Who Goes First?
Detecting Go Concurrency Bugs via Message Reordering

Ziheng Liu
Pennsylvania State University
USA

Linhai Song
Pennsylvania State University
USA

ABSTRACT

Go is a young programming language invented to build safe and
efficient concurrent programs. It provides goroutines as lightweight
threads and channels for inter-goroutine communication. Program-
mers are encouraged to explicitly pass messages through channels
to connect goroutines, with the purpose of reducing the chance of
making programming mistakes and introducing concurrency bugs.
Go is one of the most beloved programming languages and has
already been used to build many critical infrastructure software
systems in the data-center environment. However, a recent study
shows that channel-related concurrency bugs are still common in
Go programs, severely hurting the reliability of the programs.

This paper presents GFuzz, a dynamic detector that can effec-
tively pinpoint channel-related concurrency bugs by mutating the
processing orders of concurrent messages. We build GFuzz in three
steps. We first adopt an effective approach to identify concurrent
messages and transform a program to process those messages in
any given order. We then take a fuzzing approach to generate new
processing orders by mutating exercised ones and rely on execu-
tion feedback to prioritize orders close to triggering bugs. Finally,
we design a runtime sanitizer to capture triggered bugs that are
missed by the Go runtime. We evaluate GFuzz on seven popular Go
software systems, including Docker, Kubernetes, and gRPC. GFuzz
finds 184 previously unknown bugs and reports a negligible num-
ber of false positives. Programmers have already confirmed 124
reports as real bugs and fixed 67 of them based on our reporting.
A careful inspection of the detected concurrency bugs from gRPC
shows the effectiveness of each component of GFuzz and confirms
the components’ rationality.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; Software reliability.

*Shihao Xia contributed equally with Ziheng Liu in this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS °22, February 28 — March 4, 2022, Lausanne, Switzerland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9205-1/22/02...$15.00
https://doi.org/10.1145/3503222.3507753

Shihao Xia*
Pennsylvania State University
USA

888

Yu Liang
Pennsylvania State University
USA

Hong Hu
Pennsylvania State University
USA

KEYWORDS

Go; Concurrency Bugs; Bug Detection; Dynamic Analysis; Fuzzing

ACM Reference Format:

Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu. 2022. Who
Goes First? Detecting Go Concurrency Bugs via Message Reordering. In
Proceedings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS °22), February 28
— March 4, 2022, Lausanne, Switzerland. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3503222.3507753

1 INTRODUCTION

Go is an industrial programming language invented by Google,
meant for building safe and efficient concurrent programs [73]. In
recent years, Go’s popularity has increased dramatically, making
it one of the most beloved and one of the most wanted program-
ming languages [54]. Programmers have already adopted Go to
build important infrastructure software, such as Docker [11], Ku-
bernetes [36], and gRPC [20].

To facilitate multi-threaded programming, Go offers several built-
in features, like goroutines and channels. A goroutine is a light-
weight thread that can be created and reused efficiently in the user
space, while a channel is a message-passing primitive for com-
munication between different goroutines. Go programmers are
encouraged to use channels instead of shared memory to connect
concurrent goroutines, as explicit message passing is commonly
believed to be more resistant to concurrency bugs [15, 22, 65].

Unfortunately, concurrent Go programs are still difficult for pro-
grammers to think through and program correctly. Concurrency
bugs, which are notoriously difficult to debug [8, 34], are still com-
mon in Go programs [58, 68]. A recent empirical study counter-
intuitively reveals that incorrect message passing contributes to
a significant proportion of Go concurrency bugs, and misuse of
channels can be more likely to cause such bugs under certain cir-
cumstances than misuse of traditional primitives (e.g., mutexes)
that protect shared-memory accesses [68].

Existing bug-detection techniques cannot effectively discover Go
concurrency bugs, especially those due to wrong message passing.
The main reason is that most existing methods are built for tradi-
tional programming languages (e.g., C/C++, Java), and they only
monitor shared-memory primitives and shared-memory accesses
[3, 4, 12, 29-32, 35, 40, 40, 42, 50-52, 55, 56, 60]. They can neither
handle message-passing primitives (e.g., channels) nor detect any
message-passing-related bugs. Existing model-checking techniques
can systematically examine all possible message orders to pinpoint

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507753
https://doi.org/10.1145/3503222.3507753

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

1 // go parent()
2 func parent() { // parent goroutine
3 ... // initialize object daemon

4 ch, errCh := daemon.discoveryWatcher.Watch()
5 select {

6 case <- Fire(1 * time.Second):

7 Log("Timeout!")

8 case e := <-ch:

9 if lreflect.DeepEqual(e, expected) {
10 Log("Unexpected!")

11 3

12 case e := <-errCh:

13 Log("Error!")

14 3

15 return

16 3}

func (s *Discovery) Watch() (chan discovery.Entries, chan error) {
ch := make(chan discovery.Entries)
errCh := make(chan error)
ch := make(chan discovery.Entries, 1)
errCh := make(chan error, 1)
go func() { // child goroutine
entries, err := s.fetch()
if err != nil {
errCh <- err
} else {
ch <- entries
28 ...
30

return ch, errCh

18 -

Figure 1: A Blocking Bug in Docker and Its Patch. The code
has been simplified for illustration purposes.

bugs in distributed systems [39, 48, 74]. However, since only very
few message orders can lead to concurrency bugs, exhaustively in-
specting all message orders is not efficient to detect channel-related
bugs in Go programs. We can also find several bug detectors built
for Go. However, the static detectors either cover a limited num-
ber of buggy code patterns [16, 28], fail to scale to large, real Go
programs [14, 37, 38, 53, 59], or report significant numbers of false
positives and false negatives due to imprecise alias analysis [45].
The dynamic detectors for Go merely report concurrency bugs
triggered in a given execution [7, 18, 21, 69]. Without the capabil-
ity to alter programs’ execution states and increase the chance of
exposing bugs, these dynamic detectors miss many concurrency
bugs [68].

Figure 1 shows a channel-related! concurrency bug from Docker.
The parent goroutine calls an object method through an indirect
call at line 4. The callee is actually function Watch() at lines 17-31.
Watch() creates two unbuffered channels ch and errcCh at lines
18 and 19 firstly, then starts a child goroutine at line 22, and fi-
nally returns the two channels at line 30. The child goroutine calls
s.fetch() atline 23. It checks the return value and sends a mes-
sage either to channel errCh at line 25 or to channel ch at line 27.
Meanwhile, the parent goroutine blocks at the select statement at
lines 5-14 until it either receives a message from Fire() after one
second or from one of the two returned channels. If the message
from Fire() comes first, the parent goroutine chooses the first
case, which merely logs the timeout and returns. After that, no
other goroutines have references to channel ch or channel errcCh,

!We use “channel-related bug” and “message-passing-related bug” interchangeably, as
most message-passing-related bugs are due to misuse of channels [45, 68].

889

Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu

and thus no goroutines can receive messages from the two chan-
nels anymore. Since both of the channels are unbuffered, the child
goroutine blocks at one of the sending operations (line 25 or line
27) endlessly.

This example demonstrates the difficulty in detecting Go con-
currency bugs related to channels. The bug only manifests when
(D the message from Fire() at line 6 arrives earlier than the other
two messages, so that the select proceeds with the first case.
Meanwhile, the detector should be able to infer that @ no other
goroutines have references to ch or errCh and can unblock the
child goroutine. Static techniques cannot effectively infer the tar-
gets of indirect calls, like the one at line 4, and thus they cannot
determine whether the child goroutine can be unblocked (condition
). In offline testing, we notice that the message from Fire() never
comes first and thus current dynamic methods will miss the bug
due to the lack of condition .

In this paper, we propose a new dynamic-analysis tool, GFuzz,
to effectively detect channel-related Go concurrency bugs. We con-
sider both blocking bugs, where one or more goroutines are stuck
in their executions, and non-blocking bugs, where all goroutines
can finish but generate undesired results (e.g., panics) [68]. GFuzz
focuses on concurrent messages that are unique to the Go program-
ming language. Since the processing order of these messages is
non-deterministic by design, programmers must guarantee a Go
program works well under all possible processing orders. However,
due to the huge number of possible orders, programmers with lim-
ited time and energy are prone to missing some orders, which may
bring in channel-related bugs.

Guided by this intuition, GFuzz intentionally mutates the or-
der of concurrent messages to direct tested programs to different
execution states and increases the chance of triggering both block-
ing bugs and non-blocking bugs. Meanwhile, it monitors program
executions to capture triggered blocking bugs that are (largely)
undetected by the Go runtime?. Take Figure 1 as an example. In
theory, the message at line 6 could arrive before the ones at line 8
and line 12 or after them. No matter the order, the code should work
in both scenarios. However, the programmer does not account for
the first scenario, thereby introducing the aforementioned bug into
this example. By intentionally mutating the message order, GFuzz
can inspect both scenarios and detect the bug.

Although reordering concurrent messages is straightforward,
we need to tackle three challenges to build a practical bug detector.

First, how to identify concurrent messages? Without precise
information about concurrent messages, GFuzz may enforce a mes-
sage order that conflicts with an existing happens-before relation,
leading to a false deadlock that would never happen in real exe-
cutions. To answer this question, we adopt a simple method that
considers messages waited for by the same select statement. Chan-
nel operations under the same select can happen simultaneously,
and thus their messages are concurrent. Moreover, mutating the
order of these messages preserves the program semantics and en-
sures the alteration of program execution (i.e., different exercised
cases). To enforce a given message order, GFuzz transforms each
select in a way that a particular case is preferred over all others.

2The Go runtime can capture triggered channel-related non-blocking bugs.

Who Goes First? Detecting Go Concurrency Bugs via Message Reordering

In addition, GFuzz uses a timeout mechanism to avoid false dead-
locks. The mechanism falls back to the original execution if the
preferred case is not chosen within a time threshold.

Second, how to identify and prioritize suspicious message or-
ders? A given program may have a tremendous number of possible
message orders, making it impractical to enumerate all of them. To
address this challenge, we use the fuzzing method to generate new
message orders from existing ones and rely on the execution feed-
back to prioritize interesting orders closer to triggering new bugs.
We design several metrics to measure how a program conducts
channel operations when following a particular message order,
such as whether a new channel that has never been observed in
historical executions is created, how many distinct consecutive exe-
cution pairs of channel operations there are, and whether a channel
is fulfilled. We integrate all the metrics into a unified formula and
use this formula to calculate a score for each order. With the scores,
we identify and prompt interesting orders.

