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SUMMARY

This article develops an asymptotic theory on sample tail autocorrelations of time series data
that can exhibit serial dependence in both tail and non-tail regions. Unlike the traditional au-
tocorrelation function, the study of tail autocorrelations requires a double asymptotic scheme 10

to capture the tail phenomena, and our results do not impose any restriction on the dependence
structure in non-tail regions and allow processes that are not necessarily strong mixing. The new-
ly developed asymptotic theory reveals a previously undiscovered phase transition phenomenon
for sample tail autocorrelations, whose asymptotic behavior including the convergence rate can
transit from one phase to the other when the lag index moves past the point beyond which serial 15

tail dependence vanishes. The phase transition discovery fills the gap of existing research on tail
autocorrelations, and can be used to construct the lines of significance, in analogy to the tradi-
tional autocorrelation plot, when visualizing sample tail autocorrelations to assess the existence
of serial tail dependence or to identify the maximal lag of tail dependence.

Some key words: Double asymptotics; phase transition; tail adversarial stability; tail autocorrelation function; tail 20

dependent time series

1. INTRODUCTION

Tail dependence, also known as asymptotic dependence or extremal dependence, appears in
data applications from a wide range of disciplines, including actuarial science, climate science,
economics, finance, hydrology, and internet traffic engineering. The phenomenon in the bivariate 25

or finite-dimensional multivariate setting has been extensively studied by Sibuya (1960), de Haan
& Resnick (1977), Ledford & Tawn (1996), Embrechts et al. (2002), Draisma et al. (2004), Poon
et al. (2004), Zhang (2008) and Balla et al. (2014) among others; see also Joe (1993), Coles
et al. (1999) and McNeil et al. (2005) for copula-based approaches. Compared with the vast
literature on tail dependence when independent samples are available for the finite-dimensional 30

joint distribution of interest, the problem has been much less explored in the time series setting
and was regarded as a somewhat open topic by Davis & Mikosch (2009). There have been two
main approaches of summarizing the strength of serial tail dependence in a time series. The
first is through the extremal index (Leadbetter et al., 1983; Smith & Weissman, 1994; Ferro &
Segers, 2003), which serves as an adjustment factor for the distribution of the maximum and is 35

similar in spirit to the adjustment of replacing the marginal variance with the long-run variance
in mean inference. The second main approach is to find a tail counterpart for the traditional
autocorrelation function (ACF), and results along this line include the lag-k tail dependence
index of Zhang (2005), the quantilogram of Linton & Whang (2007), and the extremogram of
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Davis & Mikosch (2009). Unlike the extremal index, such an approach makes it possible to40

visualize tail dependence at different lags in analogy to the widely used traditional ACF plot.
The tail autocorrelation is a remarkable type of extremogram that relates to the quantilogram

of Linton & Whang (2007) by allowing the quantile level to grow with the sample size, which
can also be viewed as a standardized pre-asymptotic counterpart of the lag-k tail dependence
index of Zhang (2005). Davis & Mikosch (2009) obtained a central limit theorem for sample tail45

autocorrelations using the mixing framework of Rosenblatt (1956) along with an additional anti-
clustering condition that further controls the strength of tail dependence; see also Hill (2009)
for processes that can be well approximated by functions of a mixing sequence. The task of
obtaining a tail counterpart of the traditional ACF plot, however, can still be nontrivial due to the
lack of theoretical understanding of sample tail autocorrelations when there exists a lag beyond50

which tail dependence vanishes; see for example the discussion in Section 3.2 of Davis et al.
(2012). In particular, the central limit theorem developed in Davis & Mikosch (2009) is not
directly useful to fill this gap as it will lead to a degenerate and noninformative limit in this case.
Such a degeneracy issue does not exist for the traditional autocorrelation, and is mainly caused
by the double asymptotic scheme that is necessary for studying tail autocorrelations. In addition,55

the anti-clustering condition of Davis & Mikosch (2009) involves an interplay between how fast
the mixing coefficients decay to zero and how fast the quantile level approaches the extreme,
which can lead to additional inexplicit restrictions on how extremal the tail can be; see also the
discussion in Davis et al. (2013).

The current article aims at providing a more comprehensive theoretical understanding of sam-60

ple tail autocorrelations to discover and study their unusual but characteristic phase transition
phenomenon. In particular, our newly developed asymptotic theory reveals that the asymptotic
behavior of sample tail autocorrelations can transit from one phase to the other when the lag
index passes the point beyond which serial tail dependence vanishes. To be more specific, before
the lag index reaches such a point, the convergence rate of sample tail autocorrelations is the65

same as that in Davis & Mikosch (2009), which is the square root of the expected number of tail
observations. Compared with Davis & Mikosch (2009), our results do not impose any restric-
tion on the dependence structure in non-tail regions, involve less restrictive conditions on how
extremal the tail can be, and allow processes that are not necessarily strong mixing or regularly
varying. In addition, unlike the big blocks small blocks argument that has been commonly used70

