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Featured Application: This paper presents a comparison study with well-controlled data to eval-
uate two new deep learning methods and their relationships and differences with traditional
methods. We implemented four widely accepted limit equilibrium analysis methods and com-
pared their implementations and results with the newly proposed deep learning methods. This
will lend engineers a clear reference regarding how deep learning works in comparison with tra-
ditional methods. With this paper, readers can easily see the potential and technical advantages
of the new methods. This presents a good example to show the comparison between traditional
physics-based approaches and the data-driven approaches and demonstrate how data-driven ap-
proaches can change or complement the traditional engineering practices. The work will help
bridge the gap between traditional engineering analysis of geosystems and advanced engineer-
ing informatics and explore “big data” solutions for many similar engineering applications (e.g.,
with mechanical or stability analysis).

Abstract: This paper presents a comparison study between methods of deep learning as a new
category of slope stability analysis, built upon the recent advances in artificial intelligence and
conventional limit equilibrium analysis methods. For this purpose, computer code was developed to
calculate the factor of safety (FS) using four limit equilibrium methods: Bishop’s simplified method,
the Fellenius method, Janbu’s simplified method, and Janbu’s corrected method. The code was
verified against Slide2 in RocScience. Subsequently, the average FS values were used to approximate
the “true” FS of the slopes for labeling the images for deep learning. Using this code, a comprehensive
dataset of slope images with wide ranges of geometries and soil properties was created. The average
FS values were used to label the images for implementing two deep learning models: a multiclass
classification and a regression model. After training, the deep learning models were used to predict
the FS of an independent set of slope images. Finally, the performance of the models was compared to
that of the conventional methods. This study found that deep learning methods can reach accuracies
as high as 99.71% while improving computational efficiency by more than 18 times compared with
conventional methods.

Keywords: convolutional neural networks; slope stability; multiclass classification; regression; deep
learning; landslides; limit equilibrium methods

1. Introduction

Slope stability analysis is critical to the prevention and hazard mitigation of landslides.
Especially in the present day, urbanization and population growth have been necessitating
the build-up of terraces and corridors to make room for buildings and infrastructures,
leading to more slope stability considerations in the built environment [1,2]. This raises the
demand for the understanding, analysis, and prevention of landslides. The most common
force-based methods for slope stability analysis are limit equilibrium methods (LEMs) [3],
strength reduction methods (SRMs) [4], and limit analysis methods (LAMs).
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LEMs were explored extensively in the early days to study slopes with hand-performed
computations due to the lack of computing power. Despite the long history, these methods
evolved with the availability of computers as well. Computers enabled LEMs to consider
the internal forces, pore pressure, and multiple layers of soils. In addition, the simplicity of
the underlying theories contributed to the popularity and widespread use of these methods
among engineers [5,6]. However, LEMs are statically indeterminate problems, and the
use of these methods requires assumptions of the internal forces that compromise their
accuracy [7].

SRMs are the second category of methods that are commonly applied through the
finite element, finite difference, and discrete element methods. These methods provide ap-
proximations to the exact solution of the governing equations of slope mechanics; therefore,
they are more complicated than LEMs. Compared with LEMs, SRMs are advantageous in
that they can consider strains [8]. Nonetheless, SRMs are relatively time-consuming, and
their accuracy heavily relies on the accuracy of the considered geotechnical parameters [9].

Another group of approaches is LAMs, which make use of lower-bound and upper-
bound theorems of plasticity [10]. While LEMs consider force and moment equilibrium
along a specified slip surface, LAMs are rigorous. The reason for this is that, for the lower-
bound, the stress field is in equilibrium with imposed loads at boundaries, while for the
upper-bound, the velocity field solution is compatible with the imposed velocities. Despite
the rigorousness, LAMs are not as popular as LEMs and SRMs due to the difficulties in
constructing proper stress and velocity fields and obtaining optimal solutions. Additionally,
the inclusion of pore water pressures, inhomogeneous soil profiles, and irregular slope
geometries increase the complexity of LAMs. This can further complicate the manual
construction of the stress and velocity fields, making LAMs impractical in most cases [11].

