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Abstract

We consider estimating a factor model for high-dimensional time series that contains struc-
tural breaks in the factor loading space at unknown time points. We first study the case when
there is one change point in factor loadings, and propose a consistent estimator for the struc-
tural break location, whose convergence rate is shown to depend on an interplay between the
dimension of the observed time series and the strength of the underlying factor structure.
Our results reveal that the asymptotic behavior of the proposed estimator can be asymmetric
in the sense that a larger estimation error can occur toward the regime with weaker factor
strength. Based on the proposed estimator for the structural break location, we also consider
the problem of estimating the factor loading spaces before and after the structural break. We
show that the proposed estimators for change-point location and loading spaces are consis-
tent when the numbers of factors are correctly estimated or overestimated. The algorithm
for multiple change-point detection is also developed in the paper. Compared with existing
results on change-point factor analyses of high-dimensional time series, a distinguished feature
of the current paper is that the noise process is not necessarily assumed to be idiosyncratic

and as a result we allow the noise process with potentially strong cross-sectional dependence.
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Another advantage for the proposed method is that it is specifically designed for the changes
in the factor loading space and the stationarity assumption is not imposed on either the factor
or noise process, while most existing methods for change-point detection of high-dimensional
time series with/without a factor structure require the data to be stationary or ’close’ to a sta-
tionary process between two change points, which is rather restrictive. Numerical experiments
including a Monte Carlo simulation and a real data application are presented to illustrate the

proposed estimators perform well.

KEYWORDS: Change point estimation; high-dimensional time series; large latent factor

model; non-stationary process; strong cross-sectional dependence.

1 Introduction

High-dimensional time series has been emerging as a common and important data type in ap-
plications from a number of disciplines, including climate science, economics, finance, medical
science, and telecommunication engineering among others. Although numerous statistical meth-
ods and their associated theory have been developed for the modeling and inference of time series
data, existing results mostly focused on the univariate or finite-dimensional multivariate case.
The problem of extending existing results developed under low-dimensional settings to handle
high-dimensional time series, however, is typically nontrivial and requires significant innovations.
For example, when the dimension is larger than the length of the observed time series, the com-
monly used autoregressive moving-average (ARMA) model in its conventional form may face a
serious identification problem as commented by Lam et al. (2011). To handle the phenomenon
of high dimensionality, one typically resorts to certain sparsity-type conditions for the purpose of
dimension reduction. For example, when considering vector autoregressive (VAR) models in the
high-dimensional setting, one typically needs to assume that the coefficient matrices are sparse
in a suitable sense in order to obtain their meaningful estimators; see for example Basu and
Michailidis (2015), Davis et al. (2016) and references therein for research results in this direction.

Unlike the aforementioned sparse VAR approach that aims at extending existing parametric
time series models to their sparse high-dimensional counterparts, a popular approach in the lit-
erature for modeling high-dimensional time series is through the use of a factor model; see for
example Chamberlain and Rothschild (1983), Stock and Watson (1998), Bai and Ng (2002), Bai

(2003) and Forni et al. (2004) among others. The approximate factor model is one of the most



widely used models discussed by Bai and Ng (2002) and Bai (2003), and it assumes that most
of the variation in high-dimensional time series data can be explained by a few of factors. Serial
dependence is allowed to exist in both the factor and noises but the cross-sectional dependence
in the noise has to satisfy the condition that >?_; Z§:1 lotij| < Cp for any t = 1,...,n, where
014j is the (i,7)-th entry in the covariance matrix of the noise process at time ¢, C' is a positive
constant, p is the dimension of time series, and n is the time length. The common component in
such factor models is asymptotically identifiable when the number of time series goes to infinity.
On the other hand, Lam et al. (2011) proposed an alternative way to define the factor model for
time series data. In their model, the common factors are now viewed as the force that drives all
the dynamics and is used to explain the serial dependence in the data. The noise process in this
setting can exhibit a strong notion of cross-sectional dependence with |oy;;| < C ford,j =1,...,p
and t = 1,...,n, and the common component in the resulting factor model becomes identifiable
no matter whether the number of time series grows to infinity with the time length. Therefore,
both classes of factor models have been proven to be useful in different scenarios.

Change-point detection in the approximate factor model has been well investigated; see for
example Breitung and Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015), Barigozzi
et al. (2018), Ma and Su (2018) and references therein. However, the model proposed by Lam
et al. (2011) in the change-point setting has not been much explored. Related works in this
direction include Liu and Chen (2016), which modeled change points as regime shifts between
different states of a hidden Markov chain, and Liu and Chen (2020), which discussed a threshold
variable approach to modeling the change-point mechanism. The major goal of the current paper
is to consider estimating the recently proposed factor model of Lam et al. (2011) in the change-
point setting, while not imposing additional structural assumption on the underlying change-point
mechanism.

Change-point detection for high-dimensional time series become popular recently. Cho and
Fryzlewicz (2012) used the nonparametric locally stationary wavelet model to estimate the number
and locations of change points. Xie et al. (2013) described a new approach and introduced the
multi-scale model to detect breaks for data with missing values. Cho and Fryzlewicz (2015)
proposed the sparsified binary segmentation algorithm to segment the second-order structure of a
time series. Cho (2016) used the double CUSUM statistic combined with the binary segmentation
algorithm to examine the breakpoints. The existing methods aiming at identifying abrupt changes

for high-dimensional time series with/without a factor structure, require the data to be stationary



or 'close’ to a stationary process within regimes, which is rather restrictive. The algorithm we
proposed in this paper focuses exclusively on the changes of the factor loading space and can be
applied to the case that the factor and noise processes are non-stationary.

In Section 2, we consider the factor model of Lam et al. (2011) with a single change point,
and propose a projection-based change-point estimator whose convergence rate shown in Section
3 depends on an interplay between the dimension of the observed time series and the strength
of the underlying factor structure. Furthermore, our results reveal that its asymptotic behavior
can be asymmetric in the sense that a larger estimation error can occur toward the regime with
weaker factor strength. Based on the proposed estimator for the structural break location, we
also consider the problem of estimating the factor loading spaces before and after the structural
break. We show that the proposed estimators for change-point location and loading spaces are
still consistent when the numbers of factors are correctly estimated or overestimated. Section
4 describes the algorithm to identify and locate multiple change points when the number of
change points is unknown. Compared with existing results on change-point detection of high-
dimensional time series, one advantage of the current paper is that the stationarity assumption
for the factor or noise processes is not necessary and as a result our method performs well when
the observed data are non-stationary within regimes. It can be seen from our simulation results in
Section 5 that existing results on multiple change-point detection developed for high-dimensional
time series without a factor structure may struggle in detecting and locating the change points
when the observed process is non-stationary within regimes, while the proposed algorithm works
reasonably well. The performance for the proposed methods are further illustrated in Section 6

using real data, and Section 7 concludes the paper. Technical proofs are deferred to the Appendix.

2 Estimating Change-Point Factor Model with a Single Change
Point
In this section we first introduce the factor model with a single change point, and then develop

the projection-based change point estimator in Section 2.2. The estimation for the numbers of

factors is discussed in Section 2.3.



2.1 Change-point factor model for high-dimensional time series with a single

change point

Suppose we observe a p-dimensional time series y;, t = 1,...,n, according to the factor model of
Lam et al. (2011), then
yi = Ax; + &y, (1)

where {x;} is a latent factor process whose dimension kg is typically much smaller than p, A €
RP*k0 is the associated loading matrix, and {e;} denotes a noise process. Note that both A and
x; are unobserved and can be replaced by AU and U~ !'x, for any invertible matrix U e RFoxko ip
the model. Although the loading matrix A is not identifiable, the space spanned by the columns
of A, called loading space and denoted by M(A), is uniquely defined. Thus, estimation of the
loading space instead of the loading matrix is one of the primary goals for factor models. Since
its first appearance in the influential work of Lam et al. (2011), the latent factor model (1) has
been widely used in the literature for dimension reduction of high-dimensional time series; see for
example Lam and Yao (2012), Chang et al. (2015), Liu and Chen (2016) and references therein.

In model (1), the factor loading structure is assumed to remain the same over the whole
sampling period, which is very restrictive when the datasets span a long time period and may
make forecasting and inference misleading and unreliable (Su and Wang, 2017). For this, we

consider the change-point factor model

A1Xt71 + g, if t <1y
Yt = (2)
AQXt,Q +e&, if t>rg,

where x;; € Rk i = 1,2, represents the underlying latent factor before and after the change
point whose location is denoted by 79, A; and As are the associated loading matrices with
M(A1) # M(A2), and (e;) is an independent process whose covariance matrix is allowed to
be time-varying. Recently, there have been efforts in studying the change-point factor model by
incorporating certain beliefs or structural assumptions on the change-point mechanism into the
analysis. For example, Liu and Chen (2016) modeled the change-point mechanism by a finite-state
hidden Markov chain, in which case a change point occurs when there is a regime switching in
the hidden state variable. On the other hand, Liu and Chen (2020) considered using a threshold
variable to model the change point, where the threshold variable is assumed to be a-mixing and
observable up to a small number of unknown parameters. Instead of introducing a Markov chain

process or an additional threshold variable, we shall in the current paper focus on the change-point



factor model (2) which uses time to naturally divide the observed process into segments before
and after the change point. We shall in the following introduce a projection-based change point
estimator and study its asymptotic properties.

