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Abstract: In a time-varying coefficient model, the regression coefficient is allowed
to change over time as a nonparametric function to capture the time-varying
feature. Due to its popularity in time series applications where the assumption
of independence typically does not hold, it is desirable to allow dependent and
nonstationary observations. We consider the problem of semiparametric vari-
able labeling and estimation for multi-output time-varying coefficient models in
the time series setting, where a variable can be labeled as time-varying, time-
constant, or irrelevant, in a nested structure. We first show that the natural
approach of imposing separate penalties on the local linear estimator and its
derivative will not work as intended for semiparametric labeling due to the lack
of connection between the coefficient and derivative estimators in the popular
local linear method. We then propose a stratified fix that borrows information

from the coefficient estimator and puts together with the derivative into the



same stratum that achieves successful labeling and estimation at the same time.
Theoretical properties of the proposed method, including its estimation and la-
beling consistency, are established for a general class of nonstationary processes.
Numerical examples including a Monte Carlo simulation study and a real data

application are presented to further illustrate the proposed method.
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1. Introduction

Linear regression models have been recognized as a powerful and popular s-
tatistical tool for studying the relationship between a response variable and
a set of explanatory variables. For applications to time series data, how-
ever, a number of empirical examples have suggested that the regression
coefficient does not necessarily stay as a constant and can change over time
with other aspects of the data, making the observed time series nonstation-
ary. For example, Fan and Zhang (1999) studied the relationship between
the number of daily hospital admissions and the level of multiple pollu-
tants in Hong Kong and concluded a time-varying relationship. Gao and
Hawthorne (2006) regressed the global temperature series on the Southern
Oscillation Index (SOI), and argued that at least the intercept term should

be treated as time-varying in a nonparametric fashion due to the lack of



knowledge about the change. Zhang and Wu (2015) considered the prob-
lem of modeling the U.S. treasury yields and found statistical evidence for a
time-varying linear drift for the yield curve rates with six-month maturity.
Such needs from applications motivated the time-varying coefficient model,
in which the regression coefficient is no longer assumed to be a constant but
modeled as a nonparametric function of time to capture the time-varying
feature.

The time-varying coefficient model is related to the varying coefficient
model which has been vastly studied in the literature; see for example Fan
and Zhang (1999), Zhang et al. (2002), Xia et al. (2004), Ahmad et al.
(2005), Fan and Huang (2005), Li and Liang (2008), Wang et al. (2008),
Wang and Xia (2009), Tang et al. (2012), Xue and Qu (2012), Cheng et al.
(2016), and an excellent review by Fan and Zhang (2008). In a varying
coefficient model, however, the observations are typically assumed to be
independent samples, and the distribution from which the index variable
is sampled is often assumed to have a continuous density function that is
bounded away from zero and infinity on its support. This prevents the
allowance of the deterministic time as the index variable, and as a result
different treatments are often needed for the time-varying coefficient model.

In particular, by using lagged values as potential explanatory variables, the



time-varying coefficient model can cover the influential time-varying autore-
gressive model (Rao, 1970; Dahlhaus et al., 1999; Moulines et al., 2005; Van
Bellegem and Dahlhaus, 2006) as a special case, which, however, cannot be
covered by the varying coefficient model with a random index. In addition,
when there is only an intercept term in the model, the time-varying coef-
ficient model reduces to the mean nonstationary model of Johnstone and
Silverman (1997), Wu and Zhao (2007), Zhang and Wu (2011) and Zhang
(2016) which has been widely used in nonparametric trend estimation and
testing problems.

For time-varying coefficient models with nonstationary time series ob-
servations, Zhou and Wu (2010) considered constructing simultaneous con-
fidence bands for the coefficient functions, and Zhang and Wu (2012) con-
sidered an integrated squared test which can be more suitable for detecting
smooth and dense changes. Besides estimating the coefficient functions and
testing hypotheses associated with them as studied in the aforementioned
papers, an important problem is to label or partition the variables into
time-varying, time-constant, and irrelevant categories. This tricategory la-
beling task in a nested structure has been studied in the literature mainly
through a two-step approach, where one focuses on a bicategory labeling

task at each step separately. For example, Li and Liang (2008) assumed



prior knowledge on the partition between time-varying and time-constant
components, and applied a penalized quasi-likelihood method to label time-
constant variables in the parametric part and a separate generalized likeli-
hood ratio test to label time-varying variables in the nonparametric part;
see also Li et al. (2009). Zhang and Wu (2012) first used an information
criterion to label zero and nonzero variables, and then among the labeled
nonzero variables further applied an integrated squared nonparametric test
to label time-constant variables. Zhang (2015) considered the use of a
penalized local linear method to first label irrelevant variables, and then
applied an information criterion on the remaining variables to further label
the time-varying ones.