Third, how to identify a channel-related blocking bug? When
one goroutine blocks at a channel operation, any other goroutines
with references to the same channel can potentially unblock it in
the future. Without careful examination of the execution state, it
is easy to miss bugs or report false alarms. To tackle this issue, we
design a runtime sanitizer that dynamically tracks the propagation
of channel references among all goroutines. Based on the channel-
goroutine relationship, we design a novel algorithm to identify
blocking goroutines that cannot be unblocked by any others after-
ward and thus detect channel-related blocking bugs.

The novelty of GFuzz lies in D tailoring (but not directly ap-
plying) existing ideas (e.g., message reordering, feedback-guided
fuzzing) for message-passing concurrency and Go programs and
@ building a novel sanitizing algorithm to effectively pinpoint
channel-related blocking bugs and complement the Go runtime’s
detection capability on channel-related non-blocking bugs. We en-
vision that GFuzz can be used as an in-house testing tool. After
launching a Go application with existing program inputs or unit
tests, GFuzz will automatically explore various program execution
states caused by different processing orders of concurrent messages
and pinpoint previously unknown channel-related bugs.

To evaluate GFuzz, we take seven popular real-world Go soft-
ware systems, including Docker, Kubernetes, and gRPC. In total,
GFuzz finds 184 previously unknown bugs, including 170 blocking
bugs and 14 non-blocking bugs, and reports 12 false positives. We
have responsibly reported all the bugs. Thus far, programmers have
confirmed 124 bugs and fixed 67 of them based on our reporting. In
addition, we systematically compare GFuzz with the most recent
static Go concurrency bug detector GCatch. The bugs reported by
GFuzz in its first three hours of execution are significantly more
than all the bugs pinpointed by GCatch, which confirms GFuzz
indeed advances the state of the art of Go concurrency bug detec-
tion. Moreover, we carefully inspect concurrency bugs detected in
gRPC by disabling each component of GFuzz. We observe that the
full-featured GFuzz pinpoints the most concurrency bugs, demon-
strating the rationality of GFuzz’s design.

Overall, we make the following three contributions.

e We tailor an existing approach, message reordering, for Go
to proactively trigger concurrency bugs in Go programs.

890

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

e We design and implement GFuzz that can effectively detect
channel-related Go concurrency bugs via order mutation,
order prioritization and runtime detection.

e We conduct thorough experiments to evaluate GFuzz. GFuzz
has detected 184 previously unknown channel-related bugs
in real Go software.

All our code and experimental data can be found at https:// github.
com/ system-pclub/ GFuzz.

2 BACKGROUND

This section provides some necessary background information on
this project, including concurrency mechanisms supported by the
Go programming language, concurrency bugs in Go programs, and
the problem scope of GFuzz.

2.1 Concurrency Mechanisms in Go

Go supports two methods (message passing and shared memory) for
goroutine communication and synchronization. The language de-
signers recommend message passing over shared memory, because
they believe message passing is less likely to cause concurrency
bugs [15, 22, 65]. In Go applications, channel (chan) is the primitive
most often used to pass messages [68]. A goroutine can create, send
to, receive from, and close a channel. Go supports both buffered
channels and unbuffered channels (with a buffer size equal to 0).
Whether a channel operation blocks depends on the number of
available elements in the buffer and whether the channel is closed.
For example, when a channel’s buffer is empty, a goroutine that re-
ceives data from the channel blocks, until another goroutine sends
data to the channel or closes it. If there are elements in the channel,
a receiving operation returns immediately. Programmers must fol-
low certain rules to code with channels to avoid concurrency bugs.
For example, programmers must initialize a channel before using it
and must not use a closed channel. This is because sending data to
anil channel blocks a goroutine endlessly and closing or sending
data to a closed channel triggers a runtime panic.

Go allows a goroutine to wait for multiple channel operations
using select statements. A select consists of several case state-
ments, one for each channel operation, and an optional default
clause. When none of the channel operations of a select is avail-
able, a goroutine either blocks at the select or continues its exe-
cution at the default (if it has one). If multiple channel operations
are waited for by the same select, we intuit that they are concur-
rent and have no explicit happens-before relation. In Section 4, we
leverage this intuition to identify and reorder concurrent messages.

In addition to relying on channels, Go allows multiple goroutines
to communicate by accessing shared memory. Similar to traditional
programming languages (e.g., C/C++), Go provides several synchro-
nization primitives to protect shared-memory accesses, including
Mutex, RWMutex, Cond, atomic, and WaitGroup.

2.2 Concurrency Bugs in Go

Misuse of concurrency mechanisms may cause concurrency bugs
in Go programs. Tu et al. [68] systematically studied Go concur-
rency issues by inspecting 171 historical bugs collected from six
open-source Go applications, including Docker, Kubernetes, and
gRPC. They categorized these bugs along two dimensions. First,

https://github.com/system-pclub/GFuzz
https://github.com/system-pclub/GFuzz

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Instrumented Go Program

GFuzz

Source _ Order Information Bug
Code ~ Compilation | Enforcement Collection Detection
orderI lstate
Inputs
/ Initialization Mutation Prioritization

Unit
Tests 1 I 1 Con-
Order Queue currency
Bugs

Figure 2: GFuzz System Overview. GFuzz takes a Go program
and several program inputs or unit tests as inputs, and aims
to detect concurrency bugs caused by misusing channel op-
erations. It keeps generating new message orders, monitoring
program execution states, and favoring interesting orders to
speed up the bug-finding process.

they divided the bugs into blocking bugs and non-blocking bugs,
based on their symptoms. With blocking bugs, some goroutines
are stuck and cannot complete their executions, while with non-
blocking bugs, all goroutines can finish but may produce undesired
results. Second, they referred to the bugs’ underlying root causes
and categorized them into those related to shared-memory usages
and those due to errors when passing messages.

For example, Figure 1 is a blocking bug and its root cause is the
misuse of channel ch or channel errCh, while Docker#24007 is due
to a runtime panic caused by closing an already closed channel, so
that Docker#24007 is categorized as a channel-related non-blocking
bug. On the other hand, traditional data races (e.g., Kubernetes#9926,
etcd#3576) are classified as shared-memory-related non-blocking
bugs.

2.3 Problem Scope of GFuzz

In this paper, we follow the aforementioned two-dimensional cate-
gorization and design GFuzz to detect both channel-related blocking
bugs and channel-related non-blocking bugs.

We define the problem scope like this for three reasons: D
bugs due to shared-memory misuses can be discovered by existing
techniques built for traditional programming languages [4, 29—
32, 35, 40, 50-52, 56, 63]; @ channels are the primitives most com-
monly used for message passing and most bugs caused by errors
when passing messages are channel-related [68]; and ® channel-
related bugs can lead to severe consequences, including unexpected
panics, program hangs, and resource leakages [43, 67, 72].

3 OVERVIEW

Figure 2 gives an overview of GFuzz, which takes a Go program and
several program inputs or unit tests as input, and outputs detected
concurrency bugs. GFuzz takes several steps to force a tested Go
program to handle reordered concurrent messages for detecting
channel-related concurrency bugs. For the sake of clarity, we use
the term “program inputs” to represent both inputs of the whole
program and unit tests.

891

Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu

In the first step, GFuzz compiles the program and uses the given
inputs to initialize an order queue. Specifically, GFuzz automati-
cally instruments the source code for three goals: to safely enforce
particular message orders, to selectively collect runtime informa-
tion, and to aggressively detect triggered concurrency bugs. After
the compilation, GFuzz executes the program with each input. At
this stage, GFuzz does not enforce any message order but merely
records the order shown in the execution. Then, GFuzz adds the
program input together with the observed order to the order queue.
Such orders will be used as seeds to generate new orders.

In the second step, GFuzz sequentially fetches message orders
from the queue and randomly mutates them to generate new or-
ders. For each mutation result, GFuzz runs the program with the
associated input and enforces the particular message processing
order at runtime. If a message required by the order does not arrive
within a predefined time window, GFuzz falls back to the program’s
original logic to avoid introducing false deadlocks. During the exe-
cution, GFuzz collects various runtime information to identify and
prioritize interesting orders that are close to triggering bugs (Sec-
tion 5). The runtime information reflects reached program states,
like creating or closing channels. If an order triggers new program
states, GFuzz will add it to the queue and also calculate a priority
score for it to systematically distribute testing resources.

Last but not least, the runtime sanitizer continuously monitors
the program execution and aggressively detects concurrency bugs
at an early stage (Section 6).

GFuzz works like a traditional fuzzer, where both of them keep
triggering different program states to detect bugs [23, 46, 78]. How-
ever, GFuzz is different from existing fuzzing tools in three aspects:
(D GFuzz reorders concurrent messages to explore new program
states, while fuzzing tools change program inputs; @ GFuzz deter-
mines whether a new program state is reached based on how chan-
nels behave, whereas fuzzing tools depend on branch information;
and ® GFuzz can effectively detect channel-related concurrency
bugs, not just the program crashes caused by memory errors that
are the targets of mainstream fuzzing tools [23, 46, 78].

4 REORDERING CONCURRENT MESSAGES

GFuzz reorders concurrent messages to explore program execution
states and trigger channel-related bugs, rendering it fundamentally
different from existing approaches that change memory-access
orders or thread scheduling [40, 50, 55, 60]. Although detecting
concurrency bugs by reordering messages is not a new idea [76],
our contribution lies in tailoring the idea for Go programs. If two
channel operations (sending or receiving) have no happens-before
relation with each other, we consider them as concurrent operations
and their processed messages as concurrent messages.

However, it is challenging to determine precisely whether two
channel operations can execute simultaneously, since there are
many synchronization operations in a Go program and it is difficult
to analyze their interactions. GFuzz takes a simple, straightforward
approach to pinpoint one particular, important type of concurrent
channel operations. In Go, select enables one goroutine to wait
for multiple channel operations at the same time. This semantics in-
dicates that channel operations of the same select are concurrent.

https://github.com/moby/moby/pull/24007
https://github.com/kubernetes/kubernetes/pull/9926
https://github.com/etcd-io/etcd/issues/3576

Who Goes First? Detecting Go Concurrency Bugs via Message Reordering

1 switch FetchOrder(..) {
2 case 0:
3 select {
4 case <- Fire(l * time.Second):
5 Log(
6 case <- time.After(T):
7-16 e
17 }
18 case 1:
19 select {
20 case e := <- ch:
21-23 e J) ConEE |
24 case <- time.After(T) 6) case <- Fire(l * time.Second):
25-34 7). Log()
35 } 8) case e := <- ch:
36 case 2: 9-11) ..
37 select { 12) case e := <- errCh:
38 case e := <- errCh: 13) Log()
39 Log() 14) }
40 case <- time.After(T):
41-50 e
51 }
52 default:
53-62 .
63 }

Figure 3: Order Enforcement Instrumentation for the select
Statement in Figure 1.

