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Abstract
In this survey article we revisit Hilbert’s 19th problem concerning the regularity of minimiz-
ers of variational integrals. We first discuss the classical theory (that is, the statement and
resolution of Hilbert’s problem in all dimensions). We then discuss recent results concerning
the regularity of minimizers of degenerate convex functionals. Finally, we discuss some open
problems. Exercises are included for the benefit of researchers who are entering the subject.
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1 Introduction and acknowledgements

In this survey articlewe revisit Hilbert’s 19th problemconcerning the regularity ofminimizers
of variational integrals. Sections 2, 3 and 4 are devoted to the classical theory (that is, the
statement and resolution of Hilbert’s problem in all dimensions). In Sects. 5 and 6 we discuss
recent results concerning the regularity of minimizers of degenerate convex functionals. In
the last section we discuss some open problems. Exercises are included for the benefit of
researchers who are entering the subject.
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The article is based on a lecture series given by the author for the workshop “Summer
Program in PDEs” hosted by UT Austin (and conducted online) in May 2021. The author is
very grateful to Philip Isett and Francesco Maggi for organizing the event. This work was
supported by NSF grant DMS-1854788.

2 Hilbert’s 19th problem

Certain partial differential equations admit only Cω (real analytic) solutions. An important
example is the Laplace equation

"u = div(∇u) = δi j ui j = 0 (1)

from complex analysis. Another is the minimal surface equation

√
1+ |∇u|2 div

(
∇u

√
1+ |∇u|2

)

=
(

δi j − uiu j

1+ |∇u|2
)
ui j = 0, (2)

whose solutions model soap films. The solutions to these equations are Cω even if their
boundary values are not. Take for example the angle function Im(log z) in the half-plane
{Re(z) > 0} ⊂ C ∼= R2. This function solves both equations, and is Cω in {Re(z) > 0}, but
is discontinuous on the boundary.

In the statement of Hilbert’s 19th problem, it is noted that equations with this remarkable
property tend to arise as Euler-Lagrange equations of variational integrals of the form

J (u) :=
∫

F(∇u) dx, (3)

where F is analytic, convex, and det D2F > 0. The Laplace equation corresponds to the
choice F(·) = | · |2, and the minimal surface equation to the choice F(·) =

√
1+ | · |2.

Hilbert’s 19th problem asks whether all such Euler-Lagrange equations

div(∇F(∇u)) = Fi j (∇u)ui j = 0 (4)

admit only analytic solutions, even if the solutions have non-analytic boundary data. Hence-
forth we will consider this problem for functions on the unit ball B1 ⊂ Rn .

Bernstein showed in 1904 that if n = 2 and u ∈ C3(B1) solves (4), then u ∈ Cω(B1).
The regularity required on u to conclude analyticity, as well as the dimension restriction,
were relaxed in the following years by Lewy, Hopf, Schauder, and others (see [23] Ch. 5.8
and the references therein). By the early 1930s, it was known that solutions to (4) that are in
C1,α(B1) for some α > 0 are analytic.

Remark 2.1 We say that a Lipschitz function u on B1 solves (4) in the sense of distributions
if

∫

B1
∇F(∇u) · ∇ψ dx = 0 (5)

for allψ ∈ C1
0(B1). This condition is equivalent to the statement that uminimizes the integral

J among Lipschitz functions with the same boundary data.

The idea of the aforementioned result is as follows. First, if∇u ∈ Cα , then the coefficients
of the Eq. (4) are Hölder continuous, hence u ∈ C2,α by the Schauder interior estimates (see
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e.g. [11] Ch. 6, or [12] Ch. 3). The coefficients of (4) are thusC1,α . We can continue applying
the Schauder estimates to conclude that u is smooth (more generally, that u ∈ Ck,α provided
F ∈ Ck+1, for any k ≥ 2). When F is analytic, the analyticity of u can be shown either by
carefully estimating successive derivatives of u to obtain ‖Dku‖L∞(B1/2) ≤ Ckk! (Bernstein’s
technique), or by extending to a complex domain (as Lewy, Hopf did), see also [23] Ch. 5.8.

Remark 2.2 When n = 1 solutions to (4) are linear (hence Cω) regardless of the regularity
of F . However, when n ≥ 2, smoothness of F does not guarantee analyticity of u (see
exercises).

Although these results represented significant progress onHilbert’s problem, the existence
of solutions to the Dirichlet problem

{
div(∇F(∇u)) = 0 in B1,

u|∂B1 = ϕ
(6)

in the class C1,α(B1) was not known. Provided for example that ϕ ∈ C2(∂B1), one can
prove the existence of a Lipschitz function that solves (6) in the sense of distributions by
minimizing the integral J . In the early 1930s the main problem was thus to fill the gap from
Lipschitz to C1,α regularity. Our first goal in these lectures will be to show how this gap was
filled.

More precisely, we will show that solutions of (4) satisfy estimates of the form

‖∇u‖Cα(B1/2) ≤ C
(
n, ‖∇u‖L∞(B1), F

)
(7)

for some α
(
n, ‖∇u‖L∞(B1), F

)
∈ (0, 1). To emphasize ideas, we will assume that u is

smooth, and establish (7) as an a priori estimate.

Remark 2.3 Such a priori estimates are sufficient for many purposes, for example proving the
existence of classical solutions to (6) with sufficiently regular boundary data, when combined
with appropriate tools from functional analysis.