for mixing processes as in Davis & Mikosch (2009), our proof uses an m-dependent martingale
approximation scheme to obtain the desired limit theorem. Once the lag index moves past the
point beyond which tail dependence vanishes, then the central limit theorem of Davis & Mikosch
(2009) becomes degenerate and noninformative, while our results provide a deeper insight and
discover that the asymptotic behavior of sample tail autocorrelations in this case actually transits75

into a second phase, for which the convergence rate becomes the square root of the sample size,
which is faster in magnitude than that in the first phase. Our phase transition discovery fills the
gap of existing research on tail autocorrelations, and can be used to construct the lines of sig-
nificance when visualizing tail autocorrelations to assess the existence of serial tail dependence.
Such a theoretical approach of obtaining the lines of significance is in analogy to the widely used80

traditional ACF plot, which provides a clean and convenient alternative to the bootstrap and per-
mutation approaches of Davis et al. (2012) and addresses the open problem posed in their Section
3.2. In addition, our results can also be useful toward the problem of identifying the maximal lag
of serial tail dependence as considered by Zhang (2005).
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2. TAIL ADVERSARIAL STABILITY: FRAMEWORK 85

Suppose we observe Y1, . . . , Yn from a stationary process

Yi = G(Fi), Fi = (. . . , εi−1, εi), (1)

where εj , j ∈ Z, are independent and identically distributed (i.i.d.) innovations, and G is a mea-
surable function such that Yi is properly defined. The causal representation (1) covers a wide
range of processes, and the function G can be interpreted as a physical system with Fi being
the input and Yi being the output; see for example Wiener (1958), Tong (1990), Wu (2011), 90

Zhang (2018) and references therein. Let F (y) = pr(Y1 ≤ y), y ∈ R, denote the distribution of
(1) with inverse F−1(u) = inf{y : F (y) ≥ u}, we write UF = limu↑1 F

−1(u) which represents
the upper end point of the distribution and can take the value of infinity if the distribution is not
bounded. Then as y approaches UF , data points exceeding y can be viewed as tail events, and
a popular approach of summarizing tail dependence in a time series is to use the conditional 95

probability

ν(k) = lim
y↑UF

νy(k), νy(k) = pr(Y1+k > y | Y1 > y), (2)

which naturally generalizes the bivariate tail dependence coefficient of Sibuya (1960); see for
example Ledford & Tawn (2003), Zhang (2005), Zhang & Huang (2006), Linton & Whang
(2007), Davis & Mikosch (2009) and references therein. Similar to the role of traditional auto-
correlations, although quantities in (2) provide a straightforward summary of the underlying tail 100

dependence, they are generally not directly useful for developing limit theorems by themselves.
For this, a common approach in the literature is to use the strong mixing framework of Rosenblatt
(1956) and its variants; see for example Drees (2003), Chernozhukov (2005), Davis & Mikosch
(2009), Drees & Rootzén (2010), Davis et al. (2018), Hoga (2018) and references therein. To
handle tail events, however, the mixing condition often has to be used together with addition- 105

al conditions that control the strength of tail dependence; see for example condition (9.67) of
Chernozhukov (2005), conditions (3.3) and (3.10) of Davis & Mikosch (2009), and conditions
(2.2) and (2.4) of Davis et al. (2013), which can possibly lead to additional inexplicit technical
restrictions. Additional contributions can be found in Basrak & Segers (2009), Hill (2009), Kulik
et al. (2019) and references therein. 110

We shall here follow Zhang (2021) and consider an alternative framework that relies on un-
derstanding the tail effect of adversarial innovations. Let ε?0 be an innovation that has the same
distribution as ε0 but independent of (εk)k∈Z, thenF?i = (F−1, ε?0, ε1, . . . , εi) is the coupled shift
process and Y ?

i = G(F?i ) represents the output of the physical system G when the innovation at
time zero is replaced by its i.i.d. copy. We consider 115

θy(i) = sup
z≥y

pr(Y ?
i ≤ z | Yi > z), (3)

which quantifies the degree to which the input innovation at time zero affects whether the output
data at time i is a tail observation. In particular, if Yi does not depend on ε0, then Y ?

i = Yi and
thus θy(i) = 0. Since replacing ε0 by its i.i.d. copy changes whether Yi is a tail observation, (3)
measures the tail adversarial effect of ε0 on Yi. Let