Therefore, GFuzz focuses on the channel operations of select state-
ments. Since Go programs commonly use selects [10], GFuzz can
pinpoint numerous concurrent channel operations. We will explore
advanced program analysis techniques to reveal more concurrent
channel operations in future work.

Once we identify concurrent messages, GFuzz starts to mutate
their orders to trigger different program states. Next, we introduce
how GFuzz mutates existing message orders to generate new ones,
and how GFuzz forces a tested program to follow a new order.

4.1 Mutating Message Orders

We first define the representation of message orders for effective
mutations. Our observation is that among all case clauses within a
select, the program picks only one to proceed at a time. It is the
one whose associated message arrives earlier than all the other mes-
sages. Therefore, for each program execution, we use the sequence
of picked case statements to represent the order of processed con-
current messages. To support effective order recording, we statically
assign each select a unique ID, and allot a local index to each dis-
tinct case of a select. Now, we can represent a concrete message
order with a sequence of tuples [(so, co, €0)...(Sn, Cn, €n)], where s;
(0 < i < n) represents a select ID, ¢; represents the number of
cases within the select, and e; represents an exercised case index.
GFuzz randomly mutates an exercised order to generate new
orders. Specifically, GFuzz goes through each tuple within the order
and changes its case index to a random (but valid) value. GFuzz only
changes exercised case clauses in a program run; it does not make
any attempt to modify exercised select statements. The number
of mutations generated for an order depends on runtime feedback
when exercising the order, which we will discuss in Section 5.

Working example. Suppose the select at lines 5-14 in Figure 1
has ID 0; one program run goes over the select twice and chooses
the second case for the two executions. Then, the message order of
this run can be encoded as [(0, 3, 1), (0, 3, 1)]. GFuzz may produce
nine possible orders, and one of them is (0, 3, 1), (0, 3, 2)].

892

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

4.2 Enforcing Message Order

To force a Go program to process concurrent messages in a given or-
der, GFuzz conducts code transformation on all select statements
in the program. Specifically, for a select with n cases, GFuzz re-
places it with a switch with n cases and a default clause. The
i-th case of the switch is to prioritize the i-th concurrent message
waited for by the select, while the default clause is used when
no order is specified for the select. Figure 3 shows part of the
instrumented code for Figure 1. The original select has three case
clauses, and thus the new switch has three cases.

To prioritize the i-th concurrent message, we implement the
body of the i-th switch case as a select with two cases. One is
the same as the i-th select case: the same channel operation and
the same body. The other is a timer with period T, and the body is
the same as the original select. When the execution reaches the
i-th switch case, the i-th concurrent message is prioritized for
selection within the T period. If the message does not arrive before
the timeout, the execution falls back to the original select, and
GFuzz leaves the program to choose any message. For example, in
Figure 3 the case 0 at line 2 is used to prioritize the message at line
6 in Figure 1, which is from Fire(). Therefore, the corresponding
body (lines 3-17) is a select with two case clauses: the one at
line 4 is for Fire(), while the other at line 6 waits for period T. If
the message from Fire() does not arrive within T, the execution
proceeds to execute lines 7-16, which is exactly the original select
at lines 5-14 in Figure 1.

We design the timer (e.g., line 6 in Figure 3) to avoid introducing
false deadlocks (i.e., deadlocks absent from real executions) to tested
programs. Although a select does not require any happens-before
relation between its case clauses, some cases may have such con-
straints due to other reasons. In this case, if we strictly require a
case to proceed first (i.e, we do not move on until the message
arrives), the execution may hang there forever due to its conflict
with an existing happens-before relation. By using the timer, we
provide a fall-back mechanism to guarantee that the execution
terminates and the message prioritization does not introduce any
artificial blocking.

Since an order may contain many tuples, GFuzz uses function
FetchOrder () (e.g. line 1 in Figure 3) to make sure the specified tu-
ple and the current select are consistent. Specifically, for each
switch, FetchOrder() takes the ID of the replaced select as
the argument, and returns the specified case index. Internally,
FetchOrder() follows the input tuple order to separate tuples
belonging to different selects into different arrays. In addition,
FetchOrder () keeps an array index for each select to record the
next tuple to be used for the select. If an input ID representing a
select that does not appear in the input order, FetchOrder () re-
turns —1 immediately so as to avoid forcing the select to prioritize
any particular case. Otherwise, FetchOrder() sequentially uses
tuples belonging to the select by incrementing the array index
by one. If all tuples are used up, FetchOrder () changes the index
value to zero and goes over the tuple array of the select again.

Working Example. The way that GFuzz transforms the select
in Figure 1 is shown in Figure 3. Suppose the specified order is
[(0,3,0)]. It aims to prioritize the first case of the original select,
which is Fire(). In the execution, FetchOrder () returns a valid

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu

Table 1: Runtime Information as Feedback. The interesting criteria determine whether we keep the current order for future

mutations.
Information Semantics Interesting Criteria Identifier
CountChOpPair # execs of each pair of channel operations new pair / counter heavily changes ~ (IDprev_op > 1) ® IDcur_op
CreateCh distinct channels created new distinct channel created ID of channel-create instruction
CloseCh distinct channels closed new distinct channel closed ID of channel-create instruction
NotCloseCh distinct channels remaining open new distinct channel not closed ID of channel-create instruction
MaxChBufFull maximum fullness of each buffered channel = new maximum fullness ID of channel-create instruction

index 0, and the switch jumps to line 3 in Figure 3. If the Fire()
message arrives before the timeout, the parent goroutine executes
line 5 and then returns from function parent(). In this way, we
realize the prioritization of message Fire().

5 FAVORING PROPITIOUS ORDERS

Due to the large amount of possible message orders, it is impracti-
cal to run tested programs under every order. Instead, we collect
various types of runtime information to measure the quality of
orders. We use these measurements as feedback to prioritize high-
quality orders that exercise new program execution states and are
close to triggering bugs. Of course, using runtime information to
guide dynamic testing or fuzzing [6, 46, 78] is not a new approach.
Our innovation lies in identifying which runtime information cor-
relates with channel-related bugs and effectively leveraging that
information.

5.1 Tracking Program Execution

To measure whether the current order triggers a new program state,
GFuzz mainly tracks two types of information: @ interleavings
of channel operations and @ channel states. Our observation is
that channel-related concurrency bugs commonly occur when a
program conducts an unexpected channel operation while the chan-
nel is in a particular state (e.g., sending to a channel with a full
buffer, closing an already closed channel). Unlike existing dynamic
concurrency-bug detectors [40, 47, 55], GFuzz does not monitor
shared-memory accesses. This is because doing so incurs a high
runtime overhead and does not help pinpoint channel-related bugs.

Note that our collected information is an underapproximation
of an execution’s channel operations. While we could extend the
information to cover more aspects, doing so would incur a heavier
calculation cost and more runtime overhead while yielding only
limited benefits.

Tracking Channel Operations. In theory, GFuzz could monitor
channel operations for each goroutine, each channel, or the whole
program. In our design, we choose to monitor the operations for
each individual channel due to two reasons. First, if GFuzz monitors
channel operations only within each individual goroutine, it will
miss the orders of channel operations across different goroutines,
which are the major sources of concurrency bugs. Second, if GFuzz
monitors channel operations within a program as a whole, GFuzz
has to maintain global data structures and enforce proper synchro-
nization before accessing those data structures, which essentially
sequentializes all channel operations. This will lead to a compli-
cated design and even hide particular bugs. Therefore, monitoring

893

channel operations for each channel is a reasonable angle to collect
concurrency-related program states.

GFuzz takes two steps to track the execution of channel opera-
tions. First, GFuzz encodes the order of two same-channel opera-
tions. GFuzz’s procedure resembles the way that fuzzing techniques
encode the execution of two basic blocks [23, 46, 78]. Specifically,
GFuzz assigns each channel operation (e.g., initialization, sending)
with a random ID and calculates the XOR of the IDs of two con-
secutive channel operations to represent the execution of the two
operations. Since XOR is commutative, to differentiate operation A
following operation B from B following A, GFuzz shifts the ID of
the former operation one bit to the right before computing the XOR
value. Second, GFuzz leverages a global data structure to record
how many times each pair of channel operations has been executed.
Specifically, GFuzz uses the XOR result as the offset to access the
global structure and increments the content by one to indicate one
more execution. After each run, GFuzz leverages the content of
the global structure to measure the quality of the current message
order.

Table 1 shows the types of runtime information we collect to
evaluate message orders. The first entry CountChOpPair indicates
the number of executions of a pair of consecutive channel opera-
tions. In the global data structure, we allocate one two-byte value
to each unique operation pair. The “Identifier” column shows how
to calculate the identifier for each pair: IDprer_op is the ID of the
former operation; IDcyr_op is the ID of the latter operation; and
we shift IDpreq_op one bit to the right and use the XOR result to
represent the pair.

Tracking Channel States. As discussed in Section 2, if a channel
becomes empty, full, or closed, the following operations on the
channel may trigger channel-related bugs. Thus, GFuzz monitors
channel states as the second type of feedback. Table 1 provides a
list of interesting channel states we collect, including all channels
created during each run (CreateCh), all channels closed (CloseCh),
all channels remaining open (NotCloseCh), and the maximum full-
ness (i.e., the maximum proportion of used slots) of each buffered
channel (MaxChBufFull). To collect such information, we allocate a
random ID to each channel-creation location and dynamically track
the propagation of the channel. When a channel is created, closed,
or fuller than before (i.e., having fewer free slots in the buffer), we
use the channel ID to access global data structures to record the
event. We log all unclosed channels at the end of each execution.

5.2 Prompting Interesting Orders

GFuzz analyzes the recorded information for two purposes. First,
after each execution, GFuzz leverages the information to determine

Who Goes First? Detecting Go Concurrency Bugs via Message Reordering

whether the exercised order is interesting. If so, GFuzz adds the
order to the order queue. Otherwise, GFuzz drops the order and
moves on to the next order for execution and measurement. Sec-
ond, after adding an order to the order queue, GFuzz computes a
score based on the recorded information to determine how many
mutations to perform on the order.