A more recent approach to slope stability is displacement-based analysis. This group
of methods is focused on simulating the large movements and the post-failure behavior
of slopes [12]. In many cases, the catastrophic damage caused by the deformations due
to a landslide is more crucial than calculating the FS [13]. One of the most common
methods in displacement-based analysis is the material point method (MPM) [14]. This
method provides information for the internal development of shearing surfaces and the
post-failure runout process [15]. The MPM has been used in numerous research projects
and case studies. For example, Fern, et al. [16] used centrifuge tests to assess the effect of
subsoil stiffness on the failure mechanism of dykes. Conte, et al. [17] utilized the MPM to
investigate the runout process of the Maierato landslide.

Despite the clear underlying theories, the above categories of physics-based methods
require assumptions to deal with the spatial variability of earth materials and their complex
geotechnical behavior [18]. Moreover, the accurate implementation of these models to rep-
resent real-world conditions is time-consuming, computationally expensive, and requires a
high level of expertise. Consequently, these models are either complex and impractical or
over-simplified and inaccurate for field engineers when analyzing real-world problems.
Additionally, these conventional methods are unable to take advantage of the large volumes
of available data (“big data”), especially image and video data, and recent advancements
in artificial intelligence.

Recently, a successor of artificial neural networks (ANNSs), called convolutional neural
networks (CNNs), gained popularity as a successful deep learning network. CNNs at-
tracted an increasing amount of attention following their success in classifying 1.2 million
high-resolution images into 1000 different categories [19]. These networks can significantly
reduce model parameters and automatically extract data (image) features, and hence they
generated remarkable improvements in learning outcomes [20].

Despite the success of CNNs in computer vision, they have only been explored in a
few civil engineering applications [21]. Specifically, deep learning with CNNs has been
used in structural health monitoring and vibration-based structural damage
detection [22-26]. In geotechnical engineering, CNNs enabled researchers to use raw
data and field records for assessing liquefaction potential [27], monitoring and predicting
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landslide displacement [28,29], identifying the source location of microseismic events in
underground mines [30], predicting the spatial correlation coefficients from cone penetra-
tion test data [31], and analyzing landslide susceptibility [32,33]. Despite this progress, the
application of CNNs in classical geosystems such as slope stability analysis is still rare.
As far as we know, the earliest and the only attempt is the authors’ effort of using a CNN
multiclass classifier for obtaining the FS of slopes, which was validated against Bishop’s
simplified method [34].

In this study, deep learning models are combined with physics-based models of
slope stability to obtain new models for slope stability analysis. In particular, a multiclass
classification model and a regression model were employed to automatically predict the
FS of slope images. The performance of both models was evaluated against four widely
adopted LEMs in terms of accuracy and computing efficiency: the ordinary method of
slices (OMS), Bishop’s simplified method (BSM), Janbu’s simplified method (JSM), and
Janbu'’s corrected method (JCM). The rest of the paper is organized as follows. Section 2
presents a brief introduction to the basics of deep learning with CNNs, followed by the
theories of the proposed deep learning models. Next, Section 3 describes a procedure
proposed for generating slope image data with different geometries and soil properties, as
well as the labeling and pretreatment of the slope image data. The four LEMs employed
in this study, including their theories and implementations, are detailed in Section 4. In
Section 5, the results for training, validation, and testing are presented and analyzed, and
conclusions are reached based on them.

2. Models
2.1. Overview of the Research Method

This subsection presents an overview of the research method and associated efforts.
After going through the basic concepts and theories of deep learning with CNNss, the first
step was to develop computer code for generating a dataset of artificial slope images with
various geometries and soil properties. This code was then utilized to analyze the FSs
of the images within the dataset using four LEMs, including the OMS, BSM, JSM, and
JCM. The accuracy of the computer code was validated against Slide2 in RocScience. In
the next step, the slope images were labeled and saved into lightning memory-mapped
database (LMDB) format using two labeling procedures for the classification and regression
models in deep learning. For the classification model, the slope images were grouped
into nine classes based on the average values of their FSs. For the regression model, the
images were labeled with the FS values. Considering that the LMDB format only supports
integer values, the FSs of the slopes were multiplied by 1000, rounded down to the nearest
integer and then used as the label. Next, the hyperparameters for the classification and
regression models were defined in the solver. The solvers and datasets were then used
to train the deep learning models. Subsequently, the trained models were employed to
predict the FS values of an independent set of images to evaluate the performance of the
newly developed methods. For this purpose, the FS predictions from the deep learning
methods were compared against the FSs obtained by the previously mentioned LEMs
regarding their accuracy and computing time. Finally, the results of these comparisons
were analyzed, and conclusions were drawn based on them. In the following sections,
more detailed descriptions will be provided for the essential components of the study.

