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Abstract

We consider estimating a factor model for high-dimensional time series that contains struc-

tural breaks in the factor loading space at unknown time points. We first study the case when

there is one change point in factor loadings, and propose a consistent estimator for the struc-

tural break location, whose convergence rate is shown to depend on an interplay between the

dimension of the observed time series and the strength of the underlying factor structure.

Our results reveal that the asymptotic behavior of the proposed estimator can be asymmetric

in the sense that a larger estimation error can occur toward the regime with weaker factor

strength. Based on the proposed estimator for the structural break location, we also consider

the problem of estimating the factor loading spaces before and after the structural break. We

show that the proposed estimators for change-point location and loading spaces are consis-

tent when the numbers of factors are correctly estimated or overestimated. The algorithm

for multiple change-point detection is also developed in the paper. Compared with existing

results on change-point factor analyses of high-dimensional time series, a distinguished feature

of the current paper is that the noise process is not necessarily assumed to be idiosyncratic

and as a result we allow the noise process with potentially strong cross-sectional dependence.
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Another advantage for the proposed method is that it is specifically designed for the changes

in the factor loading space and the stationarity assumption is not imposed on either the factor

or noise process, while most existing methods for change-point detection of high-dimensional

time series with/without a factor structure require the data to be stationary or ’close’ to a sta-

tionary process between two change points, which is rather restrictive. Numerical experiments

including a Monte Carlo simulation and a real data application are presented to illustrate the

proposed estimators perform well.

KEYWORDS: Change point estimation; high-dimensional time series; large latent factor

model; non-stationary process; strong cross-sectional dependence.

1 Introduction

High-dimensional time series has been emerging as a common and important data type in ap-

plications from a number of disciplines, including climate science, economics, finance, medical

science, and telecommunication engineering among others. Although numerous statistical meth-

ods and their associated theory have been developed for the modeling and inference of time series

data, existing results mostly focused on the univariate or finite-dimensional multivariate case.

The problem of extending existing results developed under low-dimensional settings to handle

high-dimensional time series, however, is typically nontrivial and requires significant innovations.

For example, when the dimension is larger than the length of the observed time series, the com-

monly used autoregressive moving-average (ARMA) model in its conventional form may face a

serious identification problem as commented by Lam et al. (2011). To handle the phenomenon

of high dimensionality, one typically resorts to certain sparsity-type conditions for the purpose of

dimension reduction. For example, when considering vector autoregressive (VAR) models in the

high-dimensional setting, one typically needs to assume that the coefficient matrices are sparse

in a suitable sense in order to obtain their meaningful estimators; see for example Basu and

Michailidis (2015), Davis et al. (2016) and references therein for research results in this direction.

Unlike the aforementioned sparse VAR approach that aims at extending existing parametric

time series models to their sparse high-dimensional counterparts, a popular approach in the lit-

erature for modeling high-dimensional time series is through the use of a factor model; see for

example Chamberlain and Rothschild (1983), Stock and Watson (1998), Bai and Ng (2002), Bai

(2003) and Forni et al. (2004) among others. The approximate factor model is one of the most
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widely used models discussed by Bai and Ng (2002) and Bai (2003), and it assumes that most

of the variation in high-dimensional time series data can be explained by a few of factors. Serial

dependence is allowed to exist in both the factor and noises but the cross-sectional dependence

in the noise has to satisfy the condition that
řp
i“1

řp
j“1 |σt,ij | ď Cp for any t “ 1, . . . , n, where

σt,ij is the pi, jq-th entry in the covariance matrix of the noise process at time t, C is a positive

constant, p is the dimension of time series, and n is the time length. The common component in

such factor models is asymptotically identifiable when the number of time series goes to infinity.

On the other hand, Lam et al. (2011) proposed an alternative way to define the factor model for

time series data. In their model, the common factors are now viewed as the force that drives all

the dynamics and is used to explain the serial dependence in the data. The noise process in this

setting can exhibit a strong notion of cross-sectional dependence with |σt,ij | ď C for i, j “ 1, . . . , p

and t “ 1, . . . , n, and the common component in the resulting factor model becomes identifiable

no matter whether the number of time series grows to infinity with the time length. Therefore,

both classes of factor models have been proven to be useful in different scenarios.

Change-point detection in the approximate factor model has been well investigated; see for

example Breitung and Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015), Barigozzi

et al. (2018), Ma and Su (2018) and references therein. However, the model proposed by Lam

et al. (2011) in the change-point setting has not been much explored. Related works in this

direction include Liu and Chen (2016), which modeled change points as regime shifts between

different states of a hidden Markov chain, and Liu and Chen (2020), which discussed a threshold

variable approach to modeling the change-point mechanism. The major goal of the current paper

is to consider estimating the recently proposed factor model of Lam et al. (2011) in the change-

point setting, while not imposing additional structural assumption on the underlying change-point

mechanism.

Change-point detection for high-dimensional time series become popular recently. Cho and

Fryzlewicz (2012) used the nonparametric locally stationary wavelet model to estimate the number

and locations of change points. Xie et al. (2013) described a new approach and introduced the

multi-scale model to detect breaks for data with missing values. Cho and Fryzlewicz (2015)

proposed the sparsified binary segmentation algorithm to segment the second-order structure of a

time series. Cho (2016) used the double CUSUM statistic combined with the binary segmentation

algorithm to examine the breakpoints. The existing methods aiming at identifying abrupt changes

for high-dimensional time series with/without a factor structure, require the data to be stationary
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or ’close’ to a stationary process within regimes, which is rather restrictive. The algorithm we

proposed in this paper focuses exclusively on the changes of the factor loading space and can be

applied to the case that the factor and noise processes are non-stationary.

In Section 2, we consider the factor model of Lam et al. (2011) with a single change point,

and propose a projection-based change-point estimator whose convergence rate shown in Section

3 depends on an interplay between the dimension of the observed time series and the strength

of the underlying factor structure. Furthermore, our results reveal that its asymptotic behavior

can be asymmetric in the sense that a larger estimation error can occur toward the regime with

weaker factor strength. Based on the proposed estimator for the structural break location, we

also consider the problem of estimating the factor loading spaces before and after the structural

break. We show that the proposed estimators for change-point location and loading spaces are

still consistent when the numbers of factors are correctly estimated or overestimated. Section

4 describes the algorithm to identify and locate multiple change points when the number of

change points is unknown. Compared with existing results on change-point detection of high-

dimensional time series, one advantage of the current paper is that the stationarity assumption

for the factor or noise processes is not necessary and as a result our method performs well when

the observed data are non-stationary within regimes. It can be seen from our simulation results in

Section 5 that existing results on multiple change-point detection developed for high-dimensional

time series without a factor structure may struggle in detecting and locating the change points

when the observed process is non-stationary within regimes, while the proposed algorithm works

reasonably well. The performance for the proposed methods are further illustrated in Section 6

using real data, and Section 7 concludes the paper. Technical proofs are deferred to the Appendix.

2 Estimating Change-Point Factor Model with a Single Change

Point

In this section we first introduce the factor model with a single change point, and then develop

the projection-based change point estimator in Section 2.2. The estimation for the numbers of

factors is discussed in Section 2.3.
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2.1 Change-point factor model for high-dimensional time series with a single

change point

Suppose we observe a p-dimensional time series yt, t “ 1, . . . , n, according to the factor model of

Lam et al. (2011), then

yt “ Axt ` εt, (1)

where txtu is a latent factor process whose dimension k0 is typically much smaller than p, A P

Rpˆk0 is the associated loading matrix, and tεtu denotes a noise process. Note that both A and

xt are unobserved and can be replaced by AU and U´1xt for any invertible matrix U P Rk0ˆk0 in

the model. Although the loading matrix A is not identifiable, the space spanned by the columns

of A, called loading space and denoted by MpAq, is uniquely defined. Thus, estimation of the

loading space instead of the loading matrix is one of the primary goals for factor models. Since

its first appearance in the influential work of Lam et al. (2011), the latent factor model (1) has

been widely used in the literature for dimension reduction of high-dimensional time series; see for

example Lam and Yao (2012), Chang et al. (2015), Liu and Chen (2016) and references therein.

In model (1), the factor loading structure is assumed to remain the same over the whole

sampling period, which is very restrictive when the datasets span a long time period and may

make forecasting and inference misleading and unreliable (Su and Wang, 2017). For this, we

consider the change-point factor model

yt “

$

&

%

A1xt,1 ` εt, if t ď r0;

A2xt,2 ` εt, if t ą r0,
(2)

where xt,i P Rki , i “ 1, 2, represents the underlying latent factor before and after the change

point whose location is denoted by r0, A1 and A2 are the associated loading matrices with

MpA1q ‰ MpA2q, and pεtq is an independent process whose covariance matrix is allowed to

be time-varying. Recently, there have been efforts in studying the change-point factor model by

incorporating certain beliefs or structural assumptions on the change-point mechanism into the

analysis. For example, Liu and Chen (2016) modeled the change-point mechanism by a finite-state

hidden Markov chain, in which case a change point occurs when there is a regime switching in

the hidden state variable. On the other hand, Liu and Chen (2020) considered using a threshold

variable to model the change point, where the threshold variable is assumed to be α-mixing and

observable up to a small number of unknown parameters. Instead of introducing a Markov chain

process or an additional threshold variable, we shall in the current paper focus on the change-point
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factor model (2) which uses time to naturally divide the observed process into segments before

and after the change point. We shall in the following introduce a projection-based change point

estimator and study its asymptotic properties.

We shall now introduce some notations. For a matrix H, we use }H}F and }H}2 to denote

its Frobenius and L-2 norms respectively. Let σipHq be the i-th largest singular value of H, and

}H}min be the square root of minimum nonzero eigenvalue of H1H. In addition, we use trpHq to

denote its trace if H is a square matrix. Also, we write a — b if a “ Opbq and b “ Opaq, and we

use txu and rxs to denote the largest previous and smallest following integers of x.

2.2 A projection-based change point estimator when there exists a single

change point

For the change-point factor model (2), we consider the situation where one only observes pytq

but not pxt,iq nor pεtq. In this case, the loading matrices themselves are not directly identifiable

as one can replace pAi,xt,iq in (2) by pAiUi,U
´1
i xtq for any invertible matrix Ui P Rkiˆki for

i “ 1, 2. However, the linear spaces spanned by columns of the loading matrices, denoted by

MpAiq “ MpAiUiq, will not be affected by such a transformation and are indeed uniquely

identifiable for i “ 1, 2. Therefore, compared with the conventional change-point setting where

the object of interest is typically a finite-dimensional vector, the current setting can be more

challenging as we have to deal with linear spaces spanned by columns of high-dimensional matrices.