Pinpointing Interesting Orders. The “Interesting Criteria” col-
umn of Table 1 shows our policy for identifying interesting orders.
First, if the execution of an order triggers a new pair of consecutive
channel operations, we treat the order as interesting. The term
“new” here means that the operation pair has not been triggered in
previous executions. In addition, we also treat an order as interest-
ing if an operation pair’s execution counter changes significantly
from previous orders. Specifically, if the counter falls into a range
(2N~1, 2N to which no previous counter belongs, then the order
is considered interesting. Second, if the execution triggers a new
channel operation, such as creating a new channel or closing (or
not closing) a channel for the first time, we treat the current order
as interesting. Third, if a buffered channel gets a larger maximum
fullness (i.e., the channel has fewer available slots), we also treat
the current order as interesting. For example, if in previous runs
buffered channel ch ever reaches at most 80% of its capacity, while
in the current run its capacity reaches 90%, then we treat the current
order as interesting. All interesting orders are put into the queue
for further mutations.

Computing Mutation Numbers. Not all interesting orders are
equal in triggering new bugs. Therefore, we calculate a priority
score for each order using Equation 1 to distribute testing resources.

score = Z log, CountChOpPair + 10 = #CreateCh
+ 10 * #CloseCh + 10 = Z MaxChBufFull (1)

Specifically, we consider the sum of operation-pair counts, the
number of distinct channels created, the number of distinct channels
closed at program exit, and the sum of maximum channel fullness.
We exclude the number of distinct not-closed channels, as the value
has been covered by the number of channels created and the number
of channels closed. The final score is a weighted sum of all factors.
We choose this formula based on our intuition about how the quality
of an order correlates with each factor. Our empirical evaluation
shows that the scores calculated using this formula can help detect
more concurrency bugs. We can tune the formula for different
applications, but we leave this for future work.

Our testing process goes through the queue and picks up each
order for mutation. An order’s associated score indicates how many
mutations we should perform on the order. We allocate more testing
resources to mutate high-scoring orders and spend fewer resources
on (or even skip) low-scoring ones. Specifically, if an order’s score is
NewScore and the previously observed maximum score is MaxScore,
then the number of mutations generated for the order is the ceiling
of “NewScore/MaxScore »* 5.

6 DETECTING CONCURRENCY BUGS

We design a novel runtime sanitizer to detect triggered channel-
related bugs. Since the Go runtime can capture channel-related
non-blocking bugs (sending to a closed channel and closing a closed

894

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

channel), our sanitizer focuses on detecting channel-related block-
ing bugs.

However, timely detection of channel-related blocking bugs is
difficult. This is because when a goroutine is waiting at a channel
operation, any other goroutine holding a reference to the same chan-
nel can potentially unblock it by sending or receiving a message
or closing the channel. Moreover, checking whether a goroutine
can access a channel requires traversal of the goroutine’s complex
object reference graph, which is as time-consuming as garbage
collection. Existing techniques ascertain that a blocking bug has
occurred if there are unfinished goroutines when the main gorou-
tine terminates [7, 69]. However, since a Go program can run for a
long time, these techniques significantly delay their bug detection.
Even worse, they may lose the execution information of triggered
bugs, which is vital for bug diagnosis. To address these issues, we
design our sanitizer to proactively track how channel references
propagate among goroutines and maintain the relations between
goroutines and channel references during execution.

Next, we first discuss important data structures used by the
sanitizer and then explain how the sanitizer detects blocking bugs.

6.1 Data Structures

The sanitizer maintains three types of data structures in the Go
runtime. GFuzz modifies both the Go runtime and tested programs
to update the structures. Our design hybridizes the modification
because we can easily get some information from the application
layer (e.g., when a goroutine gains a reference to a channel), and
reusing existing synchronization in the Go runtime helps to avoid
introducing concurrency bugs.
mapChToHChan is a global variable that maps every application-
layer channel (chan) to its internal representation (hchan) in the
Go runtime. To update this data structure, we instrument each
channel-creation site in the source code to call a newly added library
function. The function takes a pointer to the created chan as input,
and inserts an entry into mapChToHChan to map the chan to the
latest hchan accessed by the current goroutine. We do not maintain
such maps for other synchronization primitives (e.g., mutexes),
since Go represents them in the same way at the application layer
and the runtime layer.
stGoInfo maintains information about goroutines. It tracks whether
a goroutine blocks, and if so, for which primitive the goroutine
is waiting. It also records which synchronization primitives (e.g.,
hchan) a goroutine can access and which mutexes a goroutine has
acquired. We allocate an stGoInfo object to each active goroutine.
To update stGoInfo objects, we modify both the Go runtime
and program source code to capture all goroutine-channel oper-
ations. In the Go runtime, we hook functions related to synchro-
nization operations. For example, the Go runtime invokes function
makechan() to handle channel creation operations. Therefore, we
modify this function to record that the current goroutine refers
to the created hchan. As another example, the Go runtime calls
function chansend() to implement message sending. At the entry
of this function, we record that the current goroutine is blocking
and is waiting to send to the channel. Moreover, if the current gor-
outine’s stGoInfo object does not contain the information that the
goroutine has a reference to the channel, we update the stGoInfo

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

1 o func
& . 0{ 7 + func GainChRef(c ch) {
2 + GainChRef(ch)
. 8 + h = mapChToHChan[c]
3 + GainChRef(errcCh)
. 9 + golnfo = currentGo.getStGoInfo()
4 entries, err := s.fetch()
s 10 + golnfo.addChRef(h)
1+ 3}
6 3

(a) application (b) runtime

Figure 4: Instrumenting a Goroutine Creation for Bug Detec-
tion. Lines starting with + are added by GFuzz.

object to record the information. At the exit of chansend(), we
change the goroutine’s state back to runnable.

We also instrument Go programs to make timely updates to
stGoInfo objects when a goroutine gains or loses a reference to
a primitive. Figure 4 shows an example. Lines 1 and 4-6 are the
original code to create the child goroutine in Figure 1. GFuzz adds
lines 2 and 3 to record that the child goroutine gains references
to channels ch and errCh. Specifically, GainChRef () is a library
function added by us. It first looks up mapChToHChan to find the cor-
responding hchan at line 8. It then retrieves the current goroutine’s
stGoInfo object at line 9. Finally, it records the new reference to
hchan in the stGoInfo object at line 10.
stPInfo tracks information about synchronization primitives. We
allocate one stPInfo object to each primitive to record which gor-
outines hold references to it. We mainly update stPInfo objects
in the Go runtime together with stGoInfo objects. We leverage
existing synchronizations to guard concurrent accesses to stPInfo
objects.

6.2 Detection Algorithm

Algorithm 1 shows how the sanitizer detects blocking bugs. Briefly,
GFuzz first identifies a set of blocking goroutines whose stGoInfo
objects indicate they are waiting for synchronization operations.
Then it inspects their blocking conditions to determine whether
they can be unblocked or not. For example, if a goroutine blocks
at a channel operation while no goroutines holding a reference
to the same channel are runnable now or in the future, then the
blocking goroutine cannot be unblocked anymore. Thus we detect
a blocking bug.

The detection algorithm takes a channel (c) and a goroutine
(g) waiting for c as input. It uses the two sets created at line 2 to
track visited primitives and goroutines, respectively. At line 3, the
algorithm retrieves all goroutines related to channel ¢ and puts
them into a list (Goy;4;). The stPInfo object of channel c is used
here to identify all goroutines that hold a reference to c.

The algorithm keeps executing the loop at lines 4-18 until it
either finishes processing all the goroutines in Goj;,; and detects
a bug or encounters a runnable goroutine without detecting any
bugs. In each iteration, the algorithm first pops out a goroutine (go)
from Goy;,; at line 5. If go is not blocking based on its stGoInfo
object, it may unblock g in the future. Thus, the algorithm imme-
diately returns a false result for this bug-detection attempt at line
7. Otherwise, the algorithm further iterates over all the primitives
that go is waiting for with the inner loop at lines 10-17. When go
is blocking at a select, the algorithm considers it to be waiting for
all channels whose operations belong to the select. For all other
cases (e.g., waiting to send to a channel, waiting to acquire a lock),

895

Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu

Algorithm 1 Blocking Bug Detection

Require: goroutine (g) and channel (c) /* g blocks on ¢ */
1: function (g, ¢)
2: VisitedPrimgey, VisitedGogey < {c}, {}

3: Gojist < stPInfomap [c].getGos()
4: while Gojig is not empty do
5: g0 « Goyist.pop_front()
6: if not stGolnfoap [go].blocking then
7: return False, {}
8: end if
9: VisitedGoget.insert(go)
10: for each primitive (p) in stGoInfomap[go].getPrims() do
11: if p not in VisitedPrimge then
12: VisitedPrimget.insert(p)
13: for each goroutine (g’) in stPInfoy,p [p]-getGos() do
14: Gojjst-append(g’)
15: end for
16: end if
17: end for
18: end while
19: return True, VisitedGoget

20: end function

the algorithm identifies that go only waits for one primitive. In an
inner-loop iteration, if the target primitive has not been inspected
before, the algorithm adds all the goroutines that hold a reference
to or have acquired the primitive into Go;;s; with the help of the
stPInfo object.

The algorithm detects a bug if it reaches line 19. In that case, it
returns all the identified blocking goroutines. The sanitizer provides
programmers with more information to assist with bug validation
and inspection, like where the goroutines are blocking and the
goroutines’ call stacks.

When to Detect? Algorithm 1 introduces nontrivial overhead due
to various checks. To reduce the overhead while reporting bugs in
a timely manner, the sanitizer launches the detection in two cases:
every second during the execution and when the main goroutine
terminates. If GFuzz conducts multiple bug-detection attempts in
a single run, it will check whether previously identified blocking
goroutines still exist in latter attempts for the purpose of validation.

Working Example. We assume the sanitizer performs Algorithm 1
on the code in Figure 1, when the child goroutine blocks at line 27
and the parent has returned from function parent (). We further
assume the algorithm takes channel ch and the child goroutine as
its inputs. The child is added to Gojjst at line 3 in Algorithm 1,
since it is the only goroutine that holds a reference to ch. The
parent goroutine’s reference to ch is removed when the parent
returns from function parent(). The first iteration of the outer
loop inspects the child goroutine and does not append anything to
Go1ist. Then the algorithm leaves the loop and detects the bug at
line 19 with VisitedGogset containing only the child goroutine.

7 EVALUATION

We implement GFuzz using Go-1.16. We conduct static analysis
using the SSA package [19], perform source-code instrumentation
using the AST package [24], and implement the sanitizer by modify-
ing the Go runtime. Our implementation contains 7127 lines of Go
code and 1004 lines of Python/Shell scripts. All our experiments are
performed on a server machine with Intel(R) Core(TM) i7-8700K
CPU and 32GB RAM.

