RaN+6)s  PMoo(Prn(Ta))’ (by (e6.5))
~s SOM,OO(SOk:,M(xa)Q) (by (86'8))
rs Boalpru(wa)?) € Boa(g). (by (¢6.9))

Thus G Ce B0 a(G). For z,y € GU(G - G), by (6.9), (6.8) and (e6.9) again,

B o a(xy) Rs Moo (TY) X5 PM00(T)PM,00(y) R25 B o afz)B 0 aly). (e6.10)

Therefore o a(xy) ~. foa(x)foa(y) for all x,y € GU (G - G). Then, by Theorem 5.15, we
have dimp,cid4 < n. Consequently, dimp,c A < n.
O
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7 Simple C*-algebra of finite tracial nuclear dimension

Definition 7.1. Let A and B be C*-algebras and let ¢ : A — B be a map. Let ¢ > 0. If, for
any ai,as € AL with ajas = 0, we have [|p(a1)p(az)|| < €, then we say ¢ is an e-almost order
zero map.

Definition 7.2. Let A be a C*-algebra and let F' be a finite dimensional C*-algebra. Let
¢ : F — Abeacp map and let n € NU{0} be an integer. The map ¢ is called (n,¢)-
dividable if F' can be written as F' = Fy @ - -- @ F,, (where F; are ideals of F') such that ¢|p, is
a c.p.c. e-almost order zero map for ¢ =0,1,--- ,n.

The next two propositions follow from the projectivity of the cone of finite dimensional
C*-algebras.

Proposition 7.3. For any finite dimensional C*-algebra F and any € > 0, there exists § > 0
such that, for any C*-algebra A and any c.p.c. map ¢ : F — A which is d-almost order zero,
there exists a c.p.c. order zero map  : F' — A satisfying ||¢ — ¥| < e.

Proof. Let F be fixed. If such ¢ described in the proposition does not exists, then, there exist
go > 0, a sequence of C*-algebra A,,, and c.p.c. maps ¢, : F' — A, such that ¢, is 1/n-almost
order zero, and, for any n € N and any c.p.c. order zero map ¢ : F' — A, we have ||p, —1| > €.

Define a c.p.c. order zero map ® : F — [[>° | An,/ @D, An by © — 7o ({¢n(2)}). Then, by
[67, Proposition 1.2.4], ® has a c.p.c. order zero lift ¥ : F' — [[>2 | Ay. Let ¢, be the components
of ¥ corresponding to A,,. Since lim,,_, o ||¢n(z) — ¥ (z)]|= 0 for all x € F, and the unit ball of
F' is compact, there exists ng such that ||¢n, —¥n,|| < €0/2. This leads to a contradiction. Thus

0 does exist and the proposition follows.
O

Proposition 7.4. Let F' = My, ® My, @ ---® My, be a finite dimensional C*-algebra with a
standard generating set GI (see Notation 2.4) in the unit ball of F.

(1) For any € > 0, there exists 61(¢) > 0 such that, for any n € NU{0}(n < r), any C*-
algebra A and any (n,d1(¢))-dividable c.p. map ¢ : F' — A, there ezists a piecewise contractive
n-decomposable c.p. map ¥ : F — A satisfying ||p — || < e.

(2) For any € > 0, there exists d2(¢) > 0 such that, for any n € NU{0} (n < r), any
o >0, and any (n,o)-dividable c.p. map o : F — A (for any C*-algebra A), and any c.p.c. map
B: B :=C*(a(F)) — C (for any C*-algebra C) which is (a(GF), 82(¢))-multiplicative, 3 o « is
an (n,o+¢)-dividable c.p. map.

Proof. For (1), by Proposition 7.3, there exists d1(¢) > 0 such that, for any C*-algebra A and
any 01 (&)-almost order zero c.p.c. map x : F' — A, there exists a c.p.c. order zeromap ¢ : F' — A
satisfying [[x — || < 45

Now let ¢ : FF — A be an (n,d;(g))-dividable c.p. map, i.e. F can be written as F =
Fo @ --- @ F, such that each ¢|f; is a c.p.c. 61(¢)-almost order zero map. Then n <.

Let m; : F' — F} be the quotient map. Note that idp = »>7_;7;. Then po; is a c.p.c. 61(e)-

almost order zero map on F, j = 0,1,--- ,n. By the choice of d;(¢), there are c.p.c. order zero
maps Yo, Y1, -+, ¥p : F — Asuch that |[1); —pom;|| < 757+ Therefore ¢ := Z?:o Yjomit F— A
is piecewise contractive n-decomposable c.p. map and [[¢p — ¢l| = [[(b — @) o X T_gm)ll =

13 75=0(¥ —pomj)oml <e
For (2), write F' = Fy @ F1 & - -® F,, such that a|f, is a o-almost order zero map (0 < i < n).
One observes that if 8 is (a(GF), §)-multiplicative, then

8(a(a)x(b)) — B oafa)foad)| <d for all a,be GF. (e7.1)
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Since G is a standard generating set (see Notation 2.4) and the unit ball of F is compact, for
any € > 0, one can find a universal constant d2(¢) > 0 independent of o (but dependent of F')
such that

i o 1B(a(a)a(b)) — Boala)Boad)| <e, (e7.2)

if B1is (a(GT), 62(¢))-multiplicative. Thus Boalg is a (o +¢)-almost order zero map (0 < i < n).
O

Definition 7.5. Let F' be a finite dimensional C*-algebra and let ¢ > 0. Define
A(F,€) := min{01(g), 62(¢), d2(d1(g)),1/2}> 0,
where 01 (g), d2(e) and 62(d1(g)) are as given in Proposition 7.4.

Definition 7.6. Let A be a unital simple C*-algebra and let n € NU {0}. We say that id4 has
tracial nuclear dimension no more than n, if, for any finite subset F C A, any € > 0, and any
a € A;\{0}, there exist a finite dimensional C*-algebra F', a c.p.c. map « : A — F, a nonzero
piecewise contractive n-decomposable c.p. map 3 : F — A, and a c.p.c. map v : A — ANB(F)*,
such that

(1) z = y(x) + Boa(x) for all z € F, and

(2) 7(14) Sa a.
If id4 has tracial nuclear dimension no more than n, we write Trdimy..ida < n.

Note that, for any simple unital C*-algebra A, we have Trdimp,cidga < dimpucidg =
dimp, A. Later, we will show that Trdim,,.ids < n is equivalent to the statement that A
is asymptotically tracially in N/,.

Proposition 7.7. Let A be a unital simple separable C*-algebra and let n € NU {0}. Assume
that Trdimpueida < m. Then, for any finite subset F C A, any € > 0, and any a € A;\{0},
there exist a finite dimensional C*-algebra F, a c.p.c. map a : A — F, a nonzero piecewise
contractive n-decomposable c.p. map B: F — A, and a c.p.c. map v : A — AN B(F)* such that

(1) x =c y(x) + Boa(zx) for al x € F,

(2) v(14) <a a, and

(3) ||8oa(x)| > ||x|| —€ for all z € F.

Proof. Let F C A be a finite subset, let € > 0 and let a € AL \{0}. Let FC X; C Xo C---C A
be finite subsets such that U,,>1 X,, is norm dense in A. Since Trdimy,cida < n, for each m € N,
there exist a finite dimensional C*-algebra F,,, a c.p.c. map «a,, : A — F},, a nonzero piecewise
contractive n-decomposable c.p. map B, : F,, — A, and a c.p.c. map v, : A — AN B (Fn)*
such that, for all m,

(i) z ~< Ym(2) + Bm 0 am(z) for all 2 € Xy, and

(i) ym(1a) Sa a.
Define a c.p.c. map I' : A — [*°(A)/cp(A) by x — 7o ({71(2),72(x),- -+ }) and define a c.p. map
O : A= I®°A)/co(A) by z — moo({51 0 a1(z), B2 0 aa(x), -+ }). Since v (A)L(Bm 0 am(A)),
we have I'(A) L®(A). Note that, by (i), we have 1y = I' + ®. It follows that I' and ® are
*_homomorphisms.

If ® is a zero map, then 14 = I'. Thus there exists mo € N such that |14 — vm,(14)| < 1/2.
Therefore vy, (14) is invertible in A. Then i, (14) LB, (Fim) implies S, (Fimy) = {0}, which is
contradict to that S, is a nonzero map. Hence ® can not be a zero map. In other words, ®(14)
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is a nonzero projection which has norm one. Thus there exist natural numbers m; < mo < ---
such that

18, 0t (La)| 2 1= 1/, i = 1,2, . (e7.3)

Define a *-homomorphism ¥ : A — I°°(A)/co(A) by = — Too({Bimy ©my (T), Brmg 0, (), -+ }).
By (e7.3) and Proposition 2.7, ¥ is a strict embedding. Therefore there exists s € N such that

| B, © m, (z)]| > ||z|| — € for all z € F. (e7.4)

Set F:= Fy,,, @ = Qum,, B8 := Bm,, and v := 7yp,,. The proposition follows.
O

Remark 7.8. Note that condition (3) in Proposition 7.7 implies that § is nonzero. Therefore,
in the light of Proposition 7.7, in Definition 7.6, we may replace the condition that 5 # 0 by
condition (3) in Proposition 7.7.

The following proposition is extracted from the proof of [72, Proposition 2.5] (see also [36,
Lemma 3.7, Proposition 3.8]).

Proposition 7.9. Let A be a C*-algebra, let n € NU {0}, and let 0 < € < 2% Let ag,a1 € Ay
be norm one positive elements. Suppose that F is a finite dimensional C*-algebra, o : A —
F is a c.p.c. map, and B : F — A is a piecewise contractive n-decomposable c.p. map. If
Boalar)ag = Boalar), then there exist a C*-subalgebra F C F, a c.p.c. map a: A — F, and
a piecewise contractive n-decomposable c.p. map B : F — Her(ag) such that, for any x € Ay
with © < ay, ||Boa(z) — Boa(zr)| < 10(n + 1)e/8.

Proof. Write F' = Fy @ - - - @ F), such that each (|, is a c.p.c. order zero map (i =0,1,---,n).
Let x(z) : [0,1] — {0,1} be the characteristic function of the interval [¢'/2,1]. Since F is a
finite dimensional C*-algebra, p := x(«(ay)) is a projection in F. Note that p < 61%Oz(al). Let
F := pFp. Then S| is still a piecewise contractive n-decomposable c.p. map. Moreover, for
each i, pFjp is a C*-subalgebra of F; with unit p; := plp,p. Thus S|,F,, is also a c.p.c. order
zero map. Moreover,

1BlpFp(PLE) (1 = ao)lI* = [[(1 = a0)B(p1F,)*(1 = ao)l| < [|(1 — a0)B(p)(1 — ao)|

< L3I0 = aBlata)( - an)] < 2 < k.

Then, by [36, Lemma 3.6], there exists a c.p.c. order zero map f3; : pFip — Her4(ag) satisfying
IBlprip(@) — Bi(a)| < 865 for all & € (pFip)L. (7.5)
Define F := pFp = pFoyp @ - - - ® pFy,p, and define a c.p.c. map & : A — F, x — pa(z)p, and

define a c.p.map (8 : F — Hera(ag), z — > Bi(pizp;). Note that 8|,rp, = B;. Thus 3 is a
piecewise contractive n-decomposable c.p. map. It follows, for x € A4 with x < a;< 1,

11 = p)a(@)] = (1 = pa(@)*(1 = p)| /2 < |I(1 = p)aar)(L = p)||'/* < /4. (e7.6)
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Then

Boalx)—Boalr) = Zﬁ lpa(x — Bi(pia(z)ps)
— ZB 1F a Bz(leO‘( )plFi)
(by (e7.5))  ~g(ns1)erss Z B(lpa(x)lr) — B(1rpa(z)plE,)

(by (e7.6) and S|, are c.p.c. maps) Ao,y q)c1/a Zﬁ(lpia(:l:)lpi) — B(lpa(z)ly) =0.