The approach to the estimate (7) is to differentiate theEq. (4), giving an equation in divergence
form for the derivatives of u:

∂i (Fi j (∇u)(∂ku) j ) = 0, k = 1, . . . , n. (8)

Since we do not yet control the modulus of continuity of ∇u, the idea is to treat (8) as a
linear, uniformly elliptic equation of the form

∂i (ai j (x)∂ jv) = 0 (9)

for v = ∂ku, where the eigenvalues of ai j are in [λ, λ−1] for some λ > 0. Provided the
estimate

‖v‖Cα(B1/2) ≤ C(n, λ)‖v‖L∞(B1) (10)

is true for solutions to (9) for some α(n, λ) > 0, the key estimate (7) follows. The estimate
(10) was proven by Morrey in two dimensions in the late 1930s, and by De Giorgi [5] and
Nash [24] in higher dimensions in the late 1950s. This furnished a complete solution to
Hilbert’s problem.
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2.1 Exercises

1. Prove using the convexity of F that a Lipschitz function u on B1 solves (4) in the sense
of distributions if and only if it minimizes the integral J (subject to its own boundary
data).

2. Let ai j (·) be a smoothly varying, positive definite, symmetricmatrix field onRn . Assume
that u is smooth and solves

ai j (∇u)ui j = 0

in a domain ) ⊂ Rn . Show that for any e ∈ Sn−1, the directional derivative ue satisfies
the maximum principle (that is, attains its maximum and minimum on ∂)). In the case
that ) = B1, ϕ ∈ C2(∂B1), and u|∂B1 = ϕ, prove using linear functions as boundary
barriers that

‖∇u‖L∞(B1) ≤ C(n)‖ϕ‖C2(∂B1).

3. Let H be a C2, even, uniformly convex function of one variable. Let H∗ be its Legendre
transform, defined by

H∗(x) =
∫ x

0
(H ′)−1(s) ds.

Show that if F(p, q) = H(p) + H(q), then u(x, y) = H∗(x) − H∗(y) solves
Fi j (∇u)ui j = 0. Using this observation, build a smooth and uniformly convex function
F on the plane such that the equation (4) has non-analytic solutions.

3 Solution in two dimensions

In this section we prove Morrey’s estimate (10) for solutions to (9) in dimension n = 2. We
begin with a few observations that hold in any dimension. The first is that solutions to (9)
minimize the integral

E(v) :=
∫

B1
ai j (x)viv j dx . (11)

This follows immediately from integration by parts. Similarly, if v is a subsolution to (9),
that is,

∂i (ai j (x)v j ) ≥ 0,

then “downward perturbations” increase energy: E(v − ψ) ≥ E(v) for all non-negative
functions ψ ∈ C1

0(B1). It is a good exercise to show this.
There are two important consequences. The first is the so-called Caccioppoli inequality.

By choosing v− εvψ2 as a competitor for v, with ψ ∈ C1
0 (B1), and taking ε → 0, we arrive

at
∫

B1
ai jvi (vψ2) j dx = 0.

Expanding the derivative of vψ2, applying the bounds on the eigenvalues of ai j and using
Cauchy-Schwarz gives the Caccioppoli inequality

∫

B1
|∇v|2ψ2 dx ≤ 4λ−4

∫

B1
v2|∇ψ |2 dx . (12)
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This can be viewed as a “backwards Poincaré inequality" for solutions to (9). Inequality (12)
also holds for any nonnegative sub-solution to (9), because −vψ2 is in that case a downward
perturbation.

The second consequence is the maximum principle. If for some constant h the set {v > h}
has a connected component that is compactly contained in B1, then by replacing v with
min{v, h} on this component we get a competitor with lower energy E , a contradiction. Thus,
v has no interior local maxima. (The same holds for subsolutions, because the competitor is
smaller.) A similar argument shows that a solution to (9) has no local minima.

Remark 3.1 Anotherway to see that v satisfies themaximumprinciple is to pass the derivative
in the equation for v to obtain

ai j (x)vi j + (∂i ai j (x))v j = 0,

and apply the maximum principle for equations in non-divergence form.

Now we specialize to two dimensions. The Courant-Lebesgue lemma says that if w is a
function on B1 ⊂ R2 that satisfies the maximum principle, then

(osc∂Brw)2 ≤ π

log[1/(2r)]

∫

B1/2
|∇w|2 dx (13)

for r ∈ (0, 1/2). Here osc)w := sup) w − inf) w. To prove (13), note first that by the
fundamental theorem of calculus and Cauchy-Schwarz, we have

osc∂Bsw ≤
∫

half of ∂Bs
|∇w| ≤ (πs)1/2

(∫

∂Bs
|∇w|2

)1/2

.

The inequality follows by squaring, dividing by s, integrating from r to 1/2, and using that
osc∂Bsw is non-decreasing in s by the maximum principle.

Remark 3.2 The Courant-Lebesgue lemma implies that in two dimensions, solutions to (9)
have a logarithmic modulus of continuity. The philosophy is that the energy E is comparable
to the H1 norm of v, which in two dimensions nearly controls the modulus of continuity of
v by standard embeddings. The extra ingredient we use to get continuity is the maximum
principle.

To improve to Hölder regularity we use the scaling properties of the equation (9). We
show in particular that for some δ(λ) > 0 and all r ≤ 1 we have

oscBδr v ≤ 1
2
oscBr v. (14)

Iterating this inequality gives

oscB
δk
v ≤ 2−koscB1v := (δk)αoscB1v,

where α is defined by

δα = 1/2.

This in turn implies the desired interior Hölder estimate (10) for this value of α. We leave it
as an exercise.