We shall now introduce some notations. For a matrix H, we use [H|r and |H|2 to denote
its Frobenius and L-2 norms respectively. Let o;(H) be the i-th largest singular value of H, and
|H|min be the square root of minimum nonzero eigenvalue of H'H. In addition, we use tr(H) to
denote its trace if H is a square matrix. Also, we write a = b if a = O(b) and b = O(a), and we

use |z| and [z]| to denote the largest previous and smallest following integers of x.

2.2 A projection-based change point estimator when there exists a single

change point

For the change-point factor model (2), we consider the situation where one only observes (y;)
but not (x¢;) nor (e;). In this case, the loading matrices themselves are not directly identifiable
as one can replace (A;,x;;) in (2) by (A;U;, U, 1xt) for any invertible matrix U; € RF*ki for
i = 1,2. However, the linear spaces spanned by columns of the loading matrices, denoted by
M(A;) = M(A,;U;), will not be affected by such a transformation and are indeed uniquely
identifiable for ¢ = 1,2. Therefore, compared with the conventional change-point setting where
the object of interest is typically a finite-dimensional vector, the current setting can be more
challenging as we have to deal with linear spaces spanned by columns of high-dimensional matrices.
We in the following propose a projection-based estimator for the change-point location, which is
shown to consistently identify the time point at which the underlying loading space undergoes a
structural break.

Given yi,...,yn, for any v € (0,1) we can split the data into y1,...,¥|yn a0d ¥|yn)+15- - - Yn-
Let I; 1(y) and I; 2(y) be the associated indicator functions where I; 1(y) = 1if 1 <t < |yn| and

Iio(y) = 1if |yn| <t < n. For i = 1,2, we consider the generalized second cross moment matrices

S|

Xyi(hy) = = D Eyeyionles(Nhani()]
t=1

which can be estimated by its sample version

~ 1 &
Byi(h,y) = D Yeyienlei() Ireni(7)-
t=1

By borrowing information from different lags, we consider

ho
Mi(7) = > Zyi(h,7)2yi(h, ),
h=1



which serves as an estimator for
ho

MZ(V) = Z Ey,i(h77)zy,i(h)7)/v (3)
h=1

where hg is a pre-specified positive integer. If v = vy = ro/n correctly specifies the change-point

location, then one can show that

ho
h=1
where
1
3, z h '7 E Z Xt,ixg.t,_h,ilt,i(W)It-i-h,i(’}/)] (5)

is the generalized second cross moment matrix for the hidden factor process. In this case, M;(7) is
a symmetric non-negative definite matrix sandwiched by A; and A/, and thus its eigenspace asso-
ciated with nonzero eigenvalues coincides with the loading space M(A;) for i = 1,2 if 3, ;(h,~)
is full rank for some h € [1,ho]. This motivates us to consider estimating the change-point
location by exploiting the orthogonality between eigenspaces associated with zero and nonzero
eigenvalues. To illustrate the idea, we first consider the simple scenario where the number of
factors k; is known; see Section 2.3 for the case when it is unknown. For i = 1,2, let q; () be
the unit eigenvector of M;(vy) associated with its k-th largest eigenvalue for k = 1,...,k;, and
Qi k;+1, Qi k; 425 - - - » dip De the unit eigenvectors of M;(7) corresponding to zero eigenvalues, with

1'q;j(y) >0 for j =1,...,p. Define

Qi(v) = (i1 (V)i (7)), Bi(v) = (@igi+1(7)s -+ Aip(7))s (6)

which form orthogonal matrices representing eigenvectors for nonzero and zero eigenvalues re-
spectively. For notational ease, we use Q;, B;, and M; to denote Q;(70), Bi(70), and M;(7p). To

estimate the change-point location, we introduce the projection criterion

2
GO) = Y0 g0 = [BIMi) B (7)
i=1

Note that although B; is not uniquely defined and subject to any orthogonal transformation, g;(7)
is invariant under such transformations. If we project the cross moment matrices {2, ;(h,v), h =

., ho} onto M(B;), the linear space spanned by columns of B;, then by (3) we can see that
G(7) measures the squared norm of such projections. If v = =g is correctly specified, then

M, (v0) = M; for i = 1,2, and by (4) we have

oy ZHB’M (o) B ZHZ{B A [0, 70) ATAE(h0) | ATBi} | =



On the other hand, if v # 79, then the data are not correctly separated and one of the subsets
contains data from different factor loading structures. In fact, we can show that if the amount of
misspecification |y — yo| exceeds a certain rate, then the norm of the aforementioned projection
will be strictly positive, namely G(y) > 0; see Lemma 6 in the Appendix.

This motivates us to consider estimating the change-point location by minimizing an empirical
version of the projection criterion G(7). To be more specific, let Xi,l P XLQ > ... = Xiyp be the
p eigenvalues of 1\//\11-(7), and g;1(7),i2(7), - -, Aip(y) be the set of corresponding orthonormal

eigenvectors with 1'q; j() > 0, then empirical versions of quantities in (6) are given by

Qi(v) = (@i (V) -+ Giks (1), Bi(v) = (@iki+1(7), - -5 ip(7))- (8)
For statistical analyses in the change-point setting, it is typically assumed that the change point
does not occur in the boundary area, namely there exists 0 < 171 < 12 < 1 such that o € (11, 72)-
A popular choice for (1,72) is in the form of (g, 1—¢) for some small € such as 0.1; see for example
the discussions in Zhou and Shao (2013) and Zhang and Lavitas (2018). With data in [0, ;] and
[172, 1], we can obtain consistent estimators for Bi(n;) and Ba(72) (Lam et al., 2011), and then

estimate G(7) by
, (9)

and we propose to estimate the change-point location by

y= argmin G(v). (10)

ve{0,%,..., 13 (m1,m2)
It can be seen from our theoretical results in Section 3 that the proposed estimator 7 consistently
estimates the change-point location, and its convergence rate depends on an interplay between
the dimension of the observed time series and the strength of the underlying factor structure. In
addition, it may have an asymmetric asymptotic behavior depending on the factor strength in the
regimes before and after the change point. Given the change point estimator 7, one can estimate

the loading spaces before and after by M[Q1 ()] and M[Q2()] respectively, whose consistency

and convergence rates are also studied in Section 3.

2.3 Estimation when the numbers of factors are unknown

The number of factors is often unknown in factor analysis. Many approaches to identifying the

number of factors have been developed in the literature. The factor model is characterized by the



presence of a large eigengap between eigenvalues of the covariance matrix (Barigozzi and Cho,
2020). Based on this observation, the scree test introduced by Cattell (1966) uses an eye-ball rule
to select the number of factors. Parallel analysis (Horn, 1965; Buja and Eyuboglu, 1998; Dobriban,
2020) and deterministic parallel analysis (Dobriban and Owen, 2019; Dobriban, 2020) are also
effective methods to estimate the number of factors designed for data with no serial dependence.
Factor analysis for time series data, which involves dependence between observations and brings
an extra layer of difficulty, was studied by Forni et al. (2000), Bai and Ng (2002), Onatski. (2010),
and Ahn and Horenstein (2013). Bai and Ng (2002) constructed various criterion functions based
on the covariance matrix of the observed process, and Ahn and Horenstein (2013) utilized the
eigenvalues of the covariance matrix to determine the number of factors. The aforementioned
methods cannot handle the situation when there exists strong cross-sectional dependence in the
noise process. To solve the problem, Lam and Yao (2012) proposed a ratio-estimator based on
the eigenvalues of the covariance matrices at nonzero lags.

Following the approach used in Lam and Yao (2012), we can estimate k; and ko through the
eigenvalue ratios in the current change-point setting as well. To be more specific, for i = 1, 2, let

S\i,k (n;) be the k-th largest eigenvalue of 1/\\/Ii(m), then k; can be estimated by

~ by ,
k; = argmin M (11)

1<h<R Apr(m)

The search cannot be extended to p because the minimum eigenvalue of M;(7;) goes to 0. We
follow Lam and Yao (2012) and use R = p/2 when n > p; when n < p, we let R = n/2. We
can then plug (11) into the estimation procedure described in Section 2.2 to handle the situation
when k; and ko are unknown. In particular, the projection-based criterion function (9) in this

case becomes

6(7,%,@2) = Z
1

‘ ’ o~

B,z (m:)" M (r) B,z (1)

)
2

2

7

where ﬁzﬁz (ni) = (Qi@iﬂ(m), ..., Qip(mi)), and we estimate the change-point location by

~

5 = arg min 6(77/]{;17%2)'
ve{0,1,., 1} N(m1,m2)

Similar to the discussion in Section 2.2, the loading spaces in this case can be estimated by
M(Qi(¥, k;)) where
Ql(?);u kl) = (a@l(’ﬁy)’ T 7611' ]}(%’))7 fori=1,2.

vy

The consistency results and explicit estimation bounds for the change point 4 and loading spaces

M(Qi(7, %l)) are provided in Theorem 3 and Corollary 1 respectively.



3 Theoretical Properties

We shall here study the asymptotic properties of the estimators proposed in Section 2 for change-
point factor modeling of high-dimensional time series. For this, we need to introduce the notion
of factor strength, which plays an important role in understanding the theory of factor modeling
and has been commonly used in the literature; see for example Bai and Ng (2002), Bai (2003),
Doz et al. (2011), Lam et al. (2011), Lam and Yao (2012), Chang et al. (2015), and Liu and Chen

(2020) among others. In particular, it assumes that the loading matrix A; satisfies

5
| A5 = A = 2"

min

for some 0 < §; < 1, and the factor strength is said to be strong if §; = 0 and weak if ¢; € (0, 1].
The factor strength measures the relative growth rate of the amount of information carried by
the observed process y; about the factor process x; as the dimension p increases, with respect to
the growth rate of the amount of noise process.