O]

Proposition 7.10. Let A be a unital simple C*-algebra with Trdimy,. id4 < n for some integer
n > 0. Then, for any finite subset F C A, any € > 0 and any a € A \{0}, there exist c.p.c. maps
0: A= Aandy:A— ANp(A)L, a finite dimensional C*-algebra F, a c.p.c. map a: A — F,
and a piecewise contractive n-decomposable c.p. map B : F — Hera(¢(14)) such that

(1) x = v(z) + p(x) for all x € F,

(2) o(14) and v(14) are projections and 14 = y(14) + ¢(14),

(3) v(1a) Sa a,

(4) llp—Boall <e and

(5) ¢ is an (F,€)-approximate embedding.

Proof. Without loss of generality, one may assume that F C Al. Let § := min{Q%, (15)}- Since
Trdimp,ida < n, there exist a finite dimensional C*-algebra Fj, a c.p.c. map « : A — F,
a piecewise contractive n-decomposable c.p. map 3 : F; — A, and a c.p.c. map v/ : A —
AN ﬁ’(Fl) such that

(1) z =59 (x)+ B oa(x) for all z € FU (F - F)U{la},
(2") v (1,4) <4 a, and
(3" |18 o a(x)]| > ||z|| — ¢ for all z € F.
(1') holds for # = 14 and 7/(14) € #'(F1)*, one has

B oa(la) ~s (B oa(la))? (e7.7)

Since

It follows from Lemma 2.12 that there is a c.p. map ¢ : A — A such that, p := p(14) is a
projection in C*(3" o a(14)) and

lp(z) — B o afa)| < 56Y2|z|| for all z € A. (e7.8)

By (1') again, one has 7/(14) ~s 7/(14)%. Applying Lemma 2.12 again, one also obtains a
c.p.c. map v : A — A such that ¢ := v(14) is a projection in C*(7/(14)) and

v(z) =~ (z)|| < 56Y2||z|| for all = € A. (e7.9)

Since 7/ (14)B8" o a(14) = 0, it follows that ¢gp = 0. By (1’), (e7.8), (e7.9), and the choice of 0,
|

p+q = 14. It follows that 8’ o a(A) C pAp. Let F = a(lA)Fla(lA)l L and 8 = f'|p,. Then F
is a finite dimensional C*-algebra and 5 maps F' into Her(¢(14)) = pAp. Note that 5 is also a
piecewise contractive n-decomposable c.p. map.

By (1), (e7.8), and (e7.9), and by the choice of §, one checks that (1) and (4) hold. Since
p+q =14, (2) also holds. Since y(14) € C*(7/(14)), by (2'), one concludes that (3) holds.
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By (1), since the image of 4/ is in B N ¢(F})*, one has

Y@ (y)+ B8 oa(@)foaly) = (Y@ +Foa@)(y)+8 caly)  (e7.10)
Rsvs) (Y (y) + B oaly))
~s  zy~s Y (xy) + B oa(ry) for all z,y € F.

Using the fact that the image of 4/ is in B N ¢(F})* again, one obtains
Boa(x)f oaly) ~sots B oa(zy) for all z,ye F. (e7.11)

In other words, 8’ o av is (F, (2 4 ¢))-multiplicative. By (e7.8) and the choice of d, one checks
that ¢ is (F, e)-multiplicative. Finally, for any = € F, by (e7.8) and (3’),

lp@)ll m551/2 18" 0 )| = |8 0 (@) ~5 ]| (e7.12)

Hence (5) holds.
O

Proposition 7.11. Let A be a simple unital C*-algebra and let n € NU{0}. If A is asymptot-
ically tracially in Ny, then Trdimpy,cidg < n.

Proof. Let F C Al be a finite subset, let € > 0 and let a € A, \{0}. We may assume that 14 € F.
Let § := mi:;i15’6}. Since A is asymptotically tracially in N,,, by Proposition 3.8, there exist a
unital C*-algebra B with dimyu. B < n, and c.p.c. maps 3; : B — A, u.c.p. maps o : A — B,
and ;1 A — AN Bi(B)* (i €N) such that

(1) z ~5 vi(x) + Bi o &/(x) for all z € F and for all i € N,

(2) o is an (F, d)-approximate embedding,

(3) limj oo ||Bi(zy) — Bi(x)Bi(y)]| = 0 and lim;_,« ||Bi(z)]| = ||z| for all z,y € B, and

(4) 7i(1a) Saaforall i € N.
Since dimpy. B < n, there exist a finite dimensional C*-algebra F' and a c¢.p.c. map ¢ : B — F,
and a piecewise contractive n-decomposable c.p. map v : F' — B, such that

T =5 1 o p(x) for all x € o/ (F). (e7.13)

By condition (3), there exists m € N such that ||5,, o &/(z)]| > ||&/(z)]] — ¢ for all z € F and
Bm o : F — Hera(Bm(B)) is an (n, A(F,J))-dividable c.p. map, where A(—, —) is defined in
Definition 7.5. Then, by the definition of A(F,d) and Proposition 7.4, there exists a piecewise
contractive n-decomposable c.p. map [ : F' — Her4(8,,(B)) such that

18 = Bm o] < 6. (e7.14)

Set v = 4, and o = @ o . Then, by (1), (e7.13), and (e 7.14), we have
x ~gs y(x) + Boa(z) for all x € F.

Moreover, v(A) L B(F) and (by (4)) v(14) < a.
It remains to show that 8 # 0. By (2) and the choice of m, we have ||3,, 0a/(14)] > 1 — 2.

Then

(e (

7.14) €7.13)
18owoa (L)l Rs [1Bnovopod @)l % [|8moa/(La)] > 1—26.

Thus 8 # 0.
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The proof of the following proposition is almost the same as the proof for finite nuclear
dimension case, see [72, Proposition 2.5].

Proposition 7.12. Let A be a simple unital C*-algebra with Trdimy,. ida < n for some integer
n and let B C A be a unital hereditary C*-subalgebra. Then Trdimy, idp < n.

Proof. Let F C Bl be a finite subset with 15 € F, let € > 0 and let b € B, \{0}. Choose n >0
such that

(L+n)n)? <1/2'% and  10(n + 1)((1 +n)n) /0 + 2912 < & (e7.15)

Since Trdimy,cida < n, there exist a finite dimensional C*-algebra F', a c.p.c. map a: A — F, a
piecewise contractive n-decomposable c.p. map 3 : F — A, and a c.p.c. map v : A — ANB(F)*
such that

(1) & =y y(x) + foa(zx) for all x € F,

(2) v(14) <a b, and

(3) [|Boa(x)| > ||z|| —n for all z € F (see Remark 7.8).
Since 7(4) L B(F), by (1), [Boa(1p)] < (1+n). It follows that Boa(15)® < (1+m)8oa(lp).
Therefore

I(1a—1p)Boa(lp)* = [l(1a—1p)Boa(lp)®(la —1p)] (e7.16)
<1 +n)[(1a—1p)Boa(lp)(la—1p)| (e7.17)
<@+n)ll(la—=1p)(Bea(lp)+~v(1p))(1a— 1)l (e7.18)
<@ +n)(ta=1p)1s(la = 1p)[[+n) =1 +n)n. (e7.19)

Since v is a c.p.c. map, a similar but simpler estimate shows that
(14 — 1)y(z)||*> < 7y for all z € F. (e7.20)

By the choice of n and by Proposition 7.9 (letting ag = a1 = 1p), there exists a C*-subalgebra
FCF,acp.c.cmap &: A — F, and a piecewise contractive n-decomposable c.p. map S8 : F' —
Her4(1p) = B such that, for any x € B}r,

18 0 a(z) — Ba(x)|| < 10(n + 1)((L + n)n)*/*°. (e7.21)
By (e7.21) and (3) and the choice of 7, for x € F, we have
1Ba(@)l| = =] —e.

Define a c.p.c. map 7 : B — B, z +— 1pvy(x)lp. Then ¥(15) <a v(15) < v(14) <a b. Since B
is hereditary C*-subalgebra of A, we have ¥(15) <p b.
Finally, for z € F, by (e7.20), v(x) ~y,1/2 1py(2)1p = ¥(x) for all x € F. Therefore

@ 22y (@) + B 0 () Rig(up1) (1)) /1012172 V(@) + Ba(z) for all € F.

Note that 10(n 4 1)((1 4 n)n)/16 + 2n1/2 < ¢, 1t follows that Trdimy,idg < n.
O

Proposition 7.13 (cf. [22, Proposition 3.4]). Let A be a unital C*-algebra and let X C A4 be a
finite subset. Suppose that, for each x € X, fy5(w) is full in A. Then, there exist 0(Gx) > 0 and
a finite subset Gx C A such that, for any unital C*-algebra B and any u.c.p. map ¥ : A — B
which is (Gx,0(Gx))-multiplicative, f1/2(¢(x)) is a full element of B for each x € X.
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The following lemma is a construction of simple generalized inductive limit of C*-algebras.

Lemma 7.14. Let {A;} be a sequence of unital separable C*-algebras and let @; : A; — Ait1
be u.c.p. maps (i € N). Let X; = {z;1,22,---} C AZ1 be a countable dense subset of AH_,
Xig =A{xi1 -z}t (i,k €N), and Yy, := Ui<i<pi x(Xi k). Then (A;, ;) forms a generalized
inductive system and lim;(A;, p;) is simple, if the following hold for any k € N:

(1) fi/2(a) is full in Ay for all a € F, := Y N B%I(Ak) (recall Notation 2.1), and

(2) pr. is ex-multiplicative on Yy, U (Ur<j<k@jk(GF,)) , where
1

= 5 1 Imn {1 a(Gr;)}

(see Proposition 7.13 for Gz, and o(Gr,), see Notation 6.2 for ¢; ).

Proof. First we show that (A;, ;) forms a generalized inductive limit. Let &k € NU{0}, y1,y2 €
A}H\{O} and € > 0. Then there exist #1,¢2 € N such that y; ~./y zgy, and y2 ~c /4 Tiy,-
Note that » 2, ¢ < oo. Thus there is m > max{k,ti,t2} such that > ;° ¢ < €/4. Then,
for all j > m, by the choice of Y}, we have ¢y j(Trs,), Prj(The) € Y By (2), for all i >
m, @; is e;-multiplicative on {@g (T, ), Pki(Trt,)}. Hence ¢p,; is Z eZ multiplicative on
{km (k1) Phm(Thty) - Then, for all j > m,

ek, (Y1) - Pk (Y2) = g (Prm (Y1) - Om.i(Prm(y2))
s Pmg(Pem(Thty)) P (Prm(Thty))
zzﬂi’:—}n ¢ Pmyj (Pr,m (Trtr) = Phem (Thyty)
s Pm(@em W) - Orm(y2))

By the choice of m, we have ¢ j(y1) - ¢k, (¥2) e ©m j(Crm (Y1) - Prm(y2)) for all j > m. By
Lemma 6.3, (A;, ¢;) forms a generalized inductive system.

