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New post-quantum Key Encapsulation Mechanism (KEM) designs, evaluated as part of 
the NIST PQC standardization Project, pose challenging tradeoffs between communication 
bandwidth and computational overheads. Several KEM designs evaluated in Round-2 of the 
project are based on QC-MDPC codes. BIKE-2 uses the smallest communication bandwidth, 
but its key generation requires a costly polynomial inversion. In this paper, we provide 
details on the optimized polynomial inversion algorithm for QC-MDPC codes (originally 
proposed in the conference version of this work). This algorithm makes the runtime of 
BIKE-2 key generation tolerable. It brings a speedup of 11.4× over the commonly used 
NTL library, and 83.5× over OpenSSL. We achieve additional speedups by leveraging the 
latest Intel’s Vector-PCLMULQDQ instructions, 14.3× over NTL and 103.9× over OpenSSL. 
Our algorithm and implementation were the reason that BIKE team chose BIKE-2 as the 
only scheme for its Round-3 specification (now called BIKE).
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Bit Flipping Key Encapsulation (BIKE) [1] is a code-based KEM that uses Quasi-Cyclic Moderate-Density Parity-Check 
(QC-MDPC) codes. It is one of the Round-3 candidates of the NIST PQC Standardization Project [2] selected by NIST as 
an alternative finalist. BIKE Round-2 submission [3] included three variants: BIKE-1 and BIKE-3 that follow the McEliece 
[4] framework and BIKE-2 that follows the Niederreiter [5] framework. The main advantage of BIKE-2 is communication 
bandwidth (in both directions) that is half the size compared to BIKE-1 and BIKE-3. Another advantage is that BIKE-2 IND-
CCA has a tighter security reduction compared to the other variants. However, at the time of writing the conference (short) 
version of this paper [6,7], it was not the popular BIKE variant (e.g., only BIKE-1 is integrated into LibOQS [8] and s2n [9]). 
The reason is that BIKE-2 key generation involves polynomial inversion (over F2) with computational cost that shadows 
the cost of decapsulation (see [10]). This is especially prominent when protocols are designed to achieve forward-secrecy 
through using ephemeral keys.

Polynomial inversion over a finite field is a time-consuming operation in several post-quantum cryptosystems (e.g., BIKE 
[1], HQC [11], ntruhrss701 [12], LEDAcrypt [13]). The literature includes different approaches for inversions, depending on 
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the polynomial degree and the field/ring over which the polynomials are defined. For example, the Itoh-Tsuji inversion (ITI) 
algorithm [14] is efficient when the underlying field is F2k for some k. Safegcd [15] implements inversion through a fast 
and constant-time Extended GCD algorithm. It is demonstrated in [15] as a means for speeding up ntruhrss701 [12] and 
for ECC with Curve25519. It is also used in the latest implementation of LEDAcrypt [13]. Algorithms for inversion of sparse 
polynomials over binary fields are discussed in [16,17]. These algorithms are based on the division algorithm [18].

There are (at least) two popular open-source libraries that provide polynomial inversion over F2: a) NTL [19], compiled 
with the GF2X library [20]; b) OpenSSL [21]. We note that the Additional code of BIKE Round-2 (BIKE-2) [22] can be 
compiled to use either NTL or OpenSSL. We use this as our comparison baseline. For this research, we implemented a 
variant of the ITI algorithm (see also [23]) for polynomial inversion that leverages the special algebraic structure in our 
context, and runs in constant-time.

Additions over the original conference version. This extended version of [6,7] includes the following new materials

• A detailed description of how to optimize k-squaring using vector instructions.
• Optimization for the implementation of the permutation map generation, and analysis of “precompute” vs. “generate on 

the fly”.
• Polynomial multiplication and squaring optimizations with (V)PCLMUL instruction.
• Fully detailed performance studies of our inversion algorithm (previously, we reported only the performance of the 

entire key generation).

For Round-3 of NIST’s PQC project, the BIKE team decided to make BIKE-2 as their only proposed design, which is now 
called simply BIKE [1]. This is due to the smallest communication bandwidth (from the three original versions) and the 
tolerable key generation performance that is achieved by our work. Subsequently, NIST accepted BIKE as the selected QC-
MDPC design among the other QC-MDPC-based proposals, and promoted BIKE to Round-3, as an alternative finalist (to be 
potentially standardized although not in the first pass).

The paper is organized as follows. Section 2 offers some background and notation. In Section 3, we briefly explain our 
polynomial inversion method. Our implementation is described in Section 4. Section 5 provides our performance results and 
Section 6 concludes this paper with several concrete proposals.

2. Preliminaries and notation

In this paper, we indicate hexadecimal notation with a 0x prefix, and place the LSB on the right-most position. Let 
Y be a string of bits. We use Y [ j] to refer to the jth bit of Y . Let F2 be the finite field of characteristic 2. Let R be 
the polynomial ring F2[x]/ 

〈
xr − 1

〉
for some block size r and let R∗ denote the set of invertible elements in R. We treat 

polynomials, interchangeably, as vectors of bits. For every element v ∈ R its Hamming weight is denoted by wt(v), its bit 
length by |v|, and its support (i.e., the positions of the non-zero bits) by supp(v). In other words, if an element a ∈ R is 
defined by a = ∑r−1

i=0 αi xi then supp(a) is the set of positions of the non-zero bits, supp(a) = {i : αi = 1}. Uniform random 

sampling from a set U is denoted by u $←− U . Uniform random sampling of an element with fixed Hamming weight w from 
a set U is denoted by u w←− U .

2.1. BIKE

Table 1 shows the key generation of the variants of BIKE Round-2. The computations are executed over R, and the 
block size r is a parameter. The weight of the secret key (sk) is w and we denote the public key by pk. For example, the 
parameters of BIKE-1-CCA for NIST Level-1 as defined in the Round-2 specification [3] are: r = 11779, |pk| = 23558, w =
142. Table 1 shows that the key generation for BIKE-2 requires polynomial inversion. This heavy operation can be a barrier 
for adoption when targeting forward-secrecy via ephemeral keys. On the other hand, BIKE-2 has half the communication 
cost compared to BIKE-1 (and ∼ 2/3 the communication cost compared to the bandwidth-optimized version of BIKE-3). 
Specifically, the initiator in BIKE KEM sends pk to the responder, i.e., f0 for BIKE-2 versus ( f1, f0) for BIKE-1. In the other 
direction, the responder sends a ciphertext to the initiator (not shown in Table 1). The length of BIKE-2’s ciphertext is half 
the length of BIKE-1’s ciphertext (see [3]). Therefore, reducing the computational cost of polynomial inversion can place 
BIKE-2 in an advantageous position.

3. Optimized inversion in F2[x]/〈(x − 1)h〉 with irreducible h

In this paper, we propose to use an algorithm for inversion that is similar to the ITI algorithm [14]. In both cases, the 
essence is that raising an element a to the power 2k (referred to as k-squaring hereafter), can be done efficiently. The ITI 
algorithm inverts an element a ∈ F2k where the field elements are represented in normal basis. With such representation 
computing the k-squaring operation, a2k

, consists of k cyclic shifts of a’s vector representation. This results in fast imple-
mentation of k-squaring. However, we note that the ITI algorithm can be generalized to other cases where k-squaring is 
efficient. One example is the set of polynomial rings that are used in BIKE and in other QC-MDPC based schemes.
2
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Table 1
BIKE key generation. Polynomial inversion is required with BIKE-2.

BIKE-1-CPA BIKE-1 BIKE-2 BIKE-2 BIKE-3 BIKE-3
CPA CCA CPA CCA CPA CCA

h0,h1
w/2←−−R

g
≈r/2, odd←−−−−−−− R f0 = h1h−1

0 g
≈r/2, odd←−−−−−−− R

( f0, f1) = (gh1, gh0) ( f0, f1) = (h1 + gh0, g)

σ0/1
$←− R σ0/1

$←− R σ0/1/2
$←− R

sk = (h0,h1) (h0,h1, σ0/1) (h0,h1) (h0,h1, σ0/1) (h0,h1) (h0,h1, σ0/1/2)

pk = ( f0, f1) f0 ( f0, f1)

Algorithm 1 Computing a2k−1 where k = 2t .
Input: a

Output: a2k−1

1: procedure Custom_exponentiation(a)
2: f = a
3: for i = 0 to t − 1 do

4: g = f 22i

5: f = f · g

6: return f

Our inversion algorithm is Algorithm 2. It applies Algorithm 1 that computes a2k−1 for some k = 2t using the following 
recursive equation (with t ≥ 0)

St(a) = a22t −1

= a22t −22t−1 +22t−1 −1 = a(22t−1 −1)22t−1 +22t−1 −1

= (a22t−1 −1)22t−1

a22t−1 −1 = (St−1(a))22t−1

St−1(a)

Algorithm 2 is analogous to [14][Algorithm 2] that computes a−1 ∈ F2γ for γ = 2t + 1 through Fermat’s Little Theorem 
as

a−1 = a2γ −2 = (a2γ −1−1)2 = (a22t −1)2

BIKE, on the other hand, operates in the polynomial ring R with a value r for which

R= F2[x]/
(
xr − 1

) = F2[x]/ ((x − 1)h)

where h is the cyclotomic irreducible polynomial �r−1 of degree r − 1. In this ring, ord(a) | 2r−1 − 1 for every a ∈R∗ , and 
by Fermat’s theorem,

a−1 = a2r−1−2. (1)

Here, Algorithm [14][Algorithm 2] cannot be used directly because a2r−1−2 = (a2r−2−1)2 and r − 2 is not a power of 2. 
Therefore, we use the following decomposition.