We largely reuse the benchmarks in the GCatch project [45]
to conduct our experiments. Among the ten applications where

Who Goes First? Detecting Go Concurrency Bugs via Message Reordering

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Table 2: Benchmarks and Evaluation Results. LoC means lines of source code; and test denotes numbers of unit tests used in our

experiments. In the “Detected New Bugs” columns, subscript b denotes blocking bugs; NBK represents non-blocking bugs;

““”means

zero bugs; and GFuzzs represents bugs detected in the first three fuzzing hours. The “Overheads” column shows the overhead of

the sanitizer and “/” means not applicable.

Benchmark Info. Detected New Bugs

App Star LoC Test chan;, select;, range, NBK Total GFuzzs GCatch Overheadg
Kubernetes 74K 3453K 3176 28 4 9 2 43 18 3 36.75%
Docker 60K 1105K 1227 17 2 - - 19 5 4 44.53%
Prometheus 35K 1186K 570 14 — 1 3 18 8 — 18.08%
eted 35K 181K 452 7 12 - 1 20 7 5 14.43%
Go-Ethereum 28K 368K 1622 11 43 6 2 62 40 5 75.18%
TiDB 27K 476K 264 - - - - - - - 17.65%
gRPC 13K 117K 888 15 — 1 6 22 7 8 20.00%
Total 272K 6887K 8199 92 61 17 14 184 85 25 /

GCatch finds previously unknown channel-related bugs, we evalu-
ate GFuzz on seven of them. For the other three applications, we
do not evaluate the Go project since our modification to the Go
runtime brings in conflicting dependencies when running GFuzz
on Go. We fail to build some dependent C libraries of CockroachDB
and thus we do not evaluate GFuzz on it. We also intentionally skip
bblot as it is very small and does not contain many synchronization
operations.

Table 2 shows the information of the seven evaluated applica-
tions. The applications cover different types of functionalities (e.g.,
container systems, databases, RPC libraries) and represent the typ-
ical usage of Go when implementing server-side software. They
are popular, and most of them are ranked within the top 20 based
on the number of GitHub stars they have received. All evaluated
applications have more than five years’ development history and
are still under active development. All of them have a large program
size, with three containing more than one million lines of source
code. These applications can help validate the efficacy of GFuzz for
testing large, real Go software.

We evaluate GFuzz from four aspects. D Effectiveness: how many
new bugs does GFuzz detect? (Section 7.1) @ Advancement: does
GFuzz detect more bugs than the state-of-the-art Go concurrency
bug detector GCatch? (Section 7.2) 3 Necessity: how does each
component of GFuzz contribute to bug detection? (Section 7.3) @
Performance: what is the runtime overhead incurred by GFuzz?
(Section 7.4)

7.1 Effectiveness of Bug Detection

Methodology. To access GFuzz’s effectiveness, we apply it to mul-
tiple recent application versions and count how many bugs and
false positives are reported. Our instrumentation makes some unit
tests fail to be compiled. Thus, we only use those tests that can be
compiled after the instrumentation as seeds to run GFuzz. Table 2
shows the detailed number of used tests for each application. We
initially configure GFuzz to wait for 500ms> to prioritize a message
(e.g., T in Figure 3). If GFuzz fails to wait for any message in one
run, it increases T by three seconds and adds the order back to the

3We have tried 250ms, 500ms, and 1000ms on gRPC, and 500ms returns the best
results.

896

func parent() {

stopChan := make(chan struct{})

ca := &cloudAllocator{

nodeUpdateChannel: make(chan string, 1),

go ca.worker(stopChan)
. // neither nodeChannel nor stopChan is closed

3

1
2
3
4
5 }
6
7
8
9 func (ca *cloudAllocator) worker(stopChan <- chan struct{}) {

10 for {

11 select {

12 case workItem, ok := <-ca.nodeUpdateChannel:
13 if lok {

14 Log("Unexpectedly_Closed")

15 return

16 Y

. // process node updates
case <-stopChan:
return

20 }

22 3}

Figure 5: A Bug Blocking at a select Statement. The code has
been simplified for illustration purposes.

order queue. The Go testing framework kills a unit test if it cannot
finish in 30 seconds. By default, we use five workers to run GFuzz.
Those workers execute unit tests concurrently, but their accesses
to the order queue are sequentialized.

Effectiveness Results. As shown in Table 2, GFuzz detects 184
previously unknown bugs, including 170 blocking bugs and 14 non-
blocking bugs, and reports 12 false positives. We have filed bug
reports for all the detected bugs. As of this writing, programmers
have confirmed 124 bugs as real bugs and fixed 67 of them based
on our reporting. The large number of detected bugs confirms the
effectiveness of GFuzz.

All blocking bugs are identified by our sanitizer and are missed
by the Go runtime. All of them are caused by one single blocking
goroutine and do not involve circular wait among multiple gorou-
tines. Among them, 92 bugs render the buggy goroutine blocking
at a channel operation (sending or receiving). An example of such
a bug is shown in Figure 1.

61 blocking bugs make the buggy goroutine block at a select
and wait for multiple channel operations. For example, the parent
goroutine in Figure 5 creates a child goroutine at line 6, which keeps

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

func parent(queuelLength int) *Broadcaster {
m := &Broadcaster{
incoming: make(chan Event, queuelength),

1
2

3

4 }

5 go m.loop()
6 return m
7

8

9

)
func (m *Broadcaster) loop() {
for event := range m.incoming { //blocking

10 m.distribute(event)

11 }
12 3}

14 func (m *Broadcaster) Shutdown() {//forget to be called

close(m.incoming)

16 3}

Figure 6: A Bug Blocking at a range Statement. The code has
been simplified for illustration purposes.

processing updates sent through channel ca.nodeUpdateChannel
with a select (lines 11-20) in a loop until the moment when either
channel ca.nodeUpdateChannel or channel stopChan is closed.
However, the parent does not close either of the two channels,
and thus the child goroutine blocks at the select and waits for
messages from the two channels endlessly.

17 bugs leave a goroutine blocking when using a range to pull
messages from a channel. The range keyword can drain a channel
in a loop, and it keeps iterating the loop until the channel is closed.
For example, programmers forget to call function Shutdown() at
line 14 in Figure 6, which causes the child goroutine created at line
5 to be blocked at the range statement at line 9 forever.

Moreover, GFuzz detects 14 non-blocking bugs. All of them are
captured by the Go runtime. Although those bugs are not reported
by our sanitizer, reordering concurrent messages is necessary to
trigger a code path or a goroutine interleaving for them. One of
the bugs is caused by sending a message to a closed channel, two
are caused by using an out-of-bound index to access a slice or an
array, nine are due to dereferencing a nil object, and the root
cause of the remaining two bugs is accessing a map without any
synchronization.

All the reported false positives are caused by errors of GFuzz’s
static analysis. GFuzz misses some code sites where a goroutine
gains a reference to a channel and fails to instrument GainChRef ()
calls there. Thus, for some goroutines, GFuzz does not know they
have gained some channel references until they conduct operations
on the channels. If the testing framework terminates a testing run
in such a time window, using the incomplete relations between gor-
outines and channel references, GFuzz may mistakenly determine
that no active goroutines can unblock some blocking goroutines
and report false alarms. All false positives occur for this reason.

7.2 Comparison with GCatch

Methodology. We compare GFuzz with GCatch [45], the most
recently developed Go concurrency bug detector, to understand
whether GFuzz advances the state of the art. GCatch models channel
operations using a new constraint system and extracts constraints
through static program analysis. It leverages Z3 [9] to solve the
constraints to look for goroutine interleavings that lead one or
more goroutines to block endlessly and thus detects blocking bugs.

897

Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu

12 ——
0 P fting
210 N
om ’I"' -e- GFuzz
g 8 b no_feedbacks
o :‘ —m- no_mutations
S 6 *: =% no_oracle
S 4y
c | I v U S IR .
ég 2 _i.-"* ------ PSS PR
0 II-:!—-I- ————— —— -
0 2 4 6 8 10 12
Time (h)

Figure 7: Contributions of GFuzz Components.

We apply GFuzz and GCatch to the same version of each evalu-
ated application. We compare the detected bugs of GCatch and the
bugs reported by GFuzz in the first three hours to understand the
detectors’ pros and cons.

Comparison Results. In total, GFuzz finds 85 bugs in three hours
and GCatch detects 25 bugs in the same application versions.

Among the 85 bugs found by GFuzz, GCatch also pinpoints
five of them and fails to report the others for four reasons. First,
GCatch does not detect non-blocking bugs. Thus, it misses four
bugs. Second, when GCatch conducts inter-procedural analysis, if
a call site may have more than one callee, GCatch gives up the
analysis. Thus, GCatch misses some synchronization operations
and fails to detect 57 bugs. Note that GCatch is designed this way
to retain its precision, and if it continues to analyze call sites with
more than one possible callee, it will report many false positives.
Third, GCatch fails to pinpoint 17 bugs because it does not have
some necessary dynamic information, such as channel buffer size
and which channel a pointer points to. Fourth, GCatch fails to ana-
lyze loop iteration numbers for the remaining two bugs. Compared
with GCatch, GFuzz overcomes several fundamental limitations of
static analysis (e.g., alias analysis, the computation of loop itera-
tion numbers). It significantly improves the state of the art of Go
concurrency bug detection.

Of the 25 bugs detected by GCatch, GFuzz does not find 20 of
them in the three allotted hours due to four reasons. First, GFuzz
could have detected six more bugs, but doing so would require a
longer execution time. Second, for four bugs, reordering concur-
rent messages does not help expose them. For example, one bug
identified by GCatch can only be triggered when a function returns
a particular value. However, changing message orders cannot help
the function return the required value. Third, for eight bugs, there
are no unit tests available to exercise the buggy code or the tests re-
quire particular execution environments that are unavailable to us.
Fourth, the remaining two bugs are missed because GFuzz cannot
handle some control labels during source-to-source transformation.

7.3 Necessity of GFuzz Components

Methodology. To understand the contribution made by each com-
ponent of GFuzz, specifically, order mutation, order prioritization,
and bug detection, we launch a dynamic evaluation to detect bugs
in gRPC with each component disabled. We choose gRPC version

Who Goes First? Detecting Go Concurrency Bugs via Message Reordering

9280052 (committed on 7 February, 2021), the most recent gRPC
version used in our experiments, to conduct this evaluation. We
use five workers for all settings.

Experimental Results. Figure 7 shows the number of unique bugs
detected by each setting of GFuzz over the first 12 hours. In total,
14 unique bugs are detected across the four settings. Among them,
four bugs are fixed by programmers themselves before we file our
reports, and the remaining ten bugs are included in the “Total”
column of Table 2.

