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The hidden-state speciation and extinction (HiSSE) model helps avoid spurious results when testing whether a character affects

diversification rates. However, care must be taken to optimally analyze models and interpret results. Recently, Tonini et al. (TEA

hereafter) studied anuran (frog and toad) diversificationwith HiSSEmethods. They concluded that their focal state, breeding in phy-

totelmata, increases net diversification rates. Yet this conclusion is counterintuitive, because the state that purportedly increases

net diversification rates is 14 times rarer among species than the alternative. Herein, I revisit TEA’s analyses and demonstrate

problems with inferring model likelihoods, conducting post hoc tests, and interpreting results. I also reevaluate their top models

and find that diverse strategies are necessary to reach the parameter values that maximize each model’s likelihood. In contrast to

TEA, I find no support for an effect of phytotelm breeding on net diversification rates in Neotropical anurans. In particular, even

though the most highly supported models include the focal character, averaging parameter estimates over hidden states shows

that the focal character does not influence diversification rates. Finally, I suggest ways to better analyze and interpret complex

diversification models—both state-dependent and beyond—for future studies in other organisms.
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“We hope HiSSE is viewed as a step away from [thinking that
a focal trait acts in isolation], as we no longer have to necessar-
ily focus analyses, or even interpret the results, by reference to
the focal trait by itself, but can instead estimate how important
it is as a component of diversification overall.”

Beaulieu and O’Meara (2016)

In the last 15 years, increasingly detailed methods have been

developed to model the effect of character states on diversifica-

tion rates (i.e., speciation and extinction rates). These models in-

clude the effects of binary traits (Maddison et al. 2007), multi-

state discrete traits (FitzJohn 2012), quantitative traits (FitzJohn

2010), and geographic traits (Goldberg et al. 2011) or other

traits that can be split by speciation (Goldberg and Igic 2012;

Magnuson-Ford and Otto 2012). The methods have seen wide

use. For example, the previously cited six articles have been cited

a combined 2472 times as of the writing of this article (Google

Scholar, 6 May 2021).

Despite their utility, these methods also come with chal-

lenges (FitzJohn 2012; Davis et al. 2013; Maddison and FitzJohn

2015; Rabosky and Goldberg 2015). A key problem is that anal-

yses of empirical phylogenies tend to show a statistically sig-

nificant fit between diversification and the tested character even

when that character has nothing to do with diversification (Ra-

bosky and Goldberg 2015). This happens when a model with di-

versification rates held constant across the tree is compared to
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a model that allows rates to vary with character states. When

a tree has any kind of variation in diversification rates, the lat-

ter model will often be favored even if rate variation is un-

related to the tested character (FitzJohn 2012; Beaulieu and

O’Meara 2016). The state-dependent model is favored simply be-

cause the alternative—constant rates across the whole tree—is

untenable. Beaulieu and O’Meara (2016) introduced the hidden-

state speciation and extinction model (HiSSE) as a solution to

this problem. HiSSE allows heterogeneity in diversification rates

beyond that explained by the focal character alone. Beaulieu

and O’Meara (2016) also developed character-independent di-

versification (CID) models, which model diversification-rate

heterogeneity completely independent of the focal character.

When testing the effect of a focal character, these CID mod-

els provide a more realistic null model than the constant-rates

model. Overall, HiSSE models represent reasonable alternatives

to the hypothesis that the focal character alone affects rates.

As indicated in the quote at the beginning of this article, the

framework emphasizes considering focal characters as one of

many factors that likely affect diversification (Caetano et al.

2018). Moreover, recent extensions to these methods allow the

analysis of multiple focal traits (Herrera-Alsina et al. 2019;

Nakov et al. 2019).

This solution is helpful and hopeful. However, care must be

taken when implementing and testing these models, as their in-

creased number of parameters make them potentially complex.

For example, in the simplest possible case of a single binary char-

acter, models can have as few as three parameters (one speciation,

one extinction, and one transition rate) or up to 16: two states of

a focal character and two states of a hidden character allow four

speciation rates, four extinction rates, and eight transition rates.