When presenting the asymptotic properties of M[Ql("?)], we also need to introduce a measure
that quantifies the distance between two linear spaces which can then be used to assess the
statistical performance of the proposed estimators for loading spaces. In particular, let S; and
Sy be full rank matrices in RP*% and RP*% respectively with max(qi,¢2) < p. Denote O; the
matrix whose columns form an orthonormal basis of M(S;) for i = 1,2, then the distance between

column spaces of S; and So can be measured by

tr(010,0,0)) }1/2

D{M(S1), M(S2)} = {1 © min(q, g2)

(12)

The distance measure (12) was first introduced in Liu and Chen (2020), and is a quantity between
0 and 1. In particular, it equals to 0 if M(S1) € M(S2) or M(S3) € M(S;), and equals to 1 if
M(S1) and M(Ss2) are orthogonal. For the special case when ¢; = g2 = ¢, the two spaces S; and

S, have the same dimension, and the distance measure (12) reduces to

(13)

0,0/,0,0)) }1/2
q b)

DIM(S1), M(S2)} = {1 ol

which was used in Chang et al. (2015) and Liu and Chen (2016). Since the number of factors is
usually unknown in practice and may be estimated in a nonperfect way, we shall in the current
paper use the generalized version in (12) to measure the distance between two linear spaces.

The following regularity conditions are also needed for theoretical properties.

10



Condition 1. Let }'g be the o-field generated by {(x¢1,%¢2) : £ <t < j}. The latent process

{x¢,1,%¢,2} is a-mixing with mixing coefficients satisfying

o0
Z a(t)' ¢ < oo,
t=1

for some ¢ > 2, where a(t) = sup; sup ,_; An B)— P(A)P(B)|.

pere, P
Condition 2. Forany ¢ = 1,2, j=1,...,k;,and t =1,...,n, E(|xt’i7j\4c) < U;K, where z; ; is
the j-th element of x;;, o, > 0 is a constant, and ( is given in Condition 1.

Condition 3. {e:} is an independent noise process with mean 0 and covariance matrix 3; at
time t. {e;} and {x;1,X;2} are uncorrelated given F'-!. Each element of 3; remains bounded by
a positive constant 052 as p increases to infinity.

Instead of making specific assumptions on the dynamics of the factor process as in Pena and
Box (1987) and Forni et al. (2000), here we consider a general setting where the factor process
only needs to satisfy the mixing condition with bounded moments (Chang et al., 2015). Compared
with the method proposed in Barigozzi et al. (2018) which is designed to detect changes in the
second-order structure of the observed data, our approach does not require the factor and noise
processes to be ‘close’ to stationary processes, and we allow heteroskedasticity in x; 1, X¢ 2 and &;
not only through their cross-sectional dimension but also the time dimension; see our simulation
results in Section 5.2. Fan et al. (2013) defines the mixing coefficients for a strictly stationary
process in a factor model by

at)= s |P(AnB)— P(A)P(B),
AeFO  ,BeFF

and we shall here use its generalized version for the non-stationary setting as defined in Condition
1; see also Chang et al. (2015). Condition 3 assumes that the noise process is serially independent,
but may have strong cross-sectional dependence.
Condition 4. For i = 1,2, there exists a constant &; € [0, 1] such that |A;|3 = |A;|2,, = p'~%,
as p goes to infinity.
Condition 5. 7 € (n1,712). For any v € [n1,n2], there exists an integer h; € [1, hg] such that
3i(hi,y) is full rank and |2 ;(hi,¥)|min is uniformly bounded above 0, for ¢ = 1, 2.
Condition 6. M;(v) admits k; distinct positive eigenvalues, for v € [n1,n2], i = 1, 2.

Condition 4 defines the factor strength before and after the change point. Condition 5 ensures

that M;() is full rank and contains information from all components in the factor process.

Condition 6 assumes that the nonzero eigenvalues of M;(y) are distinct from each other. Condition

11



7 and Condition 8 shown below make two linear spaces before and after the change point are
differentiable as n and p go to infinity.

For 0 < ¢ < ¢ <1, define

2
N(c1,e2) = [an] = [eon], % = Z xt,ilt,i(70),
i=1
and three intervals

I1<h) = [0770 - h/n]a IZ(h> = (70 - h/n770]a I3(h) = (707 1]' (14)

For any 0 < ¢; < ¢g <1 and both ¢; and ¢y are from the same interval, I7, I or I3, let

Y1 Blxexty I {jernj<t<iean)y]

F:E(h, 61562) = N(Cl CQ)

Condition 7. For any v € (11,7), there exists an integer hj € [1, ho] such that T'z(hT,v,70 —
h¥/n) is full rank. For any 7 € (y0,72), there exists an integer h3 € [1, ho] such that T';(h3, v0,7)
is full rank. The minimum singular values of these two matrices mentioned are uniformly bounded
above ug > 0.
Condition 8. There exists a positive constant d such that D[M(Q1), M(Q2)] > d as n and p
go to infinity.

Theorem 1 provides the explicit bound for the proposed projection-based change point esti-
mator, from which we can see that the convergence rate depends on an interplay between the

dimensionality of the observed time series and the strength of the factor loading.

Theorem 1. Assume Conditions 1-8. If pPmaxn=1/2 = o(1), then for any € > 0, with true ki and
ko we have

. Cp51 . Cp52
P(7<70—€)<m, P(7>70+6)<m;

as n,p — 0, where dymax = max{dy, 2}.

1/2

For one-regime factor models where the loading space remains the same over time, p’n=
o(1) is a quite standard condition to obtain the consistency for the estimation of the loading
space; see for example Lam et al. (2011), Lam and Yao (2012), and Chang et al. (2015). When a
change point exists, in order to estimate the loadings spaces consistently, we need to assume that

—-1/2

this condition is satisfied in both regimes, namely pomaxp = o(1). If the factors are strong in

both regimes with §; = do = 0, the condition is reduced to n~%2 = 0(1) which is automatically

12



satisfied when n — o0. On the other hand, if the factors are weak with d; = d9 < 0.5, then the
condition can be satisfied even when the dimension p grows as fast as n.

By Theorem 1, the proposed estimator 74 in (10) for the change-point location is consistent
under mild conditions. It also reveals that the estimation performance can depend critically on
the strength of factors in both regimes. In particular, if the factors are strong in both regimes
(61 = 92 = 0), then the estimation is immune to the curse of dimensionality. On the other hand, if
factors are weak in one regime, then the resulting estimator can become less efficient as p increases.
When factors have different levels of strengths before and after the break, the probability that the
~ falls in the weaker regime is larger but the estimation precision in the stronger regime is better.
As a result, the overall rate of convergence of 4 depends on the strength of the weaker regime.

Theorem 2 provides the asymptotic property of the estimated loading spaces when the esti-

mated break date is used.

Theorem 2. Assume Conditions 1-8. If pomaxn=12 = o(1), then as n,p — oo, with true k1 and

ko, we have
DIMI[Qi(9)], M(Qi)} = Op(p°in~ %)

fori=1,2.

By Theorem 2, if §; = &, = 0, the estimator M[Q;(5)] converges to M(Q;) at the rate of
n~Y2 and thus the curse of dimensionality does not exist. If the factors in regime i are weak,
however, the convergence rate is slower and the noise process distorts the information on the latent
factor; see for example Lam et al. (2011). By Theorem 2, the convergence rate of the associated
loading space estimators is the same as that in factors models without breaks (Lam et al., 2011).
Compared with the results in Liu and Chen (2020) which used a threshold variable to split the
data, the estimation in weak regime does not gain efficiency from data in strong regime because
asymptotically there is no interaction between regimes.

In the following, we will show that when the numbers of factors in two regimes are overesti-

mated, our proposed method can estimate the break date and loading spaces as well.

Condition 9. When k; > k;, there exists a positive constant d such that D[M(Qy), M(Q3)] >d
and D[M(Q¥), M(Qa)] > d, for any p x (k; — k;) matrix S; such that dim(M(S;) A M(Q;)) = 0
and ¢ = 1,2, where Qf = (Q;,S;) is a p x k; matrix.

Condition 9 guarantees that the two augmented linear spaces before and after the change

point are still differentiable.
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Theorem 3. Assume Conditions 1-9. If pPm>xn=1/2 = o(1), k> ki, and oy > ko, then for e > 0,

we have

C’p51
enl/2’

C p‘s2

P(7>’Yo+€)<6n71/27

Py <y —€) <
as n,p — 0.

Theorem 4 will show that the space spanned by the first k; columns of Ql(?, %l) provides an
estimate of M(Q;), and it converges as fast as M(QZ(?)) in Theorem 2, for i = 1,2. Define Q;(7)

which consists of the first k; column of Qi(?, /Igz),
Qz(?) = ((Ali,l(?'), ey al,kz(/":’))a for i = 17 2.

Theorem 4. Assume Conditions 1-9. If pPm>n=1/2 = o(1), B > k1, and ko > ko, then as n,

p — o0, we have
DIM[Qi(A)], M(Q)} = Op(p'n"/?)
fori=1,2.
By the definition of D(-,-) in (12), we can simply obtain the follow results.

Corollary 1. Assume Conditions 1-9. If pmaxn=12 = o(1), %1 > k1, and @2 > ko, then as n,

p — o0, we have
DIM[Qi(F, k)], M(Q:)} = Op(p’n™"?)
fori=1,2.