First, the full-featured GFuzz finds the highest number of unique
bugs for a total of 12. Nine of these bugs are channel-related block-
ing bugs (reported by our sanitizer). The remaining three are caused
by dereferencing a nil pointer (pinpointed by the Go runtime).

Second, without the bug sanitizer, the Go runtime cannot re-
port any blocking bugs even if the bugs are triggered. However,
the Go runtime captures three non-blocking bugs, including two
nil-pointer dereferences and one caused by concurrent accesses
on a map. Since the testing process contains some randomness,
the detected non-blocking bugs are not exactly the same as those
detected in the full-featured run. The two groups of bugs have two
nil-pointer dereferences in common. The full-featured GFuzz pin-
points one more nil-pointer dereference, but it misses the bug due
to unsynchronized accesses on a map.

Third, without any order mutation, GFuzz cannot detect any
concurrency bugs. This dynamic execution further confirms the
benefits of message reordering.

Fourth, runtime feedback can help find more bugs than pure
random testing. Without feedback, GFuzz can find only four bugs,
including one blocking bug and three non-blocking bugs. Three of
the bugs are also detected by the full-featured GFuzz. One bug due
to concurrent accesses on a map is missed in the full-featured run.
We also observe that without feedback, GFuzz cannot find any bugs
after one hour. Since the mutation space is huge, it is inefficient to
blindly explore the space.

7.4 Performance

Overhead of GFuzz. We run GFuzz on each application for 12
hours to measure execution speed. We launch five workers for
GFuzz. For the purposes of comparison, we run the same set of unit
tests using the testing framework with parallel level five.

GFuzz can execute 0.62 unit tests in one second for the applica-
tions and causes 3.0X overhead. GFuzz causes runtime overhead
for two reasons. First, GFuzz adds extra waits when prioritizing
a particular concurrent message. Second, GFuzz collects various
types of dynamic information for detecting bugs and prioritizing
interesting message orders.

Overhead of the Sanitizer. We particularly measure the runtime
overhead of the sanitizer to understand the feasibility of adopting
it in other scenarios. To achieve this goal, we disable the instru-
mented code that reorders concurrent messages and that collects
information to guide the fuzzing method. Some (but not all) tests
in Prometheus and gRPC have blocking detection functionality,
which will wait for several extra seconds if goroutines not in their
whitelists are still live when the main goroutine finishes. We disable
such functionality in our measurement. We run all unit tests 10

898

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

times with and without the sanitizer and then compute the overhead
using the average execution time.

As shown in Table 2, the sanitizer incurs less than 20% over-
head for two applications (Prometheus and etcd) and less than 50%
overhead for another four applications (Kubernetes, Docker, TiDB,
and gRPC). The sanitizer causes 75.2% overhead for Go-Ethereum,
which is the largest overhead incurred among all the applications.
Overall, the sanitizer causes overhead less than or comparable with
widely-used sanitizers, such as AddressSanitizer [61] and Thread-
Sanitizer [62].

8 DISCUSSION AND FUTURE WORK

Limitations and Future Work. GFuzz alters program execution
states only by mutating the processing order of concurrent mes-
sages. However, there are many other mechanisms to change Go
programs’ executions, such as mutating program inputs, changing
the order of shared-memory accesses, and modifying the inter-
leaving of synchronization operations. We will explore how these
mechanisms impact the exposure of Go concurrency bugs and en-
hance GFuzz accordingly.

GFuzz only considers messages waited for by the same select
as concurrent, and thus it misses many other possible concurrent
messages. We believe reordering these missed messages can re-
veal more channel-related programming mistakes and detect more
bugs. We will explore advanced analysis techniques to detect more
concurrent messages in the future.

GFuzz does not modify program inputs, and thus its effectiveness
depends on the code coverage of the program inputs used to launch
GFuzz. We use existing unit tests (not program inputs) to conduct
our experiments. We do observe some bugs that are detected by
the static detector GCatch but are missed by GFuzz. This is be-
cause there is no unit test to exercise the buggy code. We consider
this a fundamental limitation of many dynamic techniques. In the
future, we will look for real-world workloads of the benchmark
applications and test how GFuzz works with those workloads.

GFuzz triggers high overhead, which can cause both false pos-
itives and false negatives. First, the overhead can lead a unit test
not to finish in 30 seconds and to be killed by the testing frame-
work. As discussed in Section 7.1, GFuzz may not record the precise
goroutine-channel relations under this scenario, and thus it may
report false positives. Second, some goroutines may be significantly
slowed down by GFuzz, and some bugs may not be triggered any-
more. Thus, GFuzz misses those bugs. In the future, we will explore
how to speed up GFuzz and improve both the effectiveness and the
efficiency of GFuzz.

Generalization to Other Programming Languages. Since many
new programming languages adopt message passing to reduce
concurrency bugs, extending GFuzz to these languages after some
adjustments appears promising. For example, both Rust and Kotlin
support select to enable one thread to wait for multiple channel
operations. Thus, the way GFuzz identifies concurrent messages
can also be used to pinpoint concurrent messages in Rust and Kotlin
programs. As another example, GFuzz’s blocking-bug detection al-
gorithm can likewise be used to detect blocking bugs in Rust and
Kotlin programs after two modifications. First, a channel in a Rust

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

program by default has an unlimited buffer size, and thus the algo-
rithm should be modified to not consider that a sending operation
can block a thread. Second, Kotlin organizes threads hierarchically,
and when a parent thread terminates, all child threads will also be
stopped. Thus, the algorithm should be enhanced to consider that
a parent thread can potentially unblock all its child threads.

9 RELATED WORK

Dynamic Concurrency Bug Detection. Go provides a built-in
deadlock detector, which is implemented in the goroutine scheduler
and is always enabled [18]. The detector detects some channel-
related blocking bugs, but it misses most of them because it reports
bugs only when all (not some) goroutines are blocked at synchro-
nization operations. For example, none of the previously unknown
blocking bugs found by GFuzz (including those presented in Fig-
ure 1, Figure 5, and Figure 6) can be identified by the deadlock
detector. Industry practitioners build techniques that report block-
ing bugs when there are goroutines finishing later than the main
goroutine [7, 69]. Since Go is mainly used to implement server-side
software, a Go program can execute for a long time. Bug detec-
tion is thus significantly delayed by the techniques. Moreover, all
the existing techniques cannot increase the chance of triggering a
concurrency bug.

GFuzz is similar to previous techniques [2, 12, 40, 50, 55, 60]
built for other programming languages in a way that they all force
threads (or goroutines) to interact in particular ways and report
bugs that are validated at runtime. However, GFuzz focuses on
concurrent messages, not shared-memory usages. Since messages
are usually processed by many different channels and there is no
single memory location to identify correlated messages, analyzing
messages is more challenging than inspecting shared-memory ac-
cesses. Moreover, GFuzz leverages the fuzzing method to identify
and prioritize message orders that are close to exposing bugs.

Researchers have built techniques to identify concurrency bugs
in distributed systems. Some of these techniques use model check-
ing to systematically examine all possible message orders for possi-
ble bugs [39, 48, 74]. Since a real Go software system has a huge
number of possible message orders, we think effectively search-
ing the message-order space of the system that GFuzz offers is
more efficiently to detect channel-related bugs in the system than
exhaustively inspecting the whole order space. After modeling con-
currency mechanisms in distributed systems using happens-before
rules, DCatch can effectively pinpoint concurrency bugs using run-
time tracing and trace analysis [42]. However, DCatch focuses on
bugs caused by concurrent conflicting memory accesses on one
node and its algorithm cannot be used to detect channel-related
bugs. Morpheus samples and enforces partial orders of conflicting
messages (i.e., concurrent messages sent to the same process) to de-
tect bugs in distributed systems implemented in Erlang [76]. Similar
to Morpheus, GFuzz also mutates orders of concurrent messages
to expose bugs. Unlike Morpheus, GFuzz leverages channel states
(e.g., number of channel elements, closed or not) to more efficiently
explore the order space.

There are dynamic detectors that detect deadlocks in MPI pro-
grams [13, 25, 26, 64, 70], where MPI (message passing interface)
is a library that helps create parallel programs in C or Fortran77.

899

Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu

However, MPI channels are different from Go channels in their
design model, and many important Go channel operations (e.g.,
close, select) do not exist in MPL Therefore, the detectors built
for MPI programs cannot effectively identify channel-related bugs
in Go.

Static Concurrency Bug Detection for Go. Practitioners and re-
searchers have built many techniques to statically detect concur-
rency bugs in Go programs. Staticcheck [28] and the vet tool [16]
are two suites of static Go bug detectors, each containing four detec-
tors for identifying concurrency bugs. However, these tools target
very specific buggy code patterns (e.g., an unlocking operation right
after a locking operation on the same mutex), and thus they miss
most Go concurrency bugs.

Researchers have built several model-checking-based techniques
that extract a Go program’s execution model by inspecting synchro-
nization operations and detect liveness issues (i.e., blocking bugs)
and channel safety issues (i.e., non-blocking bugs) [14, 37, 38, 53, 59].
However, these techniques have to analyze each input program and
all its primitives as a whole, and thus it is difficult for them to scale
to large, real Go software.

GCatch is the most recent Go concurrency-bug detector [45].
GCatch separates synchronization primitives into small groups,
and only examines each group within a small code scope to scale
to large programs. After modeling channel operations in a novel
constraint system, GCatch applies a constraint solver to detect bugs.
However, GCatch can only detect channel-related blocking bugs.
It is not easy to extend GCatch’s constraint system to cover more
primitives and non-blocking bugs, since we need to use constraints
to precisely model those primitives’ behaviors and non-blocking
bugs’ triggering conditions. In addition, to report fewer false pos-
itives, GCatch gives up its static analysis when one call site has
multiple possible callees, which causes GCatch to miss many bugs
in our experiments.

Overall, there are several fundamental difficulties in statically
analyzing real-world Go software, including computing precise alias
information, constructing accurate call graphs when interfaces are
involved, and calculating loop iteration numbers. Thus, we design
GFuzz using dynamic analysis to work around these challenges.

Grey-box Fuzzing. Fuzzing is a general technique used to stress
the tested program by randomly generating a lot of inputs [49].
Many advanced fuzzing techniques have identified hundreds of
thousands of previously unknown bugs and vulnerabilities in real-
world software systems [6, 46, 57, 66, 75, 77, 78]. There are also
fuzzers built for Go programs [17, 27, 71]. However, most of them
focus on bugs that can be triggered in single-thread mode and are
not designed for concurrency bugs.