The main focus of the current article is to consider a penalized local lin-
ear method that can simultaneously achieve successful tricategory labeling
and semiparametric estimation in a single step. Unlike the basis expansion
approach that can borrow results directly from the well developed penalized
least squares, extending the popular local linear method (Fan and Gijbels,
1996) to the penalized setting can be nontrivial. As a result, even in the
important work of Li and Liang (2008), penalized methods were only used
for variable selection in the parametric component, while variable selection

in the nonparametric component was still handled by the generalized like-



lihood ratio test. Wang and Xia (2009) first considered a penalized kernel
estimator by vectorizing the local constant estimator on a set of discrete
time points so that one can put a penalty directly on the norm of that vector
to obtain sparse solutions. Zhang (2015) proposed a local linear shrinkage
method that can handle the additional derivative estimator from the more
sophisticated local linear method and is able to work with nonparametric
kernel estimators in their original function form without having to vectorize
on a discrete set. In the aforementioned papers, however, penalized kernel
estimation is used mainly to label irrelevant variables, and making it work
for labeling time-varying and time-constant variables can be nontrivial. In
particular, we in Section 2 demonstrate that the natural approach of penal-
izing the derivative estimator from the local linear method may not work
as intended, as a zero derivative estimator will not guarantee a constant
coefficient estimator due to the lack of connection between the two in the
local linear estimation. To address this, we in Section 3.1 propose a new
stratified penalization method that is able to automatically yield nonpara-
metric coefficient estimators for time-varying variables, constant estimators
for time-constant variables, and zero estimators for irrelevant variables, thus
achieving the task of tricategory labeling and semiparametric estimation si-

multaneously in a computationally efficient manner. It is worth noting that



we in this article consider the multi-output setting in which a variable is
labeled as time-constant or irrelevant if its coefficient function is uniformly
a constant or zero for all outputs. Theoretical properties of the proposed
method, including its estimation and labeling consistency, are established in
Section 3.2 for a general class of nonstationary processes. Numerical exper-
iments including a Monte Carlo simulation study and a real data analysis
are provided in Section 4 to illustrate the proposed method and examine

its finite-sample performance. Section 5 provides a discussion.

2. Direct Penalization on the Derivative: A Natural Approach

and Its Issue
Consider the time-varying coefficient model
Yin =&, B(tin) +€in, i=1,...,m, (2.1)

where 3 : [0,1] — RP is the coefficient function, ¢;,, = i¢/n represents the
time, and (e;,,) is a sequence of random noises. The coefficient function in
model (2.1) can be estimated by the local constant estimator (Wang and

Xia, 2009), which at each time point ¢ € [0, 1] can be obtained by

n

9

B(t) = argmin > {y;n — ], n(t)}*K{(tin —1)/ba}, (2.2)

n(t)ERP i1



where K(-) is a kernel function and b, is the bandwidth. For the k-th
component of n(-), let |9l = {fo Ine(t)[2dt}'/? denote its norm, then

the penalized local constant estimator minimizes

A Z{ym— @l (YK (= 003t + S Plnlon), (23)

where fy, (-) is the penalty function for the k-th variable with tuning pa-
rameter )\, that controls the degree of penalization. Unlike (2.2), the pe-
nalized estimator in (2.3) can achieve parameter estimation and variable
selection simultaneously in a computationally efficient manner; see for ex-
ample Zhang (2015). However, for the time-varying coefficient model, it is
often the case that one is interested in distinguishing not only relevant and
irrelevant variables but also time-varying and time-constant components;
see for example Cai et al. (2000), Fan and Zhang (2000), Li and Liang
(2008), Zhang and Wu (2012) and Zhang (2015) among others. This makes
it a tricategory labeling problem, in which each variable will be labeled
as time-varying, time-constant and irrelevant if the associated coefficient
function is a time-varying nonparametric function, a uniform constant, and
zero respectively.

To achieve the aforementioned tricategory labeling, a natural approach

is to consider the local linear method (Fan and Gijbels, 1996), which esti-



mates not only the coefficient function but also its derivative:

n

{5(?5),[3@)}ZW(%rglV(ftl)ieanZ{yi,n—wInn() 2, (1) (tin—t) P EA{(tin—1) /bn}.
Qn({n(t)an/(t)}te[o,l}):/ Z{ym () —x! 0 () (tin—t) P EK{(tin—t)/ba}dt,

then similar to (2.3), we can consider its penalized version that minimizes

Q({n(t), ' (O}ieon) + Y Fall (In]o.1); (2.4)

where the first penalty penalizes the coefficient estimator and shrinks it to
zero for irrelevant variables while the second penalty penalizes the deriva-
tive estimator and shrinks it to zero for time-constant variables; see for
example Gao (2019) and Chan et al. (2021). The penalized local linear
estimator in (2.4) is intuitively straightforward in the sense that it exploits
the derivative estimator from the local linear method and takes advantage
of the mathematical connection between a function being constant and its
derivative being zero. In the following, however, we show that directly im-
posing a penalty on the derivative as in (2.4) may not work as intended,
as a zero derivative estimator does not necessarily guarantee the associated
coefficient estimator to be a constant. This is mainly because the math-

ematical connection between a function and its derivative does not carry



over to the local linear estimation scheme. To be more specific, for the true
coefficient function, it is mathematically guaranteed that a zero derivative
will lead to a constant function. However, when performing the local linear
estimation, the derivative term is regarded as the coefficient of an addi-
tional explanatory variable, namely «;,(t;,, — t), and as a result such a
coefficient being zero does not necessarily guarantee the coefficient of x;,,
will be the same for different time points as they are simply treated as
the coeflicients for different variables @; ,,(t;, —t) and x; ,, respectively. As
a result, additional manual flattening is often needed when implementing
such a method, which, however, typically leads to an altered optimization
problem that is different from (2.4) in a nonnegligible manner making its
theoretical property difficult to understand.