Now we show that A := lim;(A4;, ;) is simple. It suffices to show that every norm one
positive element of A is full. Let a € A4 with |ja|]| = 1. Then there exist k,s € N such that
la — ¥roo(Trs)|| < 1/4. Let r > max{k,s} be such that ||¢y,(xrs)|| > 3/4. Then we have
Orr(2ps) € Fr =Y, N B%’I(AT). Condition (2) shows that, for all j > r, ¢, ; is Zg;} €
multiplicative on Gr,. By the choice of ¢; (i € N), the map ¢, is (G, )-multiplicative on
G7,. Then, by Proposition 7.13, f1/2(0k,c0(Tk,s)) = f1/2(@r00(Pk,r(Tk,s))) is a full element of A.
Since [|a — ¥k c0(Tr,s) || < 1/4, by [54, Proposition 2.2], fi/2(k,c0(Tk,s)) = c*ac for some c € A.
Thus a is also a full element of A. Since a is arbitrary, so A is simple.

O

The following is a construction of simple separable unital finite nuclear dimension C*-algebras
using generalized inductive limits.

Lemma 7.15. Let n € NU{0}. Let {A;} be a sequence of unital separable C*-algebras and

: Ay = Aipq be u.c.p. maps (i € N). Let X; = {zj1,252, -} C A1 be a countable dense
subset of AH, let X = {zi1,xi2, -, ik}, and let Yy == Ui<j<pp;, k( k) (i,k € N). Let
Fy = C and let By : Fy — Ay be the zero map. Then (Aj;, ¢;) forms a genemlzzed inductive limit
and A = lim;(A;, @;) is simple with dimp,e A < n, if the following hold for all k € N:

(1) For all a € Fy, := Y N B%l(Ak), fiy2(a) is full in Ay,

(2) there exist a finite dimensional C*-algebra Fy, a c.p.c. map oy : A — Fj, and a
piecewise contractive n-decomposable c.p. map By : Fy, — Agy1 such that @i () z% B o ag(x)
for all x € Yy, and

35



(3) i is ex-multiplicative on

Vi U (Ur<j<kpin(G7,)) U (Ui<j<rein(Bi-1(G771)))

where
1
€L : 4716 12
GTi-1 is the standard generating set of Fj_1 in Fjl_1 (see Proposition 7.13 for Gr, and o(GF,),
see Definition 7.5 for A(—,—), and see Notation 6.2 for ¢;.).

win {1.0(0,) (Fjl,;)} and

Proof. By Lemma 7.14, (A;, p;) forms a generalized inductive system and A := lim;_, oo (A, ¢;)
is a simple C*-algebra.

To show dimp,c A < n,let i € N, e >0, and F C Ail | be a finite subset. By the definition
of Yj, there exists m > i+ 1+ % such that ¢;m(F) Cesq Yin-

By (3), ¢mt1,00 I8 D252, 41 €j-multiplicative on Bm(GFm). By the choice of €j, one has
Y iemi1 € < A(Fm, L), Then ¢mi1,00 © B is an (n,d1(%))-dividable map (see Definition
7.5 and part (2) of Proposition 7.4). By Proposition 7.4, there exists a piecewise contractive
n-decomposable c.p. map S : F,, — A such that

||ﬁ — Ym+1,00 © ﬁm” < 1/m (e 722)

For any x € F, there exists y € Yy, such that ¢; ;(7) ~/4 y. Then

@ (e7.22)
Pico(T) = Pmoc(Pim(T)) s Gmoo(Y) Rt Pmit0 © Pm 0 am(y) =< ' Boam(y)
e Boamopim(x) (e7.23)
Then, by Theorem 6.5 (with a,, o ¢; ., in place of @), dimpyc A < n.
]

Theorem 7.16. Let n € NU{0}. Let A be a simple separable unital infinite dimensional C*-

algebra and Trdimy,cida < n. Then A is asymptotically tracially in Ny, s s (recall Definition 3.4
for the class Ny s.5).

Proof. Let F C B%I(AQ be a finite subset with 14 € F, let € € (0,1), and let a € A;\{0}

with ||a|| = 1. Since A is simple, unital and infinite dimensional, A is non-elementary. Thus
there exist a sequence of norm one positive elements ag, a1, -+ ,an, -+ in Hera(fi/2(a))+\{0}
such that a; Laj, i # j (see Lemma 4.3).

Let Ag := A. Let Fyp := F and let ¢y := ¢/8. Since Trdimpycid4, < n, by Proposition 7.10,
there exist two c.p.c. maps @g : Ag — Ag, 70 : Ao — Ag N po(Ag)*, and a finite dimensional
C*-algebra Fy, and a c.p.c. map «qg : Ay — Fp, and a piecewise contractive n-decomposable
c.p. map So : Fo — Hera,(¢0(14,)) such that

(0,1) & =¢, Y0(x) + po(x) for all € Fo,

(0,2) ¢o(la,) and vo(14,) are projections, and 14, = v0(1a,) + vo(1l4,),

(0,3) 70(14,) Sa, ao-

(0,4) |lpo — Bo © apl| < €, and

(0,5) o is an (Fo, €g)-approximate embedding,.

Define A; := Hera,(vo0(14,)). Note that A; is a simple separable unital non-elementary C*-
algebra, and there exists a; € A14\{0} such that a; <4 a;. There exists a norm one c.p.c. order
zero map X1 : M1 = C — Aj. Let Z; C x1(M{) be a finite subset which is a iA(Ml, 1)-net of

x1(M7).

2
3
4
)
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Let X1 ={x11,212,---} C Ah be a countable dense subset of Ah and let X5 = {z1; :
1 <j <k}, keN SetV: = U<i<ii1(Xin)= X1 (with 11 = ida,), Z1 = Zi, and
Y/ =Y ﬁB%l(Al). Note f1/2(b) # 0 and (since A is simple) therefore is full in A for all b € Y.
Let Gi := Gy, and 0(Gyy) be as in Proposition 7.13 associated with the set Y] (in place of X).
Define

F1 = (,00(.70) UYiuguJ ﬁ()(gFO) U Zl and
€1 ‘= %min{o(gy{),A(Fg, ), (Ml, ) 6/4 }

By Proposition 7.12, Trdimy,.ida, < n. By Proposition 7.10, there exist two c.p.c. maps ¢ :
Ay — Ap,y1 0 A — AiNp1(A;)*, a finite dimensional C*-algebra F, a c.p.c. map oy : Aj — I,
and a piecewise contractive n-decomposable c.p. map ;1 : F1 — Hery, (¢1(14,)) such that

(1,1) x =, m(z) + pi1(z) for all z € F,

(1,2) ¢1(14,) and 71(14,) are projections and 14, = v1(1a,) + ¢1(14,),

(1,3) 7 (1a,) Sa, a1,

(1,4) |lp1 — 1o aq]| < €1, and

(1,5) ¢1 is an (Fi, €1)-approximate embedding.
Assume that, for 1 < k € N, we have constructed, for each 1 < j < k, a hereditary C*-subalgebra
Aj=Hery,  (pj-1(14;_,)) C A, a; € Aj\{0} with a; Sa aj, and X; = {z;1, 22, -+ } C A]+,
Yj := Ui<i<jii(Xi;) (see Notation 6.2 for ¢;x), Y/ =Y ﬂBg 1(45), (gy/) > 0and Gj := gy/
as in Proposition 7.13 associated with Y (in place of X), a ﬁmte subset Z; C xg41(Mp, ;) Wthh
is a 1A(M;,1/4)-net of Xj(Mjl), Z; = Ui<i<ji j(Zi), and a norm one c.p.c. order zero map
X; : Mj — Aj, a finite subset

Fj =00, (Fo) UY; U (Ui<i<jpij(Gi) U (Uicicipii(Bio1 (G )) U Z C Aj, (e7.24)

and

1 1 1
€ = 4—31@12 {a(gy/) A(F;_q, ‘),A(Mi,;),e/él} >0, 1<j<k(and g9 =¢/8),
and there exist two c.p.c. maps ¢; : A; — Aj, 75 : Aj = A; N goj(Aj)L, a finite dimensional
C*-algebra Fj, a c.p.c. map «; : A; — F}, and a piecewise contractive n-decomposable c.p. map
Bj : Fj — Hera,(¢;j(14;)) such that

(4, 1) @ =¢; vj(x) + @j(x) for all x € Fj,

(j:, 2) ¢j(14;) and v;(14,) are projections and 14, = v;(14;) + ©;(14;),
(4:3) 7i(1a,) Sa; aj,

(7:4) llgj — Bj o 0‘]“ < ¢, and

(4,5) @; is an (Fj, €j)-approximate embedding.

Define Aj41 := Hery, (pr(1a4,)). Note that there exists axy1 € (Ag+1)+\{0} such that az41 Sa
ax+1. Also note that Apyq is simple, separable, unital and non-elementary. Then, by [34,
Proposition 4.10], there exists a norm one c.p.c. order zero map Xx+1 : Mpi1 — Ag+1. Let
Zri1 C Xk+1(Mk+1) be a finite subset which is a ZA(MHI; k+1) -net of Xk+1(Mk;+1) Let
Xit1 = {Tr+11: k112, - C (Agt1)) be a countable dense subset of (Aji1)l, and let
Xk+li = {J)[H_L] 01 < ] < 2} i € N. Let Yk+1 = Ulgjgk—i—l@j,k-i—l(Xj,k—i—l) and Zk—l—l =
U1<]<k+1¢J,k+1(Z ) Note that f1/2( ) is full in Ag. Set Ylé-i—l = Yk+1ﬂB%71(Ak+1), O’(gyk/_‘_l) >0
and finite subset Gyy; := ng,H be as in Proposition 7.13 associated with Y,/ (in place of X).
Define

Fry1 = pok+1(Fo) U Yy U (Ulgi§k+1%,k+1(gi)) U (Ur<ickr19ig+1(Bim1(GF1))) U Ziyq

: n {o(Gyy ), (Fj—1>;),A(Mj,;),6/4}>O. (e7.25)

and €p4q = l

4k+1 < <k+1
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(Note Fi41 is a finite set.)

Note also Trdimpycida,,, <n (by Proposition 7.12). Then, by Proposition 7.10, there exist
two c.p.c. maps QYri1 : Apr1 — Apits Yrsl : Arrr — Appr N@py1(A)L, a finite dimensional
C*-algebra Fjy1, and a c.p.c. map ag41 : Ag41 — Fiy1, a piecewise contractive n-decomposable
c.p. map Bri1: Frq1 — Hera,,, (0r11(14,,,)) such that

(k+1,1) 2 =, Yer1(x) + opgi(z) for all x € Fryq,

(k+1,2) or11(1a,,,) and yry1(1a,,,) are projections, and 14, ,, = Vr1(1a,, ) +orr1(la,,,),

(k+1,3) '7k+1(1Ak+1) SAkH k41,

(k+1,4) l[or+1 = Brt1 © gl < €g41, and

(k+1,5) @r41 is an (Fgy1, €x+1)-approximate embedding.

Then, by induction, for each k € N, we obtain a hereditary C*-subalgebra Ay C A, a; € Axy\{0}
with ap <a a, a norm one c.p.c. order zero map xj : My — Ag, a finite subset F C Ay
satisfying (e 7.25), and €; > 0 satisfying (e 7.25), and, there exist two c.p.c. maps ¢y : Ap — A,
Yt Ap — A N op(Ag)*, a finite dimensional C*-algebra F}, a c.p.c. map ay : Ay — Fj, and a
piecewise contractive n-decomposable c.p. map Sy : F, — Her, (¢x(14,)) such that conditions
(k,1) to (k,5) hold.

By Lemma 7.15 (see (k+1, 4) and (k+1, 5)), (Ax, ¢x) forms a generalized inductive system
and A := limy (A, 1) is a simple separable unital C*-algebra which has nuclear dimension at
most n.