It can be seen from Theorem 3 and Corollary 1 that when the numbers of factors are overesti-
mated, our estimators for break date and the loading spaces are still consistent. Their asymptotic
properties are the same with those when k; and ko are correctly estimated.

Proposition 1 shown below, similar to the results in Lam and Yao (2012), proves that the

ratios of estimators for nonzero eigenvalues of M;(n;) converge at different rates as n and p grow.

Proposition 1. Assume Conditions 1-8. If pPmaxp=1/2 = o(1), then as n, p — 0, we have

Xl,kJrl(nz)/Xl,k(nl) = 17 fO’I" k= 17 ceey k’L - 17

N1 (1) N e (1) = Op(p®n=1) B 0,
fori=1,2.
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Proposition 1 indicates that the plot of the estimated eigenvalue ratio will drop sharply at
k = k;, which provides a partial theoretical underpinning for the estimator of k; for ¢ = 1, 2; see
also Lam and Yao (2012). When k > k;, the eigenvalue \;, is theoretically zero and thus the
property of the ratio Xi,k+1(7]i) //A\Z;c (n;) can be difficult to investigate. According to Lam and Yao
(2012), although the consistency of (11) cannot be confirmed theoretically, the estimator performs
well in numerical experiments (Chang et al., 2015; Liu and Chen, 2016; Wang et al., 2019; Liu
and Chen, 2020).

4 Multiple Change-Point Detection

We shall in this section consider the situation with multiple change points and extend our results
in Sections 2 and 3 to propose an algorithm for estimating the change-point locations. For this,

we consider the factor model with multiple change points:

A1Xt71 + &¢, if 0 < t/n Y05

AQXt’Q + &g, if Yo < t/n Y15
yi = (15)

[ Am+1Xeme1 t € iy <t/n <y =1,

where A; € RP*%i for i = 1,...,m+1, and D{M(A;), M(A;41)} # 0 fori = 1,...,m. The model
in (15) has m change points, and the case with m = 0 relates to the situation with no change
point. To detect change points in (15) and estimate their locations, we propose to exploit the
effect of a change point on the estimated number of factors. We shall first use the simple example
with m = 1 to illustrate the idea. In this case, the loading space contains a change point, and if

one ignores the change point and calculate

3\'—‘

2 EWevi), M= 5,00, (16)

_ ho
1 —~ ~ ~
= Z tyylg+h7 M = Z 2y (h)Z
t=1 h=1
then it will lead to an overestimated number of factors. For this, let Xk be the k-th largest
eigenvalue of K\/I, and we need the following conditions.
Condition 10. The nonzero eigenvalues of M are distinct.
Condition 11. Define k = dim(M(Q1) nM(Qz)). k < min(ky, k2) is fixed and o7, , (Q}Q2) = v

where v is a positive constant such that v < 1 as n and p go to infinity.
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Condition 11 is stricter than Condition 8. When k = 0, as n and p grow to infinity, Condition
11 requires that |Q}Qz[2 < 1, while Condition 8 indicates that |Q]Qz|r < 1. Condition 11
ensures that as n and p increases, the non-overlapped subspaces in M(Q;) and M(Qz) are still

well apart.

Corollary 2. Assume Conditions 1-7, 10 and 11. If §; = 0y = &y and pon='2 = o(1), then as

n, p — o0 we have

Nii1/Ap = 1, fork=1,.. ki +ko—k—1,

A A o 250 —1\ P
Aky kit Moy kg & = Op(0™077) = 0.

Corollary 2 implies that the ratio of estimated eigenvalues will drop sharply at k = k1 + ko — k,
if we combine data from two regimes when the factor strength level across regimes remains the
same. Motivated by this observation and the methods proposed in Ma and Su (2018) and Wu
(2021), we divide the whole time span into subintervals to monitor the change of the number of
factors, and thus detect the structural breaks in the factor model. To be more specific, let J be
a prescribed integer satisfying n » J » m. After dividing [0, 1] into J equally-spaced intervals
S; = [%, %) forj=1,...,J —1and Sy = [%, 1], we further assume that there is no break
in [0, 55) U [2252,1] and the distance of any two change points is greater than 2/.J. We fit the
data in each subinterval with a factor model without structural breaks and estimate the number

of factors in each subinterval. In particular, let

~J 1 7] —~ o g ~J
By i(h) = ViYirns M = 3035003 (R, (17)
t:ln(jjl)J+1 h=1
for j =1,...,J, then the number of factors in the j-th subinterval can be estimated by
- A
k}l — arg min 2L (18)

1<k<R )/
)‘j,k

where X;J . is the k-th largest eigenvalue of 1/\\/1‘]] . When we track the possible changes of the
number of factors in these subintervals, three situations that can happen to %’ and S; need to be

considered:

~

(i) when %]J #- kJ %jj_l = %J_Q, and @3] # k7

1 1 the break happens in the interior of the

interval S;;

(ii) when EJJ = k7

_1, no break happens in the interior of Sj; or the break happens near the left

end of S;, and the number of factors remains the same after the break;
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(iii) when @3] # %]71, %’71 = %}72, and %3] = A}-]H, the break happens near the left end of Sj,

and the number of factors changes as well after the break.

The case when EJJ # @3]71, %-]71 # %772 and @3] = %3] +1 1s not included here because it shall be
considered when discussing %-]_1 and indicates that the change point may happen in the interior
of S;_1. The case when %3] #* %7_1, /155-7_1 #* /1557_2 and @57 #* %}IH, is not discussed above because
there is at most one change point in two consecutive subintervals under our assumptions. For real
data analysis, if it happens or the estimated number of factors varies frequently, it may indicate
that a larger J should be considered.

For case (i), the complement loading spaces before the break and after the break in (9) can
be estimated by with data in the intervals S;_; and S;41 respectively, and then the estimate of
the location of the break is obtained by the method in Section 2.2. For cases (ii), to detect the

existence of a change point near or in the ends of S, we re-divide the interval [0, 1] into J + 1

subintervals S§ = [0, 55), S¥ = [231, 2283) for j = 2,...,J — 1 and S%_ | = [25,1], and then
estimate the number of factors in these subintervals, denoted by @17 L @:ﬁl Note that the
midpoints in subintervals S1,...,S; consist of the endpoints of subintervals S5,...,S5%_;. There

are two situations that can happen to %] *in case (ii):
(a) when i{:\j* = %3], there is no break in the end of S;;
(b) when i{}\j* # %], the break happens near the left end of S;.

For case(b) and case (iii) discussed above, we can estimate the complement loading space before
the break with data in the interval S7_; and that after the break with data in the interval S7,,,
and then construct the sample objective function in (9) to estimate the location of the change

point.

5 Empirical Illustration

We shall here conduct a Monte Carlo simulation study to examine the finite sample performance of
the proposed change-point estimation procedure and multiple change-point detection algorithm.
Throughout the simulation, we set hg = 1 for simplicity, and results for estimation performance
of proposed estimators and comparisons among different methods are presented in Sections 5.1

and 5.2 respectively.
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5.1 Estimation performance for change-point location and loading space

We first examine the estimation performance for change-point location and loading spaces dis-
cussed in Section 2.2 and 2.3. For this, we generate the noise process as a Gaussian process whose
covariance matrix has 1 on the diagonal and 0.5 in all off-diagonal entries. Let k1 = k3 = 3 and
the factor process is simulated from 3 independent autoregressive(AR) models of order 1 with AR
coefficients 0.9, -0.7, and 0.8 and with innovation standard deviation 2. We generate entries of the
loading matrix A; as independent sample from the uniform distribution on [—p“si/ 2 poi/ 2], then
d; characterizes the factor strength of A;. Let the change-point location vy = 0.5, and we consider
four different scenarios on the factor strength, namely SS (§; = d2 = 0) in which strong factors are
used both before and after the change point, SW (d; = 0 and d2 = 0.25) in which strong factors
are used before the change point and weak factors after, WS (03 = 0.25 and d2 = 0) in which
weak factors are used before the change point and strong factors after, and WW (01 = do = 0.25)
in which weak factors are used both before and after the change point. Let n; = 0.1 and 12 = 0.9.
For each setting, we generate 1000 realizations, and examine if the procedure proposed in Section
2.2 can successfully identify the change-point location and the associated loading spaces before
and after the change point.

We first consider the case when the numbers of factors are known, and Figure 1 provides the
histograms of the proposed change-point location estimator 7 for different settings when n = 1000.
It can be seen from Figure 1 that, if the factor strength is weak in at least one regime, before
or after the change point, then the estimation efficiency in that regime suffers from the increase
in dimension. In contrast, the estimation efficiency in the strong regime does not seem to be
affected by the curse of dimensionality. This is in line with the results in Theorem 1; see also the
discussions thereafter. In addition, it can be seen from the middle panels in Figure 1 that, when
the factor strengths before and after the change point are different, namely settings SW and WS,
the estimation bias, though asymptotically negligible, is more likely to be toward the regime with
weaker factors. In particular, when the factor strength after the change point is weaker as in the
SW setting, then it is more likely to overestimate «y. On the other hand, if the factor strength
before the change point is weaker as in the WS setting, then it is more likely to underestimate
~v0. We also provide in Table 1 a summary of the estimation error |y — 9| when n = 400, 1000.
The estimation errors for the loading spaces are summarized in Table 2, from which we can see

that the estimation procedure proposed in Section 2.2 performs reasonably well under all the
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considered settings.

p=20,n=1000, Setting SS p=20,n=1000, Setting SW p=20,n=1000, Setting WS p=20,n=1000, Setting WW
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Figure 1: Histograms of estimated change-point location under different settings when n = 1000
and k; and ko are known. The dashed line shows the true change-point location v¢ = 0.5, black
bars show the frequencies of underestimation, and grey bars show the frequencies of overestima-

tion.