To provide a deep insight of the aforementioned issue, we shall here
consider the simple setting when p = 1 with a time-constant coefficient,
namely when

Yin = xi,nﬁ + €in, L= 17 sy Ny (25>

and apply the penalized estimator in (2.4) and see if it will automatically
reduce to a constant in this case. For simplicity, we assume that g # 0 and

focus on the semi-oracle estimator 3(t), ¢t € [0, 1], that minimizes

Q0 ({n(®), 7' () eepo,n)) + f-(Inklo.n), (2.6)



which differs from (2.4) by dropping the first penalty term on the regression

coefficient as it is known to be nonzero, thus the name semi-oracle.

Theorem 1. Assume that f.(x) = 7|x| takes the LASSO penalty, then for
any given data (T;n,Yin), ¢ = 1,...,n, with nondegenerate local designs for
ecach t € [0,1], the semi-oracle estimator B(t), t € [0,1], that minimizes
(2.6) among all square integrable continuous functions will be equivalent to

the local constant estimator in (2.2) for sufficiently large choice of T.

Since the regression coefficient in (2.5) is assumed to be a nonzero con-
stant, the oracle choice of the tuning parameters in (2.4) should be A = 0
and 7 = 400, namely no penalty should be put on the regression coefficient
to reduce the bias caused by penalized estimation of a nonzero coefficien-
t function while sufficient penalization should be put on the derivative to
force the coefficient function estimator to become a constant. By Theo-
rem 1, however, the direct penalization on the derivative as in (2.4) may
not work as intended even with this oracle choice of the tuning parameter-
s. In particular, when the penalty function satisfies the natural condition
that f-(0) = 0 (Fan and Li, 2001), using the oracle tuning A = 0 in (2.4)
makes it equivalent to (2.6), whose solution, however, by Theorem 1 be-
comes the local constant estimator in (2.2) for a sufficiently large choice of

7 whose oracle choice is 7 = +00. Therefore, imposing direct penalization



on the derivative as in (2.4) typically will not yield time-constant regres-
sion coefficient estimator, which can cause at least ambiguity for labeling
time-varying and time-constant variables. The result in Theorem 1 can be
generalized to penalty functions other than the LASSO, but the main pur-
pose here is to show that directly penalizing the derivative may not work
as intended even when the very popular and successful LASSO penalty is
used. We shall in the following propose a stratified fix that is able to au-
tomatically produce nonparametric coefficient estimators for time-varying
variables, constant estimators for time-constant variables, and zero estima-
tors for irrelevant variables, thus achieving the goals of tricategory labeling

and semiparametric estimation at the same time.

3. Stratified Penalization: A Fix

3.1 Methodology

We shall here consider the multi-output time-varying coefficient model

yin = B(ti,n)Tmm —+ em, 7= ]., e, N, (31)

)

where y, , € R? is the multi-output response vector, x;,, € R? is the set of
explanatory variables, B : [0,1] — RP*? is the coefficient function matrix

with its k-th row being the coefficient function vector for the k-th variable,



3.1 Methodology

and (e;,) is a sequence of random vectors that form a triangular array of
multivariate nonstationary processes and can depend on (x;,) to accom-
modate heteroscedastic errors. Compared with the single-response setting
(2.1), variable selection in the multi-output setting typically requires addi-
tional effort; see for example Turlach et al. (2005), Rothman et al. (2010),
Chen and Huang (2012), and Lee and Liu (2012) among others. The afore-
mentioned papers considered variable selection for multi-output regression
models in the traditional setting when the regression coefficient is assumed
to be a constant. We shall here consider the time-varying setting (3.1), in
which the regression coefficient can change over time as a nonparametric
function. In this case, one is interested in labeling not only relevant and
irrelevant variables but also time-varying and time-constant variables, and
a variable is said to be time-constant or irrelevant if its coefficient function
is uniformly a constant or zero for all outputs. This cannot be achieved
by performing variable selection separately on each one of the response
variables.