Decomposition of 2r−1 − 2. In order to apply Algorithm 1, we write s = supp(r − 2) and rewrite z = 2r−1 − 2 in a convenient 
way:

z = 2 · (2r−2 − 1) = 2 ·
∑
i∈s

(
(22i − 1) ·

(
2(r−2) mod 2i

))
(2)

Example 1. The recommended block size (r) for BIKE-1-CCA / BIKE-2-CCA, Level-1, is r = 11779. Here, 2r−1 − 2 can be 
written as:

211778 − 2 = 2 · (1 + 2(2512 − 1) + 2513(21024 − 1)+
21537(22048 − 1) + 23585(28192 − 1))
3
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Algorithm 2 Inversion in R = F2[x]/((x − 1)h) with an irreducible h.
Input: a ∈ R∗
Output: a−1

1: procedure Invert(a)
2: f = a
3: res = a
4: for i = 1 to �log(r − 2)	 do

5: g = f 22(i−1) 
 As in Algorithm 1
6: f = f · g
7: if ((r − 2)i = 1) then 
 ith bit of r − 2

8: res = res · f 2(r−2) mod 2i

9: res = res2

10: return res

Algorithm 2 requires �log(r − 2)	 + wt(r − 2) − 1 multiplications plus �log(r − 2)	 + wt(r − 2) − 1 k-squarings and 1
squaring (in R). The performance of the inversion depends on |r − 2| and on wt(r − 2) and choices of r with smaller |r − 2|
and wt(r − 2) lead to better performance. Applying Algorithm 2 on Example 1 results in 17 polynomial multiplications, 17
k-squarings and 1 squaring.

Remark 1. By changing line 8 of Algorithm 2 into

res = res · f 21+(r−2) mod 2i

the last square, in line 9, can be removed. This optimization is omitted from the algorithm’s description for clarity.

Efficient k-squaring. The straightforward way to implement the k-squaring routine is as a series of k regular squares. The 
operation of squaring a binary polynomial is very efficient, i.e., it can be done in r bit operations, whereas multiplication 
takes r2 bit-operations if implemented naively, or rlog2 3 if the Karatsuba algorithm is used (note that the bit-operation 
numbers are correct up to a multiplication by a constant). However, the size of k in our k-squaring operations is O (r) which 
means that the k-squaring would require r2 bit-operations. Moreover, modern CPU architectures offer an instruction that 
multiplies two 64-bit words that represent two binary polynomials in just a few cycles. With this instruction the runtime of 
multiplication and squaring in R is actually (r/64)log2 3 and r/64 word-operations, respectively. Note that this improvement 
does not fully translate to the k-squaring since the number k of required consecutive squares stays the same, resulting in 
a total of r2/64 word-operations. Therefore, this approach does not yield an efficient algorithm. Furthermore, it underlines 
the imbalance of the performance of the two operations required for the inversion – multiplication and k-squaring.

Fortunately, in the context of QC-MDPC codes used in post-quantum cryptographic schemes we can perform the k-
squaring more efficiently by exploiting the following observation. Let a = ∑

j∈supp(a) x j ∈R∗ . Then we have that

a2k =
⎛
⎝ ∑

j∈supp(a)

x j

⎞
⎠

2k

=
∑

j∈supp(a)

(x j)2k
(3)

=
∑

j∈supp(a)

x j·2k =
∑

j∈supp(a)

x j·2k mod r .

The first step in Equation (3) is an identity for polynomials with binary coefficients. The last step stems from the fact that 
the order of x ∈ R is ord(x) = r. Therefore, k-square of an element in R can be computed as a permutation of the bits of 
the element. The only remaining question is how performant can be a secure implementation of the permutation, while at 
the same time the implementation admits the standard properties of side-channel protection, i.e., it is constant-time and 
constant-memory access.

4. Our implementation

This section discusses our implementation and further optimizations for Algorithm 2. In addition, it provides details on 
the optimization of the polynomial multiplication code used by BIKE Additional code package [24].

In our implementation [24], we represent elements of R as arrays of rsize = �r/8� bytes, where every byte represents 
eight consecutive coefficients. Algorithm 3 shows a naíve implementation of k-squaring an element a using a permutation 
map. The algorithm starts by generating the permutation map

πk(i) : i −→ i · 2k mod r

for i ∈ [0, r − 1] according to Equation (3). Subsequently, it iterates over the bits of a and moves them to their destination 
according to this map.
4
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Algorithm 3 Computing k-square as permutation.
Input: a as an array of rsize bytes, k
Output: c = a2k

as an array of rsize bytes
1: procedure k_square(a, k)
2: for i = 0 to r − 1 do 
 Generate the permutation map
3: map[i] = (i · 2k) % r

4: for i = 0 to rsize − 1 do 
 Apply the permutation map
5: byte = a[i]
6: for j = 0 to 7 do
7: bit = (byte >> j) & 1
8: pos = map[i · 8 + j]
9: c[pos/8] | = (bit << (pos%8))

10: return c

“Inverted” permutation. Algorithm 3 performs one memory read (line 5) and eight memory writes (line 9) per byte of a. The 
read operations are performed on consecutive memory locations (a[i], 0 ≤ i < rsize) while the memory writes are to random 
locations in c that are determined by pos. In contrast, Algorithm 4 completes the same task using the inverse permutation 
map

π−1
k (i) : i · 2−k mod r −→ i

that allows us to perform one memory write (line 11) and eight memory reads (line 7) per byte of c. This approach improves 
the performance of the implementation in a noticeable way and thus we chose to use it in [24].

Algorithm 4 Computing k-square as “inverted” permutation.
Input: a as an array of rsize bytes, k
Output: c = a2k

as an array of rsize bytes
1: procedure k_square(a, k)
2: for i = 0 to r − 1 do 
 Generate the permutation map
3: inverse_map[(i · 2k) % r] = i

4: for i = 0 to rsize − 1 do 
 Apply the permutation map
5: val = 0
6: for j = 0 to 7 do
7: pos = inverse_map[i · 8 + j]
8: byte = a[pos/8]
9: bit = (byte >> (pos%8)) & 1

10: val | = (bit << j)

11: c[i] = val

12: return c

Remark 2. Our implementation of Algorithms 3 and 4 performs bit operations bitwise shift (� 3) and bitwise and (&8) 
instead of the slow division by 8 and modulo reduction by 7, respectively.

Efficient generation of πk. Computing the values πk(i) = i · 2k (mod r), 0 ≤ i < r, can be optimized by precomputing � = 2k

(mod r) and then replacing the costly i · � multiplication with a sequence of additions, i.e., πk(i + 1) = πk(i) + � (mod r). 
The reduction can be done by subtracting r if πk(i + 1) > r. We use this optimization also for π−1

k using � = 2−k . This 
optimization can be further vectorized using SIMD instructions (see Section 4.1).

Precomputed maps. In BIKE, the values of k in Algorithm 2 depend only on the fixed public parameter r. Thus, the maps 
πk can be precomputed and the performance of the permutation is now bounded by the time it take to access the maps’ 
memory. The required memory storage is �log(r −2)	 +1 +wt(r −2) tables where each one holds r values. The performance-
memory trade-off is discussed in Section 5.

k-square versus k squares. Squaring an element in R can be done efficiently on modern processors. Thus, for small enough 
values of k, it is faster to perform k square operations than performing one k-square operation. The actual choice of the 
threshold kthr depends on the actual performance of the square and k-square implementations on a specific processor. 
Table D.5 in Appendix D provides examples for optimal values of kthr . As a consequence, the efficiency of the inversion 
algorithm depends on the values of r − 2 and wt(r − 2) in addition to the value of kthr .

Example 2. We expect that inverting a polynomial in R1 (with r1 = 11779) will be faster then inverting a polynomial in 
R2 (with r1 = 12347). The reason is that wt(r1 − 2) = 5 < 6 = wt(r2 − 2), and the number of required k-squares is smaller. 
However, from the binary representations r1 − 2 = 0b10111000000001 and r2 − 2 = 0b11000000111001, we see that 
the set bits in r2 − 2 are positioned close to the LSB, and the set bits in r1 − 2 are positioned close to the MSB. Therefore, 
5
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if kthr = 64, then for the inversion in R1 we can replace only one k-square with a chain of squares, while in case of R2
we can replace 4 such k-squares. This is another consideration that should be taken into account when choosing the r
parameter for the scheme (as discussed in Section 6).