Table 1: Average estimation error |y — 7| when k; and ko are known in Section 5.1
n n = 400 n = 1000
P 20 40 100 20 40 100

SS 0.035 0.039 0.040 | 0.015 0.018 0.018
SW | 0.051 0.066 0.083 | 0.023 0.029 0.039
WS | 0.0564 0.060 0.081 | 0.023 0.027 0.038

WW | 0.0563 0.060 0.071 | 0.024 0.028 0.034

For the case where the number of factors are unknown, Tables 3 and 4 provide the average
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Table 2: Average estimation error D{M[Q;(7)], M(Q;)} when k; and k2 are known in Section

5.1
n n = 400 n = 1000
D 20 40 100 20 40 100
Setting SS 01 = 0.059 0.055 0.053 | 0.033 0.032 0.031
d2 =0 0.059 0.057 0.055 | 0.033 0.032 0.031
Setting SW | §; = 0.058 0.056 0.053 | 0.033 0.032 0.031
02 =0.25 | 0.095 0.099 0.113 | 0.049 0.053 0.058
Setting WS | 61 = 0.25 | 0.093 0.094 0.110 | 0.048 0.052 0.058
d2 =0 0.060 0.056 0.053 | 0.034 0.032 0.032
Setting WW | §; = 0.25 | 0.089 0.095 0.103 | 0.049 0.052 0.057
02 =0.25 | 0.093 0.094 0.105 | 0.050 0.052 0.057

estimation errors for loading spaces and threshold value when @1 = Eg = 4. It can be seen

that their patterns are similar to those in Table 1 and Table 2, and the proposed method works

reasonably well when k1 and ko are overestimated.

Table 3: Average estimation error |y — p| when the numbers of factors are unknown and overes-

timated as 4 in Section 5.1

n n = 400 n = 1000

P 20 40 100 20 40 100
SS 0.029 0.030 0.034 | 0.012 0.013 0.016
SW | 0.041 0.051 0.074 | 0.019 0.024 0.034
WS | 0.041 0.050 0.069 | 0.018 0.023 0.030
WW | 0.042 0.047 0.059 | 0.019 0.022 0.028

5.2 Performance of multiple change-point detection

In this subsection we investigate the performance of our method when the number of change

points is unknown, and compare it with the method introduced in Cho and Fryzlewicz (2015),

which is designed to detect multiple change points for high-dimensional time series without a

factor structure and requires the observed process to be stationary within each regime.

20



Table 4: Average estimation error D{M[Q;(7)], M(Q;)} when the numbers of factors are un-

known and overestimated as 4 in Section 5.1

n n = 400 n = 1000

D 20 40 100 20 40 100
Setting SS 01 = 0.045 0.045 0.045 | 0.027 0.027 0.028

d2 =0 0.045 0.046 0.046 | 0.027 0.028 0.027
Setting SW | 61 = 0.047 0.048 0.048 | 0.028 0.028 0.029

02 =0.25 | 0.073 0.085 0.085 | 0.040 0.043 0.048

Setting WS | 61 = 0.25 | 0.073 0.084 0.084 | 0.038 0.043 0.048
d2 =0 0.047 0.047 0.047 | 0.027 0.028 0.028
Setting WW | §; = 0.25 | 0.074 0.083 0.083 | 0.040 0.044 0.050
d2 =0.25 | 0.073 0.083 0.083 | 0.039 0.044 0.049

Factors are assumed to be strong in all regimes, and the entries of the loading matrices in all
settings are generated as independent sample from the uniform distribution on [—1,1].

Three settings are considered.

1. One single change point at 0.5. k; = 1 and ko = 2. The factor process is stationary, follows
an AR(1) model with AR coefficient 0.9 before the break, and consists of two independent
AR processes with AR coefficients 0.9 and -0.8 after the break. The noise process is sta-
tionary and Gaussian whose covariance matrix has 1 on the diagonal and 0.1 in all the the

off-diagonal entries.
2. Two change points at 0.33 and 0.6. k1 = ko = k3. The factor process is non-stationary
xy=—01t/n+ 09241 + e, fort=1,...,n,

where e; ~ N(0,3), and {e;} is an independent Gaussian process, whose covariance matrix

at time ¢ has 0.9 4+ 0.5sin(27t/n) on the diagonal and 0.1 in all the off-diagonal entries.

3. No change points. There is only one factor which is an AR(1) process with AR coefficient
0.9. {e:} is an independent Gaussian process, whose covariance matrix at time ¢ has 2 —

4t/n + 4t%/n? on the diagonal and 0.2 in all the off-diagonal entries.

Set p = 50,100,200 and n = 500,1000. When n = 500, J = 10. When n = 1000, J = 15. We

run 1000 replications. Following Ma and Su (2018), we evaluate the performance of the multiple
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change-point procedure with the relative frequency of correct estimation of the number of breaks
shown in Table 5, and conditional on the correct estimation of m, the accuracy of change-point
estimation, which is measured by Hausdorff distance of the estimated and true locations of change
points. Let D(A, B) = supyep infaea |a —b| for any two sets A and B, then the Hausdorff distance
between A and B is defined as max{D(A, B),D(B, A)}. Table 6 shows the mean and standard
deviation of the Hausdorff distance of estimates and true parameters, and Figure 2 plots the

histogram of the estimated locations of change points conditional on the correct estimation of m.

Table 5: Relative frequency of correct detection of the number of breaks in Section 5.2

Setting 1 Setting 2 Setting 3

n P CF  Our method | CF  Our method | CF  Our method

500 50 | 0.970 0.962 0.617 0.840 0.779 0.994

100 | 0.962 0.947 0.823 0.866 0.590 0.991
200 | 0.956 0.966 0.890 0.866 0.304 0.993
1000 50 | 0.961 0.974 0.693 0.915 0.199 0.998
100 | 0.938 0.976 0.645 0.934 0.039 1.000

200 | 0.914 0.976 0.559 0.922 0.004 0.997

Note: ’CF’ denotes the change-point detection algorithm proposed by Cho and Fryzlewicz (2015).

From Table 5, Table 6, and Figure 2 we can see that under setting 1, when sample size is 500,
the method by Cho and Fryzlewicz (2015) identifies the breaks slightly more frequently than ours
but estimates the break locations less accurate than ours; when sample size increases to 1000,
our method performs better in both break date identification and estimation. When analyzing
data which is not stationary between change points under setting 2 and setting 3, our method
successfully detects all the breaks with a much higher frequency and estimate the break locations

much more precise than the algorithm introduced in Cho and Fryzlewicz (2015).

6 Real Data Analysis

We applied our method to the Stock-Watson data (Stock and Watson, 1998, 2005), containing
132 U.S. monthly economic indicators from March 1960 to December 2003, with n = 526 and

p = 132. The data include real output and income, employment, real retail, manufacturing and
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Table 6: Mean and standard deviation (in the parentheses) of Hausdorff distance between es-

timated and true change-point locations conditional on the correct estimation of m in Section

5.2
Setting 1 Setting 2
n D CF Our method CF Our method
500 50 | 1.556(2.828) 0.921(0.921) | 4.461(3.839) 0.810(1.042)
100 | 1.557(2.791) 0.869(0.831) | 4.132(3.777) 0.822(0.994)
200 | 1.180(2.101) 0.995(0.959) | 3.692(3.440) 0.910(1.031)
1000 50 | 0.685(1.236) 0.469(0.478) | 3.662(3.060) 0.455(0.597)
100 | 0.646(1.170) 0.521(0.514) | 2.634(2.253) 0.527(0.641)
200 | 0.633(1.043) 0.521(0.514) | 2.277(1.964) 0.565(0.602)

Note: For ease of presentation, all values in this table are multiplied by 100.

trade sales, consumption, interest rates, price index and other economic indicators. Stock and
Watson (2005) provided more detailed information about this data set and transformations needed
before analysis.

Set hg = 1 and J = 12. Figure 3 plots the estimated number of factors in the subintervals,
and it indicates that there might be two change points. One happens in S}, and the number
of factors remains at 1 after the break, and the other one happens in S}, and the number of
factors increases to 2 after the change point. Using methods described in Section 4, we obtain
the estimates for two change points, 0.735 and 0.920, and @1 = @2 =1 and Eg =2

It implies that the dynamics of economic indicators experienced permanent structural changes
around May 1992 possibly due to the economic downturn in early 1990s and around June 2000

because of the dot-com bubble.

7 Conclusion

Although factor models have been frequently used in the study of high-dimensional time series,
existing results were mostly developed under the framework of Chamberlain and Rothschild (1983)
and Bai (2003). Such a factor modeling framework, however, typically requires the noise process to

be idiosyncratic and as a result does not allow the existence of strong cross-sectional dependence.
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Figure 2: Histogram of estimated locations of change points by the method in Cho and Fryzlewicz
(2015) and ours conditional on the correct estimation of m under setting 1 and setting 2 when

n = 1000 and p = 200 in Section 5.2. Dashed lines show the true locations of change points.