2.2. Convolutional Neural Networks (CNNs)

CNNs were first proposed by LeCun [35], and they have been used frequently in
computer vision applications ever since. CNNs usually consist of a series of convolutional
layers, pooling layers, dropout layers, and fully connected layers. In convolutional layers,
the model applies kernels to the image to detect features and generate various feature
maps. The pooling layers introduce shift-invariance by reducing the resolution of the fea-
ture maps [36]. The dropout layers prevent overfitting, and batch normalization prevents
internal covariate shift and speeds up training [37]. In the end, fully connected layers
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produce the final output [38,39]. The Convolutional Architecture for Fast Feature Embed-
ding (Caffe), developed by the Berkeley Vision and Learning Center (BVLC), was used as
the deep learning framework in this study [40], considering that Caffe is a popular deep
learning library that is fast, modular, and includes advanced deep learning techniques [41].
Two supervised learning models were proposed for conducting deep learning in this study:
a multiclass classification model and a regression model. Both models were employed
to study the slope image data to associate the features or images with their labels. In the
following subsections, these two models are briefly discussed to show how deep learning
can be used to obtain the FS values of slopes.

2.2.1. Multiclass Classification

Image classification used to be a challenging task involving two stages: using feature
descriptors to extract handcrafted features and then feeding them to a trainable network.
The problem with this approach was that it was heavily dependent on the first stage, which
was a complicated task [35]. However, the availability of GPUs, better algorithms, and
larger datasets helped address this problem and fueled the popularity of CNNs [42].

The main obstacle in using a multiclass classification model in this study was that
the measure of the stability of slopes (i.e., the FS) was a continuous variable, while the
classification model was inherently suitable for discrete variables. To address this issue, the
FS values were grouped into nine categories based on the ranges of their FS values. The
categories of FS values in Table 1. were adopted so that the classification model could reach
accuracy to one decimal place. Aside from that, each range was associated with a unique
label that was utilized in the multiclass class. The details of calculating the FS values of
these slope images are discussed in the following sections.

Table 1. Categories of FS values and their associated labels for multiclass classification.

Category Range of FS Label
First Less than 0.8 0
Second 0.8-0.9 1
Third 0.9-1.0 2
Fourth 1.0-1.1 3
Fifth 1.1-1.2 4
Sixth 1.2-1.3 5
Seventh 1.3-1.4 6
Eighth 1.4-15 7
Ninth Greater than 1.5 8

To obtain a general understanding, let us assume there are k predefined classes in
the data. Then, the goal of the multiclass classification model is to determine the input, x,
belongs to which of the k categories. To achieve this goal, the deep learning model will
approach a function f, which can be defined by its weights w to estimate the output y
such that y = f(x|w). In this study, the input fed to the network was an image or images
in the form of an array or arrays of numbers representing pixel values of the image or
images. The output was a vector of k numbers, in which all elements were equal to zero
except the one that was equal to the label. Before calculating the output, the Softmax layer
computed the probability of the input image belonging to every class. The Softmax layer
takes the output of the last linear layer z; and transforms it into the probabilities of the
image belonging to each category by taking the exponents of each input and normalizing
them over the sum of these probabilities:

%
k Z;
Zj:l e’

pi = 1)

where p; is the probability that an image belongs to the ith category.
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where p; is the probability that an image belongs to the ith category.
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Table 2. Coordinates of the four points used to create the geometry of the slope image data.