4.1. Generating permutation map with SIMD instructions

Modern Intel x86-64 processors are equipped with vector instruction-sets such as AVX that operates on 16, 128-bit 
registers, AVX2 that operates on 32, 256-bit registers and AVX512 that operates on 32, 512-bit registers. Except for the 
large registers, AVX512 brings another advantage: every instruction can be used together with a mask that indicates which 
vector elements are considered for the operation.

Listing 1 shows an implementation of the map generation function using the AVX512 instruction-set. The function 
receives � = 2−k mod r as its input and outputs a permutation map with r elements, each fits in a 16-bit entry. The im-
plementation relies on two properties: a) in BIKE, r < 215, and the sum of two entries fits in another 16-bit entry without 
encountering a carry overflow; b) a single AVX512 register can hold 32 map elements.

The code loads the first 32 elements (i · � (mod r), 0 ≤ i < 32) to curr and broadcast the values 32� (mod r) and r to 
inc and rval, respectively (all registers are 512-bit registers). Subsequently, the code generates 32 map values at a time by 
setting curr = curr + inc and subtracts rval only for elements with values greater than r.

Listing 1 Permutation map generation with AVX512 instructions (the[h] actual names of the AVX512 instructions are 
replaced with upper-case macro names for clarity).

1 void gen_permutation_map (uint16_t map[R], uint16_t ell) {
2 __m512i curr, inc, rval;
3 uint32_t mask;
4 // Initialization: compute the first 32 map elements
5 for (int i = 0; i < 32; i++)
6 map[i] = (i * ell) % R;
7 curr = LOAD(map); // Load the 32 values into the register
8 inc = BCAST_U16((ell * 32) % R);
9 rval = BCAST_U16(R);

10
11 // Generate the rest of the map elements
12 for (int i = 1; i < ceil(R / 32); i++) {
13 curr = ADD_U16(curr, inc);
14 mask = CMP_U16(curr, rval, CMP_GEQ);
15 curr = SUB_U16(curr, rval, mask);
16 STORE(&map[i * 32], curr);
17 }
18 }

Vector masks were introduced in AVX512, thus we cannot use them for our AVX2 implementation. In fact, instead of 
generating a mask, the comparison instruction produces a vector mask, where maski = −1 when the comparison condition 
holds and 0 otherwise. Consequently, we need to perform the subtraction operation in two steps: curr = curr - (mask and 
rval).

Another complication is that the comparison instruction compares vector elements as signed integers (in contrast to 
unsigned integers in AVX512). Therefore, we cannot perform more than two additions without considering carry overflows 
of signed integers. To sidestep this limitation, we use the following trick: in the initialization phase we set inc = inc - rval
and in the second phase we use a comparison to 0 instead of r. Subsequently, we perform addition of r if needed. The code 
is found in Appendix A.

The map generation implementations can be further optimized by processing two (or more) AVX registers at a time, 
e.g., if in Listing 1 we use several curr registers we may help the processor filling the execution pipeline and eliminating 
any latency that arrives from the sequential nature of the instructions in the for loop. Furthermore, vector processing units 
usually have two input and output ports which allows them to execute some pairs of instructions in parallel and achieve 
higher throughput (e.g., simple arithmetic instructions such as addition, and subtraction can be executed concurrently).

To conclude, SIMD implementations of the function that generates a permutation map are fairly efficient. In the AVX2
case we need an order of r/16 vector instructions to generate the whole map, while the performance of the AVX512
implementation is even better since the required number of instructions is an order of r/32.

4.2. Optimizing the permutation with SIMD instructions

Next, we optimize the second phase of Algorithm 4 (applying the permutation map). Here, the bottleneck is the dense 
representation of a polynomial in rsize bytes, where reading a specific memory bit requires 3 shifts, 2 ands, and 1 or in-
structions. In contrast, by using redundant representation (or byte representation) where every bit is encoded as a complete 
6
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byte (padded with zeros), we can avoid the above calculations. Indeed, these are all “light” operations, i.e., most processors 
perform them in a single cycle. However, they are executed for each of the r coefficients of the polynomial, and therefore, 
eliminating even some of them can significantly reduce the runtime of the algorithm. When using redundant representation 
the code also becomes much simpler: out[i] = in[map[i]] for i ∈ [0, r − 1].

Unfortunately, Algorithm 2 performs polynomial multiplication between subsequent calls to the k-square function, which 
operates in binary representation and would be very inefficient when the operands are given in byte representation. There-
fore, we cannot perform the entire inversion algorithm using byte represented polynomials and we are forced to move the 
polynomials between the different representations. Luckily, using SIMD instructions we can implement the conversions in a 
very efficient way.

AVX512 implementation

Listing 2 Conversion of a polynomial from binary to byte representation using AVX512 instructions.

1 void convert_bin_byte (uint8_t out[R], uint8_t in[R_SIZE]) {
2 // Consider the input as an array of 64-bit elements
3 uint64_t *in64 = (uint64_t*)in;
4
5 for (int i = 0; i < ceil(R / 64); i++) {
6 // Convert 64 bits to byte representation
7 __m512i t = _mm512_maskz_set1_epi8(in64[i], 1);
8 STORE(&out[i * 64], t); // Store the resulting 64 bytes to the output
9 }

10 }

To convert from binary to byte representation we use the instruction called _mm512_maskz_set1_epi8 [25], as shown 
in Listing 2. This instruction accepts two parameters: a 64-bit mask and an 8-bit val, and produces a vector register that 
contains 64 elements each of size 8 bits by broadcasting val to all elements of the resulting vector using zeromask mask, 
i.e., element of the vector is zeroed out when the corresponding bit of the mask is not set. Therefore, we process the input 
polynomial 64 bits at a time, where we use the 64 bits as the mask and set val = 1. In this way, when a bit of mask is set 
(i.e., the polynomial coefficient is one) then the corresponding byte in the output vector is set to one, otherwise it is set to 
zero.

The conversion in the opposite direction, byte to binary representation, can be done with _mm512_cmp_epi8_mask
instruction [25], as shown in Listing 3. Recall from the previous section that the comparison instructions in AVX512 receive 
two vectors and produce the output mask by comparing the corresponding elements of the vector. More precisely, the 
specified instruction takes two vectors viewed as arrays of 64 bytes compares the bytes in the corresponding positions and 
if they are equal sets the corresponding bit in the output mask to one. To realize the conversion, we use this instruction 
and provided it with a vector register containing bytes of the polynomial (each byte is zero or one) and a register where 
we set all bytes to one.

Listing 3 Conversion of a polynomial from byte to binary representation using AVX512 instructions.

1 void convert_byte_bin (uint8_t out[R_SIZE], uint8_t in[R]) {
2 // Consider the output as an array of 64-bit elements
3 uint64_t *out64 = (uint64_t*)out;
4 for (int i = 0; i < ceil(R / 64); i++) {
5 // Convert 64 bytes of the input
6 // and store the resulting 64 bits to the output
7 __m512i one = BCAST_U8(1);
8 __m512i t = LOAD(&in[i * 64]);
9 out64[i] = _mm512_cmp_epi8_mask(t, one, CMP_EQ);

10 }
11 }

AVX2 implementation

When only AVX2 is available, the conversion is slightly more complicated because the two instructions we used for 
the AVX512 implementation are not available. The algorithm is depicted in Fig. 1. Let val = a3a2a1a0 be the 32-bit value 
(consisting of four bytes ai ) that we convert to byte representation. We start by broadcasting val to the eight elements of 
the vector register t . Ideally, we would then shuffle the byte-size elements in t such that the i-th element contains the byte 
of val which contains the i-th bit of val, e.g., elements of t at positions 0 to 7 are set to a0, at positions 8 to 15 are set 
to a1, etc. Once we have ai ’s ordered like this we can obtain the result by appropriately shifting each element of t such 
that the desired bit is shifted to the most significant bit position of the element, e.g., shift i-th element of t to the left by 
7
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Fig. 1. Conversion of a 32-bit value a3a2a1a0 consisting of four bytes from binary to byte representation with AVX2 instructions.

(7 − i) mod 8 bit positions. Unfortunately, AVX2 does not support shift operations on byte-sized elements of a register, but 
only on 32-bit and 64-bit sized elements.

Remark 3. Note that, contrary to the AVX512 implementation where each byte in the byte representation holds the corre-
sponding bit in the least significant bit position, here, we want the bit to be in the most significant position. The reason for 
this change is that it allows simple and efficient implementation of the conversion in the opposite direction, as we explain 
later in the text.

The above stated limitations of the AVX2 instruction set are overcome in the following way. The explanation follows the 
procedure in Fig. 1. Note that for clarity we depict only the conversion of a0, the first 8 bits of val, however, the remaining 
part of val is simultaneously processed. First, we shift the 32-bit elements of t by the values provided in register q, e.g., the 
first two elements, t[0] and t[1] are shifted to the left by 6 and 4 places, respectively. Note that by shifting, for example, the 
32-bit value t[0] = a3a2a1a0 to the left by 6 places, we obtain t[0] = a′

3a′
2a′

1a′
0 where a′

i �= ai << 6, but the most significant 
bit of a′

i is equal to the most significant bit of ai << 6 (we denote this by the “~” sign in Fig. 1). Then we use the AVX2
shuffle instruction to reorder the byte-sized elements of t as shown in the figure. Thus, we obtain register t with the bytes 
in odd positions exactly as we need them for the output – they hold values with most significant bit set to the value of 
the corresponding bit in val, e.g., byte at position 1 holds the value t0 ∼ (a0 << 6). The bytes of t in even positions have to 
be shifted once more to the left by one place, to obtain register s that has even positioned elements filled with the right 
values. The resulting register is then simply generated by blending t and s. For this, we use the AVX2 blend instruction 
which we provide with a mask such that it copies elements at odd positions from t and at even positions from s.