Θy,q(m) =

∞∑
i=m

{θy(i)}1/q, m ≥ 0,

which measures the cumulative tail adversarial effect of the current innovation ε0 on future 120

observations from time m. We say that the process Y1, Y2, . . . is tail adversarial q-stable or
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(Yi) ∈ TASq if

lim
y↑UF

Θy,q(0) <∞, (4)

namely the current innovation has a finite cumulative tail adversarial effect on future observation-
s. Since y can be chosen arbitrarily close to the upper end point UF , the tail adversarial stability
condition (4) only concerns the dependence in the upper tail region and does not impose any125

restriction on the middle range or lower tail region. Compared with the bivariate tail dependence
coefficient (2) of Ledford & Tawn (2003) and Zhang (2005), it incorporates additional time series
structures through tail adversarial coupling in the causal representation of Wiener (1958) and is
directly useful in coordinating with an m-dependent martingale approximation scheme to obtain
desired limit theorems for tail dependent time series. In the context of high quantile regression130

models, Zhang (2021) observed that the tail adversarial stability framework can lead to weaker
conditions than existing results using the strong mixing framework of Rosenblatt (1956). We
shall in the following section consider the problem of tail autocorrelation inference and study
its unique phase transition phenomenon. The practical meaning of (4) is illustrated using the
popular moving-maximum process of Hall et al. (2002) in Section 4.3.135

3. ASYMPTOTICS OF SAMPLE TAIL AUTOCORRELATIONS

3.1. Sample Tail Autocorrelation
Given a stationary time series Y1, . . . , Yn, the tail autocorrelation is defined as

τy(k) =
pr(Y1+k > y | Y1 > y)− pr(Y1+k > y)

1− pr(Y1 > y)

=
pr(Y1+k > y, Y1 > y)− pr(Y1+k > y)pr(Y1 > y)

pr(Y1 > y){1− pr(Y1 > y)}
, (5)

which centers and standardizes the serial tail dependence coefficient νy(k) in (2) in the spirit of
a correlation coefficient. By choosing the hit threshold y in the form of a quantile as suggested140

in Davis & Mikosch (2009), (5) gives the quantilogram of Linton & Whang (2007). It also
relates to the lag-k tail dependence index of Zhang (2005) for constructing the M3 process to
model tail dependent time series. Let I(·) denote the indicator function, F̄ (y) = 1− F (y) and
ˆ̄Fn(y) = n−1

∑n
i=1 I(Yi > y), then a sample version of (5) is given by

τ̂n,y(k) =
µ̂n,y(k)

µ̂n,y(0)
, µ̂n,y(k) =

1

n

n−|k|∑
i=1

{I(Yi > y)− ˆ̄Fn(y)}{I(Yi+|k| > y)− ˆ̄Fn(y)}.

Unlike the setting of Linton & Whang (2007) and Han et al. (2016), we shall here consider the145

situation when y = yn is allowed to approach the upper end point UF as n→∞ to focus on
the tail. Under this double asymptotic scheme, we study the Phase I and Phase II asymptotic
behavior of sample autocorrelations in Sections 3.2 and 3.3 respectively.

3.2. Asymptotic Theory: Phase I
We first provide an asymptotic theory on the triangular array µ̂n,yn(k), which serves as150

the sample tail autocovariance that estimates pr(Y1+k > yn, Y1 > yn)− pr(Y1+k > yn)pr(Y1 >
yn) = τyn(k)F̄ (yn)F (yn). For this, we need the following additional notations. Let Pl(·) =

E(· | Fl)− E(· | Fl−1), l ∈ Z, be the projection operator, and we write ‖Y ‖p = {E(|Y |p)}1/p
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with the convention that ‖ · ‖ = ‖ · ‖2. Let ζi,n = I{G(Fi) > yn} − F̄ (yn), and define

σµ,n(k)2 = {F̄ (yn)}−1
∥∥∥∥∥P|k|

( ∞∑
l=0

ζl,nζl+|k|,n

)∥∥∥∥∥
2

. (6)

Theorem 1 provides the Phase I convergence rate and central limit theorem for µ̂n,yn(k) when 155

yn approaches the upper end point UF as n→∞.

THEOREM 1. Assume that (Yi) ∈ TASq for some q > 4. If yn ↑ UF satisfies F̄ (yn)→ 0 and
nF̄ (yn)→∞, then

µ̂n,yn(k)− τyn(k)F̄ (yn)F (yn) = Op

[{
F̄ (yn)

n

}1/2
]
,

and lim supn→∞ σµ,n(k)2 <∞. If in addition lim infn→∞ σµ,n(k)2 > 0, then{
n

F̄ (yn)σµ,n(k)2

}1/2

{µ̂n,yn(k)− τyn(k)F̄ (yn)F (yn)} →d N(0, 1),

where→d denotes convergence in distribution. 160

We shall here provide a discussion on the quantity (6) that appears in the central limit theorem
of µ̂n,yn(k). In particular, if the time series (Yi) ∈ TASq for some q ≥ 4, then one can show
that lim supn→∞ σµ,n(k)2 <∞, which motivated the scale adjustment {F̄ (yn)}−1 in (6). The
condition that it is bounded away from zero for all large n is needed to ensure that the central
limit theorem of µ̂n,yn(k) as in Theorem 1 is not degenerate, and we shall here provide an explicit 165

calculation of the quantity (6) for regularly varying time series models. In particular, assuming
that the time series (Yi) is regularly varying as in the framework of Davis & Mikosch (2009),
then there exist constants cl1,...,ld such that