Parameters Descriptions Formulations
(x1,11) Coordinates of Point 1 (0,154 10A)
(x2,Y2) Coordinates of Point 2 (15+10A,11)
(x3,¥3) Coordinates of Point 3 (02 +A(29 —x2), 2 + 8+ A(35 —12))
(x4,y4) Coordinates of Point 4 (50,y3)
N Number of slices 40

3.2. Soil Properties

The stability of the slopes is also primarily determined by the soil properties. Therefore,
the soil properties were also considered in both the deep learning methods and LEMs in
the comparison study. For this purpose, the soil properties, including the cohesion, friction
angle, and unit weight, were selected based on the typical values of these parameters to
reflect their variations in the real world [47,48]. Cohesionless soils were not considered
in this study due to the shape and depth of their slip surfaces. The critical slip surface in
cohesionless soils is a shallow plane parallel to the surface of the slope. However, the LEMs
adopted in this study employ a circular slip surface to search for the circle that yields the
minimum FS. The ranges of the adopted values for these parameters are listed in Table 3.
For each image, computer code generated three random numbers within the given ranges
with a uniform distribution to cover a wide range of soils. To incorporate these properties
in the slope images, all of these values were normalized to values between 0 and 1. In the
real slope images, the material properties were related to the information embedded in the
image data; pixel values in different channels indicated the properties of the soil. In this
pioneering study, this relationship was represented using a simple procedure. Each of the
soil properties was assigned to one of the RGB channels of the image: red (R), green (G), or
blue (B). The obtained color was then used to paint the slope image. In this way, the soil
properties were carried by the image data in addition to the geometry.

Table 3. Range of soil properties used in this study.

Soil Properties Range Unit Color
Cohesion (c’) 10-100 kPa Red
Friction angle (¢’) 15-35 Degrees Blue

Unit weight (7y) 17-22 kN/m? Green

3.3. Validation of the Computer Code for Data Generation

New code was developed for the FS calculations in this study because existing com-
puter programs cannot be easily coupled with deep learning or its associated data treat-
ments for the purpose of comparing deep learning against LEMs. This newly developed
code was validated against a widely adopted commercial LEM software package, Roc-
Science, before its use. A trial dataset of five images per category was randomly chosen
to evaluate the accuracy of the developed code. These slopes were then simulated using
Slide2 in RocScience. Figure 3 compares the FS predictions obtained with RocScience and
those obtained with the new computer code. In this figure, the lines represent the FS values
obtained in this study, while the markers represent the FSs calculated with RocScience.
As can be seen, the FS values calculated with this code almost coincided with the results
obtained with RocScience for the four LEMs.



AppirBeis2029211 11x6PeR PEER REVIEW 8 of 20 (

24
22
2 [
™ 1.8F
S
161
QL
©
n14-
Y
o
S812F
S > RocScience (BSM)
w gL —This Study (BSM) | |
RocScience (OMS)
—This Study (OMS)
0.8 RocScience (JSM) | |
This Study (JSM)
0.6 ~ RocScience (JCM)|
—This Study (JCM)
042 \ \ x ] x x x

0 5 10 15 20 25 30 35 40 45
Image lteration

rligars 3o pmpan spRRfbaslataimekovsth-RecSmientecvrthuthesamputer code.
3§4D f%gﬁyr%gttr’%?%ents

Several preprocessing techniques were applied to the slope images to improve the

deep 1ORXATELRIGRIQGERFINE e  WeRsahRbedk40-he Slans HRRZESWJQ improy

udegpolearaieg desudinlA?, 50 bvlaythaditsh plegrthahistegrambegualizatienetechniqu

XusedX0 ghhiancedlie wenitsast of évegy imadddyXd égrdashegtine mvehbfahepgely levels

Cixen, 3t s dsthe pypepsiecbrbsls Hidgde veryte el iy psebrbiligydensatitie pixel. |

‘thie ﬂﬁﬁﬁegha@ number of Fi)ﬁels mcitl% the X, gray level, the probability de?sity of X
be defined as P = k=015l Y

where N is the total number of pixels azd tﬂe > imgge dEnsig is diﬁitized into L levels.
Then, the cumulative distributio®’ égk e_foﬁn{fla't'eg g L=1,

where N is the total number of pixels and the image density is digitized into L lev
Then, the cumulative dfst Eﬁ’fﬁoﬁ dart B dormulated as ®)

i=0
Accordingly, the transform function gggs%gl)aﬁ ézlluff@lﬂ%b% was calculated as
Accordingly, the }{%{‘R)Sf:()%’l Jfrtl(%ti?rl 0%9%5@{51} equalization was ca(kgulated ;