Let us now show that A is infinite dimensional. For 4 < k € N and for all m > k, by
(m,5) and the choice of Z,, and ¢,,, the map Ph,oo 18 %A(Mk, %)—multiplicative on Zj. Since
Zy, is %A(Mk,%)—net of xx(M}), the composition ¢p o xk @ My — A is A(Mk,%)-almost
order zero. Then, by Proposition 7.4, and the definition of A(Mj, %), there exists a c.p.c. order
zero map i : My — A such that ||[Xx — koo © Xk < % By (m,5), for m > k, we have
[obooo (g )| 21— =% e > 1/2, whence [0l 2 [k ocoxsll— 2 = 1- 3%, 6~ 2 > 0.
Thus xj is nonzero. Since A admits nonzero c.p.c. order zero map xx : My — A (for all k > 4),
A must be infinite dimensional.

Note that 17 = 1o ({¢1(14,), 2(14,),---}) and

2

Too(14) = 11 = Moo ({m(Lay), D %i(lay),--}).

=1

Since, v;(14;) S @ < aj, and a; L a;(i # j), for all k € N, Zle vi(la,) S Zle ar < fiy2(a).
It follows

Too(1a) = 14 Siso(A)/eo(A) @ (€7.26)

Forz € Fandk € N, 214, ~¢ (Yo(z)+po(2))1a, = @o(2)1a, e, (11(00(2))+¢1(00(2)))1a, =
©00,2(T)1a, Rey - Rey_y Pok—1(2)14, = @ok—1(x). Similarly, we have 14,z R, 0o, k—1().
Thus 14,z Rigiet zly, . Note that 2377 ¢; < e. Hence

=0 -

1ALA(«77) e LA(aj)lg. (e 7.27)
Moreover, 14,214, Rkl ©o k—1(z) implies

Laea(w)14 e oo ({01 (2), o2(x), -+ }) € A, (e7.28)

By Proposition 3.10 (see (e7.27), (e7.28) and (e7.26)) A is asymptotically tracially in N, s .
O
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Corollary 7.17. Let A be a simple separable infinite dimensional unital C*-algebra, then the
following are equivalent:

(1) A is asymptotically tracially in N, for some n € NU {0},

(2) Trdimyueidg < n for some n € NU {0}, and

(3) A is asymptotically tracially in Ny s s for some n € NU {0}.

Proof. Note that (3) = (1) is automatic. (1) = (2) follows from Proposition 7.11, and that (2)
= (3) follows from Theorem 7.16.
O

Theorem 7.18. Let n € NU{0}. Let A be a simple separable unital infinite dimensional
C*-algebra and A is asymptotically tracially in Ny,. Then A is asymptotically tracially in Nz s 5.

Proof. This follows from Theorem 7.16 and [69, Theorem 7.1].
O

8 Z-stable generalized inductive limits

The following notation is taken from [68] with a modification.

Notation 8.1. (cf. [68, Notation 2.2]) Let A be a unital C*-algebra, n € N, ¢ > 0, and let
F C A be a finite subset. If ¢ : M,, — A is a c.p.c. map and v € A! such that

(i) lv*v = (La =9 (1ar,))[ <e,

(if) [lov o (el)) — vo*]| <,

(iii) ||[(y), ]| < € for all z € F and for all y € M},

(iv) ||[v,z]|| < € for all z € F, and

(v) 9 is c.p.c. e-almost order zero map (recall Definition 7.1),
then we say @ and v satisfy the relation R4(n,F,¢) or the pair (¢,v) satisfies the relation
7VQA(TL, Fe).

Lemma 8.2. Let A be a unital C*-algebra, n € N, € > 0, and let F C A be a finite subset.
Suppose that a c.p.c. map 1 : M,, — A and v € A satisfy the relation 7?A(n,f, €). Suppose
also that B is a unital C*-algebra, ¢ : A — B is a u.c.p. map and 0 < § < A(My,€) is a
positive number (see Definition 7.5 for the definition of A(—,—)). If ¢ is d-multiplicative on
FUp(GMn) U {v,v*,vv*} (recall that GMn is the standard generating set of M, see Notation
2.4), then @ o and @(v) satisfy the relation Rp(n, p(F),2¢ + 361/2).

Proof. We verify this as follows.

(D) () e(v) = (A = v o ¥(lar))l| =5 [lp(v*v) = (p(1a) = @ 0 P(lag))l| < & (see (i) of
Notation 8.1).

2) lp(v)p(0)*p 0 p(el)) — p(v)p(v)*| = (o) 0 (el)) — p(vv™)|
(Lemma 2.10) y (n) N
Ry (oo (el))) — (o)
((iii) of Notation 8.1)
< €. (e8.1)

(3) Let € F and y € M}, Then, by Lemma 2.10, ¢ o ¥(y)¢(z) ~5/2 ©((y)z). Similarly,

p(2)p 0 Y(y) =572 p(x(y)). Thus [|[p o ¥(y), p(x)]]| < e+ 26"/ (using (iii) of Notation 8.1).
(4) Let = € F, then ||o(v)p(z) —@(x)p(v)|| ~2s [|@(ve —zv)|| < e (using (iv) of Notation 8.1).
(5) By Definition 7.5 and (v) of Notation 8.1, ¢ o 1) is 2e-almost order zero map.

Thus ¢ o ¥, p(v) satisfy the relation Rp(n, p(F), 2¢ + 35'/2).
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Also recall the following proposition (with a mild modification):

Proposition 8.3 (cf. [68, Proposition 2.3]). Let A be a separable unital C*-algebra. Then A is
Z-stable if and only if the following condition holds: For any n € N, any finite subset F C AL
and any 0 < € < 1, there are m € N, a c.p.c. map ¥ : M,,, — A and v € A satisfying the
relation Ra(mn, F, ).

Proof. Note that if A is Z-stable, then Z (hence the dimension drop algebra Z,, ,,+1) is unitally
embedded into (I°°(A)/co(A)) N A’ (see [31, Theorem 8.7], see also [62, Theorem 2.2]). It
follows from “(iv) = (iii)” of [57, Proposition 5.1] that there is an order zero map ¥ : M,, —
(1°(A)/co(A) N A" and V € (I°(A)/co(A))! satisfy condition (i), (i) and (v) with € = 0. There
is a c.p.c. map ¥ : M,, — [*°(A) and there is a {v,,} € (I°°(A))! such that, 7o, 0 ¥ = & (see [67,
Proposition 1.2.4]) and 7 ({vn}) = V. Then the “only if” part follows.

For the “if” part, let n € N, let 7 C Ay be a finite subset, and let 0 < ¢ < 1. Choose
N = 1+ max{||z]| : z € F} and § := min{A(M,,€/2N), (¢/4)?} (see Definition 7.5 for the
definition of A(—, —)). Then, by our assumption, there are m € N, a c.p.c. §-almost order zero
map 1 : My, — A and v € A! satisfying the relation R 4(mn, F,6).

Let h : M,, — M,,, be a unital embedding such that egfrlm) < h(egﬁ)). Then vpoh: M, — A
is a c.p.c. 6-almost order zero map. By the choice of § and the definition of A(M,,, e¢/2N), there
exists a c.p.c. order zero map ¢ : M,, — A such that |[¢) o h — ¢|| < €/2N. Then one has

loo*o(el)) = vo*|| mejan o™ o h(el?) — vo*|| = [lov*(La — ¢ o h(el)))2vv*||/?
< oot (La — 9 o h(el")ort[Y? < [lov* (1a — (elT™))you*||/2
< oot (s — ()Y < 512,

Thus ¢, v satisfy (ii) in the relation R A(n, F,e). One easily checks that ¢ and v also satisfy the
rest terms in the relation R 4(n, F,¢). Since ¢ is an order zero c.p.c. map, [68, Proposition 2.3]
applies and A is Z-stable.

O

Lemma 8.4. Let A; be a unital separable C*-algebra and let p; : A; — A;11 be u.c.p. maps
(i € N). Let X; = {zij1,xi2,---} C A}+ be a countable dense subset of Ail_i_, let Xip =
{@in, wip, -+ xik}, and let Yy, := Ui<i<ki k(Xik) (i, k € N). Set Ag = Ay, Yo = {0} C Ay and
Qo = idAO : Ao — Al.

Then the system (A;, ;) forms a generalized inductive system and A := lim;(A;, ¢;) is a
simple and Z-stable C*-algebra, if the following conditions hold for any n € N:

(1) fij2(z) is full in Ay for all x € Fp =Y, N B%’l(An),

(2) thvere exist a c.p.c. map Py : My — Ay, and v, € AL such that 1, and v, satisfy the
relation Ra, (n!, on—1(Yn-1), %), and
(3) pn is en-multiplicative on

Yn U (Ulgjgngpj,n(g}'j)) U (Ulgjgn (Soj,n o ¢j(gMj!) U {‘pj,n(vj)v @j,n(vj)*a ‘Pj,n(vjvj)})) ;

where 1 1

€p 1= 47 lrgnjléln{L U(g]'—j)7 A(MJ" ﬁ)} and
Gt is the standard generating set of Mj (see Proposition 7.13 for Gz, and o(Gr,), and see
Notation 6.2 for ;).
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Proof. By Lemma 7.14, (A;, ;) forms a generalized inductive system and A := lim;(4;, ¢;) is a
simple C*-algebra. We will show that A is Z-stable.
Let e > 0,n € Nand let 7 C A}Ir be a finite subset. Then there exists ny > n € N such that

F Ce Pnyoo(Yny)- (€8.2)

Choose ng > nj such that = +3(Zz o €)'/? < ¢/8. By our assumption, there exist a
c.p.c. map Yp, : My, — Ay, and Un, € A}, such that

(1') the pair (¢n,, vn,) satisfies the relation R4, (n2!, ony—1(Yny—1), n%,), and

(2") for any k > ng, the map ¢y (from Ag to Agy1) is eg-multiplicative on

YU Pna,k © an (gMHZI) U {(10712,19(71712)’ Qan,k(Unz)*a ‘an,k’(UnQ’U:Lg)}'

By (2/), for any k > na2, ony k18 (Y, U thny (GM120) U {vn,, 03, vny v, 1, Zf:m €;)-multiplicative.
Therefore @y, o is (Yn2 U Yy (GMr2t) U {vn,, V3, Uny 0l 3 > ion, €i)-multiplicative. Note that
D iy € < A(Mpyy, 5 -L:). Then, by Lemma 8.2, the pair (¢n, 00 © Uny, Pna,c(Vny)) satisfies the

relation
o

. 2
RA(n2!7 90112700(90712—1(}/”2—1))7 72, + 3(2 q)l/?)'
i=no
By (e8.2), we have F C < @, 00(ny—1(Yn,—1)). Alsonote =5 + 3(°%° €)'/? < /8. Therefore
the pair (¥ny,c0, Png,00(tny)) satisfies the relation RA(nQ!,}', €). Thus, by Proposition 8.3, A is
Z-stable.

1=n2

O]

Lemma 8.5. Let A be a unital simple C*-algebra which is asymptotically tracially in Cz 5 (see
Definition 3.4). Then, for any finite subset F C A, any e >0, anyn € N, and any a € A;\{0},
the following conditions hold.

There exist a separable unital C*-algebra B and a u.c.p. map o : A — B such that

(1) a is an (F,€/2)-approximate embedding, and
for any finite subset G C B, there exist three c.p.c. maps : B — A, v: A — (8o a(A))*,
Y M, — Herg(Boa(ls)), and v € Herg(B o a(14))! such that

(2) Boa(la), v(14) are projections and 14 = Soa(la) 4+ v(14),

(3) x =¢ foa(x)+v(x) for all x € F,

(4) B is a (G, €)-approzimate embedding.