Let ©(t) = {0,4(t)}ir,; be a 3-way tensor function with ©g..(t) =
{00,; () iy = B(t), ©1..(t) = {b1,r,;(t) },; = b, B'(t) and its norm [O| 1] =

ik, fol 011 (t)2dt}/2 then we can write the multi-output kernel criterion



3.1 Methodology

function as

Yu({O0hen) = [ 1 Z "k (=Y ar

To construct appropriate penalty structures that can achieve successful tri-

bn

tin—1
yi,n — @07.7.(t)—r33i7n — @17.7.(15)—'—%@‘7” ( . )

category labeling and semiparametric estimation at the same time, instead
of imposing penalties directly on the coefficient part and the derivative
part as in (2.4), we propose to decompose the norm of O according to
the different stratums implied by the nested tricategory labeling structure.
In particular, the irrelevant label stratum has a projection of zero; the
time-constant label stratum has a projection of 6. = fol 0 . (t)dt where
0o (t) = {00s1(t),...,001a(t)}; and the time-varying label stratum has a
projection of Qg . .(t) — 0. together with 01, .(t) = {011 (), ..., 01 ka(t)} .
This motivates us to consider the stratified penalized local linear estimator

O(t) = {01x;(t) x> t € [0,1], that minimizes

D D 1 1/2
Tu({0) b))+ S (10 D+D gn., (U {160k (t) — Or.|” + |91,k,~(t)|2}dt] ) ;
k=1 k=1 0

where fy, (-) and g, .(-) are penalty functions with nonnegative tuning
parameters Ay, and 7, respectively. Its theoretical properties, including
the estimation and labeling consistency, are established in Section 3.2 for
a general class of nonstationary processes, and our results are directly ap-

plicable to vector time-varying autoregressive models. The two terms |0 |



3.2 Theoretical Properties

and fol 00.x.(t) — 0.|?dt in the penalty have their own and separate goals
to achieve. In particular, the term fol 00, (t) — Oy 2dt is mainly used to
merge with the derivative fol |01 1..(t)|?dt as a group structure to make sure
that, for a time-constant variable, both of them will be penalized to zero
making the coeflicient function 6y, .(t) = ék,. be a constant and its deriva-
tive 6, ;.(t) = 0, thus solving the issue of the direct derivative penalization
approach. The other additional term |0}, | is to make sure that, once the
regression coefficient function is shrunken to its constant projection .,
it can further penalize the coefficient to zero to correctly label irrelevant

variables.

3.2 Theoretical Properties

In (3.1) we allow nonstationary time series observations, on which there is
a huge literature; see for example Priestley (1965), Dahlhaus (1997), Cheng
and Tong (1998), Mallat et al. (1998), Giurcanu and Spokoiny (2004), Om-
bao et al. (2005), Zhou and Wu (2010), Zhang (2013) and references therein.
Let (€;) be a sequence of independent and identically distributed innova-

tions and denote its shift process by F; = (..., €;_1, €;), we shall here follow



3.2 Theoretical Properties

Zhang (2015) and assume that

max 1 — Gltin, Fi)l| = O, max lles, — Hlti F)ll = O™,

(3.2)
for some measurable functions G and H such that (x;,) and (e;,) are
proper sequences of random vectors with E(e;, | ;,) = 0. Compared
with the exact representation as in Wu (2005), the approximate framework
in (3.2) allows the popular time-varying autoregressive model (Rao, 1970;
Dahlhaus et al., 1999; Moulines et al., 2005; Van Bellegem and Dahlhaus,
2006) and covers a wide range of linear and nonlinear processes; see also
the discussion in Zhang and Wu (2012). Let €} be identically distributed
as €y but independent of the sequence (g;), we can define the coupled shift
process F; = (...,€_1,€},€1,...,€;), then for any collection of processes

{J(t; F;) }iez on t € [0, 1], the functional dependence measure of Wu (2005)

can be written as

0ia(J) = sup [[T(GF) = J(EF D Dog(T) =Y 6ig(d),
=0

te(0,1]
where §; ,(J) measures the dependence of J(¢;F;) on the innovation e,
and its cumulative effect is measured by Ag,(J). Let L = G x H', we

assume the following conditions.

(A1) The coefficient matrix function B € C3[0,1], the class of three times



3.2 Theoretical Properties

continuously differentiable matrix-valued functions on [0, 1];
(A2) The underlying process satisfies Ag 4(G) + Ag2(L) < o0;
(A3) There exists a constant 0 < C' < oo such that
|G(tr, Fi) = G(tz, Fi)ll + [|L(tr, Fi) — L(t2, Fi)l| < Clty — 1o
holds uniformly for all ¢, ¢, € [0, 1];

(A4) The smallest eigenvalue of E{G(t,F;)G(t,F;)"} is bounded away

from zero on [0, 1].

We shall here provide a brief discussion on conditions (Al)—(A4). In
particular, condition (A1) is a smoothness condition on the regression coef-
ficient matrix function which is a common assumption for nonparamet-
ric kernel estimation; see for example Fan and Gijbels (1996). Condi-
tion (A2) is a short-range dependence condition quantified by the func-
tional dependence measure of Wu (2005); see also Zhou and Wu (2010)
and Zhang and Wu (2012). Condition (A3) is a stochastic Lipschitz con-
tinuity condition, under which the underlying process can be locally ap-
proximated by a stationary process within a small window; see for ex-
ample the discussion in Zhang and Wu (2011). Condition (A4) is a reg-

ularity condition that prevents the design matrix from being singular in



3.2 Theoretical Properties

probability; see also Zhang (2015). Throughout the article, we assume
that the kernel function K € IC, the collection of symmetric functions in
C'[—1,1] with fjl K(v)dv = 1, and examples include the Epanechnikov k-
ernel K (v) = 0.75 max(1—v?%,0), the Bartlett kernel K (v) = max(1—|v|,0),
the rectangle kernel K (v) = 0.5I(|v| < 1) with I(-) being the indicator func-
tion, and many others. We also assume the following conditions on the

penalty functions.