We in the following propose a projection-based estimator for the change-point location, which is

shown to consistently identify the time point at which the underlying loading space undergoes a

structural break.

Given y1, . . . ,yn, for any γ P p0, 1q we can split the data into y1, . . . ,ytγnu and ytγnu`1, . . . ,yn.

Let It,1pγq and It,2pγq be the associated indicator functions where It,1pγq “ 1 if 1 ď t ď tγnu and

It,2pγq “ 1 if tγnu ă t ď n. For i “ 1, 2, we consider the generalized second cross moment matrices

Σy,iph, γq “
1

n

n
ÿ

t“1

E
“

yty
1
t`hIt,ipγqIt`h,ipγq

‰

,

which can be estimated by its sample version

pΣy,iph, γq “
1

n

n
ÿ

t“1

yty
1
t`hIt,ipγqIt`h,ipγq.

By borrowing information from different lags, we consider

xMipγq “
h0
ÿ

h“1

pΣy,iph, γqpΣy,iph, γq
1,

6



which serves as an estimator for

Mipγq “
h0
ÿ

h“1

Σy,iph, γqΣy,iph, γq
1, (3)

where h0 is a pre-specified positive integer. If γ “ γ0 “ r0{n correctly specifies the change-point

location, then one can show that

Mipγq “
h0
ÿ

h“1

Ai

“

Σx,iph, γqA
1
iAiΣx,iph, γq

1
‰

A1
i, (4)

where

Σx,iph, γq “
1

n

n
ÿ

t“1

E
“

xt,ix
1
t`h,iIt,ipγqIt`h,ipγq

‰

(5)

is the generalized second cross moment matrix for the hidden factor process. In this case, Mipγq is

a symmetric non-negative definite matrix sandwiched by Ai and A1
i, and thus its eigenspace asso-

ciated with nonzero eigenvalues coincides with the loading space MpAiq for i “ 1, 2 if Σx,iph, γq

is full rank for some h P r1, h0s. This motivates us to consider estimating the change-point

location by exploiting the orthogonality between eigenspaces associated with zero and nonzero

eigenvalues. To illustrate the idea, we first consider the simple scenario where the number of

factors ki is known; see Section 2.3 for the case when it is unknown. For i “ 1, 2, let qi,kpγq be

the unit eigenvector of Mipγq associated with its k-th largest eigenvalue for k “ 1, . . . , ki, and

qi,ki`1,qi,ki`2, . . . ,qi,p be the unit eigenvectors of Mipγq corresponding to zero eigenvalues, with

11qi,jpγq ą 0 for j “ 1, . . . , p. Define

Qipγq “ pqi,1pγq, . . . ,qi,kipγqq, Bipγq “ pqi,ki`1pγq, . . . ,qi,ppγqq, (6)

which form orthogonal matrices representing eigenvectors for nonzero and zero eigenvalues re-

spectively. For notational ease, we use Qi, Bi, and Mi to denote Qipγ0q, Bipγ0q, and Mipγ0q. To

estimate the change-point location, we introduce the projection criterion

Gpγq “
2
ÿ

i“1

gipγq, gipγq “
›

›

›
B1i MipγqBi

›

›

›

2
. (7)

Note that although Bi is not uniquely defined and subject to any orthogonal transformation, gipγq

is invariant under such transformations. If we project the cross moment matrices tΣy,iph, γq, h “

1, . . . , h0u onto MpBiq, the linear space spanned by columns of Bi, then by (3) we can see that

Gpγq measures the squared norm of such projections. If γ “ γ0 is correctly specified, then

Mipγ0q “ Mi for i “ 1, 2, and by (4) we have

Gpγ0q “
2
ÿ

i“1

›

›

›
Bi
1Mipγ0qBi

›

›

›

2
“

2
ÿ

i“1

›

›

›

h0
ÿ

h“1

 

Bi
1Ai

“

Σx,iph, γ0qA
1
iAiΣx,iph, γ0q

‰

A1
i Bi

(

›

›

›

2
“ 0.
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On the other hand, if γ ‰ γ0, then the data are not correctly separated and one of the subsets

contains data from different factor loading structures. In fact, we can show that if the amount of

misspecification |γ ´ γ0| exceeds a certain rate, then the norm of the aforementioned projection

will be strictly positive, namely Gpγq ą 0; see Lemma 6 in the Appendix.

This motivates us to consider estimating the change-point location by minimizing an empirical

version of the projection criterion Gpγq. To be more specific, let pλi,1 ě pλi,2 ě . . . ě pλi,p be the

p eigenvalues of xMipγq, and pqi,1pγq, pqi,2pγq, . . . , pqi,ppγq be the set of corresponding orthonormal

eigenvectors with 11pqi,jpγq ą 0, then empirical versions of quantities in (6) are given by

pQipγq “ ppqi,1pγq, . . . , pqi,kipγqq,
pBipγq “ ppqi,ki`1pγq, . . . , pqi,ppγqq. (8)

For statistical analyses in the change-point setting, it is typically assumed that the change point

does not occur in the boundary area, namely there exists 0 ă η1 ă η2 ă 1 such that γ0 P pη1, η2q.

A popular choice for pη1, η2q is in the form of pε, 1´εq for some small ε such as 0.1; see for example

the discussions in Zhou and Shao (2013) and Zhang and Lavitas (2018). With data in r0, η1s and

rη2, 1s, we can obtain consistent estimators for B1pη1q and B2pη2q (Lam et al., 2011), and then

estimate Gpγq by

pGpγq “
2
ÿ

i“1

›

›

›

pBipηiq
1
xMipγq pBipηiq

›

›

›

2
, (9)

and we propose to estimate the change-point location by

pγ “ argmin
γPt0, 1

n
,...,1uXpη1,η2q

pGpγq. (10)

It can be seen from our theoretical results in Section 3 that the proposed estimator pγ consistently

estimates the change-point location, and its convergence rate depends on an interplay between

the dimension of the observed time series and the strength of the underlying factor structure. In

addition, it may have an asymmetric asymptotic behavior depending on the factor strength in the

regimes before and after the change point. Given the change point estimator pγ, one can estimate

the loading spaces before and after by MrpQ1ppγqs and MrpQ2ppγqs respectively, whose consistency

and convergence rates are also studied in Section 3.

2.3 Estimation when the numbers of factors are unknown

The number of factors is often unknown in factor analysis. Many approaches to identifying the

number of factors have been developed in the literature. The factor model is characterized by the
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presence of a large eigengap between eigenvalues of the covariance matrix (Barigozzi and Cho,

2020). Based on this observation, the scree test introduced by Cattell (1966) uses an eye-ball rule

to select the number of factors. Parallel analysis (Horn, 1965; Buja and Eyuboglu, 1998; Dobriban,

2020) and deterministic parallel analysis (Dobriban and Owen, 2019; Dobriban, 2020) are also

effective methods to estimate the number of factors designed for data with no serial dependence.

Factor analysis for time series data, which involves dependence between observations and brings

an extra layer of difficulty, was studied by Forni et al. (2000), Bai and Ng (2002), Onatski. (2010),

and Ahn and Horenstein (2013). Bai and Ng (2002) constructed various criterion functions based

on the covariance matrix of the observed process, and Ahn and Horenstein (2013) utilized the

eigenvalues of the covariance matrix to determine the number of factors. The aforementioned

methods cannot handle the situation when there exists strong cross-sectional dependence in the

noise process. To solve the problem, Lam and Yao (2012) proposed a ratio-estimator based on

the eigenvalues of the covariance matrices at nonzero lags.

Following the approach used in Lam and Yao (2012), we can estimate k1 and k2 through the

eigenvalue ratios in the current change-point setting as well. To be more specific, for i “ 1, 2, let

pλi,kpηiq be the k-th largest eigenvalue of xMipηiq, then ki can be estimated by

pki “ argmin
1ďkďR

pλi,k`1pηiq

pλi,kpηiq
. (11)

The search cannot be extended to p because the minimum eigenvalue of Mipηiq goes to 0. We

follow Lam and Yao (2012) and use R “ p{2 when n ě p; when n ă p, we let R “ n{2. We

can then plug (11) into the estimation procedure described in Section 2.2 to handle the situation

when k1 and k2 are unknown. In particular, the projection-based criterion function (9) in this

case becomes

pGpγ,pk1,pk2q “
2
ÿ

i“1

›

›

›

pB
i,pki
pηiq

1
xMiprq pBi,pki

pηiq
›

›

›

2
,

where pB
i,pki
pηiq “ ppqi,pki`1pηiq, . . . ,

pqi,ppηiqq, and we estimate the change-point location by

rγ “ arg min
γPt0, 1

n
,...,1u

Ş

pη1,η2q

pGpγ,pk1,pk2q.

Similar to the discussion in Section 2.2, the loading spaces in this case can be estimated by

MprQiprγ,pkiqq where

rQiprγ,pkiq “ ppqi,1prγq, . . . , pqi,pkiprγqq, for i “ 1, 2.

The consistency results and explicit estimation bounds for the change point rγ and loading spaces

MprQiprγ,pkiqq are provided in Theorem 3 and Corollary 1 respectively.
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3 Theoretical Properties

We shall here study the asymptotic properties of the estimators proposed in Section 2 for change-

point factor modeling of high-dimensional time series. For this, we need to introduce the notion

of factor strength, which plays an important role in understanding the theory of factor modeling

and has been commonly used in the literature; see for example Bai and Ng (2002), Bai (2003),

Doz et al. (2011), Lam et al. (2011), Lam and Yao (2012), Chang et al. (2015), and Liu and Chen

(2020) among others. In particular, it assumes that the loading matrix Ai satisfies

}Ai}
2
2 — }Ai}

2
min — p1´δi

for some 0 ď δi ď 1, and the factor strength is said to be strong if δi “ 0 and weak if δi P p0, 1s.

The factor strength measures the relative growth rate of the amount of information carried by

the observed process yt about the factor process xt as the dimension p increases, with respect to

the growth rate of the amount of noise process.

When presenting the asymptotic properties ofMrpQippγqs, we also need to introduce a measure

that quantifies the distance between two linear spaces which can then be used to assess the

statistical performance of the proposed estimators for loading spaces. In particular, let S1 and

S2 be full rank matrices in Rpˆq1 and Rpˆq2 respectively with maxpq1, q2q ď p. Denote Oi the

matrix whose columns form an orthonormal basis ofMpSiq for i “ 1, 2, then the distance between

column spaces of S1 and S2 can be measured by

DtMpS1q,MpS2qu “

"

1´
trpO1O

1
1O2O

1
2q

minpq1, q2q

*1{2

. (12)

The distance measure (12) was first introduced in Liu and Chen (2020), and is a quantity between

0 and 1. In particular, it equals to 0 if MpS1q ĂMpS2q or MpS2q ĂMpS1q, and equals to 1 if

MpS1q andMpS2q are orthogonal. For the special case when q1 “ q2 “ q, the two spaces S1 and

S2 have the same dimension, and the distance measure (12) reduces to

DtMpS1q,MpS2qu “

"

1´
trpO1O

1
1O2O

1
2q

q

*1{2

, (13)

which was used in Chang et al. (2015) and Liu and Chen (2016). Since the number of factors is

usually unknown in practice and may be estimated in a nonperfect way, we shall in the current

paper use the generalized version in (12) to measure the distance between two linear spaces.