To prove (14) we may assume after performing a dilation and multiplying by a constant,
neither of which change the type of Eq. (9), that r = 1 and that oscB1v = osc∂B1v = 1.
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After adding a constant, which doesn’t change the equation, we may assume that 0 ≤ v ≤ 1.
Using Courant-Lebesgue and Caccioppoli with a standard cutoff functionψ that is 1 in B1/2,
we have

(oscBδv)
2 ≤ π

log[1/(2δ)]

∫

B1/2
|∇v|2 dx ≤ C(λ)

log[1/(2δ)]

∫

B1
v2 dx ≤ C(λ)

log[1/(2δ)] .

We arrive at the desired estimate provided δ(λ) is chosen small.

Remark 3.3 The Courant-Lebesgue lemma also gives a Harnack inequality for positive solu-
tions of (9) in the plane, from which the strong maximum principle and a Hölder estimate
follow in a standard way. Writing v = ew and applying the equation for v, we get

∂i (ai jw j )+ ai jwiw j = 0.

Multiplying this by the square of a smooth standard cutoff function, integrating by parts, and
using Cauchy-Schwarz, we see that

∫

B1/2
|∇w|2 < C(λ).

Since w still satisfies the maximum principle (by the monotonicity of the exponential),
Courant-Lebesgue implies that

oscB1/4w ≤ C(λ),

which is equivalent to the Harnack inequality

sup
B1/4

v ≤ C(λ) inf
B1/4

v.

Remark 3.4 In dimension n = 2 one can avoid using Courant-Lebesgue (and in particular the
maximum principle) by using the Caccioppoli inequality more carefully. Indeed, if one takes
ψ ≡ 1 in B1/2 in the Caccioppoli inequality, and uses the invariance of (9) under adding
constants, one obtains

∫

B1/2
|∇v|2 dx ≤ C(λ)

∫

B1\B1/2
(v − c)2 dx .

The sides of this inequality scale differently. Taking c to be the average over the annulus of
v and applying the Poincaré inequality gives

∫

B1/2
|∇v|2 dx ≤ C(n, λ)

∫

B1\B1/2
|∇v|2 dx,

that is, the mass of |∇v|2 decays by a fixed fraction when passing from B1 to B1/2. The sides
of this estimate scale the same way. By rescaling and iterating this estimate we get that

∫

Br
|∇v|2 dx ≤ C(n, λ)r2α

∫

B1
v2 dx

for some α(n, λ) > 0 and all r ≤ 1/2. In two dimensions, the previous inequality gives aCα

estimate for v by Morrey space embeddings (see [11] Ch. 7 or [12] Ch. 3). An advantage of
this approach is that it applies in settings in which a maximum principle is unavailable, e.g.
in vector-valued problems. In contrast, in dimension n ≥ 3, the lack of a maximum principle
in vector-valued settings is fatal to regularity (see e.g. [22] and the references therein). For
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Fig. 1 Chopping at the gradient image with lines

scalar problems in dimension n ≥ 3, both the maximum principle and the fact that the sides
of the Caccioppoli inequality scale differently play a crucial role in the proof ofCα regularity
(see the next section).

Remark 3.5 In the context of the original problem, where we consider Lipschitz solutions to

Fi j (∇u)ui j = 0,

the above discussion says the following. Consider the lines {p · e = a} and {p · e = b},
with a < b, in R2. Then as r → 0+, the sets ∇u(Br ) must localize to one of the half-spaces
{p · e ≤ b} or {p · e ≥ a}, that is, we can “chop at the gradient image of u" with level
sets of linear functions (see Fig. 1). Indeed, if ∇u(Bδ) crosses the strip {p · e ∈ [a, b]}
for δ small, then by the maximum principle it does so on all circles ∂Br with r ≥ δ. The
Courant-Lebesgue lemma says that the L2 norm of D2u is huge in B1/2, but this violates the
Caccioppoli inequality. By varying the choice of direction e and repeating this argument, we
see that ∇u(Br ) localizes to a point as r → 0+, i.e. C1 regularity.

Remark 3.6 The approach we outlined to solving Hilbert’s problem involved differentiating
the Euler-Lagrange equation (4). In two dimensions it turns out that this is not necessary.
Assume that w solves a linear uniformly elliptic equation of the form

ai j (x)wi j = 0

in R2, where the eigenvalues of the coefficient matrix are in [λ, λ−1] for some λ > 0. Then
the eigenvalues of D2w have opposite sign and comparable absolute value, i.e.

|D2w|2 ≤ −C(λ) det D2w.

The map ∇w is thus a quasi-conformal map, a generalization of a holomorphic map that
infinitesimally takes disks to ellipses with bounded eccentricity. Such maps are well-studied,
and satisfy interior Cα estimates, implying interior C1,α regularity for solutions to such
equations in two dimensions (see [11] Ch. 12). In higher dimensions, this result is false.
In [26] Safonov constructed, for each α ∈ (0, 1), functions on R3 that are homogeneous
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of degree α and solve (in the viscosity sense) linear uniformly elliptic equations in non-
divergence form. It is not a coincidence that such examples were not constructed with α = 1,
and we will revisit this in a later section.

3.1 Exercises

1. Construct an example of a function v on B1 ⊂ R3 such that osc∂Br v is non-decreasing
in r and

∫
B1

|∇v|2 dx < ∞, but v is discontinuous at the origin. Hint: Choose any
zero-homogeneous function that is smooth and non-constant on S2.

2. Show that the functions u(x) = |x |αg(x/|x |), where g is a non-constant eigenfunction
of "Sn−1 and α > 0, solve linear uniformly elliptic equations in divergence form. (Hint:
take ai j = δi j + µ

xi x j
|x |2 for appropriate µ > −1.)