With so many options, choosing one’s models to test, finding

their maximum-likelihood parameter estimates, and interpreting

results can challenge researchers.

In a recent article published in this journal, Tonini et al.

(2020; hereafter TEA) used HiSSE models to test the impact

of breeding in water-filled holes in plants, called phytotelmata,

on diversification rates in Neotropical frogs. They compared 47

models and found that most statistical support fell on two models

in which diversification rates varied by both observed and hid-

den states. TEA interpreted these results as indicating higher di-

versification rates in taxa that breed in phytotelmata than those

that do not, but they greatly underemphasized the role of the

hidden states and their effect on diversification. Herein, I rean-

alyze TEA’s data and find that even though the top models for

their data include the focal character of phytotelma breeding, pa-

rameter distributions show that this character has no discernible

effect on diversification rates. Moreover, I show that TEA’s

analyses demonstrate some of the challenges of testing HiSSE

models. These challenges include finding the optimal models for

the data, conducting post hoc analyses of results from HiSSE

analyses, and interpreting results. I conclude by suggesting ways

to improve future analyses of HiSSE models specifically and

complex diversification models more generally.

Background
Nearly half of all living species of anurans (frogs and toads) oc-

cur in the Neotropics (AmphibiaWeb 2020). Most species breed

terrestrially or in bodies of water at ground level (Duellman and

Trueb 1986; Gomez-Mestre et al. 2012). However, specialized

breeding in phytotelmata occurs across many families of anurans.

Therefore, TEA studied the evolution of breeding in phytotelmata

and its potential effects on diversification in Neotropical anurans.

They asked two key questions: (1) What are the frequencies of

changes among breeding strategies (e.g., how many times has

breeding in phytotelmata evolved; is its origination more com-

mon than its reversals)? (2) Does the evolution of breeding in

phytotelmata affect net diversification rates?

To address these questions, TEA considered many models

for the joint evolution of diversification and phytotelma breed-

ing. These models varied in three types of parameters: speciation

rate, extinction rate, and rate of character-state transitions. They

included both the observed character (phytotelma breeding) and

hidden states. TEA then used the results of these analyses to es-

timate both the frequency of transitions and their potential ef-

fects on diversification rates. TEA also conducted complemen-

tary analyses based on the methods of Bromham et al. (2016) and

Hua and Bromham (2016). Given the distinctness of these latter

models and their inconclusive results for TEA’s dataset, I do not

discuss them in this note. I focus exclusively on the use and inter-

pretation of the state-dependent diversification models, as these

latter models drove their article’s title and the major conclusions

in the abstract, results, and discussion.

A comparison of TEA’s data with their conclusions suggests

cause for concern. They inferred that net diversification rates

were higher for phytotelm-breeding taxa, yet phytotelm breed-

ing is a relatively rare state, often associated with single terminal

branches. By contrast, one would generally expect a state that

increases net diversification rates to be somewhat common and

associated with many branching events in the tree. Moreover,

TEA concluded from additional analyses that phytotelm breed-

ing has independently driven higher diversification rates within

many families. However, as in the whole-tree analysis, many of

those same families showed very few branching events associated

with phytotelm breeding.

This nonintuitive relation between TEA’s data and their con-

clusions warrants a closer look. Herein, I examine their analy-

ses and results by focusing on three issues: obtaining maximum-

likelihood estimates of model parameters, conducting down-
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stream analyses with the rate estimates from these models, and

interpreting results. I then perform several additional analyses to

illustrate how likelihood optimization may be sensitive to search

parameters. Finally, based on the results of these analyses, I sug-

gest how to improve inference in complex diversification analy-

ses.

Data Analyses
I first attempted to replicate TEA’s HiSSE analyses to examine

parameter values and better understand their results. I only con-

ducted analyses of TEA’s 1579-taxon reduced dataset, given that

all their presented results are based on this dataset. I assumed a

sampling fraction for the two phytotelma-breeding states based

on the differences in state totals between the full, 3105-taxon

dataset and the reduced, 1579-taxon dataset. For all other search

parameters, I assumed default values unless otherwise indicated.