Therefore, binary to byte conversion of a polynomial is performed by applying the described algorithm to every 32 
consecutive bits of the polynomial, as shown in Listing 4.

Conversion from byte to binary representation is straightforward thanks to the fact that, as previously noted, the byte
representation is such that each byte holds the corresponding bit in the most significant position. To convert 32 consecutive 
bytes we use _mm256_movemask_epi8 instruction available in the AVX2 instruction set [25]. The instruction takes a 
vector register as input (consisting of 32 byte-sized elements) and creates a 32-bit mask from the most significant bit of 
each element of the register. Since this is the exact functionality that we need for the conversion, we simply iterate over 
the coefficients of the byte represented polynomial, 32 bytes at a time, and generate the desired 32 bits of output (the 
implementation is shown in Listing 5).
8
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Listing 4 Conversion of a polynomial from binary to byte representation using AVX2 instructions.

1 void convert_bin_byte (uint8_t out[R], uint8_t in[R_SIZE]) {
2 // shift values (q), shuffle mask (p), blend mask (w)
3 __m256i p, q, w, t;
4 q = SET_I32(0, 2, 4, 6, 0, 2, 4, 6);
5 p = SET_I8(15, 15, 11, 11, 7, 7, 3, 3, 14, 14, 10, 10, 6, 6, 2, 2
6 13, 13, 9, 9, 5, 5, 1, 1, 12, 12, 8, 8, 4, 4, 0, 0);
7 w = BCAST_I16(0x00ff);
8
9 // Consider the input as an array of 32-bit elements

10 uint32_t *in32 = (uint32_t*)in;
11 for (int i = 0; i < ceil(R / 32); i++) {
12 // Convert 32 bits to byte representation
13 t = BCAST_I32(in32[i]);
14 t = _mm256_sllv_epi32(t, q); // shift left elements of t by vals in q
15 t = _mm256_shuffle_epi8(t, p);
16 s = _mm256_slli_epi32(t, 1); // shift left each element of t by 1
17 t = _mm256_blendv_epi8(t, s, w); // blend t and s
18 STORE(&out[i * 32], t); // Store the resulting 32 bytes to the output
19 }
20 }

Listing 5 Conversion of a polynomial from byte to binary representation using AVX2 instructions.

1 void convert_byte_bin (uint8_t out[R_SIZE], uint8_t in[R]) {
2 // Consider the output as an array of 32-bit elements
3 uint32_t *out32 = (uint32_t*)out;
4 for (int i = 0; i < ceil(R / 32); i++) {
5 // Convert 32 bytes of the input
6 // and store the resulting 32 bits to the output
7 __m512i t = LOAD(&in[i * 32]);
8 out32[i] = _mm256_movemask_epi8(t);
9 }

10 }

Fig. 2. VPCLMUL instruction.

4.3. Optimizing squaring and multiplication

Modern CPUs offer a fast carry-less multiplication instruction (PCLMUL) that can be used for multiplying two elements 
of a field with characteristic 2. We note that PCLMUL multiplies two 64-bit inputs and produces a 128-bit result. Since
AVX512 and AVX2 offer many instructions that can operate on wider registers (512-bit and 256-bit, respectively), PCLMUL
can be a bottleneck when polynomial multiplication is implemented with one of these SIMD instruction extension sets.

In the recent 10th generation CPUs (codename “Ice Lake”) Intel introduced a vectorized version of the PCLMUL instruc-
tion, namely VPCLMUL, which can multiply simultaneously four pairs of 64-bit inputs (in a SIMD manner). We leverage the 
new instruction to improve the performance of the existing polynomial multiplication in BIKE and to implement polynomial 
squaring required for the inversion. Fig. 2 shows how VPCLMUL instruction works. It receives two 512-bit registers a and b, 
each containing eight 64-bit elements, and a mask. The elements of a and b are grouped into four groups of two elements. 
The mask determines which elements (lower or higher) of the corresponding groups will be multiplied, as illustrated in the 
figure. Finally, the specified elements are multiplied and four 128-bit products are stored in the output register.
9
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Fig. 3. Squaring eight consecutive 64-bit digits of a binary polynomial with VPCLMUL instruction.

Binary polynomial squaring with VPCLMUL

Squaring a polynomial with binary coefficients is particularly efficient. Let a ∈ R be the polynomial a = ∑r−1
i=0 ai xi . Then 

its square is a2 = (∑r−1
i=0 ai xi

)2 = ∑r−1
i=0

(
ai xi

)2
since the coefficients of a are in F2. Therefore, squaring can be performed by 

squaring every term of the input polynomial. We note that this can be implemented with the non-vectorized PCLMUL
instruction in a straightforward manner. Consider the polynomial as consisting of sub-polynomials with 64 terms, i.e., 
a = ∑�r−1/64�

i=0 ai(x)xi·64 where ai(x) ∈ F2[x] with degree at most 63. Hereafter, we refer to polynomials ai(x) as 64-bit 
digits of a. Squaring is then implemented by iterating over the digits of a and squaring them with PCLMUL. The code that 
implements this functionality is given in Appendix B. In this section we focus on using VPCLMUL instruction for squar-
ing.

In Fig. 3 we show how to square a binary polynomial of 512 bits length to obtain the 1024-bit result with VPCLMUL
instruction. We consider the polynomial as consisting of eight 64-bit digits which occupy AVX512 register a. To be able to 
get the digits in the resulting registers in correct order, we first need to permute the elements of a, as shown in the figure. 
Then we invoke VPCLMUL instruction twice, with mask 0x00 and 0x11, to square the lower and the higher elements of 
the four 128-bits parts of a, respectively. In this way we obtain the result in two registers clo and chi with their elements 
appropriately ordered such that we can simply store them in memory. Squaring a polynomial of size r is done by iterating 
over it, 512 bits at a time, and applying the described algorithm (the source code of this function is given in Listing 8 in 
the appendix). After computing the square of a polynomial (or a product of two polynomials) we need to reduce the result 
modulo xr − 1. The implementation of the reduction is not presented, but we note that since xr = 1 the reduction can be 
done by shifting to the right by r places the higher part of the result (bits at positions ≥ r) and adding it to the lower part 
of the result (bits at positions 0 to r − 1).

Binary polynomial multiplication with VPCLMUL

The “Additional implementation” of BIKE [22], submitted to the second round of the NIST Post-Quantum standardiza-
tion project, implements polynomial multiplication with the recursive Karatsuba algorithm. The recursion splits the input 
into two equally sized parts, proceeds with multiplying the new parts individually in the same manner, and stops when 
inputs of size four 64-bit digits are encountered. Then, the base case multiplication is performed with a 4 × 4 64-bit dig-
its schoolbook multiplication algorithm (using the PCLMUL instruction). Since the new VPCLMUL instruction operates on 
512-bit registers, we replaced the existing base case multiplication with the code described in [26] that multiplies two bi-
nary polynomials of size eight 64-bit digits. This yields some improvements. However, we further optimize the code by 
implementing the base case as 16 × 16 digits multiplication using the Karatsuba algorithm with AVX512 and VPCLMUL
instructions.

We start by making a function that multiplies four digits of a with four digits of b:

c = a3a2a1a0 · b3b2b1b0.

Recall that in Karatsuba’s algorithm we would split the terms in half and compute the product as c = x · 2256 + y · 2128 + z
(first level of Karatsuba), with

x = a3a2 · b3b2

y = (a3a2 + a1a0) · (b3b2 + b1b0) + x + z

z = a1a0 · b1b0,
10
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where each of the three products (in x, y, z) would be computed in the same way (second level), i.e., by splitting the terms 
and computing three sub-products. Therefore, to compute c we need in total nine single digit multiplications, which if 
done with VPCLMUL instruction (which performs four single digit multiplications in parallel), we would need three calls to
VPCLMUL. This was our initial approach. However, since we are using VPCLMUL three times it means that we can actually 
perform twelve single digit multiplications instead of nine at the same cost. We use this fact to our advantage to implement 
a hybrid between Karatsuba and schoolbook multiplication, which simplifies the algorithm and removes some additions 
(and register permutations). The idea is the following: replace the first level of Karatsuba by schoolbook multiplication and 
compute the sub-products by Karatsuba. Namely, we compute:

c = (a3a2 · b3b2) · 2256 + (a3a2 · b1b0 + a1a0 · b3b2) · 2128 + a1a0 · b1b0.