3. Assume that ai j (x)ui j = 0 in B1 ⊂ R2 with ai j uniformly elliptic. By differentiating
the equation once, and using the original equation, show that u1 satisfies the maximum
principle. (Hint: u22 can be written as a linear combination of derivatives of u1.)

Show next that ∂1u solves a linear uniformly elliptic equation in divergence form. Conclude
from the discussion in this section that u enjoys C1,α estimates independent of the regularity
of the coefficients ai j . (Hint: up to dividing by a22, the equation can be written a11u11 +
2a12u12 + u22 = 0.)

4 Solution in higher dimensions

In this section we outline De Giorgi’s proof of the estimate (10) in higher dimensions. His
approachwas inspired by the regularity theory forminimal surfaces, in particular the “density
estimate,” which says that each side of a minimal hypersurface fills a nontrivial fraction of
any (extrinsic) ball centered on the surface (there are no “spikes"). The analogous result in
the function case is the so-called L2 − L∞ estimate:

Theorem 4.1 Assume that ∂i (ai j (x)∂ jv) ≥ 0 in B2 ⊂ Rn. Then

sup
B1

v ≤ C(n, λ)‖v+‖L2(B2). (15)

That is, sub-solutions have no interior upward spikes. Here v+ := max{v, 0}.
We sketch the proof. It is a good exercise to show that for any increasing convex function

G of one variable, we have ∂i (ai j (x)∂ j (G(v))) ≥ 0. In particular, for any κ ∈ R, the function
vκ := (v−κ)+ satisfies the Caccioppoli inequality. Using Cauchy-Schwarz and Caccioppoli,
we have for any cutoff function ψ ∈ C∞

0 (B2) that
∫

|∇(v2κψ2)| ≤ C(λ)

(∫
v2κψ2

)1/2 (∫
v2κ |∇ψ |2

)1/2

.

Applying the Sobolev inequality to the left side we arrive at
(∫

(v2κψ2)
n

n−1

) n−1
n

≤ C(n, λ)

(∫
v2κψ2

)1/2 (∫
v2κ |∇ψ |2

)1/2

.

Combining Hölder’s inequality and the previous estimate we get
∫

v2κψ2 ≤ C(n, λ)

(∫
v2κ |∇ψ |2

)
|{v2κψ2 > 0}| 2n .
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Fig. 2 Strict interior separation from maximum

Let 0 ≤ τ < κ ≤ 1. Assume that ψ is a standard cutoff that is 1 in B2−κ and 0 outside of
B2−τ . Then the previous inequality implies that

∫

B2−κ

v2κ ≤ C
(κ − τ )2

(∫

B2−τ

v2τ

)
|{vτ ≥ κ − τ } ∩ B2−τ |2/n .

Denoting
∫

B2−s

v2s := V (s)

and applying the Chebyshev inequality to the last term on the right side of the previous
inequality, we obtain

V (κ) ≤ C
(κ − τ )2+4/n V

1+ 2
n (τ ). (16)

Inequality (16) implies that V (1) = 0 provided V (0) is sufficiently small (see exercises).
(The key point is the difference in powers of V appearing in (16). This arises from the
use of the Sobolev inequality, which competes, in a scaling-invariant way, with the non-
scaling-invariant Caccioppoli inequality.) In particular, v ≤ 1 in B1 provided ‖v+‖L2(B2) is
sufficiently small depending on n, λ. Using the invariance of the Eq. (9) under multiplication
by constants, Theorem 4.1 follows.

Theorem 4.1 can be used to prove the following useful oscillation decay result:

Proposition 4.2 Assume that ∂i (ai j (x)∂ jv) ≥ 0 in B1 ⊂ Rn. For δ > 0, there exists
ε(n, λ, δ) > 0 such that if |{v+ = 0} ∩ B1| ≥ δ|B1|, then

sup
B1/2

v ≤ (1 − ε) sup
B1

v+.

Proposition 4.2 says that sub-solutions that are not close to their maximum nearly everywhere
must separate from their maximum when we step away from the boundary (see Fig. 2). This
is a quantitative version of the maximum principle, which says that sub-solutions don’t have
interior maxima.

We will prove a slightly weaker version of Proposition 4.2 to minimize technicalities and
emphasize ideas. Namely, we will assume that v is a sub-solution in B2 and that |{v+ =
0} ∩ B1| ≥ δ|B1|, and we will show that supB1/2 v ≤ (1 − ε) supB2 v

+. To that end assume
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that supB2 v+ = 1 and let

W (s) := |{v ≤ s} ∩ B1|
|B1|

.

ThenW ∈ [0, 1] is nondecreasing, and we will show that it increases to 1 quantitatively. Let
0 ≤ s < t ≤ 1, and let

w = (v − s)+
1 − s

so that 0 ≤ w ≤ 1. Let w̄ = min{w, (t − s)/(1− s)}. By Cauchy-Schwarz and Caccioppoli
we have

∫

B1
|∇w̄| ≤

(∫

B1
|∇w|2

)1/2

|B1|1/2(W (t) − W (s))1/2 ≤ C(n, λ)(W (t) − W (s))1/2.

On the other hand, we have by the Poincaré inequality that
∫

B1
|∇w̄| ≥ c(n)

∫

B1
|w̄ − avg.B1w̄| ≥ c(n)W (s)(1 − W (t))

t − s
1 − s

.

Putting the previous two inequalities together we have

W (s)
(
1+ c(n, λ)

(t − s)2

(1 − s)2
W (s)(1 − W (t))2

)
≤ W (t).

Geometrically, this inequality says that H1 functions “pay in measure” to pass from one
height to another.