{F̄ (yn)}−1 · pr(Yl1 > yn, . . . , Yld > yn)→ cl1,...,ld (7)

holds for any tuple l1, . . . , ld; see assumptions (1.1) and (1.2) of Davis & Mikosch (2009). In
this case, one can show that σµ,n(k)2 converges to the limit

∑
l∈Z c0,|k|,l,l+|k|, whose summands 170

are all nonnegative in view of (7). Besides the regularly varying joint distribution, the result
of Davis & Mikosch (2009) also requires the condition that n{F̄ (yn)}3 →∞, which is more
restrictive than the current condition nF̄ (yn)→∞ about how extremal the tail can be. Although
Davis & Mikosch (2009) made an effort in providing an alternative to n{F̄ (yn)}3 →∞, their
alternative condition depends on a nontrivial interplay between how fast the mixing coefficient 175

decays to zero and how extremal the tail can be, which in general is still stronger than the current
nF̄ (yn)→∞ especially when the dependence follows an algebraic decay; see for example the
application to the moving-maximum process of Hall et al. (2002) in Section 4.3. Let

σν,n(k)2 = {F̄ (yn)}−1
∥∥∥∥∥P|k|

[ ∞∑
l=0

{ζl,nζl+|k|,n − τyn(k)ζ2l,n}

]∥∥∥∥∥
2

.

Corollary 1 provides the Phase I convergence rate and central limit theorem for the sample auto-
correlation τ̂n,yn(k). 180

COROLLARY 1. Assume that (Yi) ∈ TASq for some q > 4. If yn ↑ UF satisfies F̄ (yn)→ 0
and nF̄ (yn)→∞, then

τ̂n,yn(k)− τyn(k) = Op[{nF̄ (yn)}−1/2],
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and lim supn→∞ σν,n(k)2 <∞. If in addition lim infn→∞ σν,n(k)2 > 0, then{
nF̄ (yn)

σν,n(k)2

}1/2

{τ̂n,yn(k)− τyn(k)} →d N(0, 1).

It can be seen from the proof of Corollary 1 that the randomness of τ̂n,yn(k)− τyn(k) is
dominated by the leading term {F̄ (yn)F (yn)}−1{µ̂n,yn(k)− τyn(k)µ̂n,yn(0)}, which involves185

a linear combination of µ̂n,yn(k) and µ̂n,yn(0) that has zero expectation. Unlike the tradition-
al autocovariance and autocorrelation, the convergence rate of the sample tail autocovariance
µ̂n,yn(k) is faster than the traditional n1/2, while the convergence rate of the sample tail au-
tocorrelation τ̂n,yn(k) is slower. Such a discrepancy is due to the fact that, in the current tail
setting, µ̂n,yn(k) estimates τyn(k)F̄ (yn)F (yn) which itself goes to zero as n→∞. Therefore,190

if we scale it and focus on the tail autocorrelation τyn(k) that takes value in [−1, 1], then the
convergence rate in this case becomes slower.

3.3. Asymptotic Theory: Phase II
The traditional ACF plot has been widely used by practitioners from various disciplines to

determine the existence of a lag beyond which the dependence vanishes, so that a model with195

finite-order dependence can be used for the data. This motivates us to consider the situation when

Yi = G(Fi−K,i), Fi−K,i = (εi−K , . . . , εi), (8)

for some K ≥ 0, which represents the lag beyond which there is no serial dependence. The
successfulness of the traditional ACF plot that leads to its wide recognition stems from the well-
known asymptotic theory of sample autocorrelations under (8) that provides a clean and effective
way of adding the dashed lines of significance in a traditional ACF plot; see for example Tsay200

(2010). The problem of developing a counterpart for the tail autocorrelation, however, is still an
open one due to the lack of theoretical understanding of sample tail autocorrelations under (8);
see for example the discussion in Section 3.2 of Davis et al. (2012). The aforementioned paper
considered a bootstrap approach based on the central limit theorem of Davis & Mikosch (2009).
In the current setting, however, once the lag index passes K, then the central limit theorem of205

Davis & Mikosch (2009) becomes degenerate and noninformative for inference. This is because
under the regularly varying time series model (7) of Davis & Mikosch (2009) and Davis et al.
(2012), the constants c0,|k|,l,l+|k| = 0 for |l| ≥ |k| > K, making the asymptotic variance in their
central limit theorem zero. It can also be seen from our Phase I asymptotic theory in Section
3.2, where one can show that the quantity in (6) satisfies σµ,n(k)2 → 0 if |k| > K. In this case,210

although µ̂n,yn(0) may continue to have a non-degenerate Phase I central limit theorem, it will
no longer appear in the leading term of the sample autocorrelation due to the fact that τyn(k) = 0
for |k| > K. Therefore, it seems desirable if we can develop a more detailed distribution theory
on sample tail autocorrelations when the Phase I central limit theorem becomes degenerate and
noninformative for inference. Let215

ςµ,n(k)2 = {F (yn)F̄ (yn)}−2
∑
|l|≤K

E(ζ0,nζl,nζ|k|,nζl+|k|,n), (9)

we shall here fill this gap and provide the Phase II convergence rates and central limit theorems
for µ̂n,yn(k) and τ̂n,yn(k) in Theorem 2 and Corollary 2 respectively.