The following regularity conditions are also needed for theoretical properties.
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Condition 1. Let F j` be the σ-field generated by tpxt,1,xt,2q : ` ď t ď ju. The latent process

txt,1,xt,2u is α-mixing with mixing coefficients satisfying

8
ÿ

t“1

αptq1´2{ζ ă 8,

for some ζ ą 2, where αptq “ supj sup
APFj

´8,BPF8j`t
|P pAXBq ´ P pAqP pBq|.

Condition 2. For any i “ 1, 2, j “ 1, . . . , ki, and t “ 1, . . . , n, Ep|xt,i,j |
4ζq ă σ4ζx , where xt,i,j is

the j-th element of xt,i, σx ą 0 is a constant, and ζ is given in Condition 1.

Condition 3. tεtu is an independent noise process with mean 0 and covariance matrix Σt at

time t. tεtu and txt,1,xt,2u are uncorrelated given F t´1´8 . Each element of Σt remains bounded by

a positive constant σ2ε as p increases to infinity.

Instead of making specific assumptions on the dynamics of the factor process as in Peña and

Box (1987) and Forni et al. (2000), here we consider a general setting where the factor process

only needs to satisfy the mixing condition with bounded moments (Chang et al., 2015). Compared

with the method proposed in Barigozzi et al. (2018) which is designed to detect changes in the

second-order structure of the observed data, our approach does not require the factor and noise

processes to be ‘close’ to stationary processes, and we allow heteroskedasticity in xt,1, xt,2 and εt

not only through their cross-sectional dimension but also the time dimension; see our simulation

results in Section 5.2. Fan et al. (2013) defines the mixing coefficients for a strictly stationary

process in a factor model by

αptq “ sup
APF0

´8,BPF8t
|P pAXBq ´ P pAqP pBq|,

and we shall here use its generalized version for the non-stationary setting as defined in Condition

1; see also Chang et al. (2015). Condition 3 assumes that the noise process is serially independent,

but may have strong cross-sectional dependence.

Condition 4. For i “ 1, 2, there exists a constant δi P r0, 1s such that }Ai}
2
2 — }Ai}

2
min — p1´δi ,

as p goes to infinity.

Condition 5. γ0 P pη1, η2q. For any γ P rη1, η2s, there exists an integer hi P r1, h0s such that

Σx,iphi, γq is full rank and }Σx,iphi, γq}min is uniformly bounded above 0, for i “ 1, 2.

Condition 6. Mipγq admits ki distinct positive eigenvalues, for γ P rη1, η2s, i “ 1, 2.

Condition 4 defines the factor strength before and after the change point. Condition 5 ensures

that Mipγq is full rank and contains information from all components in the factor process.

Condition 6 assumes that the nonzero eigenvalues of Mipγq are distinct from each other. Condition
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7 and Condition 8 shown below make two linear spaces before and after the change point are

differentiable as n and p go to infinity.

For 0 ď c1 ă c2 ď 1, define

Npc1, c2q “ tc1nu´ tc2nu, xt “
2
ÿ

i“1

xt,iIt,ipγ0q,

and three intervals

I1phq “ r0, γ0 ´ h{ns, I2phq “ pγ0 ´ h{n, γ0s, I3phq “ pγ0, 1s. (14)

For any 0 ď c1 ă c2 ď 1 and both c1 and c2 are from the same interval, I1, I2 or I3, let

Γxph, c1, c2q “

řn
t“1 Erxtx

1
t`hIttc1nuătďtc2nuus

Npc1, c2q
.

Condition 7. For any γ P pη1, γ0q, there exists an integer h˚1 P r1, h0s such that Γxph
˚
1 , γ, γ0 ´

h˚1{nq is full rank. For any γ P pγ0, η2q, there exists an integer h˚2 P r1, h0s such that Γxph
˚
2 , γ0, γq

is full rank. The minimum singular values of these two matrices mentioned are uniformly bounded

above u0 ą 0.

Condition 8. There exists a positive constant d such that DrMpQ1q,MpQ2qs ą d as n and p

go to infinity.

Theorem 1 provides the explicit bound for the proposed projection-based change point esti-

mator, from which we can see that the convergence rate depends on an interplay between the

dimensionality of the observed time series and the strength of the factor loading.

Theorem 1. Assume Conditions 1–8. If pδmaxn´1{2 “ op1q, then for any ε ą 0, with true k1 and

k2 we have

P ppγ ă γ0 ´ εq ď
Cpδ1

εn1{2
, P ppγ ą γ0 ` εq ď

Cpδ2

εn1{2
,

as n, pÑ8, where δmax “ maxtδ1, δ2u.

For one-regime factor models where the loading space remains the same over time, pδn´1{2 “

op1q is a quite standard condition to obtain the consistency for the estimation of the loading

space; see for example Lam et al. (2011), Lam and Yao (2012), and Chang et al. (2015). When a

change point exists, in order to estimate the loadings spaces consistently, we need to assume that

this condition is satisfied in both regimes, namely pδmaxn´1{2 “ op1q. If the factors are strong in

both regimes with δ1 “ δ2 “ 0, the condition is reduced to n´1{2 “ op1q which is automatically
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satisfied when n Ñ 8. On the other hand, if the factors are weak with δ1 “ δ2 ă 0.5, then the

condition can be satisfied even when the dimension p grows as fast as n.

By Theorem 1, the proposed estimator pγ in (10) for the change-point location is consistent

under mild conditions. It also reveals that the estimation performance can depend critically on

the strength of factors in both regimes. In particular, if the factors are strong in both regimes

(δ1 “ δ2 “ 0), then the estimation is immune to the curse of dimensionality. On the other hand, if

factors are weak in one regime, then the resulting estimator can become less efficient as p increases.

When factors have different levels of strengths before and after the break, the probability that the

pγ falls in the weaker regime is larger but the estimation precision in the stronger regime is better.

As a result, the overall rate of convergence of pγ depends on the strength of the weaker regime.

Theorem 2 provides the asymptotic property of the estimated loading spaces when the esti-

mated break date is used.

Theorem 2. Assume Conditions 1–8. If pδmaxn´1{2 “ op1q, then as n, pÑ 8, with true k1 and

k2, we have

DtMrpQippγqs,MpQiqu “ Oppp
δin´1{2q

for i “ 1, 2.

By Theorem 2, if δ1 “ δ2 “ 0, the estimator MrpQippγqs converges to MpQiq at the rate of

n´1{2, and thus the curse of dimensionality does not exist. If the factors in regime i are weak,

however, the convergence rate is slower and the noise process distorts the information on the latent

factor; see for example Lam et al. (2011). By Theorem 2, the convergence rate of the associated

loading space estimators is the same as that in factors models without breaks (Lam et al., 2011).

Compared with the results in Liu and Chen (2020) which used a threshold variable to split the

data, the estimation in weak regime does not gain efficiency from data in strong regime because

asymptotically there is no interaction between regimes.

In the following, we will show that when the numbers of factors in two regimes are overesti-

mated, our proposed method can estimate the break date and loading spaces as well.

Condition 9. When pki ą ki, there exists a positive constant d̃ such that DrMpQ1q,MpQ˚
2qs ą d̃

and DrMpQ˚
1q,MpQ2qs ą d̃, for any pˆ ppki´ kiq matrix Si such that dimpMpSiq XMpQiqq “ 0

and i “ 1, 2, where Q˚
i “ pQi,Siq is a pˆ pki matrix.

Condition 9 guarantees that the two augmented linear spaces before and after the change

point are still differentiable.
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Theorem 3. Assume Conditions 1–9. If pδmaxn´1{2 “ op1q, pk1 ě k1, and pk2 ě k2, then for ε ą 0,

we have

P prγ ă γ0 ´ εq ď
Cpδ1

εn1{2
, P prγ ą γ0 ` εq ď

Cpδ2

εn1{2
,

as n, pÑ8.

Theorem 4 will show that the space spanned by the first ki columns of rQiprr,pkiq provides an

estimate ofMpQiq, and it converges as fast asMppQipprqq in Theorem 2, for i “ 1, 2. Define rQiprrq

which consists of the first ki column of rQiprr,pkiq,

rQiprrq “ ppqi,1prrq, . . . , pqi,kiprrqq, for i “ 1, 2.

Theorem 4. Assume Conditions 1–9. If pδmaxn´1{2 “ op1q, pk1 ě k1, and pk2 ě k2, then as n,

pÑ8, we have

DtMrrQiprγqs,MpQiqu “ Oppp
δin´1{2q

for i “ 1, 2.

By the definition of Dp¨, ¨q in (12), we can simply obtain the follow results.

Corollary 1. Assume Conditions 1–9. If pδmaxn´1{2 “ op1q, pk1 ě k1, and pk2 ě k2, then as n,

pÑ8, we have

DtMrrQiprγ,pkiqs,MpQiqu “ Oppp
δin´1{2q

for i “ 1, 2.

It can be seen from Theorem 3 and Corollary 1 that when the numbers of factors are overesti-

mated, our estimators for break date and the loading spaces are still consistent. Their asymptotic

properties are the same with those when k1 and k2 are correctly estimated.

Proposition 1 shown below, similar to the results in Lam and Yao (2012), proves that the

ratios of estimators for nonzero eigenvalues of Mipηiq converge at different rates as n and p grow.

Proposition 1. Assume Conditions 1–8. If pδmaxn´1{2 “ op1q, then as n, pÑ8, we have

pλi,k`1pηiq{pλi,kpηiq — 1, for k “ 1, . . . , ki ´ 1,

pλi,ki`1pηiq{
pλi,kipηiq “ Oppp

2δin´1q
p
Ñ 0,

for i “ 1, 2.
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Proposition 1 indicates that the plot of the estimated eigenvalue ratio will drop sharply at

k “ ki, which provides a partial theoretical underpinning for the estimator of ki for i “ 1, 2; see

also Lam and Yao (2012). When k ą ki, the eigenvalue λi,k is theoretically zero and thus the

property of the ratio pλi,k`1pηiq{pλi,kpηiq can be difficult to investigate. According to Lam and Yao

(2012), although the consistency of (11) cannot be confirmed theoretically, the estimator performs

well in numerical experiments (Chang et al., 2015; Liu and Chen, 2016; Wang et al., 2019; Liu

and Chen, 2020).