(P1) f(0) = 0 and g-(0) = 0;

(P2) A7 sup,cg [f3(2)] < oo and 77" sup,cp [g7(2)] < oo;

(P3) A 'liminf, ,op [f3(x)] > 0 and 7' liminf, o, |¢. ()| > 0.

Conditions (P1)—(P3) are natural requirements for good penalty func-
tions (Fan and Li, 2001), and are satisfied by many popular choices such as
the LASSO penalty of Tibshirani (1996), the hard thresholding penalty of
Antoniadis (1997), and the SCAD penalty of Fan and Li (2001). Let D,,
D., and D, denote the subsets of time-varying, time-constant, and irrelevant
variables respectively, and we further write D, = D,cUD,; where D, is the
set of time-varying variables with |9k| =0 and D,; = D, \ Dy. Theorems
2 and 3 provide the estimation consistency and the labeling consistency for

the proposed stratified penalized local linear estimator.



3.2 Theoretical Properties

Theorem 2. Assume (A1)-(A4), (P1), (P2), b, — 0 and nb, — oo. If

{(nb,) ™% 4+ b2 }(maxpep,up,, Mo + Maxpep, Ten) = O(1), then the norm
|© = Oy = Op{(nby) "> + b7}

Theorem 3. Assume (A1)-(A4), (P1)-(P3), b, — 0 and nb? — oco. If
{(nb,) Y2 +b2 }(maxpep.up,; Mentmaxep, Thn) = O(1), mingepy Ao /{(nby) >+

nb3} — oo and mingepe Tk,n/{(nbn)1/2 +nb3} — oo, then

1
B (1) — / B (s)ds
0

—0and max sup |0y,.(1)] = 0} — 1,

pr< max sup
kEDOUDc tE[O,l]

kEDO UDC te [071]

and

pr {max sup |@Ok(t)| = 0 and max sup |élk(t)| = 0} — 1.

k€Do ¢e(0,1] k€Do ¢¢[0,1]

By Theorem 3, for time-constant or irrelevant variables, the stratified
penalized local linear estimator proposed in Section 3.1 will automatically
produce a constant coefficient function with a zero derivative estimator.
In addition, for irrelevant variables nested within Dy U D,, the coefficient
function will further be regularized to zero uniformly over time. Therefore,
it achieves the tricategory variable labeling and semiparametric estimation
at the same time without having to decompose the problem into two bicat-
egory labeling subproblems as in Li and Liang (2008) and Zhang and Wu

(2012). Note that in Li and Liang (2008), prior knowledge is assumed on the



partition between time-varying and time-constant variables and therefore
their labeling problem is supervised. The current article concerns the un-
supervised setting where we are not assumed to have this prior knowledge.
We in the following section describe details in implementing the proposed
stratified penalized local linear method, and examine its finite-sample per-

formance through a Monte Carlo simulation study and a real data analysis.

4. Implementation

4.1 Computational Algorithm

Although penalized methods and their computational algorithms have been
widely studied in the literature, existing results mainly focused on the tra-
ditional linear regression model with constant coefficients; see for example
Tibshirani (1996), Knight and Fu (2000), Fan and Li (2001), Efron et al.
(2004), Yuan and Lin (2006), Zou and Li (2008), and references therein. In
addition, different penalty terms are usually put on coefficients associated
with different variables. In the current setting, however, the two penalty
terms f and g can be both associated with the same variable but for d-
ifferent purposes, where one is to regularize a time-varying function into
a constant while the other is to shrink a constant toward zero. Further-

more, the current setting requires appropriately combining localized least



4.2 Tuning Parameter Selection

squares functions as in traditional kernel regression methods with suitably
constructed global penalization terms to achieve successful semiparametric
variable labeling and estimation. We in the supplementary material de-
scribe an iterative algorithm that can be used to compute the stratified
penalized local linear estimator proposed in Section 3.1. We shall in the

following discuss the choice of tuning parameters.