THEOREM 2. Assume that (8) holds for some K ≥ 0. If yn ↑ UF satisfies F̄ (yn)→ 0 and
nF̄ (yn)→∞, then for any |k| > K,

µ̂n,yn(k) = Op{n−1/2F̄ (yn)},
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and lim supn→∞ ςµ,n(k)2 <∞. If in addition n{F̄ (yn)}2 →∞ and lim infn→∞ ςµ,n(k)2 > 0, 220

then [
n

{F̄ (yn)}2ςµ,n(k)2

]1/2
µ̂n,yn(k)→d N(0, 1).

Compared with the Phase I asymptotic theory in Theorem 1, the Phase II convergence rate
in Theorem 2 is faster by a factor of {F̄ (yn)}−1/2. Therefore, when the Phase I central lim-
it theorem in Theorem 1 becomes degenerate and noninformative for inference, the Phase II
asymptotic theory in Theorem 2 not only discovers the rate at which it degenerates to zero but 225

also establishes the updated limiting distribution when the new scale adjustment is used. Such
a phase transition phenomenon typically does not exist in traditional autocovariances, for which
the convergence rate is the universal n1/2. Our results in Theorems 1 and 2 reveal that, when the
lag index passes the point beyond which tail dependence vanishes, the asymptotic behavior of
sample tail autocovariances can exhibit a phase transition, where the convergence rate transits 230

from the Phase I rate of n1/2{F̄ (yn)}−1/2 to the Phase II rate of n1/2{F̄ (yn)}−1.

COROLLARY 2. Assume that (8) holds for some K ≥ 0. If yn ↑ UF satisfies F̄ (yn)→ 0 and
nF̄ (yn)→∞, then for any |k| > K,

τ̂n,yn(k) = Op(n
−1/2).

If in addition n{F̄ (yn)}2 →∞ and lim infn→∞ ςµ,n(k)2 > 0, then{
n

ςµ,n(k)2

}1/2

τ̂n,yn(k)→d N(0, 1).

By Corollary 2, sample tail autocorrelations continue to exhibit the phase transition as 235

in sample tail autocovariances. In particular, the Phase I convergence rate in Corollary 1 is
{nF̄ (yn)}1/2, where nF̄ (yn) serves as the expected sample size in the tail region that can be used
to interpret the intuition of such a convergence rate. The Phase II convergence rate in Corollary
2, however, is no longer affected by the factor {F̄ (yn)}1/2 and improves to n1/2, which seems
a little surprising. An investigation of the proof, however, reveals that it is intuitively caused by 240

the degeneracy of the Phase I asymptotic theory, in which case a faster scale has to be used to
appropriately normalize the sample autocorrelation that leads to the improved convergence rate
in Phase II. We shall in the following section consider implications of the developed results on
obtaining a theoretically justifiable tail counterpart of the widely used ACF plot and on identi-
fying the maximal lag of serial dependence as considered by Zhang (2005). An application to 245

the moving-maximum process of Hall et al. (2002) is also presented to illustrate the developed
results.

4. IMPLICATIONS ON STATISTICAL PRACTICE

4.1. Tail Autocorrelation Plot: A Visualization Tool
A crucial component of the traditional ACF plot is the two lines of significance that enable 250

practitioners to make their decision statistically about whether the autocorrelation is zero and
whether a model with finite-order dependence can be used for the data. The line of significance
is obtained from a well-known asymptotic theory of sample autocorrelations when the data are
independent, and the fact that the cut-off has a mathematically simple and statistically justifiable
form contributes largely to the popularity and wide recognition of the ACF plot among prac- 255

titioners and applied scientists from different disciplines. The task of developing a counterpart
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for tail autocorrelations, however, can be nontrivial due to the lack of an appropriate asymptotic
theory. Davis et al. (2012) commented that, even for independent data, the cut-off for sample
tail autocorrelations does not seem to be easily computable from any existing theory. We shall
here use the results developed in Section 3 to fill this gap. In particular, for independent da-260

ta, E(ζ0,nζl,nζ|k|,nζl+|k|,n) = 0 holds for any 0 < |l| < |k|, and as a result the quantity in (9)
satisfies