4 Multiple Change-Point Detection

We shall in this section consider the situation with multiple change points and extend our results

in Sections 2 and 3 to propose an algorithm for estimating the change-point locations. For this,

we consider the factor model with multiple change points:

yt “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

A1xt,1 ` εt, if 0 ď t{n ď γ0;

A2xt,2 ` εt, if γ0 ă t{n ď γ1;

. . .

Am`1xt,m`1 ` εt, if γm´1 ă t{n ď γm “ 1,

(15)

where Ai P Rpˆki for i “ 1, . . . ,m`1, and DtMpAiq,MpAi`1qu ‰ 0 for i “ 1, . . . ,m. The model

in (15) has m change points, and the case with m “ 0 relates to the situation with no change

point. To detect change points in (15) and estimate their locations, we propose to exploit the

effect of a change point on the estimated number of factors. We shall first use the simple example

with m “ 1 to illustrate the idea. In this case, the loading space contains a change point, and if

one ignores the change point and calculate

Σyphq “
1

n

n´h
ÿ

t“1

Epyty
1
t`hq, M “

h0
ÿ

h“1

ΣyphqΣyphq
1, (16)

pΣyphq “
1

n

n´h
ÿ

t“1

yty
1
t`h,

xM “

h0
ÿ

h“1

pΣyphqpΣyphq
1,

then it will lead to an overestimated number of factors. For this, let pλk be the k-th largest

eigenvalue of xM, and we need the following conditions.

Condition 10. The nonzero eigenvalues of M are distinct.

Condition 11. Define k̃ “ dimpMpQ1qXMpQ2qq. k̃ ă minpk1, k2q is fixed and σk̃`1pQ
1
1Q2q “ ν,

where ν is a positive constant such that ν ă 1 as n and p go to infinity.
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Condition 11 is stricter than Condition 8. When k̃ “ 0, as n and p grow to infinity, Condition

11 requires that }Q1
1Q2}2 ă 1, while Condition 8 indicates that }Q1

1Q2}F ă 1. Condition 11

ensures that as n and p increases, the non-overlapped subspaces in MpQ1q and MpQ2q are still

well apart.

Corollary 2. Assume Conditions 1–7, 10 and 11. If δ1 “ δ2 “ δ0 and pδ0n´1{2 “ op1q, then as

n, pÑ8 we have

pλk`1{pλk — 1, for k “ 1, . . . , k1 ` k2 ´ k̃ ´ 1,

pλk1`k2´k̃`1{
pλk1`k2´k̃ “ Oppp

2δ0n´1q
p
Ñ 0.

Corollary 2 implies that the ratio of estimated eigenvalues will drop sharply at k “ k1`k2´ k̃,

if we combine data from two regimes when the factor strength level across regimes remains the

same. Motivated by this observation and the methods proposed in Ma and Su (2018) and Wu

(2021), we divide the whole time span into subintervals to monitor the change of the number of

factors, and thus detect the structural breaks in the factor model. To be more specific, let J be

a prescribed integer satisfying n " J " m. After dividing r0, 1s into J equally-spaced intervals

Sj “ r
j´1
J , jJ q for j “ 1, . . . , J ´ 1 and SJ “ r

J´1
J , 1s, we further assume that there is no break

in r0, 1
2J q Y r

2J´1
2J , 1s and the distance of any two change points is greater than 2{J . We fit the

data in each subinterval with a factor model without structural breaks and estimate the number

of factors in each subinterval. In particular, let

pΣ
J

y,jphq “
1

n

t
nj
J

u
ÿ

t“t
npj´1q

J
u`1

yty
1
t`h,

xMJ
j “

h0
ÿ

h“1

pΣ
J

y,jphq
pΣ
J

y,jphq
1, (17)

for j “ 1, . . . , J , then the number of factors in the j-th subinterval can be estimated by

pkJj “ arg min
1ďkďR

pλJj`1,k
pλJj,k

, (18)

where pλJj,k is the k-th largest eigenvalue of xMJ
j . When we track the possible changes of the

number of factors in these subintervals, three situations that can happen to pkJj and Sj need to be

considered:

(i) when pkJj ‰
pkJj´1,

pkJj´1 “
pkJj´2, and pkJj ‰

pkJj`1, the break happens in the interior of the

interval Sj ;

(ii) when pkJj “
pkJj´1, no break happens in the interior of Sj ; or the break happens near the left

end of Sj , and the number of factors remains the same after the break;
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(iii) when pkJj ‰
pkJj´1,

pkJj´1 “
pkJj´2, and pkJj “

pkJj`1, the break happens near the left end of Sj ,

and the number of factors changes as well after the break.

The case when pkJj ‰
pkJj´1,

pkJj´1 ‰
pkJj´2 and pkJj “

pkJj`1 is not included here because it shall be

considered when discussing pkJj´1 and indicates that the change point may happen in the interior

of Sj´1. The case when pkJj ‰
pkJj´1,

pkJj´1 ‰
pkJj´2 and pkJj ‰

pkJj`1, is not discussed above because

there is at most one change point in two consecutive subintervals under our assumptions. For real

data analysis, if it happens or the estimated number of factors varies frequently, it may indicate

that a larger J should be considered.

For case (i), the complement loading spaces before the break and after the break in (9) can

be estimated by with data in the intervals Sj´1 and Sj`1 respectively, and then the estimate of

the location of the break is obtained by the method in Section 2.2. For cases (ii), to detect the

existence of a change point near or in the ends of Sj , we re-divide the interval r0, 1s into J ` 1

subintervals S˚1 “ r0,
1
2J q, S

˚
j “ r

2j`1
2J , 2j`32J q for j “ 2, . . . , J ´ 1 and S˚J`1 “ r

2J´1
2J , 1s, and then

estimate the number of factors in these subintervals, denoted by pkJ˚1 , . . . ,pkJ˚J`1. Note that the

midpoints in subintervals S1, . . . , SJ consist of the endpoints of subintervals S˚2 , . . . , S
˚
J´1. There

are two situations that can happen to pkJ˚j in case (ii):

(a) when pkJ˚j “ pkJj , there is no break in the end of Sj ;

(b) when pkJ˚j ‰ pkJj , the break happens near the left end of Sj .

For case(b) and case (iii) discussed above, we can estimate the complement loading space before

the break with data in the interval S˚j´1 and that after the break with data in the interval S˚j`1,

and then construct the sample objective function in (9) to estimate the location of the change

point.

5 Empirical Illustration

We shall here conduct a Monte Carlo simulation study to examine the finite sample performance of

the proposed change-point estimation procedure and multiple change-point detection algorithm.

Throughout the simulation, we set h0 “ 1 for simplicity, and results for estimation performance

of proposed estimators and comparisons among different methods are presented in Sections 5.1

and 5.2 respectively.
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5.1 Estimation performance for change-point location and loading space

We first examine the estimation performance for change-point location and loading spaces dis-

cussed in Section 2.2 and 2.3. For this, we generate the noise process as a Gaussian process whose

covariance matrix has 1 on the diagonal and 0.5 in all off-diagonal entries. Let k1 “ k2 “ 3 and

the factor process is simulated from 3 independent autoregressive(AR) models of order 1 with AR

coefficients 0.9, -0.7, and 0.8 and with innovation standard deviation 2. We generate entries of the

loading matrix Ai as independent sample from the uniform distribution on r´p´δi{2, p´δi{2s, then

δi characterizes the factor strength of Ai. Let the change-point location γ0 “ 0.5, and we consider

four different scenarios on the factor strength, namely SS (δ1 “ δ2 “ 0) in which strong factors are

used both before and after the change point, SW (δ1 “ 0 and δ2 “ 0.25) in which strong factors

are used before the change point and weak factors after, WS (δ1 “ 0.25 and δ2 “ 0) in which

weak factors are used before the change point and strong factors after, and WW (δ1 “ δ2 “ 0.25)

in which weak factors are used both before and after the change point. Let η1 “ 0.1 and η2 “ 0.9.

For each setting, we generate 1000 realizations, and examine if the procedure proposed in Section

2.2 can successfully identify the change-point location and the associated loading spaces before

and after the change point.

We first consider the case when the numbers of factors are known, and Figure 1 provides the

histograms of the proposed change-point location estimator pγ for different settings when n “ 1000.

It can be seen from Figure 1 that, if the factor strength is weak in at least one regime, before

or after the change point, then the estimation efficiency in that regime suffers from the increase

in dimension. In contrast, the estimation efficiency in the strong regime does not seem to be

affected by the curse of dimensionality. This is in line with the results in Theorem 1; see also the

discussions thereafter. In addition, it can be seen from the middle panels in Figure 1 that, when

the factor strengths before and after the change point are different, namely settings SW and WS,

the estimation bias, though asymptotically negligible, is more likely to be toward the regime with

weaker factors. In particular, when the factor strength after the change point is weaker as in the

SW setting, then it is more likely to overestimate γ0. On the other hand, if the factor strength

before the change point is weaker as in the WS setting, then it is more likely to underestimate

γ0. We also provide in Table 1 a summary of the estimation error |pγ ´ γ0| when n “ 400, 1000.

The estimation errors for the loading spaces are summarized in Table 2, from which we can see

that the estimation procedure proposed in Section 2.2 performs reasonably well under all the
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considered settings.
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Figure 1: Histograms of estimated change-point location under different settings when n “ 1000

and k1 and k2 are known. The dashed line shows the true change-point location γ0 “ 0.5, black

bars show the frequencies of underestimation, and grey bars show the frequencies of overestima-

tion.

Table 1: Average estimation error |pγ ´ γ0| when k1 and k2 are known in Section 5.1

n n “ 400 n “ 1000

p 20 40 100 20 40 100

SS 0.035 0.039 0.040 0.015 0.018 0.018

SW 0.051 0.066 0.083 0.023 0.029 0.039

WS 0.054 0.060 0.081 0.023 0.027 0.038

WW 0.053 0.060 0.071 0.024 0.028 0.034

For the case where the number of factors are unknown, Tables 3 and 4 provide the average
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Table 2: Average estimation error DtMrpQipprqs,MpQiqu when k1 and k2 are known in Section

5.1

n n “ 400 n “ 1000

p 20 40 100 20 40 100

Setting SS δ1 “ 0 0.059 0.055 0.053 0.033 0.032 0.031

δ2 “ 0 0.059 0.057 0.055 0.033 0.032 0.031

Setting SW δ1 “ 0 0.058 0.056 0.053 0.033 0.032 0.031

δ2 “ 0.25 0.095 0.099 0.113 0.049 0.053 0.058

Setting WS δ1 “ 0.25 0.093 0.094 0.110 0.048 0.052 0.058

δ2 “ 0 0.060 0.056 0.053 0.034 0.032 0.032

Setting WW δ1 “ 0.25 0.089 0.095 0.103 0.049 0.052 0.057

δ2 “ 0.25 0.093 0.094 0.105 0.050 0.052 0.057

estimation errors for loading spaces and threshold value when pk1 “ pk2 “ 4. It can be seen

that their patterns are similar to those in Table 1 and Table 2, and the proposed method works

reasonably well when k1 and k2 are overestimated.