In addition, it may suffer from certain identifiability issues as discussed in Lam et al. (2011). To
address these, Lam et al. (2011) in their influential paper proposed a new framework for factor
analysis of high-dimensional time series. The major goal of the current paper is to consider the
recently proposed factor model of Lam et al. (2011) in the change-point setting, and develop
consistent estimators for the change-point locations and the associated factor loading spaces.
Asymptotic properties of the proposed estimators have been carefully studied in Section 3, from
which we can see that the convergence rates depend on an interplay between the dimension of
the observed time series and the strength of the factor loading.  Furthermore, we show that

the proposed estimators are still consistent when the numbers of factors are overestimated. The
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Figure 3: Estimated numbers of factors in subintervals {S;} and {S} for real data analysis in

Section 6.

algorithm for multiple change-point detection is also proposed and discussed. Compared with
existing results on change point estimation of factor models for high-dimensional time series, a
distinguished feature of the current paper is the allowance of strong cross-sectional dependence.
Another advantage of the proposed algorithm is that we exclusively focus on the changes of the
factor loading space and can handle the situation when the factor or noise process is non-stationary
over the sampling period while most existing multiple change-point detection approaches for high-
dimensional time series require the observed process to be piecewise stationary or ’close’ to a
piecewise stationary process. In particular, it can be seen from the simulation results in Section
5.2 that our algorithm performs well in both change-point identification and estimation when the

dynamics of factor and noise processes vary along with time.
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Appendix: Proofs and Lemmas

In this section, we mainly focus on the mathematical proofs for before the break and when e > 0.
The results for after the break or ¢ < 0 are included, but most of proofs are omitted since they
are quite similar. For any fixed € # 0, there exists a positive integer N such that when n > N,
le| > (h + 1)/n, therefore, for Lemmas 2-7, we only consider when |e| > (|h| + 1)/n. In addition,
the model is not distinguishable for all values in [k/n, (k+ 1)/n) as the break point where k € Z*,
so for simplicity we treat en as an integer in the proofs. We use C's to denote generic uniformly

positive constants which only depend on the parameters.

Lemma 1. For 0 < c; < co <1, and ¢1 and co are from the same one of the three intervals, Iy,

Iy or I3 defined in (14), let

~ n_ x X/ I . .
I‘x(h, 61,62) _ Zt—l t Zt\.;ézq{lc;)ktg[ on}

Under Conditions 1 and 2, for any h € [1, ho], it holds that

ITa(h,c1, e2)[3 < kfpaxos

max~ x?

(3h + 8a)k2, ok

max— T

N(Cl, CQ)

B (|Ts(h 1, e2) = Tulhier ) 3) <

where o = Y72 a(t)'%/C, and kmax = max{k, ko}.

Proof: Let aqe and Ggq¢ be the (gq,¢)-th entry in I'y(h,c1,c2) and f‘x(h, c1, c2) respectively. By

Condition 2 and Jensen’s inequality we know that E(mf”) < 02 and E(a:f”) <ol fori=1,2,

2

2 and

j=1,...,k,and t = 1,...,n. Let x4, be the ¢-th entry in x;. We have E(x?j) <o

E(azf,j) <ot forj=1,...,k whent < yon, for j = 1,..., ks when ¢t > yon. By Cauchy-Schwarts

inequality,
1 lean| 2 1 |can] |2
’aq752 — m Z E(xthﬂh’g) < m Z \/E(xtz,q)E(‘T%+h,€) :0';1.
L2074 en)+1 LC2) 4 ern)+1

It follows that [Ty (h, c1,c2)|3 < |Tu(hycr,c2)|% < k20

max- x*
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By Proposition 2.5 in Fan and Yao (2003), we have

2
n
E(aq,f - aq,f)Q = Cl 62 2 Tt,qlt+hl — (xt,qxt-‘rh,f)]j{[clnj<t<[62nj}
g t=1
1
= W Z El2i, g2t +h,0 — E(@t,q%t 40,0 [Tt0,0Tt0 10,0 — E(Tt,0%t540,0)]
1,C2 1 —ta|<h
[c1nJ<t1,t2<[02nJ
1
Nl ) > Elzt,q2t+h0 — E(@t1,q%0 40,0 [Tts,0Tt0 100 — E(@t,%154h,0)]
1,52 |t1—t2|>h
I_can<t1,t2<|_02nJ
N(e1,e2)—2h—1
< [(2h + 1)N(c1, c2) — h? — hlos n (N(c1,¢2) = h)os 7S a(u)=2<
N(Cl,02)2 N(Cl,02)2 el
3hN(c1,c2)0%  (N(cy,c2) — h)aos _ (3h + 8a)os
N(ey,e2)? N(ey,e2)? N(ecp,e2)

Thus, [Ty (h, c1, ¢2) =T (h, c1,¢2)[3 < [T (h, c1, ¢2) =T (h, 1, 02) [} < (3h480) k20t /N (e, c2).

]
Lemma 2. Under Conditions 1-4 and 6, for e € (—y9,1 — ) and |e| > (h + 1)/n, it holds that
B (IS0 70 + ) = Zyalh 20 + €)B) < 144(3h + Sa)atkd v pn ",
where v = max{o,,0.,1}, and a1 > 1 satisfies | Aslla < a1p™>=%/2, for i=1,2.

Proof: When € > 0,

Ey,l(ha Yo + 6) - E%l(ha Yo + 6)

h N h h
- AL Ta(h, 0,70 — ) — T (k0,90 — 1) ) A
[(70 ) 1< (h,0,7% — ) (h; 0,70 n)) 1
h ~ h h
+—Aq (Fx(hﬁo — =) — La(hy o — ﬁo)) A,
n n n

h - h h
+(e — H)AQ (F:c(hﬁo,’m +€— ﬁ) — T2 (h, 70,7 +€— n)) Alz]

_h o
1 R / / / / 1 / / / /
o Z (A1xi1€r ), + X1 A + €8y p) + " Z (A1xi €1y, + Xy, 0 AL + €184 )
t=1 t=ro—h+1
1 ro+len|—h
/ / !/ /
+— Z (AoXe o€y, + X 0 Ay + €16, p)
t=ro+1

= L+ 1L+ I3+ 1.

Condition 4 implies that there exists a positive constant ag such that |A;]z < agp?~%/2 for
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i =1,2. Let a; = max{ap, 1}. By Lemma 1 and Condition 3, we have

~ h h
BIE <300 — 1Al B (120,090 = %) = To(h. 030 = 1)1 )
?)h2 ~ h h
1A (1B = 20) ~ Tl = )R - el

+3(e — f) |A23-E <||I‘x(h,’70,’Yo te— )= Tu(h0,0 +e - n)l%)

3(3h + 8a)k2, o he o I he 4o
< ¥ n2) ((vo—n)ai‘p2 Pt hap®™ " T (e = —agp? 252)

3(3h + 8 k‘
< ( 02 max :c (’Yop2 251 +hp2 01— 6277, _’_6p27252> ]

Since x; and &; are independent,

1 ro—h 2 1 ro—h 9
/ 2 /
EEZAm@M<MMEh2mmwF
t=1 2 =1
alpl 5 ki ro—h 2 1-6, ki P ro—h ) )
< Z Z E Z T 1,i€t+hy | S Z Z Z Lt1,i€t+h,j
i=1j5=1 t=1 i=1j=1 =
’YOalkmaxo';%ng2 o
< - , (19)
and
2
1 o a2 kmaxo202p? =0
Z eXyip Al < W Prax 75 7eP ) (20)
n
t=1 2
where ¢ ; is the j-th entry in €;. On the other hand,
h h p 4,2
1 TO 1 "< 700 D
EHE €t5t+hH EH* 5t5t+hH S 2 Z Z Z E(e} 1€t+h,] ne :
t=1 =1 t=1 i=1j5=1
Together with (19) and (20) we have
9 S'yoalkmaxaxagpl 01 370a%kmaxa%0§p1 o 3’}/004 2 970a%kmaxl/4p2
B3 < + < ,
n n n n
where v = max{o,, 0., 1}. Similarly, we can show that
9a? hkmax*p? 9ea? kmax v p?
B3 < Sy, < S P

Hence,

& 2
B2y (k0 + €) = Bya (ko + o) < E(INf2 + 2]z + 3] + [ L]2)*
< E|L3 + 4E| L3 + 4E| 33 + 4E| L3
h h
< 12(3h + 8a) (7o o €)atk?  otp*n™t + 36(y0 + - €)a2 kmax i p?n !

h
< 48(3h + 8a) (o + — + €)atk:, vpPnTt < 144(3h + 8a)atk?, vipPn L.
n

max
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When € < 0, it can be proven in a similar fashion. |

Lemma 3. Under Conditions 1-4 and 6, for e € (—y0,1 —v9) and |e| > (h + 1)/n, it holds that

_ —(h+1
Y003 kmaxo2p' 0, € (=0, (+ ),

[Zy1(hs70 + €)ll2 < 2 2 1-8 1-61/2—62/2, —1 1-6 h+1
askmaxos(yop' % + hp'~ 1/2=02/2 =1 4 epl= 2), ee (%=, 1—0),

and

3 hmax02[—ep! 0 + hp! 02702271 (1 — yg)pl=%2], €€ (=, “LFD),;

132y2(h, 0 +€)]2 <
(1 — 740)a3kmaxo2pl ™ 02 €c (%, 1—).