4.2 Tuning Parameter Selection

Implementing the proposed stratified penalized local linear method requires
a set of tuning parameters (7x,) that control the degree of regularization
from the time-varying stratum to the time-constant stratum and () that
control the degree of regularization from the time-constant stratum to the
irrelevant label stratum. For this, we consider adopting the idea of adaptive

LASSO (Zou, 2006) and set

1 1
/ Oos ()| Tin =Tn /
0 0

for some tuning parameters )\, and 7, that do not depend on k, where

-1

1 2 —1/2
eo,k,(t) — /0 éo7k7.(8)d8 + |éljk’.(t)|2} dt]
(4.1)

/\k,n - )\n

O(t) = {01x;(t) }1xj, t € [0, 1], can be taken as the unpenalized local linear
estimator. Note that the norm [f01{|éo,k7.(t)—f01 o1, (s)ds|*+|01 k. (t)[2}dt]"/?

will be relatively small for time-constant variables and relatively large for



4.3 Simulation Results

time-varying variables, the choice in (4.1) can lead to adaptive tuning for
different variables. When the bandwidth b,, = cn=5 for some 0 < ¢ < 00
has the asymptotic mean squared error optimal rate, following a similar
discussion as in Zhang (2015) one can simply use the asymptotic choice

/5 For any set D, we use |D| to denote its cardi-

A\, =nY? and 7,, = n
nality. To provide a finite-sample data-driven choice of the pair (\,,7,),
we consider a natural extension of the information criterion used in Zhang
(2015) to the current setting and minimize

logn logn

EIC(A, 7) = log{Tn({O(t; \, 7) }reo,1)} + D5 )|+ DA, 7),

nb, ' nb, '
which can also be viewed as a semiparametric extension of the traditional
BIC. It can be seen from our simulation study in Section 4.3 that such a

data-driven tuning selector seems to perform reasonably well for the current

tricategory variable labeling and semiparametric estimation.

4.3 Simulation Results

We shall here conduct Monte Carlo simulations to examine the finite-sample
performance of the proposed stratified penalized local linear method. For
this, let €x = (€x1,...,€rp-1) € RP7L k € Z, be independent inno-
vation vectors with independent Rademacher components, and let P;(t)

be the j-th order Legendre polynomial. Let M°® = (0.21"71),.; i<, 1 and



4.3 Simulation Results

P(t) € RP=Dx(~D he a diagonal matrix with j-th diagonal element P;(2t—
1)/4, then the vector &, = M ‘€ has dependent components and we form
Tin = o P(i/n)’€;_;, which is a nonstationary process due to the co-
efficients being time-varying. Let €4y, k € Z, | € {1,...,d}, be an array
of independent standard normal random variables that is also indepen-
dent of the process (€), we then form the nonstationary nonlinear process
Cim = GimssGan) " With G = 50+2(i/n—0.5)2{|g;1| — (2/m) 2} +
Z;‘il J~%e;_j;. We consider the multi-output time-varying coefficient model

with heteroscedastic errors:

p—1

yi,n = /80<t1:n) + Z /Bk(ti,n>$i,k,n + 0,50'(1’12727” + xiS,n)l/ZCi,na = 17 <oy N
k=1

Let n = 500, we consider the following configurations on the variable label-

ing, where we use a-b-c to indicate the configuration with a time-varying

variables, b nonzero time-constant variables and c¢ zero variables.

(2-2-16) Two time-varying variables: By(t) = {3(2t — 1)2,2(2t — 1)3}T and
By (t) = {2sin(27t —1),2cos(2wt + 1)} T; two time-constant variables:
B,(t) = (—1,7/3)" and B,(t) = (1.5, —2Y2)T; and sixteen zero vari-

ables B4(t) = -+ = Byy(t) = (0,0)".

(5-5-10) Five time-varying variables: B,(t) = {3(2t—1)%,2(2t—1)3} ", B(t) =

(2(2t—1),2cos(2mt — 1)}, B,(t) = {2cos(2rt), 2(2t — 1)2} T, B4(t) =



4.3 Simulation Results

{cos(mt)+1,2sin{exp(rt—2)}} " and Bg(t) = [exp(—2t+1), 2{sin(—27t+
1)}3]7; five time-constant variables: B(t) = (2,—1.5)", B;5(t) =
(1.5, =m/3)", B5(t) = (r/2,7'/2)T, B:(t) = (=3"/2,2'2)T and By(t) =

(—e/2,3/7)T; and ten zero variables B,(t) = - - - = B1o(t) = (0,0)T.

(2-8-10) Two time-varying variables: B,(t) = {3(2t — 1)2,2(2t — 1)*} " and
B,(t) = {2sin(27t), 2 cos(2mt)} T; eight time-constant variables: 3, (t) =
(1,52/2)7, B4(t) = (7/2,-13)7, By(t) = (e'?,=1.5)", Bs(t) =
(1.5,4/m)", Bg(t) = (1.2,3V2)7, B(t) = (0.8,7'°)T, By(t) = (22, 1)7
and By(t) = (=5/m,7/3)7; and ten zero variables B,(t) = -+ =
Bry(t) = (OaO)T-

The three configurations above represent the case with a small number of
nonzero variables, a balanced number of time-varying and time-constant
variables, and an unbalanced number of time-varying and time-constant
variables, respectively. For each configuration, we consider two noise levels
o € {1,2}, and apply the proposed stratified penalized local linear (S-
PLL) method for semiparametric variable labeling and estimation. We also
make a comparison with the two-step procedure of Zhang (2015), denoted
by Zhangl5, and the direct derivative penalization method of Gao (2019),
denoted by Gaol9. Throughout our numerical experiments, the LASSO

penalty function is used. Results with ¢ = 2 are reported in Table 1 of
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this article, and results with ¢ = 1 follow a similar pattern and are pro-
vided in the supplementary material. Note that a case is considered to be
under-labeled if at least one component of one variable is mislabeled from
time-varying to time-constant, from time-constant to zero, or from time-
varying to zero. On the other hand, a case is considered as over-labeled if
there is no under-labeling and at least one variable is mislabeled from zero
to time-constant, from time-constant to time-varying, or from zero to time-
varying. We also report the labeling consistency ratio (LCR) defined as
the proportion of correctly labeled variables, along with the mean squared
error (MSE) of the associated semiparametric estimates.