To compute the four sub-products with Karatsuba we need to obtain the following twelve products:

a3a2 · b3b2 : a3a2 · b1b0 : a1a0 · b3b2 : a1a0 · b1b0 :
(1) a2 · b2 a2 · b0 a0 · b2 a0 · b0

(2) a3 · b3 a3 · b1 a1 · b3 a1 · b1

(3) (a2 + a3)(b2 + b3) (a2 + a3)(b0 + b1) (a0 + a1)(b2 + b3) (a0 + a1)(b0 + b1)

After all the products are computed we have to perform several more additions. Firstly, since we are using Karatsuba’s 
method to compute the four products aia j · bkbl , we need to add the first two computed terms to the third one, and then 
shift the third term (multiply by 264) and add it to the result. For example,

a1a0 · b1b0 = a1 · b1 · 2128 + ((a0 + a1)(b0 + b1) + a1 · b1 + a0 · b0)264 + a0 · b0.

Finally, we need to sum the two middle aia j · bkbl products, and again, shift appropriately and add to obtain the final result.
To illustrate how the whole procedure is done with AVX512 and VPCLMUL instructions we present Fig. 4. The plan is to 

compute the four products in each row, denoted by (1), (2), (3) in the equations above, in parallel. Let the AVX512 registers 
a and b hold the corresponding four 64-bit digits in the order as shown in the figure (this can be achieved with AVX512
permutation function). First, we obtain the sums that are required to compute the products in the third row. This is done 
by shuffling the elements of a and b to get them ordered as shown in sa and sb in the figure and then by simply adding 
the values of a and b to sa and sb, respectively.

Now we can use the VPCLMUL instruction to compute all the required products and store them in registers u, v , and w . 
Note that w holds the products of the third row which represent the middle term in Karatsuba’s algorithm so we add both 
u and v to w . For example, the lowest 128 bits of w hold two digits w1 w0 = (a0 +a1)(b0 +b1) +a1 ·b1 +a0 ·b0. Recall that 
to compute (a1a0 ·b1b0) we need to add w1 w0 ·264 to the sum (a1 ·b1 ·2128 +a0 ·b0). Since w1 w0 ·264 = w1 ·2128 + w0 ·264

this means that we can add w0 · 264 to the a0 · b0 product (basically add w0 to the higher digit of a0 · b0) and add w1 to 
the a1 · b1 product. Products a0 · b0 and a1 · b1 are stored in u1u0 and v1 v0, respectively. Therefore, we shuffle w to sw to 
obtain the elements of w ordered as shown in the figure and perform two additions – we add the elements of sw at odd 
positions to u, and the elements at even positions to v . With this the four Karatsuba multiplications are done. The only 
thing left to do is to permute the elements of u and v in the right order and store the result (this step is not shown in the 
figure).

The described algorithm to compute a 4 × 4 digits product is used as a function that is called inside the 8 × 8 digits 
Karatsuba multiplication. The 8 × 8 multiplication function takes care of providing correctly ordered input registers and also 
handles the output of the 4 × 4 multiplication. The source code which implements the 4 × 4 multiplication function is given 
in Listing 9 in Appendix C.

4.4. Side-channel protection considerations

The proposed polynomial inversion algorithm (Algorithm 2) is used during the key generation process in BIKE where a 
polynomial, which is a part of the secret key, has to be inverted. Because we are dealing with secret data the inversion 
has to be implemented securely. On the high level, the algorithm involves several polynomial multiplications and several 
k-squarings. We note that the number of these operations and the order in which they are performed depend only on 
the public parameter r (not on a given input). Therefore, the algorithm is inherently constant-time and if the required 
subroutines are implemented securely, then the algorithm itself is secure without any modification.
11
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Fig. 4. Multiplying four 64-bit digits of two binary polynomials using AVX512 and VPCLMUL instructions.

The subroutines used in the inversion algorithm are the following: multiplication, squaring, and k-squaring. The Ad-
ditional code of BIKE [22] already implements multiplication in constant-time and the optimizations we introduce in 
this chapter follow the same secure implementation practices. Likewise, our implementation of polynomial squaring is 
constant-time and memory access. The k-squaring function is implemented as a permutation of the coefficients of the input 
polynomial. During the permutation we scan every bit of the input and update the appropriate bit in the output. Hence, 
k-squaring is constant-time. Memory locations that are accessed when copying the bits of input to the output are fully 
determined by the parameter k, which is itself derived solely from the public value r. Therefore, our implementation of 
k-squaring is also secure against side-channel attacks which exploit the knowledge of memory locations that are accessed 
by the program.
12
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5. Results

In this section we provide performance results of different implementations of the inversion function. Namely, we im-
plement and benchmark the following versions of the function:

1. PORTABLE – fully portable version of the code, implemented in C without any platform specific instructions.
2. PCLMUL – the same as PORTABLE with the exception that the PCLMUL instruction is used for polynomial multiplication 

and squaring.
3. AVX2 – implementation leveraging the instructions offered by the AVX2 instruction set.
4. AVX512 – implementation leveraging the instructions offered by the basic AVX512 instruction set, called AVX512F, 

which is supposed to be supported by any x86_64 platform with 512-bit wide SIMD capabilities.
5. VPCLMUL – the same as AVX512 with the exception that the new VPCLMUL instruction is used for polynomial multi-

plication and squaring.

For each of these implementation flavors we benchmark two variants of inversion based on the k-squaring implementation 
– generating permutation maps on the fly or using precomputed maps. Moreover, we measure and present the runtime of 
the BIKE-2 key generation algorithm that uses the described implementations of inversion.

The comparison baseline. The performance of our implementations is compared with two popular open-source libraries NTL 
(compiled with GF2X) [19,20] and OpenSSL [21]. We do not compare to [16,17,14,18] because they are all slower than NTL: 
a) the inversion algorithm of [17] is reported to be twice faster than [18] and 12 times faster than [14], but 1.7 times slower 
than NTL; b) the implementation in [16] is reported to be 3 times slower than NTL. Another reason for choosing NTL and 
OpenSSL for comparison is that the “Additional implementation” [22] of BIKE protocol submitted to the second round of the 
NIST standardization project uses the inversions from these two libraries.

Remark 4. We also measured the inversion function of the LEDAcrypt optimized code [13] that implements safegcd algo-
rithm [15]. This code uses AVX2, so for fair comparison, we compile our code with AVX2 instructions only and compare 
the runtime. The performance of the LEDAcrypt inversion is: a) using gcc: 4.05 and 12.43 million cycles for Level-1 and 3, 
respectively; b) using clang: 3.29 and 10.30 million cycles for Level-1 and 3, respectively. The performance of our inversion 
on the same platform is: 0.57 and 2.08 million cycles for Level-1 and 3, respectively. The code of [13] runs in constant time 
and is faster than NTL. On the other hand, it is significantly slower than our implementation even when we use only the 
AVX2 code.

Blinding a non-constant time inversion. Binary polynomial inversion does not operate in constant-time in either NTL [19] or 
OpenSSL [21] because these libraries use the extended GCD based algorithms to compute the inverse. To address this issue, 
a recent change in OpenSSL (between version 1.0.2 to version 1.1.0) protects the implementation by blinding the inversion 
as follows. The function BN_GF2m_mod_inv(a, s) computes a−1 mod s by the following sequence: 1) choose a random b; 
2) compute c = ab; 3) invert c); 4) multiply by b. Unfortunately, this does not work in the general case, where s is not 
necessarily an irreducible polynomial (see discussion in [27]). If s is reducible, c = ab may be non-invertible modulo s. This 
is exactly the case of BIKE-2 where xr − 1 is reducible. Although the OpenSSL function BN_GF2m_mod_inv(a, xr − 1) is 
called with invertible a, the internal blinding may select a random non-invertible polynomial b and then inverting c = ab
would fail. In the polynomial ring R a randomly selected b has probability 1

2 to be non-invertible. For a fair comparison (of 
constant-time implementations), we use the same blinding technique for NTL as well. For correctness, we always choose b
such that wt(b) is odd, and therefore b is invertible in R.

The platform. We carried out performance measurements on a platform which supports all the required instructions for 
the five versions of the code specified above. The platform is a Dell XPS 13 7390 2-in-1 laptop. It has the latest, 10th

generation Intel®CoreT M processor (microarchitecture codename “Ice Lake”[ICL]). The specifics are Intel®CoreT M i7-1065G7 
CPU 1.30GHz. This platform has 16 GB RAM, 48K L1d cache, 32K L1i cache, 512K L2 cache, and 8MiB L3 cache and it 
supports AVX512 and VPCLMUL instructions. For the experiments, we turned off the Intel® Turbo Boost Technology (in 
order to work with a fixed frequency and measure performance in cycles).

Measurements methodology. The performance reported hereafter is measured in processor cycles (per single core). We obtain 
the results using the following methodology. Every measured function was isolated, run 25 times (warm-up), followed by 
100 iterations that were clocked (using the RDTSC instruction) and averaged. To minimize the effect of background tasks 
running on the system, every experiment was repeated 10 times, and the minimum result was recorded.