Several fuzzing techniques have been designed to effectively
detect concurrency bugs by prioritizing seed inputs that can trig-
ger more concurrent code or particular interleavings [5, 33, 41].
Although useful, these techniques target concurrency bugs due to
misuse of shared memory and are thus unlikely to detect channel-
related bugs.

10 CONCLUSION

This paper presents a new detection technique GFuzz that pro-
vides push-button, accurate bug detection for channel-related Go

Who Goes First? Detecting Go Concurrency Bugs via Message Reordering

concurrency bugs by proactively mutating the processing order of
concurrent messages. GFuzz identifies concurrent messages using
a straightforward approach, safely enforces required processing
orders of concurrent messages, selectively prioritizes promising
message orders, and detects resulting concurrency bugs. In our
experiments, GFuzz successfully found 184 previously unknown
bugs from six popular Go applications, outperforming the state-of-
the-art Go concurrency bug detector. Future research can further
explore how to leverage other execution mutation mechanisms to
enhance GFuzz and identify more concurrent messages.

ACKNOWLEDGEMENT

We thank Yatin Manerkar, our shepherd, and the anonymous re-
viewers for their insightful feedback and comments. We thank
Bogin Qin for helping file bug reports. This work is supported in
part by NSF grant CNS-1955965.

A ARTIFACT APPENDIX
A.1 Abstract

GFuzz is a dynamic detector that can effectively pinpoint channel-
related concurrency bugs in Go software. GFuzz contains three
components:

o Instrumentor: This component modifies select statements
to force concurrent messages to be processed in a given
order.

e Fuzzing engine: This component mutates exercised mes-
sage orders and prioritizes orders close to triggering bugs
based on execution feedback.

o Sanitizer: This component can capture channel-related block-

ing bugs.

To test a Go program, GFuzz first instruments the program and
then keeps executing the program with the same program inputs,
but different processing orders of concurrent messages. GFuzz re-
ports all captured bugs in its log with detailed information to help
understand and reproduce the bugs.

We provide an artifact, described in detail below, to help easy
reproduction of all the experiments in the paper. The artifact is
available on GitHub at https://github.com/system-pclub/GFuzz/
tree/asplos-artifact.

A.2 Artifact Checklist (Meta-Information)

Algorithm: program instrumentation algorithm, order pri-
oritization algorithm, and blocking bug detection algorithm.
Program: We release the source code of GFuzz in the artifact
and test GFuzz on seven open-source Go projects.
Compilation: Our tool should be compiled with Golang
1.16. The tested programs should be compiled using our
instrumentator.

Transformations: We rely on source-to-source transforma-
tions to inject our logic into tested Go programs. The tool
has been included in the artifact package.

Binary: We do not rely on any prebuilt binary. Our tool
and tested programs should be compiled from source code

properly.

900

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Run-time environment: Our experiments can be con-
ducted on a Ubuntu-20.06 machine with Go-1.16 and Docker-
20.10.8. Root permission is required to run Docker.
Execution: Fuzzing is an infinite execution process.

e Metrics: The number of detected bugs.

e Output: The fuzzer will show the number of detected bugs.
The concrete bug information can be found in folder “exec”.
Specifically, inside the “exec” folder, file “ort_config” con-
tains the input and oracle configurations, file “ort_output”
contains the order of concurrent messages and triggered
channels, and file “stdout” contains stack frames.

How much disk space required (approximately)?: A
100GB disk should be enough for the experiments. This will
include all the source code (our tool + seven tested programs),
all the compilation products, all docker files, and all gener-
ated bug reports.

How much time is needed to prepare workflow (ap-
proximately)?: Most time will be used to compile all the
test binaries of the seven applications. It will take about three
hours to complete the downloading and building.

Publicly available?: Yes, we release the source code at
https://github.com/system-pclub/GFuzz/tree/asplos-artifact.
e Code licenses (if publicly available)?: MIT

e Archived (provide DOI)?: 10.5281/zenodo.5893373

A.3 Description

A.3.1 How to Access? The artifact is available on GitHub: https:
//github.com/system-pclub/GFuzz/tree/asplos-artifact.

A.3.2 Hardware Dependencies. Our experiments need 100GB free
space on disk for building docker images and saving fuzzing out-
puts.

A.3.3 Software Dependencies. Our experiments need the following
software: Docker-20.10.8 or higher to run our experiments, cloc [1]
to count lines of source code, and Git-2.18 or higher to get the
source code of our tool and the tested Go projects.

A.3.4 Data Sets. To reproduce the bug detection results, the source
code of the seven evaluated benchmark programs is needed. Their
information is released together with the detailed experimental
results [44]. To understand whether GFuzz improves the state of
the art, we compared GFuzz with GCatch. Thus, GCatch’s source
code is also required [45].

A.4 Installation

Our tools mainly rely on Docker and helper scripts. No installation
required.

A.5 Experiment Workflow

Our main experimental results are in Table 2, including the infor-
mation of the benchmark programs, the information of the detected
bugs, the comparison results with GCatch, and the overhead of
GFuzz’s sanitizer. Sections 2, 3, 4, and 6 of the “README.md” file
in the artifact provide the instructions to reproduce those results.
Section 5 of “README.md” explains how to reproduce Figure 7.

https://github.com/system-pclub/GFuzz/tree/asplos-artifact
https://github.com/system-pclub/GFuzz/tree/asplos-artifact
https://github.com/system-pclub/GFuzz/tree/asplos-artifact
https://github.com/system-pclub/GFuzz/tree/asplos-artifact
https://github.com/system-pclub/GFuzz/tree/asplos-artifact

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

A.6 Evaluation and Expected Results

The benchmark information and measured overhead numbers will
be displayed on the terminal. They are self-explained. The infor-
mation of detected bugs will be saved in log files. Section 7 of
“README.md” in the artifact explains how to interpret GFuzz’s log.

REFERENCES

(1]
(2]

[10]

[11]

[12]

[13]

[14]

[15

[16]
[17]
[18

[19
[20]

™
&

AlDanial. 2017. CLOC: Count Lines of Code. http://cloc.sourceforge.net/.
Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. 2010. A Randomized Scheduler with Probabilistic Guarantees of
Finding Bugs. In Proceedings of the 15th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’10).
Pittsburgh, Pennsylvania, USA.

Yan Cai and W. K. Chan. 2012. MagicFuzzer: Scalable Deadlock Detection for
Large-Scale Applications. In Proceedings of the 34th International Conference on
Software Engineering (ICSE ’12). Zurich, Switzerland.

Yan Cai, Shangru Wu, and W. K. Chan. 2014. ConLock: A Constraint-Based
Approach to Dynamic Checking on Deadlocks in Multithreaded Programs. In
Proceedings of the 36th International Conference on Software Engineering (ICSE
’14). Hyderabad, India.

Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang Li,
Haijun Wang, and Yang Liu. 2020. MUZZ: Thread-aware Grey-box Fuzzing for
Effective Bug Hunting in Multithreaded Programs. In Proceedings of 29th USENIX
Security Symposium (USENIX Security "20). Virtual Event, USA.

Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In Proceedings of the 39th IEEE Symposiums on Security and Privacy (Oakland ’18).
San Francisco, CA, USA.

CockroachDB. 2021. leaktest. https://github.com/cockroachdb/cockroach/tree/
master/pkg/util/leaktest.

Randy Coulman. 2013. Debugging Race Conditions and Deadlocks.
https://randycoulman.com/blog/2013/03/05/debugging-race-conditions-
and-deadlocks/.

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’08).
Berlin, Heidelberg.

Nicolas Dilley and Julien Lange. 2019. An Empirical Study of Messaging Passing
Concurrency in Go Projects. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER °19). Hangzhou, China.

Docker. 2022. Docker - Build, Ship, and Run Any App, Anywhere. https://www.
docker.com/.

John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.
2010. Effective Data-race Detection for the Kernel. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation (OSDI ’10).
Vancouver, BC, Canada.

Vojtundefinedch Forejt, Saurabh Joshi, Daniel Kroening, Ganesh Narayanaswamy,
and Subodh Sharma. 2017. Precise Predictive Analysis for Discovering Com-
munication Deadlocks in MPI Programs. ACM Transactions on Programming
Languages and Systems (2017).

Julia Gabet and Nobuko Yoshida. 2020. Static Race Detection and Mutex Safety
and Liveness for Go Programs. In Proceedings of the 34th European Conference on
Object-Oriented Programming (ECOOP °20). Berlin, Germany.

Andrew Gerrand. 2010. The Go Blog: Share Memory By Communicating. https:
//blog.golang.org/share-memory-by-communicating.

Google. 2021. Command vet. https://golang.org/cmd/vet/.

Google. 2021. Fuzz testing for go. https://github.com/google/gofuzz.

Google. 2021. Package Deadlock. https://godoc.org/github.com/sasha-s/go-
deadlock.

Google. 2021. Package SSA. https://godoc.org/golang.org/x/tools/go/ssa.
Google. 2022. A high performance, open-source universal RPC framework.
https://github.com/grpc/grpe-go.

Google. 2022. Data Race Detector. https://golang.org/doc/articles/race_detector.
html.

Google. 2022. Effective Go: Concurrency. https://golang.org/doc/effective_go.
html#concurrency.

Google. 2022. Honggfuzz. https://google.github.io/honggfuzz/.

Google. 2022. Package AST. https://golang.org/pkg/go/ast/.

Tobias Hilbrich, Bronis R. de Supinski, Martin Schulz, and Matthias S. Miiller.
2009. A Graph Based Approach for MPI Deadlock Detection. In Proceedings of
the 23rd International Conference on Supercomputing (ICS '09). Yorktown Heights,
NY, USA.

Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and
Matthias S. Miiller. 2012. MPI Runtime Error Detection with MUST: Advances
in Deadlock Detection. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC "12). Salt Lake City,

Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu

Utah.

Katie Hockman. 2021. Design Draft: First Class Fuzzing. https://golang.org/s/
draft-fuzzing-design.

Dominik Honnef. 2022. Staticcheck — a collection of static analysis tools for
working with Go code. https://github.com/dominikh/go-tools.

[29] Jeff Huang. 2015. Stateless Model Checking Concurrent Programs with Maximal

Causality Reduction. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’15) (PLDI ’15). Portland,
OR, USA.

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Pre-
dictive Race Detection with Control Flow Abstraction. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’14). Edinburgh, United Kingdom.

Jeff Huang and Arun K. Rajagopalan. 2016. Precise and Maximal Race Detection
from Incomplete Traces. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA ’16). Amsterdam, Netherlands.

Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro
Parlato. 2015. Lazy-CSeq: A Context-Bounded Model Checking Tool for Multi-
threaded C-Programs. In 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’15). Lincoln, Nebraska, USA.

Dae R. Jeong, Kyungtae Kim, Basavesh Ammanaghatta Shivakumar, Byoungy-
oung Lee, and Insik Shin. 2019. Razzer: Finding Kernel Race Bugs through Fuzzing.
In Proceedings of the 40th IEEE Symposiums on Security and Privacy (Oakland ’19).
San Francisco, CA, USA.

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. 2008. Dead-
lock Immunity: Enabling Systems to Defend against Deadlocks. In Proceedings
of the 8th USENIX Conference on Operating Systems Design and Implementation
(OSDI ’08). San Diego, California.

Daniel Kroening, Daniel Poetzl, Peter Schrammel, and Bjérn Wachter. 2016. Sound
static deadlock analysis for C/Pthreads. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE ’16). Singapore,
Singapore.

Kubernetes. 2022. Production-Grade Container Orchestration. https://kubernetes.
io/.

Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2017. Fencing
off Go: Liveness and Safety for Channel-based Programming. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
’17). Paris, France.

Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2018. A Static
Verification Framework for Message Passing in Go using Behavioural Types. In
Proceedings of the 40th International Conference on Software Engineering (ICSE
’18). Gothenburg, Sweden.

Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman,
and Haryadi S. Gunawi. 2014. SAMC: Semantic-Aware Model Checking for Fast
Discovery of Deep Bugs in Cloud Systems. In Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI ’14). Broomfield,
CO, USA.

Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan Padhye.
2019. Efficient Scalable Thread-safety-violation Detection: Finding Thousands of
Concurrency Bugs During Testing. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP ’19). Huntsville, Ontario, Canada.
Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin. 2018. A Heuristic
Framework to Detect Concurrency Vulnerabilities. In Proceedings of the 34th
Annual Computer Security Applications Conference (ACSAC ’18). San Juan, PR,
USA.

Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li, Shan Lu, Haryadi S.
Gunawi, and Chen Tian. 2017. DCatch: Automatically Detecting Distributed
Concurrency Bugs in Cloud Systems. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’17). Xi’an, China.

Tapir Liu. 2022. Some Panic/Recover Use Cases. https://go101.org/article/panic-
and-recover-use-cases.html.

Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu.
2021. asplos-710-artifact. https://docs.google.com/spreadsheets/d/
1tLegsfYI0g20KMYgDKkAtwZtk426dMSUZ6SvXk04s/edit#gid=0.

Ziheng Liu, Shuofei Zhu, Boqin Qin, Hao Chen, and Linhai Song. 2021. Au-
tomatically Detecting and Fixing Concurrency Bugs in Go Software Systems.
In Proceedings of the 26th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS °21). Virtual Event,
USA.

LLVM. 2022. libFuzzer - a library for coverage-guided fuzz testing. https:
/Mlvm.org/docs/LibFuzzer.html.

Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. 2006. AVIO: Detecting
Atomicity Violations via Access Interleaving Invariants. In Proceedings of the 12th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS "06). San Jose, California, USA.

http://cloc.sourceforge.net/
https://github.com/cockroachdb/cockroach/tree/master/pkg/util/leaktest
https://github.com/cockroachdb/cockroach/tree/master/pkg/util/leaktest
https://randycoulman.com/blog/2013/03/05/debugging-race-conditions-and-deadlocks/
https://randycoulman.com/blog/2013/03/05/debugging-race-conditions-and-deadlocks/
https://www.docker.com/
https://www.docker.com/
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://golang.org/cmd/vet/
https://github.com/google/gofuzz
https://godoc.org/github.com/sasha-s/go-deadlock
https://godoc.org/github.com/sasha-s/go-deadlock
https://godoc.org/golang.org/x/tools/go/ssa
https://github.com/grpc/grpc-go
https://golang.org/doc/articles/race_detector.html
https://golang.org/doc/articles/race_detector.html
https://golang.org/doc/effective_go.html#concurrency
https://golang.org/doc/effective_go.html#concurrency
https://google.github.io/honggfuzz/
https://golang.org/pkg/go/ast/
https://golang.org/s/draft-fuzzing-design
https://golang.org/s/draft-fuzzing-design
https://github.com/dominikh/go-tools
https://kubernetes.io/
https://kubernetes.io/
https://go101.org/article/panic-and-recover-use-cases.html
https://go101.org/article/panic-and-recover-use-cases.html
https://docs.google.com/spreadsheets/d/1tLcgsfYlll0g20KMYgDKkAtwZtk426dMSUZ6SvXk04s/edit##gid=0
https://docs.google.com/spreadsheets/d/1tLcgsfYlll0g20KMYgDKkAtwZtk426dMSUZ6SvXk04s/edit##gid=0
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

Who Goes First? Detecting Go Concurrency Bugs via Message Reordering

[48]

[49]

[50

w
—

[52]

[53

[54]

[55

[56

[57]

[58]

@
2

[60

[61]

[62]

Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O. Suminto, Daniar H. Kurni-
awan, Dikaimin Simon, Satria Priambada, Chen Tian, Feng Ye, Tanakorn Leesata-
pornwongsa, Aarti Gupta, Shan Lu, and Haryadi S. Gunawi. 2019. FlyMC: Highly
Scalable Testing of Complex Interleavings in Distributed Systems. In Proceedings
of the Fourteenth EuroSys Conference 2019 (EuroSys ’19). Dresden, Germany.
Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990), 32-44.
Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding and Reproducing
Heisenbugs in Concurrent Programs. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI °08). San Diego, California,
USA.

Mayur Naik and Alex Aiken. 2007. Conditional Must Not Aliasing for Static Race
Detection. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’07). Nice, France.

Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race Detection
for Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI *06). Ottawa, Ontario, Canada.
Nicholas Ng and Nobuko Yoshida. 2016. Static Deadlock Detection for Concurrent
Go by Global Session Graph Synthesis. In Proceedings of the 25th International
Conference on Compiler Construction (CC ’16). Barcelona, Spain.

Stack Overflow. 2020. Stack Overflow Developer Survey 2020. https://insights.
stackoverflow.com/survey/2020.

Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Exposing Atomicity
Violation Bugs from Their Hiding Places. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °09). Washington, DC, USA.

Dawson R. Engler and Ken Ashcraft. 2003. RacerX: Effective, static detection
of race conditions and deadlocks. In Proceedings of the 19th ACM symposium on
Operating systems principles (SOSP ’03). Bolton Landing, New York, USA.
Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In Pro-
ceedings of the 2017 Annual Network and Distributed System Security Symposium
(NDSS ’17). San Diego, CA, USA.

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A Large Scale Study of Programming Languages and Code Quality in Github. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE *2014). Hong Kong, China.

Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Verifying Message-
passing Programs with Dependent Behavioural Types. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI °19). Phoenix, AZ, USA.

Koushik Sen. 2008. Race Directed Random Testing of Concurrent Programs. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI "08). Tucson, AZ, USA.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceed-
ings of the 2012 USENIX Annual Technical Conference (USENIX ATC ’12). Boston,
MA.

Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data
Race Detection in Practice. In Proceedings of the workshop on binary instrumenta-
tion and applications. 62-71.

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

Vivek K Shanbhag. 2008. Deadlock-detection in java-library using static-analysis.
In Proceedings of the 15th Asia-Pacific Software Engineering Conference (APSEC
’08). Beijing, China.

Subodh Sharma, Ganesh Gopalakrishnan, and Greg Bronevetsky. 2012. A Sound
Reduction of Persistent-Sets for Deadlock Detection in MPI Applications. In
Proceedings of the 15th Brazilian conference on Formal Methods: foundations and
applications (SBMF °12). Natal, Brazil.

Alan Shreve. 2014. Principles of designing Go APIs with channels.
https://inconshreveable.com/07-08-2014/principles- of-designing- go-apis-
with-channels/.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In Pro-
ceedings of the 2016 Annual Network and Distributed System Security Symposium
(NDSS ’16). San Diego, CA, USA.

Ashish Tiwari. 2020. Golang fatal error: concurrent map writes. https://ashish.
one/blogs/fatal-error-concurrent-map-writes/.

Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. 2019. Understanding Real-
World Concurrency Bugs in Go. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’19). Providence, RI, USA.

Uber. 2021. goleak. https://github.com/uber-go/goleak.

Sarvani S. Vakkalanka, Subodh Sharma, Ganesh Gopalakrishnan, and Robert M.
Kirby. 2008. ISP: A Tool for Model Checking MPI Programs. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP °08). Salt Lake City, UT, USA.
Dmitry Vyukov. 2021. go-fuzz: randomized testing for Go. https://github.com/

dvyukov/go-fuzz.

Jacob Walker. 2018. Goroutine Leaks - The Forgotten Sender. https://www.
ardanlabs.com/blog/2018/11/goroutine-leaks- the-forgotten-sender.html.
Wikipedia. 2022. Go (programming language). https://en.wikipedia.org/wiki/
Go_(programming_language).

Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang
Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009. MODIST:
Transparent Model Checking of Unmodified Distributed Systems. In Proceedings
of the 6th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’09). Boston, Massachusetts, USA.

Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xiangyu Zhang, Xiaofeng
Wang, and Bin Liang. 2019. ProFuzzer: On-the-fly Input Type Probing for Better
Zero-Day Vulnerability Discovery. In Proceedings of the 40th IEEE Symposiums
on Security and Privacy (Oakland ’19). San Francisco, CA, USA.

Xinhao Yuan and Junfeng Yang. 2020. Effective Concurrency Testing for Dis-
tributed Systems. In Proceedings of the 25th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS °20).
Lausanne, Switzerland.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings
of the 27th USENIX Conference on Security Symposium (USENIX Security ’18).
Berkeley, CA, USA.

Michal Zalewski. 2020. American fuzzy lop. http://Icamtuf.coredump.cx/afl/.

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://inconshreveable.com/07-08-2014/principles-of-designing-go-apis-with-channels/
https://inconshreveable.com/07-08-2014/principles-of-designing-go-apis-with-channels/
https://ashish.one/blogs/fatal-error-concurrent-map-writes/
https://ashish.one/blogs/fatal-error-concurrent-map-writes/
https://github.com/uber-go/goleak
https://github.com/dvyukov/go-fuzz
https://github.com/dvyukov/go-fuzz
https://www.ardanlabs.com/blog/2018/11/goroutine-leaks-the-forgotten-sender.html
https://www.ardanlabs.com/blog/2018/11/goroutine-leaks-the-forgotten-sender.html
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Go_(programming_language)
http://lcamtuf.coredump.cx/afl/