I later extended these analyses to explore potential problems with

TEA’s results, as well as to show more general challenges in like-

lihood optimization of HiSSE models (see Optimal Searching of

Model Likelihoods below). I conducted all analyses in R version

4.0.2 (R Core Team 2020) with the package hisse version 1.9.8

(Beaulieu and O’Meara 2016), using the function “hisse.new”

and its associated functions. Note that although recent work sug-

gested the likelihood in hisse improperly conditions on clade sur-

vival (Herrera-Alsina et al. 2019), subsequent analyses showed

that different conditioning schemes have little effects on results

(Nakov et al. 2019). Thus, I used hissewith the default condition-

ing to maximize consistency with the analyses of TEA. Finally, I

provide all analysis code and results in the Supplementary Infor-

mation.

Problems with Post Hoc Tests and
Interpretation of Results
A key advance of the HiSSE framework is that candidate models

can accommodate diversification-rate variation that is partly re-

lated or even unrelated to the focal trait (Beaulieu and O’Meara

2016; Caetano et al. 2018). This property is particularly relevant

for large phylogenies, which will almost certainly have some rate

variation across taxa (O’Meara 2012; Beaulieu and Donoghue

2013; Rabosky 2014; Beaulieu and O’Meara 2016). A key con-

sequence of this framework, therefore, is that support for a state-

dependent model may not necessarily indicate that a focal char-

acter is important for explaining rate variation.

TEA tested 47 total models belonging to seven classes, pri-

marily derived from Bromham et al. (2016): full, baseline, dead-

end, suicide, lonely, irreversible, and CID. They reported that two

versions of the suicide class, Suicide 4 and 6, were the models

most highly supported by their data. What did these models say

about the effect of phytotelm breeding on diversification rates?

Parameter values are often instructive, but they can also defy sim-

ple interpretation when hidden states give mixed signals. For ex-

ample, with all possible combinations of the two focal states (0,

1) and two hidden states (A, B), there are four sets of rates (i.e.,

one rate each for 0A, 1A, 0B, and 1B). Imagine that net diver-

sification rates are highest under 0B, lowest under 0A, and in-

termediate in 1A and 1B. In this situation, one cannot determine

whether rates are generally higher for focal states 0 or 1, because

those rates depend on the underlying (and unobserved) hidden

states. In this situation, Caetano et al. (2018) suggested estimat-

ing diversification rates for the tip taxa. Because we know the

focal states for tip taxa, but we do not know which hidden states

they have, we can weight their focal states’ diversification rates—

two estimates each, one for each hidden state—by the marginal

likelihood of the hidden states at the tips. For example, imagine

that a hypothetical species with focal state 1 has a likelihood of

0.25 of hidden state A and 0.75 of B. If the net diversification

rate of state 1A is 0.2 and state 1B is 0.4, then the estimated rate

for state 1, integrating over the two hidden states, is 0.25 × 0.2 +
0.75 × 0.4 = 0.35 (Caetano et al. 2018). Doing this for all taxa

produces a distribution of rates for the two focal states, which

can be plotted to visualize their potential differences. Such dis-

tributions also show how differing likelihoods of hidden states

along branches allows HiSSE to model continuous variation in

realized diversification rates, even though the focal states are dis-

crete (Nakov et al. 2019).

To assess whether phytotelm breeding affected diver-

sification rates, TEA presented means and variation in

net diversification rates for their focal states, which came

from tip rates calculated as I described above. On av-

erage, phytotelm-breeding species had higher net diver-

sification rates than nonphytotelm breeding taxa. TEA

then tested this mean difference with a t-test, presenting

P < 2.2 × 10–16 to indicate a significantly higher rate in

phytotelm-breeding taxa.

Yet this test and interpretation of tip rates are highly prob-

lematic for two reasons. First, TEA’s t-test is statistically un-

sound because it assumed phylogenetic independence of taxa.