Now assume that W (0) ≥ δ > 0 and let c denote a small constant depending only on
n, λ, δ which may change from line to line. Let bk = W (1− 2−k). The previous inequality
gives

bk(1+ c(1 − bk+1)
2) ≤ bk+1.

Letting ak = 1 − bk this becomes

ak+1 + ca2k+1 ≤ ak .

Since ak ≤ 1 this implies that

ak+1 ≤ ak − ca2k .

It follows that ak ≤ 1
1+ck (see exercises). In particular, there is some ε(n, λ, δ) > 0 such

that the sub-solution v̄ = [v−(1−2ε)]+
2ε has L2 norm small enough in B1 that Theorem 4.1

gives |v̄| ≤ 1/2 in B1/2, i.e. v ≤ 1 − ε in B1/2.

4.1 Exercises

1. Prove that if ak+1 ≤ Cka1+γ
k for some C, γ > 0, then provided a0 is sufficiently small

depending on C and γ , we have ak → 0. Show using (16) that ak := V (1 − 2−k)

satisfies such a relation.
2. Prove that if 0 ≤ ak+1 ≤ ak−ca2k for some c > 0 small, and a0 ∈ [0, 1], then ak ≤ 1

1+ck
for all k ≥ 0.
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3. Prove the estimate (10) for solutions to (9) in all dimensions using Proposition 4.2. (Hint:
It suffices to prove the oscillation decay estimate

oscB1/2v ≤ (1 − ε(n, λ))oscB1v.

Onemay assume after adding a constant andmultiplying by a constant that infB1 v = −1
and supB1 v = 1. One of |{v ≤ 0}| or |{v ≥ 0}| is at least |B1|/2. Use Proposition 4.2 to
conclude.)

5 Degenerate convex functionals in two dimensions

In this section we begin to discuss the regularity of Lipschitz minimizers of (3) in the case
that F is not smooth and uniformly convex. One important example is the p-Laplace energy
density

F(·) = | · |p,
with p > 1 and p /= 2. Another important example, which arises in models of traffic
congestion (see e.g. [4]), is

F(·) = (| · | − 1)2+.

The latter integrand vanishes in B1, so any 1-Lipschitz function is a minimizer of the corre-
sponding functional. Such “degenerate convex” Lagrangians also arise in models of crystal
surfaces (see for example [9,15]).

The existence of Lipschitz minimizers of (3) with sufficiently regular boundary data is
not hard to show. A natural question is which conditions on F guarantee that Lipschitz
minimizers [(equivalently, Lipschitz solutions to (4)] are C1. Obtaining such a result would
be useful for understanding finer properties of solutions. For example, if u ∈ C1 and ∇u(x0)
lies in a region where F is smooth and uniformly convex, then the classical theory would
imply that u is smooth nearby x0.

Remark 5.1 The local Lipschitz regularity of minimizers of (3) for Lagrangians that satisfy
various growth conditions at infinity is a delicate and active research topic, with important
contributions by many authors- see the survey [19] and the references therein.

If the graph of F contains line segments, it is straightforward to construct Lipschitz
minimizers that are not C1. Indeed, after subtracting a linear function from F (which does
not change the equation) we may assume that the minimum set of F contains a line segment
from ae to be for some a < b and e ∈ Sn−1. Then any function u(x) = g(x · e) with
g′ ∈ [a, b] is a minimizer.

Another observation is that the Legendre transform F∗ of F solves

div(∇F(∇F∗)) = Fi j (∇F∗)F∗
i j = n,

which resembles the Euler-Lagrange equation (4) but with nonzero constant right-hand side.
The function F∗ is C1 if and only if F is strictly convex.

These observations motivate the question of whether minimizers have the same regularity
as F∗, and in particular, whether minimizers are C1 when F is strictly convex. The answer
turns out to be “no” in general (shown recently in [21]), but “yes” in special cases.

Here and below we assume that F is convex on Rn , and that off of some compact degen-
eracy set K the function F is smooth with det D2F > 0. In this section we will discuss the
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result of De Silva-Savin [8] that Lipschitz minimizers of (3) are C1 when n = 2 and K is
finite.

Remark 5.2 TheC1 regularity of Lipschitz minimizers in any dimension in the case K = ∅ is
the De Giorgi-Nash theorem. Lipschitz minimizers are also C1 in any dimension when K is
a single point; this case can be treated using ideas from the theory of the p-Laplace equation,
which was studied by many authors including Ural’tseva [30], Uhlenbeck [29], Evans [10],
Lewis [16], Tolksdorff [28], and others. We will discuss a more general result in the next
section.

Our discussion in this section and the next section will be qualitative rather than quanti-
tative, and we will also freely differentiate the equation, in order to emphasize ideas.

We first examine what can be done with the tools developed for the nondegenerate case
K = ∅.We used that linear functions of∇u solve elliptic equations.An important observation
is that arbitrary convex functions of ∇u are sub-solutions of elliptic equations, and thus take
their maxima on the boundary of their domains of definition. Indeed, we compute

∂i (Fi j (∇u)∂ j (η(∇u))) = Fi j u jkηkluli =
n∑

k=1

λk D2F |∇u(∇uk, ∇uk) (17)

in coordinateswhere ηkl = λkδkl . If η is convex thenλk ≥ 0, so this expression is nonnegative
by the convexity of F . Furthermore, if η ≥ 0 and η vanishes on a region containing K , then
η(∇u) is a sub-solution to a uniformly elliptic equation, because the coefficients Fi j (∇u)
play no role in the equation for η(∇u) on the set {η(∇u) = 0}. In particular, η(∇u) satisfies
the Caccioppoli inequality.