After histogram equalization,f aq(é‘lop:e fgﬂa-lg_egx‘/véfe?e)s(&)egqg 2{7‘ 2< 227 pixels and
then sgyedinhligly@ingeuatyZaueRed iR see gl viviadestied Yo thomeany pixel
TS Y 58 IR HRERSES)- 0 s e AR RE R FS L BESAIE, e mee
age was Ealculated and subtracted from each input image so that each feature has a s
4r&mgét Equilibrium Methods (LEMs)
LEMs were among the earliest methods in the analysis of slope stability. These

ndethon bEequiipibriuineMetheid sithPMs$) and broad acceptance among practicing
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rium considerations of the sliding mass [8,51]. Researchers have extensively investi
the accuracy of LEMs. The results of the LEMs were compared against methods
higher accuracy, such as finite element methods [52] with shear strength reduction
niaues [53.541. The results from these commbparisons indicated that the averace EFS
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techniques [53,54]. The results from these comparisons indicated that the average FS
calculated with LEMs was in good agreement with the more rigorous methods, especially
for slopes with a homogenous soil layer.

However, there are some drawbacks inherent to the LEMs. One of these drawbacks
is the assumption of a ductile stress—strain behavior due to the lack of information about
the magnitude and variations of strains within the slope. In fact, it may not be correct to
presume that the peak strength is mobilized simultaneously along the whole slip surface.
Additionally, due to the fact that the number of equilibrium equations is less than the
number of unknowns, LEMs are bound to use simplifying assumptions to render the
problem determinate [7]. In the following subsections, considering this is a comparison
study involving LEMs, the four LEMs selected in this study, together with their basic
theories and advantages and disadvantages, are briefly discussed. The average of the FS
values obtained by these four LEMs was adopted as the target value for labeling the image
data. In theory, if LEMs can approximately calculate the FS in some way and the number
of LEMs is big enough, we can assume that the average of the FS values calculated with
the LEMs can approach the true FS of the slope in the image.

4.1. Bishop’s Simplified Method (BSM)

This method considers the horizontal interslice forces and neglects the shear stresses
between them [55]. The normal force acting at the center of the base of each slice is derived
by adding the forces in the vertical direction. In other words, this method only ensures
the force equilibrium in the vertical direction for each slice and derives the FS from the
summation of moments about the center of the slip circle. It is important to note that
because the resultant vector of the pore pressure and effective normal force passes through
the center of the slip circle, these two forces do not affect the overall moment equilibrium.
As a result, this method is not suitable for noncircular surfaces [56]. Although BSM does
not consider the interslice shear stress, several studies have established that the FS was
expected to differ by less than 5% from more rigorous methods [57,58]. Considering the
equilibrium in the y direction, the FS in BSM is represented by the sum of the resisting
forces divided by the sum of the driving forces:

Z{(C’Ax + (w — qu)tango’)M%x}
Y wsing

where Ax is the width of the slice, w is the weight of each slice, « is the angle between the
potential failure arc and the horizontal forces at the midpoint of the slice, u is the pore
pressure, and M, is calculated as

sinatang’

M =
« = cosa + TS

®)

4.2. Ordinary Method of Slices (OMS or Fellenius)

As one of the earliest LEMs, the OMS does not involve an iterative process for calculat-
ing the FS. This makes the OMS convenient for hand calculations. This method calculates
the FS by considering the summation of moments about the slip surface’s center. The major
drawback of the OMS is that it assumes the resultant interslice forces are parallel to the
base of the slice. This assumption results in the exclusion of the interslice forces and thus
affects the accuracy of this method [57,59]. The equation for the FS in this method is