Table 3: Average estimation error |pγ ´ γ0| when the numbers of factors are unknown and overes-

timated as 4 in Section 5.1

n n “ 400 n “ 1000

p 20 40 100 20 40 100

SS 0.029 0.030 0.034 0.012 0.013 0.016

SW 0.041 0.051 0.074 0.019 0.024 0.034

WS 0.041 0.050 0.069 0.018 0.023 0.030

WW 0.042 0.047 0.059 0.019 0.022 0.028

5.2 Performance of multiple change-point detection

In this subsection we investigate the performance of our method when the number of change

points is unknown, and compare it with the method introduced in Cho and Fryzlewicz (2015),

which is designed to detect multiple change points for high-dimensional time series without a

factor structure and requires the observed process to be stationary within each regime.
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Table 4: Average estimation error DtMrpQipprqs,MpQiqu when the numbers of factors are un-

known and overestimated as 4 in Section 5.1

n n “ 400 n “ 1000

p 20 40 100 20 40 100

Setting SS δ1 “ 0 0.045 0.045 0.045 0.027 0.027 0.028

δ2 “ 0 0.045 0.046 0.046 0.027 0.028 0.027

Setting SW δ1 “ 0 0.047 0.048 0.048 0.028 0.028 0.029

δ2 “ 0.25 0.073 0.085 0.085 0.040 0.043 0.048

Setting WS δ1 “ 0.25 0.073 0.084 0.084 0.038 0.043 0.048

δ2 “ 0 0.047 0.047 0.047 0.027 0.028 0.028

Setting WW δ1 “ 0.25 0.074 0.083 0.083 0.040 0.044 0.050

δ2 “ 0.25 0.073 0.083 0.083 0.039 0.044 0.049

Factors are assumed to be strong in all regimes, and the entries of the loading matrices in all

settings are generated as independent sample from the uniform distribution on r´1, 1s.

Three settings are considered.

1. One single change point at 0.5. k1 “ 1 and k2 “ 2. The factor process is stationary, follows

an AR(1) model with AR coefficient 0.9 before the break, and consists of two independent

AR processes with AR coefficients 0.9 and -0.8 after the break. The noise process is sta-

tionary and Gaussian whose covariance matrix has 1 on the diagonal and 0.1 in all the the

off-diagonal entries.

2. Two change points at 0.33 and 0.6. k1 “ k2 “ k3. The factor process is non-stationary

xt “ ´0.1t{n` 0.9xt´1 ` et, for t “ 1, . . . , n,

where et „ Np0, 3q, and tεtu is an independent Gaussian process, whose covariance matrix

at time t has 0.9` 0.5 sinp2πt{nq on the diagonal and 0.1 in all the off-diagonal entries.

3. No change points. There is only one factor which is an AR(1) process with AR coefficient

0.9. tεtu is an independent Gaussian process, whose covariance matrix at time t has 2 ´

4t{n` 4t2{n2 on the diagonal and 0.2 in all the off-diagonal entries.

Set p “ 50, 100, 200 and n “ 500, 1000. When n “ 500, J “ 10. When n “ 1000, J “ 15. We

run 1000 replications. Following Ma and Su (2018), we evaluate the performance of the multiple

21



change-point procedure with the relative frequency of correct estimation of the number of breaks

shown in Table 5, and conditional on the correct estimation of m, the accuracy of change-point

estimation, which is measured by Hausdorff distance of the estimated and true locations of change

points. Let DpA,Bq “ supbPB infaPA |a´ b| for any two sets A and B, then the Hausdorff distance

between A and B is defined as maxtDpA,Bq,DpB,Aqu. Table 6 shows the mean and standard

deviation of the Hausdorff distance of estimates and true parameters, and Figure 2 plots the

histogram of the estimated locations of change points conditional on the correct estimation of m.

Table 5: Relative frequency of correct detection of the number of breaks in Section 5.2

Setting 1 Setting 2 Setting 3

n p CF Our method CF Our method CF Our method

500 50 0.970 0.962 0.617 0.840 0.779 0.994

100 0.962 0.947 0.823 0.866 0.590 0.991

200 0.956 0.966 0.890 0.866 0.304 0.993

1000 50 0.961 0.974 0.693 0.915 0.199 0.998

100 0.938 0.976 0.645 0.934 0.039 1.000

200 0.914 0.976 0.559 0.922 0.004 0.997

Note: ’CF’ denotes the change-point detection algorithm proposed by Cho and Fryzlewicz (2015).

From Table 5, Table 6, and Figure 2 we can see that under setting 1, when sample size is 500,

the method by Cho and Fryzlewicz (2015) identifies the breaks slightly more frequently than ours

but estimates the break locations less accurate than ours; when sample size increases to 1000,

our method performs better in both break date identification and estimation. When analyzing

data which is not stationary between change points under setting 2 and setting 3, our method

successfully detects all the breaks with a much higher frequency and estimate the break locations

much more precise than the algorithm introduced in Cho and Fryzlewicz (2015).

6 Real Data Analysis

We applied our method to the Stock-Watson data (Stock and Watson, 1998, 2005), containing

132 U.S. monthly economic indicators from March 1960 to December 2003, with n “ 526 and

p “ 132. The data include real output and income, employment, real retail, manufacturing and
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Table 6: Mean and standard deviation (in the parentheses) of Hausdorff distance between es-

timated and true change-point locations conditional on the correct estimation of m in Section

5.2

Setting 1 Setting 2

n p CF Our method CF Our method

500 50 1.556(2.828) 0.921(0.921) 4.461(3.839) 0.810(1.042)

100 1.557(2.791) 0.869(0.831) 4.132(3.777) 0.822(0.994)

200 1.180(2.101) 0.995(0.959) 3.692(3.440) 0.910(1.031)

1000 50 0.685(1.236) 0.469(0.478) 3.662(3.060) 0.455(0.597)

100 0.646(1.170) 0.521(0.514) 2.634(2.253) 0.527(0.641)

200 0.633(1.043) 0.521(0.514) 2.277(1.964) 0.565(0.602)

Note: For ease of presentation, all values in this table are multiplied by 100.

trade sales, consumption, interest rates, price index and other economic indicators. Stock and

Watson (2005) provided more detailed information about this data set and transformations needed

before analysis.

Set h0 “ 1 and J “ 12. Figure 3 plots the estimated number of factors in the subintervals,

and it indicates that there might be two change points. One happens in S˚10 and the number

of factors remains at 1 after the break, and the other one happens in S˚12 and the number of

factors increases to 2 after the change point. Using methods described in Section 4, we obtain

the estimates for two change points, 0.735 and 0.920, and pk1 “ pk2 “ 1 and pk3 “ 2.

It implies that the dynamics of economic indicators experienced permanent structural changes

around May 1992 possibly due to the economic downturn in early 1990s and around June 2000

because of the dot-com bubble.

7 Conclusion

Although factor models have been frequently used in the study of high-dimensional time series,

existing results were mostly developed under the framework of Chamberlain and Rothschild (1983)

and Bai (2003). Such a factor modeling framework, however, typically requires the noise process to

be idiosyncratic and as a result does not allow the existence of strong cross-sectional dependence.
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Figure 2: Histogram of estimated locations of change points by the method in Cho and Fryzlewicz

(2015) and ours conditional on the correct estimation of m under setting 1 and setting 2 when

n “ 1000 and p “ 200 in Section 5.2. Dashed lines show the true locations of change points.

In addition, it may suffer from certain identifiability issues as discussed in Lam et al. (2011). To

address these, Lam et al. (2011) in their influential paper proposed a new framework for factor

analysis of high-dimensional time series. The major goal of the current paper is to consider the

recently proposed factor model of Lam et al. (2011) in the change-point setting, and develop

consistent estimators for the change-point locations and the associated factor loading spaces.

Asymptotic properties of the proposed estimators have been carefully studied in Section 3, from

which we can see that the convergence rates depend on an interplay between the dimension of

the observed time series and the strength of the factor loading. Furthermore, we show that

the proposed estimators are still consistent when the numbers of factors are overestimated. The
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Figure 3: Estimated numbers of factors in subintervals tSju and tS˚j u for real data analysis in

Section 6.

algorithm for multiple change-point detection is also proposed and discussed. Compared with

existing results on change point estimation of factor models for high-dimensional time series, a

distinguished feature of the current paper is the allowance of strong cross-sectional dependence.

Another advantage of the proposed algorithm is that we exclusively focus on the changes of the

factor loading space and can handle the situation when the factor or noise process is non-stationary

over the sampling period while most existing multiple change-point detection approaches for high-

dimensional time series require the observed process to be piecewise stationary or ’close’ to a

piecewise stationary process. In particular, it can be seen from the simulation results in Section

5.2 that our algorithm performs well in both change-point identification and estimation when the

dynamics of factor and noise processes vary along with time.
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Appendix: Proofs and Lemmas

In this section, we mainly focus on the mathematical proofs for before the break and when ε ą 0.

The results for after the break or ε ă 0 are included, but most of proofs are omitted since they

are quite similar. For any fixed ε ‰ 0, there exists a positive integer N such that when n ě N ,

|ε| ą ph` 1q{n, therefore, for Lemmas 2-7, we only consider when |ε| ą p|h| ` 1q{n. In addition,

the model is not distinguishable for all values in rk{n, pk`1q{nq as the break point where k P Z`,

so for simplicity we treat εn as an integer in the proofs. We use Cs to denote generic uniformly

positive constants which only depend on the parameters.

Lemma 1. For 0 ď c1 ă c2 ď 1, and c1 and c2 are from the same one of the three intervals, I1,

I2 or I3 defined in (14), let

pΓxph, c1, c2q “

řn
t“1 xtx

1
t`hIttc1nuătďtc2nuu

Npc1, c2q
.

Under Conditions 1 and 2, for any h P r1, h0s, it holds that

}Γxph, c1, c2q}
2
2 ď k2maxσ

4
x,

E
´

}pΓxph, c1, c2q ´ Γxph, c1, c2q}
2
2

¯

ď
p3h` 8αqk2maxσ

4
x

Npc1, c2q
,

where α “
ř8
t“1 αptq

1´2{ζ , and kmax “ maxtk1, k2u.