ςµ,n(k)2 = {F (yn)F̄ (yn)}−2E(ζ20,nζ
2
|k|,n)→ 1 (10)

for |k| > 0. Therefore, by the Phase II central limit theorem in Corollary 2, we have

n1/2τ̂n,yn(k)→d N(0, 1)

for |k| > 0 when the underlying data are independent. This suggests that, although the conver-
gence rate of sample tail autocorrelations can be slowed down to {nF̄ (yn)}1/2 with a nontrivial265

asymptotic variance in Phase I, for the purpose of constructing a counterpart of the widely rec-
ognized ACF plot in the tail setting, the lines of significance can actually be set neatly at the
vertical position ±n−1/2Φ−1(1− α/2) according to our Phase II asymptotic theory, where Φ(·)
is the distribution function of a standard normal. We call the resulting visualization tool the tail
autocorrelation function (TACF) plot, which we believe can have a great potential in assisting270

practitioners and applied scientists for analyzing serial dependence in the tail region.

4.2. Identifying the Maximal Lag of Tail Dependence
In addition to the above approach that finds the lines of significance by applying the Phase

II asymptotic theory to independent data analogously to the traditional ACF plot, we consider
here an alternative that computes the cut-off by treating the previous lag as the maximal lag of275

serial tail dependence. This relates to the problem of identifying the maximal lag of serial tail
dependence as considered by Zhang (2005), where one seeks a test for H0 : τyn(k) = 0 under
(8) with K = k − 1, namely when k − 1 is the maximal lag of dependence; see also Zhang
(2008). The gamma test of Zhang (2005) and Zhang (2008) assumes that yn = y is fixed, and we
shall here consider the double asymptotic scheme when yn ↑ UF to better accommodate the tail280

setting. For this, by the Phase II asymptotic theory in Corollary 2, we propose to reject the null
hypothesis at level α if

|τ̂n,yn(k)| > n−1/2ςµ,n(k)Φ−1(1− α/2), (11)

where ςµ,n(k)2 is given in (9) withK = |k| − 1. Compared with the independence setting where
ςµ,n(k)2 → 1 is known from (10), in the current setup ςµ,n(k)2 is typically unknown and needs
to be estimated. For this, we propose to plug in its empirical version285

ς̂µ,n(k)2 = 1 +
2

n− |k|

|k|−1∑
l=1

n−l−|k|∑
i=1

ζ̂i,nζ̂i+l,nζ̂i+|k|,nζ̂i+l+|k|,n

[ ˆ̄F (yn){1− ˆ̄F (yn)}]2
, ζ̂i,n = I(Yi > yn)− ˆ̄Fn(yn).

Therefore, if one seeks a statistical tool that provides a counterpart of the traditional ACF plot in
the tail setting, then the clean but effective ±n−1/2Φ−1(1− α/2) lines of significance proposed
in Section 4.1 can be more desirable. However, if one is interested in identifying the maximal lag
of tail dependence as in the setting of Zhang (2005), then the decision rule in (11) can be more
suitable, and thus we also include it here as a valuable alternative for practitioners to choose.290
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4.3. Application to the Moving-Maximum Process
We shall in this section use the moving-maximum process of Hall et al. (2002) to illustrate

our results, including the tail adversarial stability condition and the discovered phase transition
phenomenon of sample tail autocorrelations. As commented by Hall et al. (2002), the moving-
maximum model encompasses a range of stochastic processes that are of interest in the con- 295

text of extreme-value data, and in the same paper it was shown to be dense in the class of
stationary processes whose finite-dimensional distributions are extreme-value of a given type;
see also Zhang & Smith (2004), Zhang (2005) and Zhang et al. (2017) for additional dis-
cussions. Let εj , j ∈ Z, be independent Fréchet random variables with distribution function
Fε(z) = pr(εj ≤ z) = exp(−z−γ) for some γ > 0, we consider the moving-maximum process 300

Yi = max
0≤l<∞

alεi−l, i = 1, . . . , n, (12)

which is well defined if the nonnegative coefficients satisfy
∑∞

l=0 a
γ
l <∞; see the discussion

in Section 2.2 of Hall et al. (2002). Zhang (2005) required a similar summability condition to
define the M3 process with unit Fréchet innovations. We shall first illustrate the meaning of
the tail adversarial q-stability condition for the moving-maximum process (12). For this, by the
results in Hall et al. (2002), one can show that the joint probability 305

pr(Y ?
i ≤ y, Yi > y) = {1− exp(−aγi y

−γ)} · exp

(
−
∞∑
l=0

aγl y
−γ

)
≤ 1− exp(−aγi y

−γ),

and as a result

pr(Y ?
i ≤ y | Yi > y) ≤

1− exp(−aγi y−γ)

1− exp(−
∑∞

l=0 a
γ
l y
−γ)
≤

2aγi∑∞
l=0 a

γ
l

holds if pr(Yi > y) ≤ 1/2. Therefore, when y ↑ UF , we have

lim
y↑UF

Θy,q(0) ≤
2
∑∞

i=0 a
γ/q
i∑∞

l=0 a
γ
l

,

and the tail adversarial q-stability condition is satisfied if
∑∞

l=0 a
γ
l > 0 and

∑∞
i=0 a

γ/q
i <∞.