Even if the test incorporated phylogeny, however, it would still

be problematic because of a more important source of noninde-

pendence: the rates were estimated and assigned to taxa based

on a diversification analysis of the whole tree, yet TEA analyzed

the tip rates as if they were data collected independently for each

species. Most common phylogenetic comparative tests of con-

tinuous characters account for the nonindependence of taxa by

specifying that the more closely related taxa are, the more similar

their phenotypes will be (Felsenstein 1985; Hansen and Martins

1996; O’Meara 2012). This is not necessarily true in the case of

state-dependent diversification, because similarity of taxa in their
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estimated diversification rates depends only on whether they have

the same character states. And although closely related taxa may

often have the same character states, the diversification rates es-

timated for these states depend on their distribution across the

whole tree. Species A may have an entirely different net diversi-

fication rate than its sister species B because they have different

character states, but A may have the same rate as a distant species

Z with the same character state. That said, hidden-state mod-

els can show phylogenetic clustering of rates, as closely related

species with the same observed states also tend to have similar

probabilities of the underlying hidden states, meaning they will

also have similar estimated diversification rates (Caetano et al.

2018; Nakov et al. 2019). A phylogenetic test (e.g., a phyloge-

netic ANOVA or PGLS; Garland et al. 1993; Rohlf 2001) will

thus still likely perform better than the nonphylogenetic t-test of

TEA. However, such tests are more generally unnecessary, be-

cause the formal comparison of diversification models with AICc

(or any other model-comparison framework) indicates clearly the

support for one model versus another. When one model allows

rates to be higher for one character state than another, and that

model is highly supported statistically, then downstream tests are

superfluous at best and possibly misleading.

Second, the statistical significance of the t-test seemingly

misled TEA about the biological significance of their results. Al-

though a very large sample size (here, 1579 species) often leads to

statistical significance, that significance may not be biologically

meaningful (Johnson 1999; Anderson et al. 2000; Stephens et al.

2007). TEA’s figure 3—a histogram of tip net diversification

rates for the focal states—shows this well (see also Fig. 3 herein,

based on reanalysis). Even though the mean rate of phytotelm

breeders is higher than that of nonphytotelm breeders, the distri-

bution of rates in the latter group completely overlaps the distri-

bution of the former. Moreover, about one-third of nonphytotelm-

breeding taxa were inferred to have the highest rates across all

taxa. So although some nonphytotelm-breeding taxa have lower

rates, many have much higher rates. Simply plotting the data thus

suggests no effect of phytotelm breeding on net diversification

rates.

TEA next used a family-by-family breakdown of these same

tip rates to conclude that eight of nine families showed higher

rates in phytotelm-breeding taxa. Graphically, one again notices a

contrast between TEA’s conclusions and their data: the overlap in

distributions across different families (TEA’s fig. 4) is similar to

the overlap in analysis of the full phylogeny (TEA’s fig. 3), with

the rate distributions of phytotelm-breeding taxa broadly over-

lapped by those with the alternative state. Phytotelm-breeding

taxa have net diversification rates outside the central 50% of the

nonphytotelm-breeding distribution in only three of these fami-

lies (Craugastoridae, Leptodactylidae, and Microhylidae). Even

in these three cases, TEA’s figure 2 (a map of phytotelm breed-

ing on their phylogeny) shows an additional problem. Although

they treat these family-level analyses as independent support of

their whole-tree results, the family results are clearly not inde-

pendent. For example, no phytotelm-breeding lineage in Crau-

gastoridae shows branching (i.e., speciation), and those three lin-

eages have relatively long branches. Such data cannot support

a higher net diversification rate than in nonphytotelm-breeding

taxa, which in the same family have hundreds of such branching

points and many short branches. This problem resembles TEA’s

t-test of the whole tree: the family-level tip rates come from an

analysis of the entire tree, so the rates for phytotelm breeding

in one family are linked to the rates in another. To test whether

families independently supported an overall pattern, such fami-

lies would need to be analyzed independently (e.g., doing HiSSE

analyses at the family level). However, most families were

likely too small to robustly conduct HiSSE analyses (Beaulieu

and O’Meara 2016), making the utility of such analyses

doubtful.

In summary, TEA used an analysis of the whole, 1579-

species tree to estimate net diversification rates for each species.