Proof: Let aq,` and paq,` be the pq, `q-th entry in Γxph, c1, c2q and pΓxph, c1, c2q respectively. By

Condition 2 and Jensen’s inequality we know that Epx2t,i,jq ă σ2x and Epx4t,i,jq ă σ4x, for i “ 1, 2,

j “ 1, . . . , ki, and t “ 1, . . . , n. Let xt,q be the q-th entry in xt. We have Epx2t,jq ă σ2x and

Epx4t,jq ă σ4x, for j “ 1, . . . , k1 when t ď γ0n, for j “ 1, . . . , k2 when t ą γ0n. By Cauchy-Schwarts

inequality,

|aq,`|
2 “

ˇ

ˇ

ˇ

ˇ

ˇ

1

Npc1, c2q

tc2nu
ÿ

t“tc1nu`1

Epxt,qxt`h,`q

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

Npc1, c2q

tc2nu
ÿ

t“tc1nu`1

b

Epx2t,qqEpx
2
t`h,`q

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ σ4x.

It follows that }Γxph, c1, c2q}
2
2 ď }Γxph, c1, c2q}

2
F ď k2maxσ

4
x.
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By Proposition 2.5 in Fan and Yao (2003), we have

Eppaq,` ´ aq,`q
2 “

1

Npc1, c2q2
E

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“1

rxt,qxt`h,` ´ Epxt,qxt`h,`qsIttc1nuătďtc2nuu

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
1

pNpc1, c2q2

ÿ

|t1´t2|ďh
tc1nuăt1,t2ďtc2nu

Erxt1,qxt1`h,` ´ Epxt1,qxt1`h,`qsrxt2,qxt2`h,` ´ Epxt2,qxt2`h,`qs

`
1

Npc1, c2q2

ÿ

|t1´t2|ąh
tc1nuăt1,t2ďtc2nu

Erxt1,qxt1`h,` ´ Epxt1,qxt1`h,`qsrxt2,qxt2`h,` ´ Epxt2,qxt2`h,`qs

ď
rp2h` 1qNpc1, c2q ´ h

2 ´ hsσ4x
Npc1, c2q2

`
pNpc1, c2q ´ hqσ

4
x

Npc1, c2q2

Npc1,c2q´2h´1
ÿ

u“1

αpuq1´2{ζ

ď
3hNpc1, c2qσ

4
x

Npc1, c2q2
`
pNpc1, c2q ´ hqασ

4
x

Npc1, c2q2
ă
p3h` 8αqσ4x
Npc1, c2q

.

Thus, E}pΓxph, c1, c2q´Γxph, c1, c2q}
2
2 ď E}pΓxph, c1, c2q´Γxph, c1, c2q}

2
F ď p3h`8αqk2maxσ

4
x{Npc1, c2q.

Lemma 2. Under Conditions 1-4 and 6, for ε P p´γ0, 1´ γ0q and |ε| ą ph` 1q{n, it holds that

E
´

}pΣy,iph, γ0 ` εq ´Σy,iph, γ0 ` εq}
2
2

¯

ď 144p3h` 8αqa41k
2
maxν

4p2n´1,

where ν “ maxtσx, σε, 1u, and a1 ą 1 satisfies }Ai}2 ď a1p
1{2´δi{2, for i=1,2.

Proof: When ε ą 0,

pΣy,1ph, γ0 ` εq ´Σy,1ph, γ0 ` εq

“

„

pγ0 ´
h

n
qA1

ˆ

pΓxph, 0, γ0 ´
h

n
q ´ Γxph, 0, γ0 ´

h

n
q

˙

A1
1

`
h

n
A1

ˆ

pΓxph, γ0 ´
h

n
, γ0q ´ Γxph, γ0 ´

h

n
, γ0q

˙

A1
2

`pε´
h

n
qA2

ˆ

pΓxph, γ0, γ0 ` ε´
h

n
q ´ Γxph, γ0, γ0 ` ε´

h

n
q

˙

A1
2



`
1

n

r0´h
ÿ

t“1

pA1xt,1ε
1
t`h ` εtx

1
t`h,1A

1
1 ` εtε

1
t`hq `

1

n

r0
ÿ

t“r0´h`1

pA1xt,1ε
1
t`h ` εtx

1
t`h,2A

1
2 ` εtε

1
t`hq

`
1

n

r0`tεnu´h
ÿ

t“r0`1

pA2xt,2ε
1
t`h ` εtx

1
t`h,2A

1
2 ` εtε

1
t`hq

“ I1 ` I2 ` I3 ` I4.

Condition 4 implies that there exists a positive constant a0 such that }Ai}2 ď a0p
1{2´δi{2 for
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i “ 1, 2. Let a1 “ maxta0, 1u. By Lemma 1 and Condition 3, we have

E}I1}
2
2 ď 3pγ0 ´

h

n
q2}A1}

4
2 ¨ E

ˆ

}pΓxph, 0, γ0 ´
h

n
q ´ Γxph, 0, γ0 ´

h

n
q}22

˙

`
3h2

n2
}A1}

2
2 ¨ E

ˆ

}pΓxph, γ0 ´
h

n
, γ0q ´ Γxph, γ0 ´

h

n
, γ0q}

2
2
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¨ }A2}
2
2

`3pε´
h

n
q2}A2}

4
2 ¨ E

ˆ
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h

n
q ´ Γxph, γ0, γ0 ` ε´

h

n
q}22

˙

ď
3p3h` 8αqk2maxσ

4
x

n2

ˆ

pγ0 ´
h

n
qa41p

2´2δ1 ` ha41p
2´δ1´δ2n´1 ` pε´

h

n
qa41p

2´2δ2

˙

ď
3p3h` 8αqa41k

2
maxσ

4
x

n

´

γ0p
2´2δ1 ` hp2´δ1´δ2n´1 ` εp2´2δ2

¯

.

Since xt and εt are independent,

E

›

›

›

›

›

1

n

r0´h
ÿ
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A1xt,1ε
1
t`h

›

›

›
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2

2
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2
2 ¨ E
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ÿ
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2
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1´δ1

n2
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E
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t“1
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¸2
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a21p

1´δ1

n2
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p
ÿ

j“1

E
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r0´h
ÿ
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x2t,1,iε
2
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γ0a

2
1kmaxσ

2
xσ

2
εp

2´δ1

n
, (19)

and

E

›

›

›

›

›

1

n

r0´h
ÿ

t“1

εtx
1
t`h,1A

1
1

›

›

›

›

›

2

2

ď
γ0a

2
1kmaxσ

2
xσ

2
εp

2´δ1

n
, (20)

where εt,j is the j-th entry in εt. On the other hand,

E
›

›

›

1

n

r0´h
ÿ

t“1

εtε
1
t`h

›

›

›

2

2
ď E
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1
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εtε
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ÿ
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Epε2t,iε
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γ0σ
4
εp

2

n
.

Together with (19) and (20) we have

E}I2}
2
2 ď

3γ0a
2
1kmaxσ

2
xσ

2
εp

1´δ1

n
`

3γ0a
2
1kmaxσ

2
xσ

2
εp

1´δ1

n
`

3γ0σ
4
εp

2

n
ď

9γ0a
2
1kmaxν

4p2

n
,

where ν “ maxtσx, σε, 1u. Similarly, we can show that

E}I3}
2
2 ď

9a21hkmaxν
4p2

n2
, E}I4}2 ď

9εa21kmaxν
4p2

n
.

Hence,

E
›

›pΣy,1ph, γ0 ` εq ´Σy,1ph, γ0 ` εq
›

›

2

2
ď Ep}I1}2 ` }I2}2 ` }I3} ` }I4}2q

2
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2
2 ` 4E}I3}
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2
2
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4
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h
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2
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4p2n´1.
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When ε ă 0, it can be proven in a similar fashion.

Lemma 3. Under Conditions 1-4 and 6, for ε P p´γ0, 1´ γ0q and |ε| ą ph` 1q{n, it holds that

}Σy,1ph, γ0 ` εq}2 ď

$

&

%

γ0a
2
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2
xp

1´δ1 , ε P p´γ0,
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Proof: By the definition of Σy,iph, γq and Lemma 1, when ε ą ph` 1q{n, we have
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Lemma 4. Under Conditions 1-4 and 6, for ε P p´γ0, 1´ γ0qand |ε| ą ph` 1q{n, it holds that
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Proof: When ε ą ph` 1q{n, by Lemma 1
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Lemma 5. Under Conditions 4 and 7, it holds that

}B11A2}
2
2 ě a22d

2τp1´δ2 , }B12A1}
2
2 ě a22d

2τp1´δ1 ,

where a2 is a positive constant such that a2p
1{2´δi{2 ď }Ai}min for i “ 1, 2, and τ “ mintk2{k1, k1{k2u.

Proof: Note that
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The other inequality can shown in a similar way.

Lemma 6. Under Conditions 1-8, we have Gpγ0q “ 0 and for ε P pη1 ´ γ0, η2 ´ γ0q and |ε| ą
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Proof: Under Condition 8, by Lemmas 1 and 5, and Theorem 6 in Merikoski and Kumar (2004),
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›Γxph
˚
1 , γ0 ` ε, γ0 ´

h˚1
n
qA1

1}
2
min ´ h

2
›

›Γxph1, γ0 ´
h˚1
n
, γ0qA

1
1

›

›

2

2



ě a22d
2τp1´δ1rpε` h˚1{nq

2a22u
2
0p

1´δ1{2´ a21h
˚2
1 kmaxσ

2
xp

1´δ2n´2s

“ a22d
2τpa22u

2
0ε

2p2´2δ1{2` a22u
2
0h
˚
1εp

2´2δ1n´1 ´ a21h
˚2
1 kmaxσ

2
xp

2´δ1´δ2n´2q;
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when ε ą ph` 1q{n,

Gpγ0 ` εq ě }B
1
1M1pγ0 ` εqB1}2 ě }B

1
1Σy,1ph, γ0 ` εq}

2
2

ě pε´ h{nq2}B11A2}
2
2 ¨

›

›Γxph
˚
2 , γ0, γ0 ` ε´

h˚2
n
qA1

2

›

›

2

min

“ a42d
2τu20pε

2p2´2δ2 ´ 2h˚2p
2´2δ2n´1q.

From Lemma 4, we have

Gpγ0q “ 0.

Lemma 7. Under Conditions 1-6, if pδmaxn´1{2 “ op1q, with true k1 and k2, as n, p,Ñ 8, we

have

E}pBipηiq ´Bipηiq}
2
2 ď Cp2δin´1, for i “ 1, 2.