Take for example the function η(p) = (p · e − a)+, with a and p chosen such that

K ⊂ {p · e < a}.

The maximum principle applied to linear functions of ∇u says that if η(∇u) = 0 at some
point on ∂Bδ , then the same holds on all larger spheres. Similarly, if h > 0 and η(∇u) ≥ h
at some point on ∂Bδ (that is, ∇u(Bδ) intersects {p · e ≥ a+h}), the same holds on all larger
spheres. We now restrict our attention to the case n = 2. For δ small, the Courant-Lebesgue
lemma says that the H1 norm of η(∇u) is very large. However, the Caccioppoli inequality
for η(∇u) implies that this norm is bounded depending on ‖∇u‖L∞(B1) and the properties of
F away from K . For δ sufficiently small these inequalities are incompatible, hence ∇u(Bδ)

is contained in one of the half-spaces {p · e > a} or {p · e < a + h}. In the former case, the
equation for u is uniformly elliptic in Bδ and the classical theory can be applied. In the latter
case, we can repeat the argument for the function δ−1u(δ·), which also solves (4). Iterating
this procedure, we see that as r → 0, the set ∇u(Br ) localizes either to a point outside the
convex hull of K , or to the convex hull of K , in dimension n = 2. (The same is true in higher
dimensions, but the proof is more involved; see the next section).

The issue is thus to decide whether ∇u(Br ) localizes beyond the convex hull of K as
r → 0. Work of De Silva-Savin [8] gives a way of localizing ∇u to a connected component
of K in dimension n = 2. The key is that certain non-convex functions of∇u are sub-solutions
to uniformly elliptic equations. Indeed, consider the calculation (17) above. Assume we have
chosen a point x such that ∇u(x) /∈ K , so D2F(∇u(x)) has eigenvalues bounded between
positive constants that we control. Below c, C will denote small and large positive numbers
depending on these constants. Up to permuting coordinates may assume that λ1 ≤ λ2 ≤
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Fig. 3 Chopping with circles

· · · ≤ λn . If λ2 > 0 and λ1 > −ελ2, then we have

n∑

k=1

λk D2F |∇u(∇uk, ∇uk) ≥ cλ2




∑

(i, j)/=(1, 1)

u2i j − Cε
∑

i≥2

u21i − Cεu211



 .

For ε small the second term on the right side can be absorbed by the first. Using the equation
F11(∇u)u11 = −∑

(i, j)/=(1, 1) Fi j (∇u)ui j and taking ε small we see that the last term can
also be absorbed by the first, hence the expression is nonnegative. Thus, functions of ∇u
with all positive Hessian eigenvalues except for one slightly negative one are sub-solutions
at points where ∇u lies in the non-degenerate region. We can thus hope to localize ∇u(Br )
using nonnegative functions of ∇u that vanish on K , and have level sets that bend “away
from K " in exactly one direction and “towards K " in the remaining directions.

To see this in action in two dimensions, assume for example that ∂B1/2 touches ∇u(B1)

from the exterior, and that K lies outside B1. Thus, at points where ∇u lies in B1, Eq. (4) is
nondegenerate. Let M > 0 and let

η(p) = [|p|−M − 1]+.
The positive (radial) Hessian eigenvalue of η in B1 is M(M+1)|p|−M−2, while the negative
Hessian eigenvalue (tangential to circles) is −M |p|−M−2. Thus, for M sufficiently large,
η(∇u) is a nonnegative sub-solution to a uniformly elliptic equation. If η(∇u) = 0 some-
where on ∂Bδ , this remains the case on larger circles by the maximum principle applied to the
convex function | · | of∇u. If in addition η(∇u) > η(3e1/4) somewhere on ∂Bδ , this remains
the case on larger circles by the fact that η(∇u) is a sub-solution to an elliptic equation.
Provided δ is small, Courant-Lebesgue implies that the H1 norm of η(∇u) is large, but as
above this violates the Caccioppoli inequality. We conclude that ∇u(Bδ) is either contained
in B1, in which case the equation is non-degenerate in Bδ , or ∇u(Bδ) is outside of B3/4, i.e.
we have chopped at the gradient image with a circle (Fig. 3). By chopping with circles of
various sizes and locations, we see that ∇u(Br ) localizes as r → 0+ either to a connected
component of K , or to a point outside of K . In particular, if K is finite and n = 2, then
u ∈ C1.

5.1 Exercises

1. Assume that "u = 0. Let η be a function on Rn such that D2η has eigenvalues λ1 ≤
· · · ≤ λn . Prove that if λ2 > 0 and λ1 ≥ − 1

n−1λ2, then η(∇u) is subharmonic.
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6 Degenerate convex functionals in higher dimensions

In this section we consider degenerate convex functionals in dimension n ≥ 3. Assume as
in the previous section that u is a Lipschitz minimizer of (3), where F is convex, and away
from a compact degeneracy set K the function F is smooth and satisfies det D2F > 0.

We first discuss the fact that in any dimension, the sets ∇u(Br ) localize as r → 0+

to either a point outside the convex hull of K , or to the convex hull of K (see [4,21]). In
dimension n ≥ 3, proving this is more subtle than in two dimensions, where the Courant-
Lebesgue lemma could be used. The starting point is the same: assume that K is contained
in a half-space {p · e < a}, and consider the sub-solution η(∇u) = (ue −a)+. If the measure
of the set of points x such that η(∇u(x)) = 0 is bounded away from zero, then we can apply
Proposition 4.2 to conclude that ∇u(B1/2) is contained in a region that is quantitatively
smaller than ∇u(B1), namely

∇u(B1/2) ⊂ {p · e ≤ a + (1 − ε)(sup
B1

η(∇u))}.