We can observe the followings from our simulation results. First, the
proposed stratified penalized local linear method seems to perform reason-
ably well, as for most of the cases considered it produces the highest propor-
tion of correctly labeled models, especially for the challenging cases when
o = 2. Its performance is also reasonably robust to different choices of the
bandwidth. In addition, it typically leads to semiparametric estimates with
much smaller MSE than the two-step procedure of Zhang (2015). Note
that even for the less challenging cases when ¢ = 1 as reported in Ta-
ble 1 of the supplementary material for which both the method of Zhang

(2015) and the proposed method produce almost ideal results on variable
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labeling, the proposed method continues to yield semiparametric estimates
with much smaller MSE. This is mainly because the two-step procedure
of Zhang (2015) does not fully utilize the labeling information when per-
forming the nonparametric estimation, while the current method is able to
interactively take advantage of the labeling information during the itera-
tion. Furthermore, the proposed stratified method seems to improve over
the direct derivative penalization method of Gao (2019). It can be seen from
the reported LCR values that the method of Gao (2019), although being
able to correctly label most of the variables, can exhibit difficulty on a few
variables resulting in a very low proportion of correctly labeled models for
certain configurations. Note that the proportion of correctly labeled models
is a much more demanding metric than the LCR, as it does not allow even
a single mislabeled variable. The less satisfying performance of the method
of Gao (2019) is mainly due to the fact that it relies almost exclusively
on derivative estimates to identify time-constant variables, and it is well
known that, in local linear estimation, estimates of the derivative typically
have subpar quality when compared with the coefficient estimates; see for
example Fan and Gijbels (1996). In addition, the underlying theory of such
a direct derivative penalization method can be ambiguous and difficult to

understand as illustrated in Section 2. In contrast, the proposed stratified
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local linear method combines information from both coefficient estimates
and their derivatives into the same stratum for labeling time-constant vari-
ables, and is theoretically guaranteed to yield consistent semiparametric

labeling and estimation.

4.4 Data Analysis

We shall here apply the results to study the influence of El Nino-Southern
Oscillation, characterized by the Southern Oscillation Index (SOI), on tem-
perature anomalies, which is an important problem in climate science and
has been studied by Privalsky and Jensen (1995), Zheng and Basher (1999),
Gao and Hawthorne (2006), McLean (2014) and Zhang (2015) among oth-
ers. In this data analysis, we focus on determining what lags of the SOI
should be used and whether they should be treated as time-varying ex-
planatory variables. For this, we consider the multi-output time-varying

coeflicient model

25
Y; = Bo(lin) + Zﬁj (tin)Tij-13+e, 1=1,....n, (4.2)

j=1

where y; = (y;1,¥:2)" are temperature anomalies from the north and south

hemispheres, and zj is the k-month ahead SOI for k € {—12,...,12}. For
comparison with existing results, we use monthly data from 01/1936 to

12/2019 which can be downloaded from the Climatic Research Unit web-
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Table 1: Simulation results for o = 2 based on 100 realizations for each config-