Y (c'l+ N'tang’)
Y wsina

FS = ©)

where [ is the slice base length and N’ can be calculated as

N’ = (wcosa — ul). (10)
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where as follows:
A / '_ / l
Ng = cos%:g Q ;-{f(n‘r?)ci}' ﬁﬂ\ M) fan ¢ )n"‘ }, (13) (12)
FSwlana
where
4.4. Janbu’s Corrected Method (JCM) ny = cos’a | 1+ tana fang’ ) (13)

Janbu proposed a correction factor f;, to consider the effect of interslice shear forces
that were neglected in JSM. JCM uses the FS calculated via JSM (i.e., FS;s)y) and applies
this correction factor to it to obtain a new FS (i.e., FS;cy):

FSjem = FSysm X fo (14)
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The accuracy of classification was 80.9%, which does not appear to be high from a
deep learning perspective. However, the accuracy could be much higher from the per-
spective of slope stability analysis. The reason for this is that any incorrect classification is
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the predictions of the models, and the y-axis displays the number of slope images with
a particular error. As is shown, if the predictions that were off by one category were
considered acceptable, the accuracy of the regression and classification models would
OR PEER REVIEW be 99.69% and 99.71%, respectively. Additionally, in the deep learning pelépRttive, the
'.' jon C perrormed Ne d ification 1w d ceased NEe erOf
predictions that were off by one category from 1691 to 176. This increased the deep learning
accuracy from 80.92% in the classification model to 97.73% in the regression model. This
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model. values was responsible for a large portion of the errors in the classification model.
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the regression model. To further evaluate the effect of this loss of information, 500 random slope images

were selected from the testing data. In Figure 9, the predicted range of FS values obtained
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belong to incorrectly prec%cted ranges. his igure shows that for the majority of the in-

correctly predicted cases, the true FS value was quite close to the boundaries of the FS
ranges defined for the classification model. This confirms that the loss of information
made it difficult for the classification model to predict the range of FS values when the
true FS was close to the cell boundaries.
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correctly predicted cases, the true FS value was quite close to t
ranges defined for the classification model. This confirms that
made it difficult for the classification model to predict thg rang

true FS was close to the cell boundaries.
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Figure 10 plots the FS values obtained by different analysis methods for a subset of
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gls. feransabsepob thewtesting rdatacolhisnéighre contains 226

otho
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with higher FSs. The comparison indicates that all of the predicted FSs were quite close to

the true FSs calculated as the average FS of the four LEMs. Further analysis of this plot

shows that the BSM underestimated the FSs for most slopes, while JCM and JSM tended to

overestimate them. Despite this difference, the predictions of the regression model, true

FSs, and the OMS results were similar to one another. This plot also shows that, for the

majority of the slopes, the predictions of the deep learning models were within the highest

and lowest FSs obtained with the four LEMs and were more accurate than all of them.

Another important observation from this figure is the ability of the regression model to

distinguish between images within the first and ninth categories. While there was only one

class for each of these wide ranges in the classification model, the regression model could

estimate the FS values of these images instead of categorizing them as “lower than 0.8”

(first category) or “higher than 1.5” (ninth category).
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The other major criteria adopted in this comparison study were the computational
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For example, it took 15.1 s for the classification model to predict the FS for 200 slopes,
while obtaining the FS via JCM for the same number of images took 1315 s. This means
that deep learning methods are over 18 times more efficient than JCM. Aside from that,
when analyzing 200 cases, the improved computational efficiency of the deep learning
methods would be more notable if the time needed for manual procedures prior to running
the model (the first stage) were considered for traditional LEMs. The traditional methods
require a great deal of time to manually prepare the input, construct the model, and set up
the geometry. However, deep learning methods can analyze raw image data and do not

require any manual data preprocessing work once they are trained.
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This study can pave the way toward adopting deep learning to analyze complex

geosystem and geohazard problems and can be extended to other stability problems in

engineering. It is also worthwhile to mention that the proposed models are based upon

traditional LEMs and are limited by the constraints in their training data. Therefore, future

studies should consider easing the constraints on simple geometries, using inhomogeneous

soil properties, and incorporating pore pressure to make the study more practical. This

concept can be further developed to use remote sensing and geographic information

systems to analyze the stability of slopes in real time.
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