The first condition
∑∞

l=0 a
γ
l > 0 essentially prevents the process from being degenerate; see

for example Zhang (2005). The second condition
∑∞

i=0 a
γ/q
i <∞ controls the degree of tail 310

dependence, and compared to the existence condition
∑∞

i=0 a
γ
i <∞ under which the moving-

maximum process is well defined (Hall et al., 2002), it seems to be reasonable and mild. Calcu-
lating the strong mixing coefficient or the β-mixing coefficient for the moving-maximum process
(12) can be a nontrivial task (Dombry & Eyi-Minko, 2012) and may possibly lead to stronger
conditions on the coefficients, let alone the additional technical conditions often needed under 315

the strong mixing framework that involve the interplay between how fast the mixing coefficient
decays to zero and how far the tail can reach.

To illustrate the phase transition phenomenon, for simplicity, we consider the special case
when a0 = 1, a1 = 1/2 and al = 0 for l ≥ 2, namely when

Yi = max(εi, εi−1/2), i = 1, . . . , n. (13)

In this case, the phase transition will occur at lag k = 2. To be more specific, when |k| < 2, one 320

can show that the quantity σµ,n(k)2 defined in (6) satisfies

lim
n→∞

σµ,n(0)2 =
2γ + 3

2γ + 1
, lim

n→∞
σµ,n(1)2 =

1

2γ + 1
.
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Since both of them are bounded away from zero, the Phase I asymptotic theory in Theorem 1
applies, and we have{

n

F̄ (yn)

}1/2

{µ̂n,yn(0)− F̄ (yn)F (yn)} →d N

(
0,

2γ + 3

2γ + 1

)
, (14)

and {
n

F̄ (yn)

}1/2

{µ̂n,yn(1)− τyn(1)F̄ (yn)F (yn)} →d N

(
0,

1

2γ + 1

)
.

When the lag moves to k = 2, however, the quantity σµ,n(k)2 defined in (6) now degenerates to325

zero, making the Phase I asymptotic theory no longer applicable. In this case, we shall use the
Phase II asymptotic theory in Theorem 2, by which we can obtain that[

n

{F̄ (yn)}2

]1/2
µ̂n,yn(2)→d N

{
0, 1 +

2

(2γ + 1)2

}
.

The convergence rate in this case is faster by a factor of {F̄ (yn)}−1/2 than the Phase I rate
of n1/2{F̄ (yn)}−1/2. Since µ̂n,yn(0) = F̄ (yn)F (yn){1 + op(1)} from (14) and F (yn)→ 1 as
n→∞, by an application of Slutsky’s theorem we have the Phase II central limit theorem for330

sample autocorrelations

n1/2τ̂n,yn(2)→d N

{
0, 1 +

2

(2γ + 1)2

}
,

which can be useful in testing if k = 2 is the first lag of tail independence; see the discussion in
Section 4.2 and Zhang (2005).

We also include here a small simulation study to illustrate the TACF plot in Section 4.1 that
visualizes tail autocorrelations and the test described in Section 4.2 for determining the maximal335

lag of tail dependence. For this, we generate data according to the moving-maximum process (13)
and provide sample TACF plots in Figure 1 for different choices of sample size n ∈ {500, 1500}
and shape parameter γ ∈ {1, 2} where yn is chosen as the 90% quantile. It can be seen from
Figure 1 that a first-order tail dependence model indeed seems to be plausible for the generated
data, and therefore the TACF plots can provide a useful visualization tool to practitioners for in-340

vestigating tail dependence as a starting point. We also consider applying the test in Section 4.2
to the moving-maximum process (13), and the results are summarized in Table 1 based on 5000
realizations for each configuration. We can observe the followings from Table 1. First, the case
when k ≥ 2 relates to the null, for which the empirical sizes are reasonably close to their nominal
levels of 90% and 95%. On the other hand, the case when k = 1 relates to the alternative, for345

which the empirical sizes are generally close to zero indicating a reasonably good power perfor-
mance of the test. Third, when we increase yn from the 90% quantile to the 95% quantile, we
are focusing on events that are more extremal, which can typically lead to larger size distortions
and less power of the test. However, if we increase the sample size, then the size distortion gets
smaller and the power increases, which corroborates our asymptotic theory. Additional simula-350

tion results on seasonal moving maximum processes are provided in the supplementary material,
where similar observations can be made.