(5) v(14) Sa a, and )

(6) ¢ and v satisfy the relation Riger ,(Boa(14)) (7 B 0 a(F),€).
If, in addition, A is assumed to be asymptotically tracially in N, then B above can be chosen to
be nuclear.

Proof. Let F C A be a finite subset. Without loss of generality, we may assume that ||z|| <1
for all x € F. Let € € (0,1), let n € N, and let a € A.\{0}. Since A is simple, unital and
asymptotically tracially in Cz s, A is non-elementary. Then there exist ag,a; € Hera(a)\{0}
such that aga; = 0. Let § := min{(¢/8)%, A(M,,¢/4),1/2}.

By [62, Corollary 3.1], Cz ¢ has property (H). Then, by Proposition 3.8, there exist a unital
separable Z-stable C*-algebra B and c.p.c. maps @ : A — B, f; : B — A, and 7; : A —
AN (B;oa(A))* (i € N) such that
(1) @&(14) = 15, Bi(15) and 7;(14) are projections, 14 = B;(15) +7i(14) for all i € N,
(2") = =5 Yi(z) + B; o a(z) for all z € F for all i € N,

(3') @ is an (F,d)-approximate embedding,
(4") lim; 00 || Bi(zy) — Bi(2)Bi(y)|| = 0 and lim; o0 ||Bi()|| = ||| for all x,y € B, and
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(5") 7i(14) <a ap for all i € N.

Since B is Z-stable, by Proposition 8.3, there is a c.p.c. order zero map v : M,, — B and there
is ¥ € B! such that

(6') the pair (1, ©) satisfies the relation Rg(n, a(F),e/8).

Set B := B and « := &. Then, by (3'), (1) holds.

Let G C B be a finite subset containing ¥ (G») U {#,7*,00*}. By (4') and (6'), for a
sufficiently large k € N, the following (7’) and (8') hold:

(7) The map fy, is an (a(F) U G, §)-approximate embedding.

(8') The pair (B, 09, Br(v)) satisfies the relation ﬁHerA(,@k(IB))(n, Br(a(F)),e/4).

Set G:=G, B:= B, v := Yk, ¥ := Br o, v:= B(v). Then, by (1'), (2) above holds, by (2'),
(3) holds, by (7), (4) holds, by (5’), (5) holds, and, by (8'), (6) holds. This proves the first part
of the lemma.

If, in addition, A is also assumed to be asymptotically tracially in A/, then, by Proposition 3.8,
Her 4 (Bx(15)) is simple and asymptotically tracially in /. There exists ay € Hera(Bx(15))+\{0}
such that as <a aj. Since Hera(Bx(15)) is asymptotically tracially in N, by Proposition 3.8,
there exist a unital nuclear C*-algebra B and c.p.c. maps & : Hera(Br(13)) — B, 5i : B —
HerA(Bk(lg)), and %; : HefA(Bk(lé)) — HerA(Bk(lg)) N Bi(B)l (Z S N) suchAthat

(1”) &is au.c.p. map, 3;(1p) and 4;(Broa(14)) are projections, Sx(15) = B:(18)+%:(Br(15))
for all 2 € N,

(2")  ~5 4i(x) + B 0 &(x) for all & € By, o &(F) and for all i € N,

(3") @ is a (B o @(F) U B o p(GMm) U{Br(v), Br(v)*, Br(vv)*}, 6)-approximate embedding,

(4") limj .0 [| Bi(zy) — Bi(x)Bi(y)[| = 0 and lim; o ||Bi(z)|| = ||z]| for all z,y € B, and

(5//) ’Ayz(ﬂk o 07(1,4)) gHerA(Bk(lg)) as for all 7 € N.

Let v := & o fj o &. Then, since 0 < ¢/8, by (3') and (3”), (1) of the lemma holds. Let G C B
be a finite subset. By (4”), there exits a large m € N such that

(6") fim 15 a (G U o iy 0 6(F) U o Ar($(G™)) U {a 0 iy(v), é o fiu(v)*, & o u(vv)*}, 6)-
approximate embedding.

Then, by the choice of G, and by (7'), (3”), and (6”), the map B 0 & o By, is 35-multiplicative
on a(F) Uyp(GMn) U {v,v*, v0*}. Moreover, by (8') and Lemma 8.2, we have

(_7//) the pair (ﬁm oho o, Bm o&o By (D)) satisfies the relation RHGTA(BmO&OBkOB)) (n, Bm o
& o Br(a(F)), 59). ) ) o ) )

Define 8 := fm, v = +m o Bro @, ¥ := B oo Py o1 and v := By, o & o [x(v). Since
Ak (A) LAm o Br o a(A), we have that v := J + 4m © B © @ is also a c.p.c. map. Then, by (1)
and (1”), (2) holds, by (2') and (2”), (3) holds, by (6”), (4) holds, by (5), (5”), and by the fact
that ag <4 a1 and agLay, and ag 4+ a1 <y a, (5) holds. Finally, by (7”), (6) holds.

O

The following lemma is well known.

Lemma 8.6. Let A be a C*-algebra and B be a nuclear C*-algebra. If there exist c.p.c. maps
a:A— BandB:B — A such that S oo =id4, then A is also nuclear.

Proof. Let F C A be a finite subset and let € > 0. Since B is nuclear, there exist a fi-
nite dimensional C*-algebra F' and two c.p.c. maps ¢ : B — F, and ¢ : FF — B such that
() ~z(81+1) ¥ © p(a(r)) for all x € F. Note that poa : A — F and Bo¢ : F — A are
c.p.c. maps. For any x € F, x = f(a(x)) =: (¢ o p(a(x))). Thus A is nuclear. O

Theorem 8.7. Let A be a simple separable unital C*-algebra. Assume that A is asymptotically
tracially in Cz 5. Then, for any finite subset F C A, any € > 0, and any a € AL \{0}, there
ezists a unital C*-subalgebra B C 1°°(A)/co(A) which is strictly embedded such that B in Cz s s,
and
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(1) 1pta(z) =c ta(z)lp for all x € F,

(2) 1gta(z)lp € B and ||[1pta(x)1p|| > ||z|| — € for allx € F, and

(3) ta(1a) = 1B Sio(a)/eo(a) La(@).
Moreover, if, in addition, A is also asymptotically tracially in N, then A is asymptotically
tracially in Nz s s (see Definition 3.4).

Proof. Let F C Ba,(A4) be a finite subset, let € € (0,1) and let a € A4 \{0}. We may assume
that A is infinite éimensional. Since A is also simple and unital, we further assume that A is
non-elementary. Then there exists a sequence of mutually orthogonal norm one positive elements
{an} in Hera(a)4+\{0}.

Choose Ay = A and Yy = {0} C Ag. Let pg = idy, : Ao — Ap. Set €y := €/100, 1)1 : M;i(=
C) — Hera(¢o(14,)) the unital *~homomorphism, and set v1 = 14 € Hera(po(1a,))(= A). Let
By =C, let By : By — Ap be the zero map, and let Wy; = {0} for all i € N.

We claim that, for each k& € N, we can make the following choices:

(k - 1) A hereditary C*-subalgebra A, = Hera(pr—1(14, ,)) C A,

(k - 2) a positive element ay € (Ag)+\{0} such that ax <a a,

(k - 3) a countable dense subset Xj, = {xp1 = 1a,,2k2,- -} C Al and finite subsets
Xii = {lagy U{an, 1 1<) <i} C AL ((€N),

(k - 4) a finite subset Y, = Ulgjgk‘ﬂj,k(Xj,w N B%’I(Ak) C Ag,

(k - 5) a finite subset Gy, C A, and a positive number o(Gy, ) > 0 as in Proposition 7.13,

(k - 6) a finite subset Fj, C Ay, such that (see Notation 6.2 for notation ¢; ;)

Fr = @1p(F)UYeU (Uigj<rpin(Gy;)) U (Uicj<rein(Bi-1(Wj—1k)))
U(Ur<j<k (25,6 (05(G™) U {0 (v3), 050 (v5)*, @ (007)}) | (e8.3)

(k - 7) a positive number

e = ~ min {o(Gy,), A1, ), =}, (08.4)

4k <<k b ﬁ)’ 100

(k - 8) a unital C*-algebra By, and a c.p.c. map oy, : Ay — By, such that By is a separable
unital (if, in addition, A is asymptotically tracially in A/, By is also nuclear) C*-algebra, and
oy is an (Fy, €;/2)-approximate embedding,

(k - 9) a countable dense subset Wj, = {wy 1, wr 2, -} C Bé, and finite subsets Wy ; =
{wk,l, Wg,2, " * ,wm} C B (Z € N),

(k - 10) a finite subset Gy = ay(Fr) C Bk,

(k - 11) a c.p.c. map B : By — Ag, and a c.p.c. map i : A — (B 0 ax(Ag))* such that
the following (k - 12) - (k - 15) hold:

(k - 12) B o ax(14) and (14, ) are projections, and 14, = B o ag(la,) +v%(la,)s

(k - 13) z =, Br o ag(z) + v (z) for all z € Fy,

(k - 14) By is a (G, €k )-approximate embedding,

(k- 15) y(1a) Sa ax,

(k - 16) a c.p.c. map Ypy1 : My — Hera(Br o ax(la,)), and an element vy €
Her 4(Bk o (14, )) such that the pair (Y441, vk+1) satisfies the relation kHerA(Bkoak(lA))(k!v B0
g (Fr), m), and

(k- 17) a c.p.c. map ¢ := Br o ag : Ax — Ap.

We make our choices recursively. For the case k =1 :

(1-1) Define Ay := Hera(go(la,)) = A.

(1 -2) Choose a1 := aj.

(1 - 3) Choose a countable dense subset X; = {z11,212,---} C Ah, and let Xy; :=
{14,}U{z1;:1<j<i} C Al (i eN).
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(1 - 4) Set Y7 = X171 N B%71(A1+)-
(1 -5) Choose Gy, and o(Gy,) as in Proposition 7.13.
(1 -6) Choose

Fi = e11(F)UY1U (Uigi<i9ii(9y;)) U (Uij<i9n (Bi1(Wi11)))
U (Ur<j<t (951 (15(GM)) U {gj1(v5), 051 ()%, 051 (vv5)})) - (e8.5)
(1-7) Choose

1 . 1 €
€1:= Tgﬂlnl{g(ng)»A(Mj., =) ﬁ}-

T 4la<i< 'j!

(e8.6)

Since A; is asymptotically tracially in Cz (and is asymptotically tracially in '), by Lemma 8.5,
we can further make the following choices:

(1 - 8) There exist a separable unital (nuclear, in case that A is asymptotically tracially in
N) C*-algebra B; and a c.p.c. map a3 : Ay — By such that «; is an (Fi, €1/2)-approximate
embedding, and,

(1 - 9) a countable dense subset Wi = {wy 1,w12, -} C Bi and finite subsets Wi =
{wr,wig, - wi} (1 €N),

(1 -10) and a finite subset G; := «;(F1), and

(1 - 11) there exist a c.p.c. map 31 : By — A; and a c.p.c. map 71 : A1 — (B 0 g (A1))*
such that

(1-12) Broai(la) and v1(14,) are projections, and 14, = S o ai(la,) +71(14,),

(1-13) z = froai(z)+yi(x) for all x € Fq,

(1-14) y is a (Gy, €1)-approximate embedding,

(1-15) y1(1a) Sa a1, and

(1-16) there exist a c.p.c. map 92 : Mgy — Hera(B1oa1(14,)), and an element vy € Her4(f;0
a1(14,))" such that the pair (¢, v2) satisfies the relation ﬁHerA(ﬁloal(lA))@!, Broai(Fi), %)

(1 -17) Define ¢ := (1 o oy which is a c.p.c. map from A; to Aj.