Proof: Let Yt “ xt,i,qxt`h,i,` ´ Epxt,i,qxt`h,i,`q. Condition 2 indicates that there exists a positive

constant σy such that Ep|Y 2ζ
t |q ă σ2ζy . For any 0 ď c1 ă c2 ď 1, by Lemma 6 in Liu and Chen

(2020), we have

1

Npc1, c2q4
E

¨

˝

tc2nu
ÿ

t“tc1nu`1

Y 4
t

˛

‚ď
p47h` 48α` 192α2qσ4y

Npc1, c2q
.

It follows

E}pΓxph, c1, c2q ´ Γxph, c1, c2q}
4
2

ď E}pΓxph, c1, c2q ´ Γxph, c1, c2q}
4
F ď

p47h` 48α` 192α2qk2maxσ
4
y

Npc1, c2q
.

Thus we have

E}pΣy,1ph, γ1q ´Σy,1ph, γ1q}
4
2

ď
16Np0, γ1 ´

h
nq

4

n4
}A1}

8
2 ¨ E

›

›pΓxph, 0, γ1 ´
h

n
q ´ Γxph, 0, γ1 ´

h

n
q
›

›

4

2

`
16

n4
}A1}

4
2 ¨ E

˜

›

›

›

γ1n´h
ÿ

t“1

xt,1ε
1
t`h

›

›

›

4

2

¸

`
16

n4
}A1}

4
2 ¨ E

˜

›

›

›

γ1n´h
ÿ

t“1

εtx
1
t`h,1

›

›

›

4

2

¸

`
16

n4
E

˜

›

›

›

γ1n´h
ÿ

t“1

εtε
1
t`h

›

›

›

4

2

¸

ď
C1p

4´4δ1

n
`

16C2p
2´2δ1

n4
E

˜

γ1n´h
ÿ

t“1

k1
ÿ

q“1

p
ÿ

v“1

x2t,1,qε
2
t`h,v

¸2

`
16C2p

2´2δ1

n4
E

˜

γ1n´h
ÿ

t“1

k1
ÿ

q“1

p
ÿ

v“1

ε2t,qx
2
t`h,1,v

¸2

`
16C3

n4
E

˜

γ1n´h
ÿ

t“1

p
ÿ

q“1

p
ÿ

v“1

ε2t,qε
2
t`h,v

¸2

ď
C1p

4´4δ1

n
`
C2p

2´2δ1

n2
,
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where C1,C2 and C3 are positive constants and depend only on the parameters.

Hence, with Lemmas 2 and 3

E}xM1pγ1q ´M1pγ1q}
2
2

ď h0

h0
ÿ

h“1

E}pΣy,1ph, γ1qpΣy,1ph, γ1q
1 ´Σy,1ph, γ1qΣy,1ph, γ1q

1}22

ď 2h0

h0
ÿ

h“1

”

E}pΣy,1ph, γ1q ´Σy,1ph, γ1q}
4
2 ` }Σy,1ph, γ1q}

2
2 ¨ E}

pΣy,1ph, γ1q ´Σy,1ph, γ1q}
2
2

ı

ď Cp4´2δ1n´1.

Following the proof of Theorem 1 in Lam et al. (2011), we can reach the conclusion.

Lemma 8. Under Conditions 1-8, for ε P r´γ0, 1´ γ0s, it holds that

E| pGph, γ0 ` εq ´Gph, γ0 ` εq|

ď

$

’

’

’

&

’

’

’

%

C1p
2n´1 ` C2εp

2´δ1n´1{2 ` C3ε
2p2´2δ1`δ2n´1{2, ε P p´γ0,´

2
nq;

C1p
2n´1, ε “ 0;

C1p
2n´1 ` C2εp

2´δ2n´1{2 ` C3ε
2p2`δ1´2δ2n´1{2, ε P p 2n , 1´ γ0q.

Proof: By the definition of Mipηiq, we can see that MpBiq “MpBipηiqq. It implies that there

exists an orthogonal pp´ kiq ˆ pp´ kiq matrix Ri such that Bi “ BipηiqRi.

Gpγq “
2
ÿ

i“1

}R1
iBipηiq

1MipγqBipηiqRi}2 “

2
ÿ

i“1

}Bipηiq
1Mipγq

1Bipηiq}2.

By the definition of pGpγq we have,

| pGpγq ´Gpγq|

ď

2
ÿ

i“1

h0
ÿ

h“1

›

›

›

pBipηiq
1
pΣy,iph, γqpΣy,iph, γq

1
pBi ´Bipηiq

1Σy,iph, γqΣy,iph, γq
1Bipηiq

›

›

›

2

ď

2
ÿ

i“1

h0
ÿ

h“1

”

›

›pBipηiq
1
pΣy,iph, γq ´Bipηiq

1Σy,iph, γq
›

›

2

2

` 2
›

›Bipηiq
1Σy,iph, γq

›

›

2
¨
›

›pBipηiq
1
pΣy,iph, γq ´Bipηiq

1Σy,iph, γq
›

›

2

ı

ď

2
ÿ

i“1

h0
ÿ

h“1

„

´

}pBipηiq}2 ¨
›

›pΣy,iph, γq ´Σy,iph, γq
›

›

2
` }pBipηiq ´Bipηiq

›

›

2
¨ }Σy,iph, γq}2

¯2

`2}Bipηiq
1Σy,iph, γq}2

´

}pBipηiq}2}pΣy,iph, γq ´Σy,iph, γq}2 ` }pBipηiq ´Bipηiq}2}Σy,iph, γq}2

¯

ff

“

2
ÿ

i“1

h0
ÿ

h“1

Li,1ph, γq ` Li,2ph, γq. (21)
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By Lemmas 2-4 and 7,

EpL1,1ph, γ0 ` εqq ď

$

&

%

C1p
2n´1, ε P p´γ0,´

h`1
n q;

C1p
2n´1 ` C3ε

2p2`2δ1´2δ2n´1, ε P ph`1n , 1´ γ0q,

EpL1,2ph, γ0 ` εqq

$

&

%

“ 0, ε P p´γ0,´
h`1
n q;

ď C1εp
2´δ2n´1{2 ` C3ε

2p2`δ1´2δ2n´1{2, ε P ph`1n , 1´ γ0q,

EpL2,1ph, γ0 ` εqq ď

$

&

%

C1p
2n´1 ` C3ε

2p2´2δ1`2δ2n´1, ε P p´γ0,´
h`1
n q;

C1p
2n´1, ε P ph`1n , 1´ γ0q,

EpL2,2ph, γ0 ` εqq

$

&

%

ď C1p
2´δ1{2´δ2{2n´3{2 ` C2εp

2´δ1n´1{2 ` C3ε
2p2´2δ1`δ2n´1{2, ε P p´γ0,´

h`1
n q;

“ 0, ε P ph`1n , 1´ γ0q.

From (21), it follows,

E| pGpγ0 ` εq ´Gpγ0 ` εq|

ď

$

’

’

’

&

’

’

’

%

C1p
2n´1 ` C2εp

2´δ1n´1{2 ` C3ε
2p2´2δ1`δ2n´1{2, ε P p´γ0,´

2
nq;

C1p
2n´1, ε “ 0;

C1p
2n´1 ` C2εp

2´δ2n´1{2 ` C3ε
2p2`δ1´2δ2n´1{2, ε P p 2n , 1´ γ0q.

Proof of Theorem 1. Since Gprq ě 0 and Gpr0q “ 0, for any fixed ε ą ph` 1q{n, it follows that

P ppr ´ r0 ą εq “ P r pGpr0q ą pGpprq, pr ą r0 ` εs

“ P
”

pGpr0q ´Gpr0q ą pGpprq ´Gpprq `Gpprq, pr ą r0 ` ε
ı

“ P
”

pGpr0q ´Gpr0q `Gpprq ´ pGpprq `
3

4
a42d

2τu20ε
2p2´2δ2 ´Gpprq ą

3

4
a42d

2τu20ε
2p2´2δ2 , pr ą r0 ` ε

ı

ď P
”

ˇ

ˇ pGpr0q ´Gpr0q
ˇ

ˇ ą `
1

4
a42d

2τu20ε
2p2´2δ2

ı

` P
”

ˇ

ˇ pGpprq ´Gpprq
ˇ

ˇ ą
1

4
a42d

2τu20ε
2p2´2δ2 , pr ą r0 ` ε

ı

`P
”3

4
a42d

2τu20ε
2p2´2δ2 ´Gpprq ą

1

4
a42d

2τu20ε
2p2´2δ2 , pr ą r0 ` ε

ı

“ P
”

ˇ

ˇ pGpr0q ´Gpr0q
ˇ

ˇ ą
1

4
a42d

2τu20ε
2p2´2δ2

ı

` P
”

ˇ

ˇ pGpprq ´Gpprq
ˇ

ˇ ą
1

4
a42d

2τu20ε
2p2´2δ2 , pr ą r0 ` ε

ı

`P
”

Gpprq ă
1

2
a42d

2τu20ε
2p2´2δ2 , pr ą r0 ` ε

ı

“ I1 ` I2 ` I3.
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By Lemma 6, Lemma 8, and Chebyshev’s inequality, if pmaxn´1{2 “ op1q and n is large enough,

when pr ą r0 ` ε, we have

I1 ă C1p
2δ2n´1, I2 ă

C2p
δ2n´1{2

ε
, I3 “ 0.

Hence, there exists a constant C such that

P ppr ą r0 ` εq ď
Cpδ2n´1{2

ε
, for ε ą 0.

Proof of Theorem 2. When pγ ą γ0, from Theorem 1 in Lam et al. (2011), it follows

DtMrpQ2ppγqs,MpQ2qu “ Oppp
δ2n´1{2q, as n, pÑ8.

Now we start to investigate the asymptotic properties of MrpQ1ppγqs when pγ ą γ0.

For ε ą 0, Lemmas 2-4 imply that

}xM1pγ0 ` εq ´M1pγ0 ` εq}2

ď

h0
ÿ

h“1

´

}pΣy,1ph, γ0 ` εq ´Σy,1ph, γ0 ` εq}
2
2 ` 2}Σy,1ph, γ0 ` εq}2 ¨ }pΣy,1ph, γ0 ` εq ´Σy,1ph, γ0 ` εq}2

¯

“ Oppp
2n´1q `Oppp

2´δ1n´1{2q `Oppεp
2´δ2n´1{2q

“ Oppp
2´δ1n´1{2q `Oppεp

2´δ2n´1{2q. (22)

Under Conditions 2 and 4, it follows from Lemma 1

}Σy,1ph, r0 ` εq ´Σy,1ph, r0q}2 “
1

n

›

›

›

γ0`tεnu´h
ÿ

t“r0´h`1

Epyty
1
t`hq

›

›

›

2

“

›

›

›

Npγ0 ´ h{n, γ0q

n
A1Γxph, γ0 ´ h{n, γ0qA

1
2 `

Npγ0, γ0 ` ε´ h{nq

n
A2Γxph, γ, γ0 ` ε´ h{nqA

1
2

›

›

›

2

“ Opεp1´δ2q `Opp1´δ2{2´δmin{2n´1q.