The code. Our code is written in C with intrinsic functions [25] for AVX functionality. The code is compiled with gcc (version 
9.3.0), using the “-O3” optimization flag, and ran on a Linux OS (Ubuntu 20.04).
13
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Table 2
Performance of our implementations of inversion in F2[x]/(xr − 1) for a set of r values with different wt(r − 2). The NTL and OSSL columns denote the run-
time of the inversion from the corresponding libraries ([19,21]). The remaining columns represent our implementation: (a) with AVX2; (b) with AVX512; 
(c) with AVX512 and VPCLMUL; columns labeled with “*” denote implementations with pre-computed permutation maps. The runtime is measured in 
millions of cycles.

r wt(r − 2) NTL OSSL (a) (a)* (b) (b)* (c) (c)*

12323 4 6.75 49.19 0.59 0.56 0.54 0.52 0.43 0.41
11779 5 5.86 42.61 0.57 0.54 0.54 0.51 0.44 0.41
12347 6 6.52 48.67 0.64 0.63 0.60 0.58 0.47 0.45
11789 7 6.10 43.83 0.62 0.59 0.58 0.55 0.45 0.44
11821 8 5.99 44.98 0.66 0.62 0.61 0.59 0.48 0.46
11933 9 6.22 43.31 0.69 0.65 0.64 0.63 0.52 0.49
12149 10 6.37 46.60 0.75 0.71 0.70 0.67 0.55 0.52
12157 11 6.30 47.00 0.78 0.74 0.72 0.70 0.58 0.55

25603 4 9.00 213.84 1.75 1.72 1.65 1.61 1.28 1.24
24659 5 8.67 188.42 1.77 1.71 1.66 1.61 1.30 1.24
24677 6 8.61 193.27 1.88 1.83 1.74 1.71 1.35 1.32
24733 7 8.77 204.55 1.93 1.89 1.79 1.77 1.40 1.35
24821 8 9.07 185.17 2.08 2.02 1.92 1.87 1.51 1.49
25453 9 8.86 197.20 2.26 2.20 2.09 2.06 1.61 1.54
24547 10 8.32 182.11 2.13 2.08 1.99 1.95 1.61 1.53
24533 11 8.79 175.41 2.21 2.14 2.08 2.00 1.67 1.60
24509 12 8.47 181.95 2.27 2.20 2.13 2.07 1.66 1.61

Performance of inversion

The performance of the inversion algorithm depends on the Hamming weight of r − 2 (recall that r defines the polyno-
mial ring R), as explained in Section 3. Therefore, we generate a set of r values, with different wt(r − 2), from the range of 
values relevant for BIKE. Then, we choose one representative for every value of wt(r − 2), and measure the runtime of the 
algorithm for the chosen parameters. Note that only r values for BIKE level 1 and 3 are considered since NIST announced 
that the highest level of security, Level-5, is not critical for standardization.

Tables that contain all the measurements that were performed and performance improvements over the NTL library, 
i.e., all the different implementation variants listed in the introduction of this section, are given in the appendix (Table E.6
and E.7). Here, we present only the most interesting and relevant data points. The AVX2 instruction set was introduced with 
the Haswell lineup of Intel processors in 2013. We assume that most of the CPUs in use today support at least AVX2, and 
therefore we present the performance numbers for AVX2 and AVX512 implementations. The third option, AVX512 plus
VPCLMUL, is included to showcase the improvements that can be achieved on the latest generation of Intel CPUs and to get 
a glimpse of what can be expected from future processor architectures.

In Table 2 we show the runtime of the two baseline implementations, NTL and OpenSSL, together with our implemen-
tations. Firstly, we note that all the different variants of the algorithm that we implemented significantly outperform the 
baseline. While NTL is an order of magnitude faster than OpenSSL, our implementations are an order of magnitude faster 
than NTL.

It is interesting to note that for the GCD based inversion algorithms the runtime increases with the size of r, while this 
is not necessarily the case for our algorithm. For example, if we take r1 = 12323 (first row) and r2 = 12157 (last row), both 
NTL and OpenSSL are faster for the smaller r2, while our implementations show a better performance for the larger r1. 
This is due to the fact that wt(r1 − 2) < wt(r2 − 2) and therefore, the algorithm proposed in this chapter performs fewer 
operations for r1 than for r2. Note that this does not hold in general for r1 > r2, especially when the corresponding weights 
wt(r1 − 2) < wt(r2 − 2) are close, because even though with r1 we perform a smaller number of operations, the operations 
themselves are more time consuming since the polynomial ring we work in is larger.

The use of pre-computed permutation maps for k-squaring provides an interesting trade-off. It improves the overall 
performance at a cost of occupying some memory space. The maps that we need to store hold r ·(�log(r −2)	 +1 +wt(r −2))

entries of size r bits (for all security levels of BIKE the entries can be stored in 2 bytes of memory). For example, BIKE-2 
IND-CCA version (as proposed to the Round-2 NIST project) requires 450KB and 1.1MB of memory to store the maps for 
parameter sizes defined for Level-1 and Level-3 security, respectively. However, the performance improvements when using 
the maps are not very impressive – the difference in the runtime with and without precomputed maps is always around 
five percent. For example, the AVX2 implementations for r = 11779 invert a polynomial in 560K and 590K cycles with and 
without the precomputed maps, respectively, showing a difference of 30K cycles. The small contribution of the precomputed 
maps to the performance of the inversion can be attributed to the heavily optimized functions for generating permutation 
maps on the fly (described in Section 4.1).

It is also interesting to note the differences in the performance of the three SIMD implementations. For example, consider 
the columns (a), (b), and (c) of Table 2. The jump from AVX2, in (a), which operates on 256-bit wide registers to the AVX512
implementation, in (b), which works with registers of twice the size, does not improve the performance as much as we 
14
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Table 3
Speedup of our implementations of inversion in F2[x]/(xr − 1) compared to NTL with GF2X [19]. Columns 3-8 represent the speedup over NTL of the 
following implementation: (a) AVX2; (b) AVX512; (c) AVX512 and VPCLMUL; columns labeled with “*” denote implementations with pre-computed 
permutation maps. The speedup is measured for a set of r values with different wt(r − 2).

r wt(r − 2) (a) (a)* (b) (b)* (c) (c)*

12323 4 11.51 12.15 12.50 13.02 15.68 16.55
11779 5 10.26 10.80 10.85 11.45 13.32 14.37
12347 6 10.11 10.36 10.86 11.26 13.87 14.42
11789 7 9.85 10.37 10.44 11.03 13.44 13.96
11821 8 9.10 9.61 9.89 10.15 12.42 13.10
11933 9 8.97 9.55 9.67 9.93 12.03 12.70
12149 10 8.48 8.99 9.09 9.46 11.54 12.23
12157 11 8.10 8.48 8.72 9.04 10.91 11.46

25603 4 5.15 5.23 5.45 5.59 7.06 7.23
24659 5 4.89 5.06 5.22 5.40 6.66 6.98
24677 6 4.58 4.71 4.96 5.04 6.38 6.54
24733 7 4.54 4.65 4.91 4.97 6.25 6.48
24821 8 4.37 4.49 4.72 4.84 6.01 6.10
25453 9 3.92 4.03 4.23 4.31 5.51 5.74
24547 10 3.91 4.00 4.18 4.27 5.18 5.44
24533 11 3.97 4.11 4.23 4.39 5.28 5.49
24509 12 3.73 3.85 3.98 4.10 5.10 5.27

would expect. The AVX512 is slightly faster than the AVX2 implementation with the difference in performance around five 
percent. One possible reason for this is that the AVX512 instructions that we use have higher latency compared to the 
used AVX2 instructions. Another likely culprit for the unimpressive performance of AVX512 is the platform used for the 
experiments which has a low-powered mobile processor designed for portable devices. Based on the previous generations 
of Intel CPUs, one of the ways that the power demand is lowered is by crippling the SIMD unit because it is one of the 
most power hungry parts of a processor. Unfortunately, these are the only 10th generation IceLake Intel CPUs available 
on the market currently, but we expect to see higher performance improvements on the desktop and server versions of 
IceLake once they are released. Nevertheless, the contribution of the VPCLMUL instruction to the reduction in the runtime 
is more noticeable. For example, inversion time for r = 11779 drops by 100K cycles, from 540K to 440K, when VPCLMUL is 
used in addition to AVX512. The reason for the ∼ 20 percent performance improvement here is that the bottleneck in the 
polynomial multiplication function when implemented with basic AVX512 instruction set is the use of the (non-vectorized)
PCLMUL instruction for multiplying two 64-bit digits, while the remaining part of the function is able to use the 512-bit 
vector registers offered by AVX512. The use of VPCLMUL does improve the situation, but it is difficult to leverage its full 
power when implementing the multiplication with Karatsuba’s method (as explained in Section 4.3).