Assume, for £ > 1 € N, we have made the choices (j - 1)-(j - 17) for all 1 < j < k. Then, for
k + 1, we make the following choices:

(k41 - 1) Define Agyq := Hera(¢r(14a,))-

(k+1 - 2) Choose ag+1 € (Ag+1)+\{0} such that axi1 Sa ags1-

(k+1 - 3) Choose a countable subset Xj11 = {Tp41,1,Tht12, -} C (Ak-_l_l)_li_ which is dense
in (Ap41)} and choose Xji1; == {1la,,, } U{aps1;: 1 <j <i} (i €N).

(k+1 - 4) Choose Yi11 := Ur<jckt19jk+1(Xjht1) 0 Bs y (Akt1).

(k+1-5) Let Gy, and U(ka+1) be as in Proposition 7.13.

(k+1 - 6) Let

Fir1 = P1hr1(F) U Y U (Urgj<hii@insi (Gy;) U (Ui<i<rri@ire (Bi-1(Wis1x41)))
U (Urgjhi1@ik1(95(GY) U{pjhi1(0)), 05k41(05) "5 ja11(v0))}) -
(k+1 - 7) Let

cut = goer , min. {7(0v,), AV 5). 105 ) (e87)
Since Agy is asymptotically tracially in Cz (and is asymptotically tracially in N'), by Lemma
8.5, we can further make the following choices:

(k+1 - 8) There exist a separable unital (nuclear, in the case that A is asymptotically
tracially in N') C*-algebra Bjyi1, and a c.p.c. map agyq : Agy1 — Biy1 such that agyq is an
(Fka1, €k+1/2)-approximate embedding, and,
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(k+1 - 9) a countable dense subset Wyy1 = {wgt1,1, Wkr1,2,--- } C B,i_H, and finite subsets
Wit = {Wkt1,1, Wkt1,2, -+ Wet1,i} (0 € N),

(k41 - 10) and for Gy1 = agr1(Frs1)C Bryr,

(k+1 - 11) there exist a c.p.c. map Bri1 : Br+1 — Ags+1 and a c.p.c. map Ypiq @ Agr1 —
(Brt1 0 any1(Ary1))® such that

(k+1-12) Bry1oapy1(1a) and yx11(1a,,,) are projections, and 14, , = Brr10aki1(1a, )+
7k+1(1z4k+1)a

(k+1-13) z =~ Brr1 o apy1(x) + Yryp1(w) for all z € Frypq,

(k+1 - 14) Bra1 is a (Ggr1, €x+1)-approximate embedding,

(k+1-15) yk+1(14) Sa aky1, and

(k+1 - 16) there exist a c.p.c. map Ygy2 : Mgy — Hera(Bri1 o agy1(la,,,)) and an

element vgyo € Herg(Bg41 © Odk-+1(1Ak+l))1 such that the pair (142, vrt2) satisfies the relation

Rtter 4 (B sr0an1(14)) (B +2)! Bry1 0 Oék+1(fk+l)ﬁ)-

(k+1 - 17) Define vr11 := Br+1 © Qgy1-
Therefore, by induction, for each k € N, we have made choices (k - 1) - (k - 17).

For each k € N, by (k+1 - 1), we may view ¢, as a map from Ay to Agy1.

Since Ay is simple, f1/2(7) is full in Ay, for each x € Fj N B341(Ag). Then, by (k - 4), (k -
8), (k-14), (k- 6), (k- 7), and by Lemma 8.4, we conclude that (A, ¢) forms a generalized
inductive limit which is simple, separable, unital, and Z-stable. We denote this generalized
inductive limit by A.

If in addition A is also asymptotically tracially in A/, then each By, are chosen to be nuclear
as mentioned above. We claim that A is nuclear.

Denote the map a1 0 B : By — Bii1 by 0 (k € N). Let k € N, let 21,29 € B} and let
6 > 0. Then there are i,i3 € N such that 21 ~;/5 wi;, and 29 ~5/8 w4, Let K € N such that
K > max{k,iy, 1o, %} and 4%( < g. Note that 0; ; = aj o @j 106, for j > i € N (see Notation
6.2 for the notation 6; ;), then by (K - 10) and (K - 6), 0 x(wg,), 0k x (Wk4,) € Gi. For any
j > K, keep using (i - 14) and (i - 8) for j > i > K, we have

Orc (Or, & (Wi ) Ok i (Wh i) g 5 b Or¢j (Or, 1 (Wi, )0k j (Ok, 1 (Wi i)
1= 4.
Note that 2377 - & < §/2. Then, for any j > K,

Orcj (Or i (21)0k 5 (22)) =574 Ok Ok, x (Wriy ) Ok, i (Whiiy))
~s5s2 Ok (O x (Wk )0k 5Ok, Kk (Whiy))
~sia Ok, (Okk (21))0k,5 Ok, K (22)) = Ok, j(21)0k 5 (22).
Then, by Lemma 6.3, (B, 0x) forms a generalized inductive limit. Since 6 is a c.p.c. map for
all k € N, by [3, Proposition 5.1.3], limy_, o (B, ag+1 0 k) is a nuclear C*-algebra.
Recall that gy : By — Ay and oy, : Ay — By, are c.p.c. maps, and ¢y = o ay (see (k - 17)).
By the commutative diagram

Al ¥1 AQ 2 Ag $3 A
[ 2]
aq [e5] a3z
B ! By b2 Bs % ... B

we obtain two c.p.c. maps a: A — B and : B — A such that S o« =id;. By Lemma 8.6, A

is also nuclear. This proves the claim.
Now back to the general case. We embed A into [*°(A)/co(A) as follows. Let z € Ay,. Define

L(Sok,OO(x)) = WOO({Ov 0,---,0, C,O]@]g(l'), Sok,k—l—l(l')’ e })a
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where 7o, 1 [*(A) — I°°(A)/co(A) is the quotient map. By (k - 17), (k - 8), and (k - 14),

lim inf g pn(@)l] > (1- 43 eg)llal] > (1/2)] for all x € Fi. (e8.8)
=k

It follows (see Proposition 2.7) that ¢ defines a strict embedding from A into [°°(A)/cy(A). Note
that

1g=7meo({p1(14,),02(1a,),--}) and
2

1a =15 =moo({m(1a,), Z’Vi(lAi)v e }).
i=1
For all k € N, by (k - 15) and by the fact that a; L a; (i # j), we have Zle vi(1a,) S Zle ar <
a. It follows that

ta(la) = 11 Sisc(a)/eo(a) La(a). (e8.9)

For z € F and k > 2 € N, using (j - 13), (j - 12), (j - 17), and (j- 1) for 1 < j < k € N,
repeatedly, we have

zla, o (@) +e1(@)1a, = e1(x)1a, = e12(2)14,
Rey  (12(91,2(2)) + @3(p1,2(2)))1a, = p1,3(2)14,
Rey 0 Ry P1e(@)1a, = @1r(x). (e8.10)
Similarly, we have 14, Rig~k-1 ) 1 k(z). Thus 14,2 Rigyk-1,. xlya,. Note that 23 72 ¢ < e.
i=1 € i=

s
Hence

150a(z) =cva(x)ly forallz € F. (e8.11)

By (e8.11) and (e8.10), we also have

Lita(@)lz =eva(x)l g e oo ({p16(2)}) € L(A) forall x € F. (e8.12)

This proves the first part of the theorem. If, in addition, A is asymptotically tracially in N, by
the claim above, A € Nz ;. Since C*-algebras in Nz ;s have property (H) (see [62, Corollary
3.1]), by Proposition 3.10, A is asymptotically tracially in Nz g .

O

9 Simple C*-algebras which are asymptotically tracially in Cz
or in N,

Theorem 9.1. Let A be a simple separable unital C*-algebra which is asymptotically tracially in
Czs. Then, either A has stable rank one, or A is purely infinite. Moreover, if A is asymptotically
tracially in Cz s and is not purely infinite, A has strict comparison for positive elements.

Proof. Suppose that A is a unital separable simple C*-algebra which is asymptotically tracially
in Cz 5. Let Py be the class of unital separable simple Z-stable C*-algebras which are purely
infinite and let Ps be the class of unital separable simple Z-stable C*-algebras which have stable
rank one. Then either (I) or (II) hold:

(I): For any finite subset 7 C A, any ¢ > 0, and any a € A;\{0}, there exists a unital
C*-subalgebra B C [*°(A)/co(A) which is strictly embedded such that B in P;, and
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(1) 1pta(x) mc ta(z)lp for all z € F,
(2) 1pta(x)lp €c B and ||1pta(z)lp|| > ||z|| — € for all z € F, and
(3) ta(la) — 1B Sieo(a)/co(a) Lala).

(IT): The same statement holds as in (I) but replacing P; by Ps.

We may assume that A is infinite dimensional. By Lemma 4.3, there is a sequence of nonzero
positive elements {d,,} C Ay such that d,41 < d,, for all n € N, and, for any = € A1\ {0}, there
exists NV such that d,, < x for all n > N. Let F,, C A be an increasing sequence of finite subsets
of A whose union is dense in A. Since A is asymptotically tracially in Cz s, by Theorem 8.7,
there exists a sequence of decreasing positive numbers {&,} with lim,_,~ £, = 0 and a sequence
of unital C*-algebras By € Cz s such that

(1) 1, ea(z) —ta(x)lp,|| < ex for all x € Fy;

(2) 1p,ta(x)1p, €., By for all z € Fy, and

(3) ta(la) — 1B, Siee(a)/eo(a) tA(d)-

If there are infinitely many Bj, which are purely infinite, then, since, for any a € A4 \ {0}, there
is K such that dg < a, (I) holds.

Otherwise, by [56, Theorem 6.7], (II) holds. It follows from the proof of Proposition 4.4 (see
also Remark 4.5) that, if (I) holds, A is purely infinite. On the other hand, if (II) holds, by
Theorem 4.8, A has stable rank one. This completes the proof of the first part of the theorem.

For the last part, by [56, Theorem 4.5] and by Theorem 4.10, W (A) is almost unperforated.
Then, by the proof of [56, Corollary 4.6], A has strict comparison. Note that the proof of [56,
Corollary 4.6] refers to the proof of [54, Theorem 5.2], where quasitraces are used (see also [54,
Theorem 4.3] and [2, Theorem 11.2.2], as well as [52, Proposition 2.1]). O

Corollary 9.2. Let A be a simple separable unital C*-algebra which is asymptotically tracially
in N, for some integer n > 0. Then, either A has stable rank one, or A is purely infinite.
Moreover, if A is not purely infinite, A has strict comparison for positive elements.

Proof. We note, by Corollary 7.17, that A is asymptotically tracially in N, s s, where N, s
is the class of unital separable simple C*-algebras with nuclear dimension at most n. By [69],
C*-algebras in N, s are nuclear simple Z-stable C*-algebras. Thus Theorem 9.1 applies. [

Theorem 9.3. Let A be a simple separable infinite dimensional unital C*-algebra. Then the
following are equivalent:

(1) A is asymptotically tracially in Ny, for some n € NU {0},

(2) A is asymptotically tracially in Ny, s s for some n € NU {0},

(3) A is asymptotically tracially in Nz s s,

(4) A is asymptotically tracially in N and is asymptotically tracially in Cz s.