The alternative is that∇u lies in the half-space {p ·e ≥ a} (away from K ) in the vast majority
of B1, which morally means that the equation is already uniformly elliptic. However, this
needs to be made precise.

To that end we invoke a result of Savin [27], which says that if Eq. (4) holds in B1 and
u is sufficiently close in L∞(B1) to a linear function L such that ∇L is outside of K , then
u is smooth in B1/2 and ∇u is very close in L∞(B1/2) to ∇L . Now, the argument goes as
follows: if ∇u(B1) contains points outside the convex hull of K , we can choose a direction
e and a value a such that {p · e ≥ a}∩ ∇u(B1) has tiny diameter and lies away from K . The
above dichotomy argument says that either ∇u(B1/2) is contained in ∇u(B1) with a piece
removed, or ∇u is extremely close (on average) to a point that lies outside of K . In the latter
case we can say that u is very close in L∞ to a linear function whose gradient lies in the
non-degeneracy region for F , hence Savin’s result applies and we are done. If the former
case happens, we repeat the argument for the rescaling 2u(·/2), which solves (4). Iterating
the argument, we have that either ∇u(Br ) tends to a point outside the convex hull of K as
r → 0, or if the first case in the dichotomy continues happening we have that ∇u(Br ) gets
as close as we like to the convex hull of K .

Thus, the issue in any dimension is to localize the gradient of u beyond the convex hull
of K . In the previous section we outlined a strategy based on building non-convex functions
η of ∇u that are sub-solutions to the linearized equation. More precisely, we seek functions
η that are nonnegative and vanish on K , which have n − 1 positive Hessian eigenvalues, and
possibly one small negative Hessian eigenvalue. The level sets of such functions can only
bend “away from K ” in one direction, so one cannot for example chop from the outside using
spheres in R3 (in contrast with the two-dimensional case, where chopping from the outside
of K with circles could be done). On the other hand, if K has two-dimensional convex hull,
the previous discussion reduces the problem to considering solutions whose gradients are
very close to a two-dimensional subspace of Rn . One can then chop with hypersurfaces that
bend away from K in only one direction to localize to connected components of K , as in
the two-dimensional case (see Fig. 4). Heuristically, localization to the convex hull of K
reduces the problem to the two-dimensional case. In particular, if K is finite and contained
in a 2-plane, e.g. consists of three or fewer points, then u ∈ C1 regardless of dimension. This
was proven in [21].

It is natural to ask for C1 regularity results with less restrictive hypotheses. In view
of the result in dimension n = 2, a natural guess is that K having codimension two, or
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Fig. 4 The case that K consists of three points

at least K being finite, would suffice. However, such results are false without imposing
additional structure on F . Namely, there are interesting counterexamples and conjectured
counterexamples:

i.) F being strictly convex doesn’t imply u ∈ C1, at least in dimension n ≥ 4,
ii.) K having codimension two doesn’t imply u ∈ C1, at least in dimension n ≥ 4,
iii.) It seems likely that K being finite doesn’t imply that u ∈ C1, in dimensions n ≥ 3.

In [21] a Lipschitz but non-C1 minimizer to a functional of the form
∫
F(∇u) is constructed

in dimension n = 4, where F is uniformly convex and K = S1×S1, which proves assertions
(i) and (ii). We’ll get to the third point below.

To build a counterexample, the idea is to start with a one-homogeneous function u that
is saddle-shaped: D2u is indefinite. Such a function is invariant under the rescalings that
preserve Eq. (4), and having indefinite Hessian means that u solves some elliptic equation.
An extremely useful way to build such a function is through a correspondence between
one-homogeneous functions and certain singular hypersurfaces in Rn . A one-homogeneous
function u gives rise to a hypersurface ∇u(Sn−1) = ∇u(Rn\{0}), known as the “hedgehog"
of u. The unit normal ν to the hedgehog of u and the gradient of u are related by

ν(∇u(x)) = x (18)

for x ∈ Sn−1, at least where ∇u(Sn−1) is smooth (see the exercises). Conversely, any hyper-
surface with injective Gauss map (understood in a certain generalized sense) is the hedgehog
of its support function. See e.g. [18] for a deeper discussion of hedgehog theory.

Differentiating the relation (18) gives

I I (∇u(x)) = (D2u)−1(x),

where I I denotes the second fundamental form of the hedgehog. Thus, choosing a candidate
for a singular minimizer is equivalent to finding a hypersurface with injective Gauss map that
is saddle-shaped (a “hyperbolic hedgehog”), and taking its support function.

Once u is chosen, the game is to build the Lagrangian F , which by (4) must solve

Fi j (∇u)ui j = I I i j (∇u)Fi j (∇u) = 0.

This can be viewed as a linear equation of hyperbolic type for F on the hedgehog. The
challenge is to build a function F that is globally convex, solves the above PDE on the
hedgehog, and has a small degeneracy set K , most likely where the hedgehog is singular.

The example from [21] in four dimensions is

u(z1, z2) =
1√
2

|z1|2 − |z2|2√
|z1|2 + |z2|2

, (19)
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Fig. 5 The hyperbolic hedgehog
of Martinez-Maure

with zi ∈ C. The gradient image of u consists of two smooth saddle-shaped components, one
in {|z1| > |z2|} and the other its reflection over {|z1| = |z2|}, that meet on the Clifford torus
S1 × S1 where ∇u(S3) is singular. The hedgehog of u has enough symmetry that one can
build the integrand F using ODE and extension techniques. It turns out that D2F ≥ cI for
some c > 0, and that F is smooth away from the Clifford torus K := S1 × S1, with exactly
one eigenvalue of D2F tending to infinity on K .