In Table 3 we show the relative speedups over the NTL inversion achieved by our various implementations. Depending 
on the specific implementation the measurements show an 8-fold to 16-fold speedup for Level-1 parameter sizes, while 
the improvements for Level-3 parameters are more modest, exhibiting 3-fold to 7-fold speedup over NTL. The proposed 
parameters in Round-2 of NIST project for CCA secure BIKE-2 are r = 11779 and r = 24821 for the first two security levels. 
Our most efficient implementation (AVX512 with VPCLMUL) is able to invert a polynomial 14.37 times faster than NTL 
when r = 11779, and 6.1 times faster when r = 24821. It is interesting to note that the relative speedups for Level-1 
parameter sizes are much higher than those for Level-3, meaning that NTL’s implementation of the inversion scales better 
with the polynomial size than our implementation. This may be attributed to the fact that NTL’s implementation is a GCD 
based inversion with linear complexity in r of the number of ring operations that are required, together with the fact that 
these ring operations are fairly efficient. On the other hand, our implementation requires �log(r − 2)	 + 1 + wt(r − 2) − 1
polynomial multiplications which themselves require an order of (r/64)log2 3 processor instructions, and therefore might 
scale worse than NTL’s implementation. However, we leave the investigation of this phenomenon for future research.

The speedups shown in the table highlight again the difference in the GCD based inversion algorithm of NTL and ITI 
based algorithm proposed in this chapter. Namely, the performance of the former one depends only on the size of the 
polynomials (determined by r), while the performance of the latter depends also on the value of wt(r − 2). This effect is 
embodied in the fact that the relative speedups of our implementations decrease as the corresponding weight of r increases.

Remark 5. We note that our implementations are two orders of magnitude faster than the inversion from the OpenSSL 
library. The exact numbers can be found in Tables E.6 and E.7 in the appendix.

Performance of BIKE key generation

In Table 4 we report the performance of BIKE key generation procedure that uses our implementation of inversion. The 
table contains only data for those implementations that during the inversion generate permutation maps, required for k-
15
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Table 4
BIKE-2 key generation performance, for four relevant r values, when our 
implementation of the inversion algorithm is used (without precomputed 
maps). Columns 2-4 represent the following implementations: (a) AVX2; 
(b) AVX512; (c) AVX512 and VPCLMUL. The runtime is measured in thou-
sands of cycles.

r (a) (b) (c)

11779 630 590 480
12323 644 587 473

24821 2222 2061 1607
24659 1913 1781 1408

squaring, on the fly, i.e., implementations without precomputed maps. For details about all our implementations for the full 
set of r values refer to Table E.8 in the appendix.

Table 4 present the numbers for r = 11779 and r = 24821 which are the parameters proposed for security Levels 1 and 
3, respectively, in BIKE submission to the second round of the NIST PQ project. Additionally, we show the runtime of the 
inversion when r = 12323 and r = 24659. With these two r values we can achieve an improvement in performance of the 
key generation while maintaining the DFR at the level required for the corresponding security level.

It is evident from the data in Tables 2 and 4 that the cost of key generation is dominated by the cost of inversion. For 
example, the AVX2 implementation for r = 11779 takes 570K cycles to invert the secret key polynomial, while the rest of 
the operations performed during the key generation take only 60K cycles, yielding in total 630K cycles to generate a key 
pair. This signifies the importance of having an efficient inversion in the implementation of BIKE-2 protocol.

6. Discussion

In this paper we proposed an algorithm for polynomial inversion in the context of code-based cryptographic schemes 
submitted to the NIST Post-Quantum Cryptography Standardization Project. The algorithm is based on the ITI algorithm [14], 
with some modifications that make it particularly efficient and applicable in the context of inverting elements of a poly-
nomial ring F2[x]/(xr − 1) used for example in BIKE KEM. We also explain how this algorithm can be implemented, and 
indeed implement the algorithm such that it offers a very competitive performance. Moreover, our experiments show that 
it can substitute the NTL and OpenSSL inversion, which is used in BIKE Round-2 NIST submission, and achieve significant 
performance improvements.

The effect of different choices of r on BIKE performance. In general, the parameter r determines the sizes of the public key, the 
ciphertext and thus the overall latency and bandwidth. So far, r was chosen as the minimum value that satisfies the security 
target [3] and the target Decoding Failure Rate (DFR) of the decoder [28,29]. We propose an additional consideration, namely 
wt(r − 2) because the inversion Algorithm 2 is more efficient when wt(r − 2) is smaller. The currently recommended r for 
Level-1 is r = 11779 for which wt(r − 2) = 5. Interestingly, a considerably larger r = 12323 has wt(r − 2) = 4, and therefore 
offers faster key generation than r = 11779. Note that [29] shows that ∼ r = 12323 is needed and sufficient in order to 
achieve a DFR of 2−128.

BIKE-2 versus BIKE-1. Until this work, BIKE-1 seemed to be a more appealing option than BIKE-2. This is the result of the 
prohibitive cost of BIKE-2 key generation that seemed to be an obstacle for adoption, especially when ephemeral keys 
are desired. This left out BIKE-2’s bandwidth advantage. BIKE Round-2 specification [3] addresses this difficulty by using a 
“batch inversion” approach that requires pre-computation of a batch of key pairs. Such solutions require that other protocols 
are adapted to using batched key pairs, and this introduces additional complications.

Our improved inversion and hence faster key generation avoids the difficulty. For Level-1 (r = 11779) BIKE-2 has key gen-
eration/encapsulation/decapsulation at 480K/180K/1.2M cycles, and requires 1.4KB of data to be sent in each direction. By 
comparison, BIKE-1 (after using our latest multiplication implementation) has key generation/encapsulation/decapsulation 
at 67K/230K/1.3M cycles, with 2.8KB of data communicated in each direction.

As a result of our work the BIKE team decided to make BIKE-2 as their only proposed design (technically a variant of 
BIKE-2, per our additional independent contribution [30]), which is now called simply BIKE [1]. After evaluating the Round-2 
proposals, NIST accepted BIKE as the only QC-MDPC KEM design and promoted BIKE to Round-3, as an alternative finalist.
16
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Appendix A. Generating permutation map with AVX2 instructions

In Listing 6 we show the AVX2 implementation of a function that generates the permutation map given the l parameter, 
as explained in Section 4.1.

Listing 6 Permutation map generation with AVX2 instructions (the actual names of the AVX2 instructions are replaced with 
upper-case macro names for clarity).

1 void gen_permutation_map (uint16_t map[R], uint16_t ell) {
2 __m512i curr, inc, rval, zero;
3 uint32_t mask;
4 // Initialization: compute the first 16 map elements
5 for (int i = 0; i < 16; i++)
6 map[i] = (i * ell) % R;
7
8 rval = BCAST_I16(R);
9 zero = BCAST_I16(0);

10 inc = BCAST_I16((ell * 16) % R);
11 inc = SUB_I16(inc, rval);
12
13 // Load the initial 16 values into the register
14 curr = LOAD(map);
15
16 // Generate the rest of the map elements
17 for (int i = 0; i < ceil(R / 16); i++) {
18 curr = ADD_I16(curr, inc);
19 mask = CMP_I16(zero, curr, CMP_GT);
20 curr = ADD_I16(curr, rval & mask);
21 STORE(&map[i * 16], curr);
22 }
23 }

Appendix B. Squaring using PCLMUL and VPCLMUL

As explained in Section 4.3, squaring of a binary polynomial a can be performed by squaring every digit of a. On 
platforms that offer the PCLMUL instruction, this instruction can be used to multiply two 64-bit digits, and therefore, 
can be used to square a digit. The PCLMUL instruction takes as an input two 128-bit values and an additional parameter 
denoting which 64-bit words of the input should be multiplied. For example, mask 0x00 instructs PCLMUL to multiply the 
two lower 64-bit words of the inputs, while the mask 0x01 requests multiplication of the lower word of the first input and 
the higher word of the second input. The code that implements polynomial squaring with PCLMUL is shown in Listing 7.

Listing 7 Squaring a polynomial in R with PCLMUL instruction.

1 void gf2x_sqr(uint64_t *c, const uint64_t *a) {
2 for (size_t i = 0; i < ceil(R / 128); i++) {
3 __m128i va = LOAD(&a[i*2]);
4 STORE(&c[i*4], PCLMUL(va, va, 0x00));
5 STORE(&c[i*4+2], PCLMUL(va, va, 0x11));
6 }
7 }
17
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When VPCLMUL instruction is available, the vectorized version of PCLMUL, we can execute four 64-bit multiplications 
in parallel. In Section 4.3, we explain how VPCLMUL works and moreover, how to apply it to compute a square of a binary 
polynomial. In Listing 8 we present the described implementation.

Listing 8 Squaring a polynomial in R with VPCLMUL instruction.

1 void gf2x_sqr(uint64_t *c, const uint64_t *a) {
2
3 __m512i perm_mask = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
4
5 for (size_t i = 0; i < ceil(R / 512); i++) {
6 __m512i va = LOAD(&a[i*8]);
7 va = PERMUTE(va, perm_mask);
8 STORE(&c[i*16], VPCLMUL(va, va, 0x00));
9 STORE(&c[i*16+8], VPCLMUL(va, va, 0x11));

10 }
11 }

Appendix C. A 4 × 4 digits multiplication using VPCLMUL

Listing 9 shows the implementation of the function that multiplies four by four 64-bit digits of a binary polynomial. The 
algorithm is explained in details in Section 4.3 and Fig. 4.