Proof. (1) = (2) follows from Theorem 7.16, (2) = (3) follows from [69, Corollary 7.3], (3) =
(4) is trivial, (4) = (1) follows from Theorem 8.7 and [10, Theorem A]. O

Lemma 9.4 (see [46, Lemma 8.2]). Let A be a unital separable nuclear simple C*-algebra which
is asymptotically tracially Ny s (for some integer d > 0). Then, for any integer k > 1, there is
a sequence of order zero c.p.c. maps Ly : My — A such that {L,(e)} is a central sequence of A
for a minimal projection e € My, and such that, for every integer m > 1,

Jim max {[7(L(e)") ~ 1/k]} = 0. (e9.1)

Proof. The proof follows the same lines of that of [46, Lemma 8.2] with some minor modifications.
Fix k € N. Fix a dense subset {z1,z2,---} of the unit ball of A and let F,, = {x1,29, -, 2}
with 14 = 21 (n € N). Let 7, > 0 be in the fifth line of the proof of [46, Lemma 8.2]. By
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Lemma 4.3, there is a sequence {a,} of Ay \ {0} such that 0 < d.(a,) < 1/4n? (n € N). By
Corollary 7.17, A is asymptotically tracially in Ny s. Therefore, by Proposition 3.8, for each
n € N, there exists a C*-algebra B, € Ny, s and c.p.c maps oy, : A — By, fn; : B, — A, and
Ynj i A= AN By ;i(Bn)t (j € N), such that

(1) vn;(14) and ppj := Bn;(1B,) are projections, 1 = 7, j(14) + Bn,j(1B,), and an(la) =
1B,

(2) @i =, j2n Vn,j(Ti) + Bnj o an(x;) for all 1 <i <n and all j €N,

(3) ay is an (Fy, 1/2")-approximate embedding,

(4) lim; 0 ||ﬁn,j(l'y) - Bn,j(x)ﬁn,y(y)" = 0 and limj ||Bn,j(x)|| = ||z|| for all z,y € By,
and

(5) Yn,j(1a) Sa ap for all j € N.
Note that one also has

(6) [|pn,jz — xpnjll < 1/2771 for all z € F,.
By [69, Lemma 5.11] (since B € Ny s), for each n, there is an order zero c.p.c. map ¥, : My, —
B,, such that

I[P, (c), an(x)]|| < 1/2" for all ¢ € M} and = € F,,, and (€9.2)
inf{r(V,(1ps,)) : 7€ T(Bp)} >1—1/4n. (€9.3)

Consider, for each m, Uy, , = Bpm © ¥y, 1 M — Drm Appm. Note that, by (4), for each n € N,
there exists m(n) € N such that, for all m > m(n), ¥, , is a A(My, v,/2")-almost order zero
map (recall Definition 7.5 for A(—, —)), and

[ 1Bn.m © Un(c), Bnm © an(2)]]| < vn/2" for all c € M} and x € F,. (e9.4)
Claim: For fixed n, there is m(n) > m(n) such that, for all m > m(n),
inf{7(Vy, ,(1ps,)) : T€T(A)} >1—1/2n.
Otherwise, there would be a subsequence {m(l)} and 7,,;) € T(A) such that

Tm(l) © ﬁn,m(l) o \I}n(le) <1l- 1/2n

Let tp be a weak™-limit of the sequence of contractive positive linear functionals {7,y © By, m() }
of By,. Then to(¥,,(1p1,)) <1 —1/2n. On the other hand, by (5) and (1), to(1p,) > 1 — 1/4n>.
Moreover, by (4), tg is a positive tracial functional with [|tg]| > 1 — 1/4n?. It follows from (e9.3)
that to(¥n(1ar,)) > (1 — 1/4n?)(1 — 1/4n) > 1 — 1/2n. This proves the claim.
For all ¢ € M,i and z € F,, one has
(by (2))
|| [ﬂn,m(n) © \I’n(C), x] || Royp/2n—1 H [/Bn,m(n) ° \Iln(c)a Yn,m(n) (33) + /Bn,m(n) © an(x)] ||
(by (1)) (by (e9.4)) n
= H [/Bn,m(n) o \Ijn(c)a Bn,m(n) © Oén(l‘)] H < 7”/2 . (e 95)

Since W, ) is @ A(My, ¥, /2")-almost order zero map, by the choice of A(Mg,v,/2") (see
Definition 7.5 and Proposition 7.4), one obtains a sequence of order zero c.p.c. maps ®,, : My, — A
such that

|Pr = Brmn) © Ynll < 7 /2" for all n € N. (€9.6)

By (e9.5), as well as the claim, for n > 3, one has
|®p(c)x — 2@, (c)|| < min{l/4n,v,} for all c € M} and z € F,, and (€9.7)
inf{7(®,(1ar,)) : T€T(A)} >1—1/n. (€9.8)
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There is a homomorphism ¢y, : Co((0,1]) ® M} — A such that ®,,(c) = ¢, (¢t ®a) for all ¢ € M,
where «(t) = t for all t € (0,1]. Let ¢, = (/™. Define Ly(c) = pn(c, @ ¢) for all ¢ € M. Tt is an
order zero c.p.c. map from My to A. Choose a minimal projection e; € My. Then

(Ln(e1)™ = on(c™ @ e1) = @n(t @ e1)™™) = @, (e1)™". (€9.9)

One then verifies that, for this L,, (¢9.1) holds exactly the same way as the proof of [46, Lemma
8.2]. O

Theorem 9.5. FEvery unital separable simple nuclear C*-algebra which is asymptotically tra-
cially in Ny, is Z-stable and has nuclear dimension at most 1.

On the other hand, every unital separable simple nuclear C*-algebra which is asymptotically
tracially in Cz 5 also has nuclear dimension at most 1.

Proof. Let A be a unital separable simple nuclear C*-algebra which is asymptotically tracially
in NV, for some non-negative integer n. By Theorem 9.3, A is asymptotically tracially in N, s s.
By Corollary 9.2, and by [6, Corollary 9.9], we may assume that A has stable rank one and has
strict comparison. We first prove that A is Z-stable. The proof of this is exactly the same as
that of [46, Theorem 8.3] but using Lemma 9.4 (By the exactly the same argument for the proof
of (ii) implies (iii) in [49], using Lemma 9.4 instead of [49, Lemma 3.3], one concludes that any
c.p. map from A to A can be excised in small central sequence. As in [49], this implies that A
has property (SI). Using Lemma 9.4, the same proof that (iv) implies (i) in [49] shows that A is
Z-stable).

Then, by [10, Theorem A], A has finite nuclear dimension. It follows from [10, Theorem B|
that A has in fact nuclear dimension at most 1.

Finally, the last statement follows the first part of the statement and part (4) of Theorem
9.3.

O

Corollary 9.6 (cf. Cor. 9.6 of [26]). Every unital separable simple nuclear C*-algebra which
has generalized tracial rank at most one is Z-stable.

Lemma 9.7. Let A, B,C;, D; be C*-algebras (i € N), and let o; : A — Cy, B; : B — D; be
c.p.c. maps such that

a:A— ﬁci/é@, a— Teo({ai(a)};) and B: B — ﬁDi/éDi, b= Too({B:(0) }4)
=1 =1 =1 i=1
are *-homomorphisms. Then the following map is also a *-homomorphism:
v:A® B — ﬁ(cz ® Dl)/é(Q ® D;), a®b— moo({ai(a) @ Bi(b)}4). (e9.10)
i=1 i=1
If, in addition, both o and B are strict embeddings, so is 7.

Proof. Note that a; ® 8, : A® B — C; ® D, a® b+ «a;(a) ® B;(b) are c.p.c. maps. Thus 7 is
also a c.p.c. map. Fix a € A, b € B. Since « and 8 are *~homomorphisms, we have

lim [lay(aa") — (@) (@)° | + [18:05) — Bi(B)B(B)" | = 0. (e9.11)

1—00
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Then

1@a@b)-y(@a®b)* = meo({a(a) ® Bi(b)}i) - meo({au(@) ® Bi(b)}:)* (€9.12)
= moo({(@i(@)ai(a)*) @ (Bi(0)Bi(0)")}i) (€9.13)

(by (€9.11)) = moo({(i(aa)*) @ (Bi(bb)*)}) = ~v((aa*) @ (b)) (e9.14)

= =7((a®b) - (a®b)) (€9.15)

Similarly, we have v(a ® b)* - v(a ® b) = v((@ ® b)* - (@ ® b)) (see, for example, [8, Proposition
1.5.7.(ii)]). Thus a®D lies in the multiplicative domain of . Since the linear span of elementary
tensor products is dense in A ® B, we see that A ® B lies in the multiplicative domain of . In
other words, « is a *-homomorphism.

Assume in addition both « and § are strict embeddings. If v is not a strict embedding, then
there exist z9p € A® B, € > 0, and a subsequence {m;};cy C N such that

lim sup [lam; @ B, (20)[| < |20l — €. (€9.16)

1—+00
By what has been proved, the following map is also a *-homomorphism:
5: 4@ B = [[(Cots ® D)/ @D)(Crny © Diny)s 4@ b T ({tmy (0) @ B, (9)}). (e9.17)
i=1 i=1

By (€9.16), 4 is not an isometry. Thus 4 could not be injective. By [5, Lemma 2.12(ii)], ker ¥
(which is an ideal of A ® B) contains a nonzero elementary tensor product ag ® by. Then

0=[5(ao ®bo)|| = limsup(||lam,(ao) ® Bm,(bo)l)
71— 00
= limsup [|am, (ao)| - | Bm; (bo) |l
71— 00
(o, B are strict embeddings) = lim |[am,(ao)| - lim ||Bm, (bo)||= llaol| - [|bol|,
71— 00 71— 00

which is contradict to the assumption that ag ® by # 0. Hence 7 is a strict embedding.
O]

Lemma 9.8. Let Ay and Ay be C*-algebras and let F C A1 ® Ao be a finite subset. Then, for
any € > 0, there exist finite subsets G; C A; (i =1,2) and 6 > 0 such that, for any C*-algebras
B1 and Bz, and, for any c.p.c. maps «; : A; — B; which are (G;,0)-approximate embeddings,
the map a1 @ ag : A1 ® As — By ® By is an (F,€)-approzimate embedding.

Proof. Without loss of generality, we may assume that 0 < € < 1. Let M := 1 + max{||z| : = €
F}. Let F; C A; (i = 1,2) and n be some integer such that F; = F (i = 1,2) and F Cy FL2
where 12 := {30 | 2;®y; 1 ¥; € Fy and y; € Fo}. Let My := 1+ max{||z| : € F1?}.

Keeping Lemma 2.10 in mind, it is straightforward to see that there exists §y > 0 such that,
for any c.p.c. maps «; : A; — B; (i = 1,2, B; are C*-algebras), if a; is (F;, dp)-multiplicative
(i=1,2), then a1 ® ag : Ay ® Ay — By ® By is (F12, §)-multiplicative, and, hence a1 ® as :
Ay ® Ay — By ® By is (F,e)-multiplicative. Let F; C F;1 C Fj2 C --- be finite subsets of
C*(F;) such that UjenF; ; is dense in C*(F;) (i = 1,2).

Now let us assume the lemma does not hold. Then there exists a sequence of C*-algebras
B 1 and c.p.c. maps o m : A; — By, such that o p, is an (F; p, 0p/m)-approximate embedding
(t=1,2, m € N), and o, @ @2 : A1 ® Ay = Bi, @ By, is not an (F, €)-approximate
embedding (m € N). However, since F; C Fj,, by the choice of dp, and by the fact that
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a1,m @ ag gy is (F, €)-approximate multiplicative, for each m, there must be some z,, € F C FL.2
such that

lot,m ® az,m (2m) || < [|zml| — €. (e9.18)

Since F? is a finite subset, by (e9.18), there exists zp € F'? and an increasing sequence
{m;} C N such that

[Q1,m; @ a2m;(20)]| < [|20]] — € for all j €N. (€9.19)

Note that the map @i : A1 — [[oo_; Bim/ @1 Bim defined by a — 7w ({a1,m(a)}) and the
map & : Ao —= [[77_ Bom/ @Dye_y Ba,m defined by a — 7o ({a2,m(a)}) are strict embeddings.
Then, by Lemma 9.7, the following is also a strict embedding;:

v Al X AQ — H (Bl,m & B2m / @ Bl ,m & B2m a®b— Woo({al,m(a) & OQ,m(b)})-
m=1

m=1

But this contradicts with (e9.19). The lemma then follows.
O

Notation 9.9. Let X, A be two classes of C*-algebras. Denote X} @ Xy := {A® B : A €
X1, B € Xy}, where each A ® B is the spatial tensor product.