How does this approach fare in three dimensions? A first obstruction is that there are no
one-homogeneous solutions to uniformly elliptic equations of the form ai j (x)ui j = 0 in
three dimensions (see the paper [13] of Han-Nadirashvili-Yuan and the exercises below). In
contrast, the example (19) above does solve a linear uniformly elliptic equation in nondiver-
gence form. The obstruction in three dimensions is, roughly speaking, that one-homogeneous
functions of three variables are really two-dimensional (they have only two nonzero Hessian
eigenvalues). In particular, if such a function solves an elliptic PDE, then its gradient satisfies
the maximum principle (see the exercises in Sect. 3). Since the gradient is zero-homogeneous
it is a function on the sphere (a compactmanifold) and it is thus constant. The exercises outline
a rigorous proof of this result, following [13].

A second obstruction is that there are no nontrivial one-homogeneous solutions to degen-
erate linear elliptic equations inR3, which are analytic away from the origin. By this wemean
there are no nonlinear one-homogeneous functions on R3, analytic on S2, such that the two
eigenvalues λ1, λ2 of the Hessian pointwise satisfy either λ1λ2 < 0 or λ1 = λ2 = 0. Alexan-
drov proved this in [1], and conjectured that the same should hold if “analytic” is relaxed to
“smooth”. This problem remained open for a while, with several incorrect proof attempts,
until Martinez-Maure constructed a surprising counterexample in 2001 [17]. The hyperbolic
hedgehog of Martinez-Maure is smooth away from four cusps that are non-coplanar (Fig.
5). We conjecture that the support function of this example minimizes a degenerate convex
functional in three dimensions, where K consists of the tips of the four cusps. Such a result
would address the third point above (that K being finite does not suffice for C1 regularity of
minimizers in dimensions n ≥ 3), and illustrate the sharpness of the known regularity results
(C1 regularity when K has three or fewer points).
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6.1 Exercises

In this challenging exercise, assume that u is one-homogeneous on R3, smooth away from
the origin, and solves a uniformly elliptic equation of the form

tr(a(x)D2u) = ai j (x)ui j = 0

away from the origin.

1. Show that w(x1, x2) := u(x1, x2, 1) solves bi j (x1, x2)wi j = 0, where

bi j = (sT as)i j , i, j ≤ 2; s := I − (0, 0, 1) ⊗ (x1, x2, 0).

In particular, if the eigenvalues of a are in [λ, λ−1], then the eigenvalues of b are in
[λ, (1+ x21 + x22 )λ

−1], so the equation forw is locally uniformly elliptic. Conclude that
if ∂iw achieves its maximum somewhere in R2, then w is linear.

2. Assume that q ∈ ∇u(S2) satisfies that q3 = maxS2 ∂3u. Show that if u is not linear,
then (∇u)−1(q) is either the north pole or the south pole. Hint: use the previous result,
appropriately rotated. Note that ∇u is constant on radial lines.

3. Let N denote the north pole, and assume that ∇u(N ) = 0 and D2u(N ) /= 0. Show
for ε small that ∇u(Bε(N )) is a smooth graph of the form {x3 = H(x1, x2)} with
H(0) = 0, ∇H(0) = 0 and det D2H(0) < 0. Hint: for w as in Problem 1, show using
the one-homogeneity of u that H(∇w(x)) = w − x · ∇w, thus ∇H(∇w(x)) = −x .
Here x = (x1, x2).

4. Assume that u is not linear. Then after a rotation and subtracting a linear function you
may assume that∇u(N ) = 0 and D2u(N ) /= 0. Using the previous two parts, show that
∇u maps south pole to at least two points. Conclude from this contradiction that u must
be linear.

5. Show that the function

v(x1, x2, x3, x4) =
x21 + x22 − x23 − x24

|x |

solves a linear uniformly elliptic equation of the form ai j (x)vi j = 0 in R4.

7 Open problems

1. Verify that Martinez-Maure’s example from [17] gives rise to a Lipschitz but non-C1

minimizer in dimension n = 3 where K consists of four points. Systematic ways of
building hyperbolic hedgehogs in three dimensions have since been developed using
ideas from combinatorial geometry (see [25]), and it would be interesting if these could
give rise to a systematic way of building counterexamples to regularity.

2. Construct parabolic versions of the above examples. In a similar vein, determine whether
the singularities in the examples disappear when their boundary data or the integrand F
is perturbed.

3. Study functionals with special structure and symmetry. For example, F(x) = |x |p with
1 < p < ∞: is there a sharp estimate on the modulus of continuity of the gradient
for Lipschitz minimizers? This problem is well-understood in two dimensions (see e.g.
[14]), but widely open in higher dimensions. Another example is F(x) = ∑n

i=1 |xi |pi ,
with pi ∈ (1, ∞). Here K consists of coordinate hyperplanes when pi /= 2. The C1
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regularity of Lipschitz minimizers is true in two dimensions (see [2,3]), but seems to be
open in higher dimensions.

4. Similar themes arise in parametric geometric variational problems. For example, con-
sider functionals of the form J (1) =

∫
1 2(ν), where 1 ⊂ Rn+1 is an oriented

hypersurface with unit normal ν, and 2 is one-homogeneous and convex. Regularity
questions for critical points of such functionals (along with their higher-codimension
analogues) have attracted recent attention (see e.g. [6,7,20]), and it would be interesting
to investigate applications of the ideas in the non-parametric setting to such questions.
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