4.4. An Application to Tropical Cyclone Data
We shall here apply the developed results to assess tail dependence of a tropical cyclone da-

ta. The data contains satellite-derived lifetime-maximum wind speeds of 2098 tropical cyclones355
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Fig. 1. Sample TACF plots for the moving-maximum pro-
cess (13) with sample size n ∈ {500, 1500} and shape pa-
rameter γ ∈ {1, 2} where yn is chosen as the 90% quan-
tile. In all the plots, the blue dashed lines represent the 95%
lines of significance based on the developed asymptotic

theory as discussed in Section 4.1.

over the globe during 1981–2006, and we refer to Elsner et al. (2008) for a more detailed de-
scription. The aforementioned paper fitted linear trends to quantiles by assuming that the errors in
the quantile regression model are independent and identically distributed; see also Zhou (2010),
Zhang & Wu (2011) and Zhang & Lavitas (2018) for additional trend analyses. Figure 2 provides
the time series plot of the data, and we shall here focus on examining the tail dependence. For 360

this, we first follow Elsner et al. (2008) and fit a linear trend to the 95% quantile, and then apply
the TACF visualization tool introduced in Section 4.1 to the detrended time series. The resulting
TACF plot is provided in Figure 3, from which we can see that there seems to be a nonnegligible
lag-12 tail dependence, which also seems to serve as the maximal lag of tail dependence. By the
test introduced in Section 4.2, we can obtain a p-value of 0.000 for the lag-12 tail autocorrelation, 365

indicating strong statistical evidence for a lag-12 tail dependence. If we rely on the traditional
autocorrelation to examine the dependence, then the lag-12 traditional autocorrelation will be
0.025 which falls within the 95% lines of significance ±1.96n−1/2 = ±0.043 in the usual ACF
plot. Therefore, it seems desirable to develop convenient and rigorous statistical tools for visual-
izing and assessing tail dependence as in the current paper, which can be different from the usual 370
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k = 1 k = 2 k = 3
n γ 90% 95% 90% 95% 90% 95%

yn chosen as the 90% quantile
500 1 0.000 0.000 0.913 0.965 0.904 0.960

2 0.019 0.033 0.911 0.961 0.917 0.964
1500 1 0.000 0.000 0.900 0.951 0.905 0.952

2 0.000 0.000 0.904 0.958 0.897 0.947
yn chosen as the 95% quantile

500 1 0.001 0.001 0.950 0.973 0.947 0.971
2 0.060 0.087 0.936 0.965 0.936 0.960

1500 1 0.000 0.000 0.915 0.968 0.913 0.966
2 0.000 0.000 0.914 0.967 0.909 0.963

Table 1. Empirical size of the test described in Section 4.2 for determining the maximal lag of
tail dependence.
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Fig. 2. Satellite-derived lifetime-maximum wind speeds of
tropical cyclones during 1981–2006.

concept of dependence that concerns comovements around the mean. Our finding also indicates
that the analysis of Elsner et al. (2008) conducted by assuming independence can be revisited and
improved as a future topic in climate science by taking into account the discovered significant
lag-12 tail dependence.

5. DISCUSSION375

We develop an asymptotic theory on sample tail autocorrelations for time series data that can
exhibit serial dependence in both tail and non-tail regions. Compared with the strong mixing
framework of Rosenblatt (1956) which often has to be used along with additional technical con-
ditions that can largely limit the degree of tail dependence (Chernozhukov, 2005; Chernozhukov
& Fernández-Val, 2011) or cause additional inexplicit restrictions on how extremal the tail can380

be through an interplay with how fast the mixing coefficient decays to zero (Davis & Mikosch,
2009), our results are developed under a tail adversarial stability framework which does not im-
pose any restriction on the dependence structure in non-tail regions and allows processes that are
not necessarily strong mixing or regularly varying. It also leads to more explicit and less restric-
tive conditions on the tail and covers more extremal tails than existing ones; see the discussion385

in Section 3.2. In addition, our newly developed asymptotic theory reveals a previously undis-
covered phase transition phenomenon for sample tail autocorrelations, where we find that the
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Fig. 3. Sample TACF plot of the tropical cyclone data af-
ter removing a linear trend to the 95% quantile. The blue
dashed lines represent the 95% lines of significance based
on the developed asymptotic theory as discussed in Section

4.1.

asymptotic behavior of sample tail autocorrelations including their convergence rate can transit
from one phase to the other when the lag index moves past the point beyond which serial tail
dependence vanishes. Such a phase transition phenomenon does not exist in traditional autocor- 390

relations where the convergence rate is the universal square root of the sample size, and is a
characteristic product of the double asymptotic scheme in the current setting that is necessary for
studying tail phenomena. To illustrate the developed results, we in Section 4 consider the prob-
lem of developing a theoretically justified analogue of the traditional ACF plot in the tail setting
and the problem of identifying the maximal lag of tail dependence as posed in Zhang (2005). For 395

both problems, existing central limit theorems on sample tail autocorrelations can degenerate and
become noninformative for inference, while the two-phase asymptotic theory developed in the
current paper fills this gap and provides an essential foundation for finding statistical solutions
to the aforementioned problems.
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