Recall the following result (see [5, Lemma 2.15], also see [55, Lemma 4.1.9]):

Lemma 9.10 (Kirchberg’s Slice Lemma). Let A and B be C*-algebras, and let D be a nonzero
hereditary C*-subalgebra of the spatial tensor product AQ B. Then there exists a nonzero element
z € A® B such that z*z = a®b for somea € A, b € B, and zz* € D.

Theorem 9.11. Let X}, X5 be two classes of C*-algebras. Let A and B be unital simple
separable infinite dimensional C*-algebras. Assume that A is asymptotically tracially in X1 and
B is asymptotically tracially in X5. Then the spatial tensor product A @ B is asymptotically
tracially in X1 ® Xs.

Proof. Let F C A® B, let c € (A® B)4+\{0}, and let 1/4 >e > 0. By Kirchberg’s Slice Lemma
(see Lemma 9.10), there exists a € A \{0} and there exists b € B4 \{0}, such that

a®bSagn C (€9.20)

Note that A and B are non-elementary. Then one may choose @, a € Her4(a)4\{0} and b,b €
Her 4(b)4 \{0} such that a_La, & ~4 @, bLb, and b ~4 b (see Lemma 4.3, for example).

Since A and B are simple and unital, there exist k € N, r1,79,--- ,rr € A, and $1, 89, -+ , S €
B such that 14 = Zle riar; and 1p = ZZ 1 lbsl Since A and B are simple and infinite
dimensional, so are Her 4 (@) and Herg(b). Then (see Lemma 4.3) there exist mutually orthogonal
positive elements a1, as, -+, ax41 € Hera(a)+\{0} and mutually orthogonal positive elements
b1,ba, -+ b1 € HerA( )+\{0} such that a3 ~4 ag ~4 -+ ~4 apy1 and by ~p by ~p -+ ~p
br+1 (recall Definition 2.13 for the definition of “~7).

Let N € N, let FiC A, and let F» C B be finite subsets such that

N
F Ce2 {Z$i®yi3$i€ﬁl7yi€ﬁ2}- (€9.21)
i=1
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By Lemma 9.8, there exist finite subsets F; C A, F» C B, and §y > 0 such that, for any
C*-algebras D1, Dy and any c.p.c. maps 11 : A — D1, and 12 : B — Do, if n; is an (F1, &o)-
approximate embedding (¢ = 1,2), then 71 ® 2 : A® B — D; ® Dy is an (F, €)-approximate
embedding.

Let F; == F;UF;, i = 1,2. Let M := 14 max{|z|| : « € F1 UF}. Choose § :=
min{d, 3(NH)iMHQ} Note 267 < 4§ < MJ/4.

Since A is asymptotically tracially in A}, there exist a C*-algebra C7 in X7, and c.p.c maps
a:A—Cy, B :C1 — A, and v; : A — A (i € N) such that

(1) z =5 vi(x) + Bi o a(x) for all z € F; and for all i € N,

2) « is an (Fp, d)-approximate embedding,

(3) limj—oo || Bi(zy) — Bi(x)Bi(y)|| = 0 and limy, oo ||Bi(z)|| = ||z|| for all z,y € Cy, and

(4) v:(14) <a a1(~ ag41) for all ¢ € N.
Since B is asymptotically tracially in &5, there exist a C*-algebra Cs in X5, and c.p.c maps
p:B— Cy,1;: Co — B,and §; : B— B (i € N) such that

(1) x ~5 0;(x) + 1; o p(x) for all z € Fy and for all i € N,

(2") ¢ is an (Fa,0)-approximate embedding,

(3) lim;oo ||0i(zy) — ¥i(2)i(y)]| = 0 and limy, o0 [|¢0i(z)|| = ||z|| for all z,y € Cs, and

(4/) 0;(1p) <p by (~ bgy1) for all i € N.
Note that C7 ® Cs is in X7 ® Xs. Now define a c.p.c. map

p=a®p: AR B — C; ® (Cs. (€9.22)

By (2), (2) and by the choice of 6, 8, Fi, Fi1, Fo and Fa, the map p is an (F, €)-approximate
embedding. Hence (2) of Definition 3.1 holds.
For 7 € N, define a c.p.c. map

Wi :,81®¢101®02—>A®B (6923)

Define c.p.c. maps 5 : C; — [®(A)/co(A) by = — moo({B1(x), B2(z),---}) and ¢ : Co —
[°°(B)/co(B) by z — 7o ({101(x), 92(x), - - - }), respectively. Then, by (3) and (3'), 5 and ¢ are
strict embeddings. By Lemma 9.7, the map w : €1 ® Cy — (A ® B)/co(A ® B) defined by
Ry — Too({B1(z) @ Y1(y), B2(z) @ a(y),- - }) is also a strict embedding: This is equivalent
to say that (3) of Definition 3.1 holds.
Note that by (1) and (1’) above, for i € N, one has
la®1p mos1vs) (Bioa(la)+7i(1a)) ® (bio(lp) + 6i(1s))
= Bioa(la) ®iop(lp)
+7i(14) @ i o p(1p) + fi o a(la) © 0i(1) +7i(14) ® 0i(1p).
Thus
I7i(14) @ Yio (1) + Bioa(la) ®0;(15) +vi(la) @ 0;(1p)| <1426 + 26% < 1+ 36.

It follows that the map defined below

0;,:A® B — AQ®B,

@Y o T () © Y10 0(y) + B0 ale) @ ly) + () @ (1)
is c.p.c. map (i € N). By (1) and (1), for z € F; and y € F, and for any i € N, one has
TRy Rasmys) (Bioa(m)+yi(z) ® (Yiop(y) +0:i(y)) (e9.24)
= Bio o) ®viop(y) + i) ® i o p(y) (€9.25)
+Bi 0 a(@) ® b;(y) + yiz) ® 0i(y) (€9.26)
Ramzs  wiop(z®@y) +oi(z ®y). (€9.27)
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Then, for Zjvzl x; Q@y; with x; € Fi,y; € Fo (j =1,2,---,N), and, for any ¢ € N, one has

N N
Z Tj QY RINM(M+1)6 Z w;i o p(x; ®y;) + oi(x; ® yj) (€9.28)
j=1 7=1
N N
= wiop | Y wiey | +oi [Dajoy | (e9.29)

Jj=1 Jj=1

Thus, by the choice of d, (1) of Definition 3.1 holds.
Claim: For alli € N, 0;(14 ® 15) < cin A® B. Indeed, one has

k k
Yi(la) @viop(lp) Sa1®@1p=a1 ® (Z sfl;si) < Zai & l;, and (€9.30)
i=1 i=1
k k
Bioa(la) ®0;(1p) S1a®b = (Z riar;) @by < ZEL ® b;, and (€9.31)
i=1 i=1
7i(1a) ®0;(15) S a1 @by ~ a1 @ by (€9.32)

Then

(1+36)oi(la®1p) = 7i(la) ®@iop(lp)+ Bioa(la) ®0i(1p)
+7i(1a) ® 0:(1p)

k K
@Llablbizj) < O ai®b)+ (O a®b)+ap @b
i=1 i=1
k Ok
S O aab)+ (> av)
i=1 i=1

< ab+aeb<(a+a)®(b+b) Savb<ec

This proves the claim. Then (4) of Definition 3.1 holds. It follows that A ® B is asymptotically
tracially in X ® Xs.
O

Corollary 9.12. Let A and B be unital separable simple C*-algebras which are asymptotically
tracially in N,,. Then the spatial tensor product A ® B is asymptotically tracially in Nj.

Proof. Note that N, @ N, C Nap41 (see [72, Proposition 2.3(ii)]). Therefore, by Theorem 9.11,

A ® B is asymptotically tracially in Na,+1. By Theorem 9.3, A ® B is asymptotically tracially

in /\/2n+1,s,s. It follows from [10, Corollary C] that A ® B is asymptotically tracially in N1,s,s-
O

Corollary 9.13. Let A be a unital separable simple C*-algebra and let B be a unital separable
simple C*-algebra which is asymptotically tracially in Cz 5. Then the spatial tensor product A® B
is asymptotically tracially in Cz 5.

Corollary 9.14. Let A be a unital separable simple C*-algebra which is asymptotically tracially
in N and let B be a unital separable simple C*-algebra which is asymptotically tracially in Nz.
Then the spatial tensor product A ® B is asymptotically tracially in N7.
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Corollary 9.15. Let A be a unital separable simple nuclear C*-algebra and B be a unital
separable simple C*-algebra which is asymptotically tracially in N,,. Then AQ B is asymptotically
tracially in N7.

Remark 9.16. (1) There are unital separable nuclear simple C*-algebras which are not asymp-
totically tracially in N, for any n > 0.

Let A be one of Villadsen’s examples of unital simple AH-algebras which has stable rank
r > 1 (see [64]). Then A is nuclear and it is finite. However, if A were asymptotically tracially
in V,, for some integer n > 0, then, by Theorem 9.1, A would have stable rank one as it cannot
be purely infinite.

(2) There are unital separable nuclear simple C*-algebras which have stable rank one but
are not asymptotically tracially in N, for any n > 0.

Let A be another construction of Villadsen’s AH-algebra (see [63]) which is a unital separable
nuclear simple C*-algebra and has stable rank one. However, A does not have strict comparison
for projections, this fact together with Theorem 9.1 and Theorem 8.7 implies that A is not
asymptotically tracially in A, for any n > 0.

(3) There are unital separable nuclear simple C*-algebras which have stable rank one and
unperforated Ky group, but are not asymptotically tracially in N, for any n > 0.

Let A be Toms’s construction (see [61, Corollary 1.1]). Then A is a unital separable nu-
clear simple C*-algebra with stable rank one which has unperforated Ky group, but the Cuntz
semigroup of A is not almost unperforated. Then, by Theorem 9.1 and Theorem 8.7, A is not
asymptotically tracially in N, for any n > 0.

Example 9.17. Let B be a unital separable simple C*-algebra which has tracial rank zero
but not exact (see [14], for example). Let C' be any unital nuclear separable simple C*-algebra.
Consider A = C ® B. Since B is a non-exact C*-subalgebra of A, it follows that A is not exact
(see [55, 6.1.10(i)]) (thus non-nuclear) either. By Theorem 7.18, B is asymptotically tracially
in Nz 5. By Corollary 9.13, A is asymptotically tracially in Cz 5. Since C' is nuclear and B is
asymptotically tracially in A/, then, by Theorem 9.11, we have that A is asymptotically tracially
in M. Then, by Theorem 8.7, A is asymptotically tracially in Nz ,s. This provides a great
number of examples of unital separable simple C*-algebras which are asymptotically tracially
in Nz s but not exact. For example, one may choose C' to be a unital simple AH-algebra.
Moreover, though C ® B are not exact, they are “regular” in the sense that they have almost
unperforated Cuntz semigroups and has strict comparison.

In a subsequent paper, we will show that unital separable simple C*-algebras which are not
exact but can exhaust all possible Elliott invariants.
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