They then compared these rates for states of their focal charac-

ter using nonphylogenetic t-tests, for both the whole tree and in-

dividually for nine families, which were statistically invalid for

multiple reasons. TEA also plotted rate distributions that showed

no difference in rates for the two focal states, neither at the whole-

tree nor family levels, yet concluded in both cases that phy-

totelm breeding increased rates. Notably, TEA’s complementary,

simulation-based analyses of summary metrics (Bromham et al.

2016; Hua and Bromham 2016) were more consistent with my

conclusion than theirs: both model adequacy and power simula-

tions of three metrics showed that the dataset contained insuffi-

cient information to support any particular diversification model.

Optimal Searching of Model
Likelihoods
Perhaps a more basic problem with interpreting the results of

TEA is that their analyses did not reach maximum likelihood

peaks for many models. Likelihood statistics function by search-

ing for the parameter values that, for a given model, maximize the

probability of the observed data given the model (i.e., the likeli-

hood). Complex diversification models can be difficult to opti-

mize, meaning finding the parameter values that maximize the

likelihood. The search may fail to converge, or it may become

trapped on a likelihood peak lower than the global optimum.

Thus, one must recognize that model-fitting results may repre-

sent suboptimal, local likelihood peaks. A simple way to check

this possibility is to compare nested models; a general model

must have an equal or higher likelihood than a more specific

nested model (Edwards 1972; Huelsenbeck and Crandall 1997).
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If the nested model has a higher likelihood, then one cannot have

reached the global optimum for the more general model.

This problem often occurs in TEA’s model results, includ-

ing their models with the highest statistical support. The most

supported model Suicide 4 is nested within Full 2, and the sec-

ond most supported model Suicide 6 is nested within Full 3. In

both cases, the more parameter-rich models (Full 2 and 3) had

lower likelihoods than the more constrained, nested models (Sui-

cide 4 and 6), meaning that TEA’s results may be an artifact

of underestimating the likelihoods of competing, more complex

models. In AICc-based model comparison, these complex mod-

els were doomed to fail: their likelihood was underestimated and

thus could not compensate for the AICc penalty of having more

parameters.

Because of these problems in estimating likelihoods, I aimed

to more thoroughly search the likelihood surface of TEA’s top

models. I initially considered two simple changes to the search

algorithm. First, I adjusted the parameter bounds to values much

closer to those estimated in preliminary analyses, as doing so may

improve optimization (J. Beaulieu, pers. comm.). Here, I bounded

turnover rate to a maximum of 10, which is 1000 times lower than

the default bound but nearly 100 times higher than any estimate

in my preliminary analyses. By contrast, I increased the extinc-

tion fraction bound to 10, given that some preliminary estimates

approached the default upper bound of 3. I left the transition-

rate bound to the default of 100, given one preliminary estimate

of 85. Second, I used a two-step optimization procedure, which

starts with simulated annealing (Bertsimas and Tsitsiklis 1993)

to more broadly explore the likelihood surface, then refines ini-

tial results with the standard subplex search. Simulated anneal-

ing can greatly slow likelihood optimization, but it may be more

effective at finding the highest likelihood peaks. Note that both

these strategies are addressed in hisse’s vignettes. Moreover, the

two-step optimization with simulated annealing became the de-

fault likelihood search option in version 1.9.9. This version is

more recent than that used by me and TEA, although the option

was available at the time of our analyses.

To show the sometimes-drastic effects of these two proce-

dures alone, I started by only considering TEA’s seven Binary-

State Speciation and Extinction models (BiSSE; Maddison et al.

2007). These were the simplest models (i.e., no hidden states),

which one would hope are most likely to be estimated well with

default search options. (Note that “default” hereafter indicates

default search options in hisse at the time of TEA’s analyses.)

I started with a search under the default search options to confirm

correspondence between TEA’s results and the conditions under

which I conducted analyses. For all but one model, the likeli-

hoods I obtained under default searches were nearly identical to

those of TEA (Table 1; see table legend for why Mk2 did not

match). Next, I found that bounding parameter space markedly T
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improved inference for five of seven models (Table 1). Adding

simulated annealing to the likelihood search improved inference

even more, with six of seven models showing a log-likelihood

improvement of at least 15 units over default searches (Table 1).