Listing 9 Multiplying four 64-bit digits of two binary polynomials using AVX512 and VPCLMUL instructions as explained in 
Section 4.3 and Fig. 4.

1 void mul4x4(__m512i *h, __m512i *l, __m512i a, __m512i b) {
2
3 __m512i sa = PERM64(a, _MM_SHUFFLE(2, 3, 0, 1));
4 __m512i sb = PERM64(b, _MM_SHUFFLE(2, 3, 0, 1));
5
6 sa = sa ^ a;
7 sb = sb ^ b;
8
9 __m512i u = VPCLMUL(a, b, 0x00);

10 __m512i v = VPCLMUL(a, b, 0x11);
11 __m512i w = VPCLMUL(sa, sb, 0x00);
12
13 w = w ^ u ^ v;
14 w = PERM64(w, _MM_SHUFFLE(2, 3, 0, 1));
15
16 *l = XOR_MASKED(u, w, 0xaa);
17 *h = XOR_MASKED(v, w, 0x55);
18 }

Appendix D. Example of k-square versus series of k squares

In Section 3 we explain that for values of k < kthr instead of performing k-squaring we perform k regular squares. The 
threshold kthr depends on the implementation and the platform. For example, in Table D.5 we compare the performance of 
squaring and k-squaring in R using AVX512 and VPCLMUL instructions, and compute the thresholds.
Table D.5
Squaring and k-squaring in R using our code (AVX512 and VPCLMUL). 
Columns 2 and 3 count cycles. The threshold is computed by kthr =
k-square/square. The r values correspond to the IND-CCA variants of BIKE 
for Level-1/3.

r k-square square kthr

11779 16000 230 69

24821 35000 510 68

18
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Appendix E. Performance results

Table E.6
Performance of our implementations of inversion in F2[x]/(xr − 1) for a set of r values with different wt(r − 2). The NTL and OSSL columns denote 
the runtime of the inversion from the corresponding libraries ([19,21]). The remaining columns represent our implementation: (a) with AVX2; (b) with
AVX512; (c) with AVX512 and VPCLMUL; (d) fully portable implementation, independent of any platform; (e) portable with PCLMUL instruction used for 
multiplication and squaring; columns labeled with “*” denote implementations with pre-computed permutation maps. The runtime is measured in millions 
of cycles.

r wt(r − 2) NTL OSSL (a) (a)* (b) (b)* (c) (c*) (d) (d)* (e) (e)*

12323 4 6.75 49.19 12.79 0.56 0.54 0.52 0.43 0.41 12.64 0.95 0.78 0.59

11779 5 5.86 42.61 11.81 0.54 0.54 0.51 0.44 0.41 11.42 1.15 0.79 0.57

12347 6 6.52 48.67 15.03 0.63 0.60 0.58 0.47 0.45 14.67 1.15 0.86 0.64

11789 7 6.10 43.83 12.95 0.59 0.58 0.55 0.45 0.44 12.74 1.05 0.84 0.62

11821 8 5.99 44.98 14.04 0.62 0.61 0.59 0.48 0.46 13.98 1.10 0.89 0.66

11933 9 6.22 43.31 14.50 0.65 0.64 0.63 0.52 0.49 14.28 1.18 0.94 0.69

12149 10 6.37 46.60 15.60 0.71 0.70 0.67 0.55 0.52 15.31 1.29 1.02 0.75

12157 11 6.30 47.00 16.57 0.74 0.72 0.70 0.58 0.55 16.23 1.33 1.06 0.78

25603 4 9.00 213.84 39.10 1.72 1.65 1.61 1.28 1.24 38.62 2.78 2.33 1.75

24659 5 8.67 188.42 41.75 1.71 1.66 1.61 1.30 1.24 40.94 3.10 2.35 1.77

24677 6 8.61 193.27 44.41 1.83 1.74 1.71 1.35 1.32 43.53 3.19 2.48 1.88

24733 7 8.77 204.55 46.47 1.89 1.79 1.77 1.40 1.35 45.65 3.30 2.56 1.93

24821 8 9.07 185.17 49.16 2.02 1.92 1.87 1.51 1.49 49.00 3.24 2.73 2.08

25453 9 8.86 197.20 51.42 2.20 2.09 2.06 1.61 1.54 50.86 3.93 2.97 2.26

24547 10 8.32 182.11 45.81 2.08 1.99 1.95 1.61 1.53 44.46 4.07 2.88 2.13

24533 11 8.79 175.41 47.10 2.14 2.08 2.00 1.67 1.60 46.14 4.11 3.00 2.21

24509 12 8.47 181.95 50.24 2.20 2.13 2.07 1.66 1.61 50.06 3.67 3.05 2.27

Table E.7
Speedup of our implementations of inversion in F2[x]/(xr − 1) compared to NTL with GF2X [19]. Columns 3-8 represent the speedup over NTL of the fol-
lowing implementation: (a) AVX2; (b) AVX512; (c) AVX512 and VPCLMUL; (d) PORTABLE; (e) PCLMUL; columns labeled with “*” denote implementations 
with pre-computed permutation maps. The speedup is measured for a set of r values with different wt(r − 2).

r wt(r − 2) (a) (a)* (b) (b)* (c) (c*) (d) (d)* (e) (e)*

12323 4 11.51 12.15 12.50 13.02 15.68 16.55 0.53 0.53 7.12 8.68

11779 5 10.26 10.80 10.85 11.45 13.32 14.37 0.50 0.51 5.11 7.46

12347 6 10.11 10.36 10.86 11.26 13.87 14.42 0.43 0.44 5.64 7.61

11789 7 9.85 10.37 10.44 11.03 13.44 13.96 0.47 0.48 5.79 7.26

11821 8 9.10 9.61 9.89 10.15 12.42 13.10 0.43 0.43 5.46 6.75

11933 9 8.97 9.55 9.67 9.93 12.03 12.70 0.43 0.44 5.29 6.59

12149 10 8.48 8.99 9.09 9.46 11.54 12.23 0.41 0.42 4.93 6.23

12157 11 8.10 8.48 8.72 9.04 10.91 11.46 0.38 0.39 4.75 5.94

25603 4 5.15 5.23 5.45 5.59 7.06 7.23 0.23 0.23 3.23 3.87

24659 5 4.89 5.06 5.22 5.40 6.66 6.98 0.21 0.21 2.80 3.69

24677 6 4.58 4.71 4.96 5.04 6.38 6.54 0.19 0.20 2.69 3.47

24733 7 4.54 4.65 4.91 4.97 6.25 6.48 0.19 0.19 2.66 3.43

24821 8 4.37 4.49 4.72 4.84 6.01 6.10 0.18 0.19 2.80 3.32

25453 9 3.92 4.03 4.23 4.31 5.51 5.74 0.17 0.17 2.25 2.98

24547 10 3.91 4.00 4.18 4.27 5.18 5.44 0.18 0.19 2.05 2.88

24533 11 3.97 4.11 4.23 4.39 5.28 5.49 0.19 0.19 2.14 2.93

24509 12 3.73 3.85 3.98 4.10 5.10 5.27 0.17 0.17 2.31 2.78
19
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Table E.8
BIKE-2 key generation performance when our implementation of the inversion algorithm is used. Columns represent the following implementations: (a)
AVX2; (b) AVX512; (c) AVX512 and VPCLMUL; (d) PORTABLE; (e) PCLMUL; columns labeled with “*” denote implementations with pre-computed permu-
tation maps. The runtime is measured in thousands of cycles.

r wt(r − 2) (a) (a)* (b) (b)* (c) (c*) (d) (d)* (e) (e)*

12323 4 642 644 581 587 470 473 13829 13574 1344 1121

11779 5 625 630 585 591 477 479 12651 12530 1454 1304

12347 6 709 708 642 650 512 516 15882 15773 1431 1332

11789 7 672 674 623 629 500 510 13959 13635 1516 1226

11821 8 709 715 656 658 520 529 15101 14786 1556 1272

11933 9 743 751 692 696 551 561 15552 15226 1659 1334

12149 10 806 806 743 748 594 593 16746 16291 1818 1451

12157 11 829 842 769 772 616 621 17659 17288 1865 1493

25603 4 1907 1906 1773 1762 1440 1391 42186 41515 3910 3241

24659 5 1944 1913 1777 1781 1406 1408 44485 44131 3881 3550

24677 6 2024 1994 1865 1892 1474 1454 47236 46788 3979 3659

24733 7 2126 2097 1918 1908 1509 1504 49141 48942 4107 3769

24821 8 2246 2222 2064 2061 1648 1607 52216 51642 4392 3697

25453 9 2420 2414 2241 2230 1732 1703 54726 53957 4786 4388

24547 10 2324 2299 2159 2172 1700 1706 48211 47725 5001 4493

24533 11 2367 2348 2213 2190 1763 1733 49638 49292 5037 4587

24509 12 2454 2432 2271 2239 1781 1765 53145 52372 5004 4115
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