Proof: By the definition of X, ;(h,~) and Lemma 1, when € > (h + 1)/n, we have

ro— r0 ro+len|—h
|Zy1(hv0 + ), = Z (YeYisn) + Z E(ytyiin) + Z E(ytyin)
t=1 t=ro—h+1 t=ro+1 2

h h h
o+ 1Az - [Asfla - [Ta(hv0 = =),

h h
He— )| A2l [Talh, 0,70 + €~ ) b

h
< (- E)HA1H§ | T2(h, 0,70 —

2, 1-61/2-82/2,, 2,16

2 2 1-6
< Voalkmaxazp '+a hkmaxa + Ealkmaxaggp

[
Lemma 4. Under Conditions 1-4 and 6, for € € (—y0,1 — v9)and |e| > (h + 1)/n, it holds that
=0, ( 70, (h+1))7
B2, (k70 + O ;
< €a2kmaxo2pt ™%, ce€ (%1, 1 —),
and
< a2k (—ep! =01 + hp1*51/2*52/2n*1). & (=0, (h+1))’
By 2o+~ T
ZO, 66(%,1—’)/0)
Proof: When € > (h + 1)/n, by Lemma 1
1 [von+en|—h
HBllzy,l(ha'YO + 6)”2 == > BIE(yiyiin)
t=1 2
ro+|en|—h
Z B 1ALE (Xt 1yt+h) + Z B/1A2E(Xt,2xé+h,2)A,2
t=1 t=ro+1 2
N (70,7 +€— %) h
< - [Bilz - [ Aol (750,70 + € = ) Adfla < eaThmaxozp' %
n
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Lemma 5. Under Conditions 4 and 7, it holds that
IBlAs[3 = a3d®rp' %2, |BYAL3 = a3drp' ™,
where ay is a positive constant such that asp®/?~%/2 < | A | min fori = 1,2, and T = min{ky/k1, k1/k2}.
Proof: Note that
Q)
/
1

kmin{1 — [D(M(Q1), M(Q2))]*} + tr(Q,B1 B/ Qy),

w|Q(Q B ) - r(QQQ}Q2) + tr(QBIB{ Qy)

where ki, = min{ki, k2}. On the other hand,

tr Q/2< Ql B1 ) 21 Q2 = tr(QéQ2) = k2-

1
Hence, tr(Q5B1B1Q2) = kmin[D(M(Q1), M(Q2))]? + k2 — kmin. Then we have |B|Qz3 >
tr(Q5B1B]Qz)/k2 = 7d?. Condition 4 implies that there exists a positive constant as such that

HAZHmin = a2p1/2_5i/2. It fOHOWS
IB} Ag| = agdrp/?—%/2,
The other inequality can shown in a similar way. |

Lemma 6. Under Conditions 1-8, we have G(v9) = 0 and for e € (n1 — v0,m2 — Y0) and || >
(h+1)/n,

ald*r (azu 2p?=201 /2 4 agh;‘ugepQ‘%ln_l — aih}?kmaxoop®~ - 52n‘2), ee(m— 70?@)

a%dQ ( 2p2 202 _ 2h§p2*252n71), ce (hzlj?72 _ 70)

)

G(yo +€) =

Proof: Under Condition 8, by Lemmas 1 and 5, and Theorem 6 in Merikoski and Kumar (2004),
when € < —(h + 1)/n,

G0 +€) = [ByMa(v0 + €)Baf2 = [BySy2(h, %0 + €)3

h* 34
N(70+€,’Yo—*1) hy N(vo—-+,7) h
> |BYA43 LT (b, Y0 + 6,70 — L)AL + —— 2Ty (hf; 0 — ,VO)A/
n n n min

da 2| hE\ o h} ,2

= [BoAq]3 [—(e+ hT/n)HF:c(h’f,’m + €% — *)Alein - hHI‘x(hh’YO - 770)A1’2]
e+ hi/n hy

> 1By | I 4,20+ 0 = )AL W0 20— 2L )]

> a%dQTplf‘sl[(e—i-h /n) a2u0p1 51/2 a%hfzkmaxagpl 02, ]

AP (EREY 2 + i i — a2,
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when € > (h + 1)/n,

G(r0 +€) = [BiMi(y0 + €)Bif2 > [BiSy1(h, %0 + €3
h*
> (e~ h/n)*|BiAz|3 - [Ta(h3, 70,70 + € — f)

2 ”min

— a;ldQ,]_uO(EQpQ 252 2h;p2_262n_1).

From Lemma 4, we have
G(70) = 0.

Lemma 7. Under Conditions 1-6, if p®»»<n=Y2 = o(1), with true k; and ks, as n,p,— o0, we
have

E|B; (i) — Bi(m)|3 < Cp¥in~", fori=1,2,

Proof: Let Yy = @4 g%i1h,ie — E(2tiqTe+n4e). Condition 2 indicates that there exists a positive
constant oy such that E(|Yt2<|) < Uyc. For any 0 < ¢; < ¢2 < 1, by Lemma 6 in Liu and Chen

(2020), we have

1 Lezn] ATh + 48a 4 192a?) o
N(Cl,CQ) cln N(Cl,CQ)

It follows

EHf‘x(h, c1, 02) - I‘z(hy C1, CQ)HLZ1
(47h + 48 + 19202 k2, o)

maxPy

< EHf‘l(hﬁ 61702) - Ffﬂ(ha Clch)HZI17 <

N(Cl,CQ)
Thus we have
E|Zy1(h, ) — By1(h,m)l3
16N(0771 ) h 4
< nA ”A ”2 EH h 0,’}/1 - 7) - I‘I(hv()v’yl - E)HQ
16 yin—h . yin—h 1 16 yin—h
+7|\A1|\%'E Z Xt,15£+hH +7\|A1\|2'E Z EtX;Jrh,lH —E ‘ Z €t5t+hH
n = 2 n = 2 nt
_ _ —h k1 p 2 29§ yin—h ki p 2
C1p4 401 1602p2 201 ne L 16Cop 1
S o t— 1 E DI IP I B T a— DI
t=1 qg=1v=1 t=1 g=1v=1
160 Yyin—h p p 2
3
0313 )
= q: v=1
146, 2261
< Cip +CQP

n nZz
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where C1,Cy and Cs are positive constants and depend only on the parameters.

Hence, with Lemmas 2 and 3

E[M; (y1) — M (71)|3

ho
< ho Y, EIZya(h ) Zya (b ) — By () Sy ()3
h=1
ho N N
< 200 Y [BIZya(h ) = Ty (b 1)l + [y ()3 - BIEyn (hy71) = Sy () 3]
h=1

< Cpt2i,L
Following the proof of Theorem 1 in Lam et al. (2011), we can reach the conclusion. [

Lemma 8. Under Conditions 1-8, for € € [—v9,1 — Y], it holds that

E|G(h,v0 + €) — G(h, %0 + €]
Cip®n=t + Coep> 01n=12 1 Cye2p?=201820-1/2 ¢ e (—ry, 2y,
<< CipPnl, e =0;
C1p2n~1 + Coep? 02112 4 Cue2p2+01=202-1/2 ¢ ¢ (2,1 - 7).
Proof: By the definition of M;(n;), we can see that M(B;) = M(B;(n;)). It implies that there
exists an orthogonal (p — k;) x (p — k;) matrix R; such that B; = B;(n;)R,;.

2

2
G(y) = D IRIBi(m:) Mi(7)Bi(mi)Rilla = Y B3 (1) M () By () -
=1 =1

By the definition of G(7) we have,

Q
2
|
«Q
2

ws )

(1) 2y (hy )2y i(h, ) Bi — Bi(n:) 2yi(hy )y i (hy 7) Bi(1i)

N
e
s

-
I
—
>
I
—

2

)'Syi(h ) = Bi(ni) Zy(hy)|

N
s
L=
=
S

i=1 h=1
+ 2|Bi(n) Sy i(h, )], - Hﬁi(m)/iy,i(hﬁ) - Bi(m)lzy,i(ha’Y)Hz]
2 ho R R R 2
< ) [(\mez [0 7) = Byalhe )], + Bitn) = Bim)l, - (s 7)l2)
i=1h=1

Bi (1) Sy.a(h, )2 (1Bi(mi) |21y () = Syalhy )l + 1Bim) = Ba(ni) o[y (7)) ]

>
(=}

[l
M §

-
I
—
>
I
—
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Lz‘71(h,’)/) + L@Q(h,"Y). (21)



By Lemmas 2-4 and 7,

E(L272(h, Yo + 6))

Clp2n717 €€ (_’707 -

2, —1 2, 2+26, 285, —1 h+1
Cip*n~1 + Czep?t20-202p—1 ee (M1 - ),

9

E(Li(h,v0 +€)) < "

E(L (h o +€)) :Ov ( ’707_@))
1,2\t 70

< 016]?2_62“_1/2 + 0362p2+51_252n_1/2, cc (%7 1— 'YO):
Crp?n=! + Cae2p?=20+202p-1 ¢ ¢ (Zng ’_%);

C1p2n—17 €€ (h+1 1 _70)7

n

E(L2,1(h,v +€)) <

< 01p2—51/2—52/2n—3/2 + C2ep2—51n—1/2 + 0362},)2—261-‘1-52”—1/2’ €€ (_,70’ _%)’

=0, 66(%71_70)‘

From (21), it follows,

E|G(v0 +€) — G(y0 + ¢€)
C1pPn~! + Coep? 0= 1/2 4 Cye2p? 214027112 e (=g, —2);
< Clp2n717 € = 0,

C’lp2n_1 + C2€p2—52n—1/2 + 0362p2+61_252n_1/2, ce (%’ 1— '70)'

Proof of Theorem 1. Since G(r) = 0 and G(rg) = 0, for any fixed € > (h+1)/n, it follows that