Hence,

}M1pr0 ` εq ´M1}2

ď

h0
ÿ

h“1

›

›Σy,1ph, r0 ` εqΣy,1ph, r0 ` εq
1 ´Σy,1ph, r0qΣy,1ph, r0q

1
›

›

2

ď

h0
ÿ

h“1

`

}Σy,1ph, r0 ` εq ´Σy,1ph, r0q}
2
2 ` 2}Σy,1ph, r0q}2 ¨ }Σy,1ph, r0 ` εq ´Σy,1ph, r0q}2

˘

“ Opε2p2´2δ2q `Opp2´δ2´δminn´2q `Opεp2´δ1´δ2q `Opp2´δ1´δ2{2´δmin{2n´1q.
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If pδmaxn´1{2 “ op1q, together with (22), we have

}xM1pr0 ` εq ´M1}2

ď }xM1pr0 ` εq ´M1pr0 ` εq}2 ` }M1pr0 ` εq ´M1}2

“ Oppp
2´δ1n´1{2q `Opεp2´δ1´δ2q `Opε2p2´2δ2q.

Theorem 1 tells us if pr ą r0, |pr ´ r0| “ Oppp
δ2n´1{2q. Therefore,

}xM1pprq ´M1}2 “ Oppp
2´δ1n´1{2q.

Under Condition 5, by Theorem 9 in Merikoski and Kumar (2004), we can see that

}M1}min “ }Σy,1ph, γ0q}
2
min ě }A1}

2
2 }Σx,1ph, γ0q}

2
min }A1}

2
2 “ Opp2´2δ1q.

Following the proof of Theorem 2 in Liu and Chen (2016), we have

DtMrpQ1ppγqs,MpQ1qu “ Oppp
δ1n´1{2q,

as n, pÑ8, when pr ą r0.

The conclusions for pr ă r0 can be proven in a similar way.

Lemma 9. Let B˚i be a p ˆ pp ´ pkiq orthogonal matrix such that MpB˚i q PMpBiq for i “ 1, 2.

Under Conditions 1-4 and 9, for any B˚i and ε P p´γ0, 1´ γ0q and |ε| ą ph` 1q{n,

}B˚
1

1 Σy,1ph, γ0 ` εq}2

$

&

%

“ 0, ε P p´γ0,´
h`1
n q,

ď Opεp1´δ2q, ε P ph`1n , 1q,

}B˚
1

2 Σy,2ph, γ0 ` εq}2

$

&

%

ď Opεp1´δ1q `Opp1´δ1{2´δ2{2n´1q, ε P p´γ0,´
h`1
n q,

“ 0, ε P ph`1n , 1q.

Proof. Note that for B˚i such that B˚
1

i Ai “ 0, following the proof of Lemma 4, we can reach the

conclusion.

Proof of Theorem 3: Under Conditions 1-9, if pδmaxn´1{2 “ op1q, similar to the proof of

Theorem 1, we obtain that

›

›pBipηiq ´Bipηiq
›

›

2
“ Oppp

δin´1{2q, for i “ 1, 2.

Since

pBipηiq “
´

pqi,ki`1pηiq, . . . , pq
i,pki
pηiq, pB

i,pki
pηiq,

¯
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we have

›

›pB
i,pki
pηiq ´B

i,pki
pηiq

›

›

2
ď

›

›pBipηiq ´Bipηiq
›

›

2
“ Oppp

δin´1{2q, for i “ 1, 2.

With Lemma 7, similar to the proof of Theorem 1, we can complete the proof.

Proof of Theorem 4: Similar to proof of Theorem 2, we can obtain the results.

Proof of Corollary 1: Since pk1 ě k1 and pk2 ě k2, by the definition of Dp¨, ¨q and Theorem 4,

the conclusion follows.

Proof of Proposition 1: Similar to proof of Corollary 1 in Lam and Yao (2012).

Proof of Corollary 2: We consider the case when k̃ ą 0 first.

An alternative way to denote MpQ1q and MpQ2q is introduced. Let q̄1, . . . , q̄k̃ be an or-

thonormal basis of MpQ1q XMpQ2q. Define

Q̄1 “ pq̄1, . . . , q̄k̃, q̄1,k̃`1, . . . , q̄1,k1q, Q̄2 “ pq̄1, . . . , q̄k̃, q̄2,k̃`1, . . . ,q2,k2q,

as orthonormal base ofMpQ1q andMpQ2q, respectively. It implies that there exists an orthonor-

mal ki ˆ ki matrix Vi such that Qi “ Q̄iVi for i “ 1, 2.

Define Q̄0 “ pq̄1, . . . , q̄k̃q, Q̄1
1 “ pq̄k̃`1, . . . , q̄k1q, and Q̄1

2 “ pq̄k̃`1, . . . , q̄k2q. Note that

Q̄01Q̄1
1 “ 0 and Q̄01Q̄1

2 “ 0, but Q̄11
1 Q̄1

2 “ 0 may not be true.

By Theorem 9 in Merikoski and Kumar (2004), it follows,

σk̃`1pQ
1
1Q2q “ σk̃`1pV

1
1Q̄

1
1Q̄2V2q “ σk̃`1pQ̄

1
1Q̄2q

“σk̃`1

¨

˝

¨

˝

Q̄01

Q̄11
1

˛

‚

´

Q̄0 Q̄1
2

¯

˛

‚“ σk̃`1

¨

˝

¨

˝

I 0

0 Q̄11
1 Q̄1

2

˛

‚

˛

‚“ }Q̄11

1 Q̄1
2}2,

and together with Condition 11 we can show that }Q̄11
1 Q̄1

2}2 “ ν ă 1.

By the definition of M in (16), we have

M

“

«

h0
ÿ

h“1

`

γ0A1Σx,1ph, γ0qA
1
1 ` p1´ γ0qA2Σx,2ph, γ0qA

1
2

˘

ff

(23)

¨

«

h0
ÿ

h“1

`

γ0A1Σx,1ph, γ0qA
1
1 ` p1´ γ0qA2Σx,2ph, γ0qA

1
2

˘

ff1

` op1{nq. (24)

The reason that op1{nq exists in the above equation is that the observations at time tγ0nu ´

h, . . . , tγ0nu are not counted when calculating Σx,1ph, γ0q and Σx,2ph, γ0q in (5) and Σyphq has h

more terms than Σy,1ph, γ0q `Σy,2ph, γ0q.
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Condition 4 tells us that there exist two kiˆ ki non-singular matrices Γi such that Ai “ Q̄iΓi

and }Γi}2 — }Γi}min — p1{2´δ0{2 for i “ 1, 2. Let Σ1 “ γ0
řh0
h“1 Γ1Σx,1ph, γ0qΓ

1
1 and Σ2 “

p1´γ0q
řh0
h“1 Γ2Σx,2ph, γ0qΓ

1
2. With Condition 5, we can show that }Σi}2 — }Σi}min — Oppp

1´δ0q

for i “ 1, 2. By the definition of singular value, we have

”

σk1`k2´k̃pQ̄1Σ1Q̄
1
1 ` Q̄2Σ2Q̄

1
2q

ı2

“ max
S P Rp

dimpSq “ k1 ` k2 ´ k̃

min
}u} “ 1
u P S

}pQ̄1Σ1Q̄
1
1 ` Q̄2Σ2Q̄

1
2qu}

2
2

ě min
}u} “ 1

u PMpQ1q YMpQ2q

}pQ̄1Σ1Q̄
1
1 ` Q̄2Σ2Q̄

1
2qu}

2
2. (25)

We write u “
řk̃
i“1 aiq̄i `

řk1
i“k̃`1

biq̄1,i `
řk2
i“k̃`1

ciq̄2,i for any u P MpQ1q YMpQ2q, and

a “ pa1, . . . , ak̃q
1, b “ pbk̃`1, . . . , bk1q

1, and c “ pck̃`1, . . . , ck2q
1. We have

Q̄1
1u “

¨

˝

Q̄01

Q̄11
1

˛

‚

´

Q̄0 Q̄1
1 Q̄1

2

¯

¨

˚

˚

˚

˝

a

b

c

˛

‹

‹

‹

‚

“

¨

˝

a

b` Q̄11
1 Q̄1

2c

˛

‚,

and

Q̄1
2u “

¨

˝

Q̄01

Q̄11
2

˛

‚

´

Q̄0 Q̄1
1 Q̄1

2

¯

¨

˚

˚

˚

˝

a

b

c

˛

‹

‹

‹

‚

“

¨

˝

a

Q̄11
2 Q̄1

1b` c

˛

‚.

If }b}2 ě }c}2, since }u}2 “ 1 and }Q̄11
1 Q̄1

2}2 “ ν ă 1, we have

}Q̄1
1u}

2
2 “ }a}

2
2 ` }b` Q̄11

1 Q̄1
2c}

2
2 ě }a}

2
2 ` p}b}2 ´ ν}c}2q

2

ě }a}22 ` p1´ νq
2}b}22 ě }a}

2
2 `

p1´νq2

2 }b}22 `
p1´νq2

2 }c}22 ě
p1´νq2

2 . (26)

Let Σ1Q̄
1
1u “ v1 and Σ2Q̄

1
2u “ v2. By Theorem 9 in Merikoski and Kumar (2004) and (26),

we can show that }v1}2 ě Cp1´δ0 . It follows

}pQ̄1Σ1Q̄
1
1 ` Q̄2Σ2Q̄

1
2qu}

2
2

“ }Q̄1v1 ` Q̄1
2v2}

2
2 “ v11Q̄

1
1Q̄1v1 ` 2v11Q̄

1
1Q̄2v2 ` v12Q̄

1
2Q̄2v2

ě }v1}
2
2 ´ 2ν}v1}2 ¨ }v2}2 ` }v2}

2
2 “ p1´ ν

2q}v1}
2
2 ` pν}v1}2 ´ }v2}2q

2 ě Cp2´2δ0 . (27)

If }b}2 ă }c}2, then }v2}2 ě Cp1{2´δ0{2. We can also obtain (27).

When k̃ “ 0, the conclusions can be reached in a similar fashion.
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Together with (24), (25) and (27), we have

λk1`k2´k̃pMq ě Cp2´2δ0 .

Following the proof of Corollary 1 in Lam and Yao (2012), we can complete the proof.
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