uration.
Model b, Method Under-label Correct Over-label MSE LCR
2-2-16 0.1 SPLL 0.00 0.99 0.01 0.0335 0.9995
Zhanglh 0.09 0.66 0.25 0.0765 0.9730
Gaol9 0.89 0.06 0.05 0.1931 0.9355
0.2 SPLL 0.00 1.00 0.00 0.0283 1.0000
Zhanglh 0.10 0.81 0.09 0.0652 0.9810
Gaol9 0.00 0.26 0.74 0.0366 0.9085
0.3 SPLL 0.00 1.00 0.00 0.0375 1.0000
Zhanglh 0.10 0.75 0.15 0.0702 0.9785
Gaol9 0.00 0.09 0.91 0.0414 0.8425
5-5-10 0.1 SPLL 0.04 0.94 0.02 0.0795 0.9970
Zhanglh 0.46 0.44 0.10 0.2510 0.9375
Gaol9 1.00 0.00 0.00 0.4982 0.7855
0.2 SPLL 0.00 0.96 0.04 0.0610 0.9980
Zhanglh 0.12 0.79 0.09 0.1926 0.9635
Gaol9 0.61 0.14 0.25 0.1504 0.9385
0.3 SPLL 0.00 0.98 0.02 0.0714 0.9990
Zhanglh 0.12 0.74 0.14 0.1857 0.9650
Gaol9 0.02 0.14 0.84 0.0848 0.8795
2-8-10 0.1 SPLL 0.00 0.98 0.02 0.0403  0.9990
Zhanglh 0.10 0.71 0.19 0.1682 0.9595
Gaol9 0.76 0.11 0.13 0.2111 0.9420
0.2 SPLL 0.00 1.00 0.00 0.0352 1.0000
Zhanglh 0.12 0.81 0.07 0.1570  0.9650
Gaol9 0.00 0.41 0.59 0.0450 0.9405
0.3 SPLL 0.00 1.00 0.00 0.0443 1.0000
Zhanglh 0.13 0.79 0.08 0.1593 0.9665
Gaol9 0.00 0.18 0.82 0.0501  0.9020
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site at: https://crudata.uea.ac.uk/cru/data/temperature/. In this case,
the sample size n = 984, and time series plots are provided in Figure 1. We
then apply the stratified penalized local linear method proposed in Section
3 for semiparametric variable labeling and estimation of (4.2), where the
tuning parameters are selected by using the extended information criterion
described in Section 4.2. For the bandwidth, we use a two-step selection
procedure, where we first use the asymptotic bandwidth b8 = n=/% to
obtain an initial labeling, and then we apply the dependence-adjusted gen-
eralized cross-validation as described in Section 4.3 of Zhang and Wu (2012)
to the selected nonzero variables to obtain a data-driven bandwidth; see al-
so Section 4.1 of Zhang (2015). Our analysis found that, among the 25
lags considered, x; _» and x;( are labeled as time-constant variables while
all other lags are labeled as zero variables. In addition, the intercept is
labeled as a time-varying variable, suggesting the semiparametric multi-

output model:

Y, = Bo(tin) + Brixi—2+ Bisrio+e, i=1,...,n,

where the estimated time-varying coefficients [30(-) = {/30,1('), 50,2(')}T are
plotted in Figure 2 for the north and south hemispheres, and the estimated
time-constant coefficients are given by Bn = (—0.011,-0.015)" and ,313 =

(—0.015, —0.014) 7


https://crudata.uea.ac.uk/cru/data/temperature/
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Figure 1: Time series plots for monthly temperature anomalies from the north hemi-
sphere (top left), monthly temperature anomalies from the south hemisphere (top right),

and monthly SOT (bottom) during the period 01/1936-12/2019.

Note that the method of Zhang (2015) will lead to the multi-output
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Figure 2: Estimated time-varying coefficients 3,(-) = {Bo.1(-), Bo.2(-)} T for the north

(solid) and south (dashed) hemispheres.

model:

Y, = Bo(ti,n) + ﬂ10$i7_3 + ,Bllxi,_Q + ,312]31',_1 + ﬁlSCL’Z”o —+ €;, 7= l, o, N

Compared to the model selected by the proposed stratified penalized local
linear (SPLL) method, it shares the same insight that the effect of Southern
Oscillation Index (SOI) on temperature anomalies can indeed be viewed as
time-constant while the intercept should be treated as time-varying. This
provides a data-driven approach to verify the semiparametric assumption

commonly granted in the climate science literature; see for example McLean



(2014) which posed the possibility of a time-varying relationship but did
not explore statistical tools besides the simple linear regression to investi-
gate further. On the other hand, the proposed SPLL method only selects
x;_o and x; ¢ as important lags, which is different from the aforementioned
model selected by the method of Zhang (2015). It can be seen from our
simulation results reported in Table 1 that the method of Zhang (2015) can
have a higher probability of producing over-labeled models than the pro-
posed SPLL method, especially when there are a lot of zero coefficients as
in the 2-2-16 configuration. Therefore, we believe that the model produced
by the current SPLL method is expected to be more reasonable. Compared
with the climate science literature which tends to find the lag between SOI
and temperature anomalies mainly by relying on the correlation of annual
averages calculated starting from different months, the current analysis al-
lows for the possibility that temperature anomalies may be associated with

multiple lags of the SOI.

5. Discussion

Beyond the current context, the proposed stratified penalization method

also sheds new light on the broader problem about how to incorporate



penalization into kernel smoothing for labeling variables into more than
two categories in a nested structure. Levina et al. (2008) considered a
nested LASSO method when different variables have a natural ordering for
bicategory labeling, while the current setting concerns the situation when
each variable has its own nested structure for labeling. We expect that the
proposed stratified penalization method can be generalized and useful in
other problems that involve multi-category labeling with a nested structure.
For example, one may consider the situation when the time-constant label
as in the current article is replaced by a more general parametric label, for
which a variant of the proposed stratified penalization method is expected
to be useful. In addition, one may consider multiple parametric labels
in a nested structure such as polynomials with nested orders. The detailed
formulation of such problems and developing stratified penalization variants
as their solutions, however, are beyond the scope of the current article and

we shall leave them as a future direction for researchers to follow up.

Supplementary Materials

Supplementary materials contain a detailed description of the iterative algo-
rithm for computing the proposed stratified penalized local linear estimator,

additional simulation results, and technical proofs of our results in Sections
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