P(F =1y > €) = P[G(ro) > G(7),7 > ro + €]

P[é(ro) —G(ro) > G(7) — G(F) + G(7), 7 > ro + e]

P[@(ro) ~ Glro) + G(F) — OF) + SadPridp™ — G(F) > %a%d27u262p2 % 7>+ e

p[yé(m) — G(ro)| > + a2d27u262p2 252] +P[\CA¥(?) — G| > a2d27u262p2 22 B s+ e]
[3 4al27'u262p2 202 _ G(r) > a2d27'u362p2 262 T >0+ e]

P[|CA§'(T0) —G(ro)| > a2d27'u262p2 252] + P[|CA¥(7’“\) - G| > a2d27u(2)62p2_262,? > 7o+ 6]

+P[G( r) < a2d27u06 P22 P> opg + 6]

I+ Is + Is.
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By Lemma 6, Lemma 8, and Chebyshev’s inequality, if praxp—1/2 — o(1) and n is large enough,
when 7 > rg + ¢, we have

- CQP(Sanl/Q

Il < 01])25271_1, IQ s 13 =0.
€
Hence, there exists a constant C' such that
R C 62 71/2
P(r>r0+e)<&, for e > 0.
€
[
Proof of Theorem 2. When 7 > g, from Theorem 1 in Lam et al. (2011), it follows
DIM[Q2(3)], M(Q2)} = O, (0™, as n,p — 0.
Now we start to investigate the asymptotic properties of M[Ql(ﬁ)] when 5 > ~q.
For € > 0, Lemmas 2-4 imply that
M (70 + €) = Mi(y0 + €)|
ho
< 2 (IBa(h 0+ ) = By (b0 + O3 + 218y (h %0 + Ol - 181 (k70 + ) = Sy (b0 + )2
h=1
= Op(P*n") + Oy(P* V%) + Op(ep® 2012
= Op(P* 02 4+ Op(ep® 20 1). (22)

Under Conditions 2 and 4, it follows from Lemma 1

Yo+|en|—h

1
yalhiro+ €)= Byalhro)la =~ Y, By,
t=ro—h+1

AZFx(hv Y, Y0 +€— h/TL)A,z

N(~o — h/n, N(y0,70 +€—h
H (o = h/n 70)A1I‘x(h,’m—h/n,vo) 5+ 0,70 + € = /) )

n n
_ O(epl—ég)+O(p1—62/2—5min/2n—l>.

Hence,

M (ro + €) — M2
h
< 20: HEy,l(h,ro + €)Xy 1(h,ro+€) — Ey,l(h,7“0)2]3/71(h,7“0)’“2
hh=01
D (1Bya(hyro + €) = Zy 1 (h, 10) 3 + 2 By1 (B o) 2 - [Bya (B o + €) — Ey1(h, 70)|2)
_ hO_(leszQ(SQ) + O(p2 02 ming=2) 4 O(ep? 01702 4 O(p2*51*52/2’5m1“/2n’1).

A

34



If pomaxp=1/2 = (1), together with (22), we have

HR\/II(TO +€) — M2
< |[Mi(ro + €) = My(rg + €)|2 + [Mi(ro + €) — My |2

= 0,(p* V) 1 O(ep?017%2) 1 O(2p?22),
Theorem 1 tells us if 7 > o, |7 — 70| = Op(p?2n~1/2). Therefore,
M (7) = M}z = Op(p? " 12).
Under Condition 5, by Theorem 9 in Merikoski and Kumar (2004), we can see that
IMiinin = [Zy,1(h,50) i = 1AL3 1Z2,1 (B, %0) i 1A1]3 = O ).
Following the proof of Theorem 2 in Liu and Chen (2016), we have

DIM[Q:i(F)], M(Q1)} = O, (" n~1?),

as n,p — o, when 7 > rg.

The conclusions for 7 < ry can be proven in a similar way. |

Lemma 9. Let B} be ap x (p — @z) orthogonal matriz such that M(B}) e M(B;) fori = 1,2.
Under Conditions 1-4 and 9, for any B} and € € (—v9,1 — ) and |¢| > (h + 1)/n,

:07 €€ (_707_%)7

< O(ep'™2), ee (M, 1),

IB g1 (hv0 + ©)|2

/ < O(ep'™) + O(p' /2 %2n=1) e e (=, — 1),
BY'S, »(h "
1B Xy2(h, 0 + €) |2 b

=0, ce (4=,

Proof. Note that for B} such that B;“/Ai = 0, following the proof of Lemma 4, we can reach the
conclusion. -
Proof of Theorem 3: Under Conditions 1-9, if pmaxn=1/2 = (1), similar to the proof of

Theorem 1, we obtain that
|Bi(mi) — Bi(mi)|, = Op(p°n=/?), fori =1,2.

Since

~
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we have
||1A3¢,;;, (m:) =B, 7. (mi)], < |Bi(mi) — Bi(mi)], = Op(p"n="2), fori=1,2.

With Lemma 7, similar to the proof of Theorem 1, we can complete the proof.
Proof of Theorem 4: Similar to proof of Theorem 2, we can obtain the results.
Proof of Corollary 1: Since %1 > k1 and Eg > ko, by the definition of D(-,-) and Theorem 4,
the conclusion follows.
Proof of Proposition 1: Similar to proof of Corollary 1 in Lam and Yao (2012).
Proof of Corollary 2: We consider the case when k > 0 first.
An alternative way to denote M(Q:) and M(Qz) is introduced. Let qi,...,q; be an or-
thonormal basis of M(Q1) N M(Qg). Define

Ql = (6117--~ 761];7611’]:;4_17' "aql,lﬁ)v QQ = (qla" : 7(?.I.];;’q27];+17"')q2,k2)5

as orthonormal base of M(Q1) and M(Q2), respectively. It implies that there exists an orthonor-
mal k; x k; matrix V; such that Q; = Q;V; for i = 1, 2.

Define Q° = (qu,...,q;), QI = (Qyys--->9k), and Q5 = (Qj,q,---»Gk,). Note that
QO/Q% =0 and QOIQé = 0, but Q%/Q% = 0 may not be true.

By Theorem 9 in Merikoski and Kumar (2004), it follows,

U]}+1(Q/1Q2) = U];+1(V,1QI1Q2V2) = U]}+1(Q,1Q2)

Q" \, . I .
o (| 2, ](Q Qb)) = )] 1t Q.
Q 0 QQ
and together with Condition 11 we can show that |Q}' Qi[2 = v < 1.
By the definition of M in (16), we have
M
ho
= [2 (voA1Z,1(h,70)A] + (1 — 70)A2Z:E,2(h7'70)A/2)] (23)
h=1
ho !
: [Z (0A1Zz1(h,v0) AL + (1 — Vo)Azzm,z(hﬁo)A'z)] +o(1/n). (24)
h=1

The reason that o(1/n) exists in the above equation is that the observations at time |yon| —
h,...,|7von] are not counted when calculating 3, 1(h,v0) and 3, 2(h,70) in (5) and X,(h) has h

more terms than 3, 1(h,v0) + Xy 2(h, Y0).

36



Condition 4 tells us that there exist two k; x k; non-singular matrices I'; such that A; = Q,;T;
and |Tile = |Ti|min = ]91/2_‘50/2 for i = 1,2. Let X1 = 79 220:1 Flﬁlx,l(h,yo)l'"l and Xy =
(1—70) 20:1 T2, 5(h,v0)Th. With Condition 5, we can show that [3;]2 = [[Z;|lmin = Op(p' =)

for ¢ = 1,2. By the definition of singular value, we have

oo @+ Q)|

- max min_ [(Q1Z1Q] + Q232Q))ull3
SeRp uj =1
dim(S) = k1 + ks —k uesS
> ” IIHﬂIll [(QiZ1Q] + Q2X2Q5)ul3. (25)
ul| =

ue M(Q1) u M(Q2)

We write u = Zle a;q; + Zf;kﬂ biq1,; + Zfiml ¢iqa,; for any u € M(Q;) u M(Q2), and

a=(a1,...,a;), b= (b q,.-..,br,), and c = (cj ;... k) . We have
Q” §
~ o a
Qu=| " J(@ a a)lbv = . |
1 b+Q1Q2C
c
and
Q" §
~ o a
Qu=| S (@ ata) v |={ L,
2 QQb+c

c
If |blls = |c|2, since |ulls = 1 and |QY' Q|2 = v < 1, we have
|Q1ul3 = [a]3 + [b + Q1 Qjcl3 = a3 + ([b]2 — vlc|2)*
1— 2 1— 2 1— 2
> Jaf3 + (1 - v)2[bl3 > |af3 + S5 bJ3 + S5 [c)f > Y52 (26)

Let 31Qju = v; and £,Qbu = vo. By Theorem 9 in Merikoski and Kumar (2004) and (26),

we can show that |vq[2 = Cp'=%. Tt follows

1(Q1=1Q) + Q222Q5)ul3
= [Qivi + Qival3 = viQIQivi + 2vi Q] Qava + vHQ5Qavo

> i3 = 2v|vilz - Ivallz + [v2l3 = (1= v?)[vall3 + (vlvillz — [vall2)® = Cp* 7. (27)

If b2 < |c|l2, then |va|z = Cp'/27%/2, We can also obtain (27).

When k = 0, the conclusions can be reached in a similar fashion.
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Together with (24), (25) and (27), we have
My y i (M) = Cp* 20,

Following the proof of Corollary 1 in Lam and Yao (2012), we can complete the proof.
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