In terms of model comparison, this means that any one of the first

five models estimated under simulated annealing (worst: Baseline

BiSSE AICc = 13,444.82) would have bested all AICc values

presented for these same models by TEA (their best: Full BiSSE

AICc= 13,450.19). When both bounding parameter search space

and using simulated annealing, I found identical likelihoods as

simulated annealing alone (Table 1), which suggests that at least

for simple models, simulated annealing may consistently reach

the same likelihood peaks under different conditions.

Overall, neither speciation nor extinction rate is affected by

phytotelm breeding in the optimal BiSSE model (Mk2). More-

over, the two other models (Full and Suicide) that have appre-

ciable AICc support are more generalized versions of Mk2, with

nearly identical likelihoods (Table 1), suggesting scarce informa-

tion in the dataset to support them. Their AICc weights result al-

most exclusively from parameter penalization: an AICc compari-

son of any three models with this sample size and log-likelihood,

but differing by one or two parameters, would give nearly the

same model weights as here (wn = 0.667, wn + 1 = 0.244, wn + 2

= 0.089, where n indicates a baseline number of free parameters;

compare to Table 1). Finally, BiSSE models have a high propen-

sity to spuriously assign rate variation to focal characters when

no other option is given (Rabosky and Goldberg 2015; Beaulieu

and O’Meara 2016), yet they did not do so here. These results

all suggest little to no signal in TEA’s dataset for a relationship

between phytotelm breeding and diversification in frogs.

The BiSSE analyses illustrate how adjustment of search

options can improve likelihood estimates of even the sim-

plest state-dependent diversification models. However, they do

not address whether or how underestimating likelihoods may

have affected TEA’s results for their most supported models

and thus their study’s conclusions. So, I next reconsidered the

statistical support for TEA’s top models. To conduct many

searches to thoroughly explore each model’s likelihood surface,

I restricted my comparison to six models: the two TEA re-

port as their top models (Suicide 4 and Suicide 6), the two

more general versions of these models (Full 2 and Full 3),

and two versions of CID. The latter two models corresponded

to CID2 and CID4 in Beaulieu and O’Meara (2016). CID2

only allowed diversification-rate differences due to hidden states

(τ0A = τ1A �= τ0B = τ1B; ε0A = ε1A �= ε0B = ε1B)

and allowed all nondual transitions between states to dif-

fer. CID4 had four hidden states affecting turnover rates

(τ0A = τ1A �= τ0B = τ1B �= τ0C = τ1C �= τ0D = τ1D), four

analogous extinction fractions that differed by hidden state, and

eight transition rates (all transitions from 0 to 1 equal, regard-

less of hidden state; same for 1 to 0; and six rates of hidden-state

change, symmetric between each pair of hidden states, regardless

of focal state). Although complex, this latter model performed

best of eight candidate CID4 models I considered in preliminary

analyses. It also matched the complexity of the most parameter-

rich model with the focal character (Full 2), an important prop-

erty of null models tested in the HiSSE framework (Beaulieu and

O’Meara 2016).

As above, I conducted default searches (following TEA),

bounded the parameter search space, and used simulated anneal-

ing. Additionally, I conducted many searches with variable start-

ing parameter values (Nakov et al. 2019), which can improve

inference when multiple local optima occur on the likelihood

surface (Rabosky and Goldberg 2015). I conducted searches for

each model under 48 sets of starting parameter values. For the

first 24 searches, I randomly sampled starting values from expo-

nential distributions whose rate parameters I based on the mean

parameter estimates of the highest-supported models in prelim-

inary analyses (Full 2 and Full 3). I chose the exponential dis-

tribution for sampling because most parameter estimates in my

preliminary analyses were small but occasionally large. For the

remaining 24 searches, I randomly sampled starting values from

uniform distributions on the interval (0,1] (for turnover and tran-

sition rates) and (0,4] (for extinction fractions). I determined

these bounds from extremes found in my preliminary analyses

of all 47 models considered by TEA. I estimated the likelihood

of each of the six models under all 48 sets of starting parame-

ter values. Moreover, I bounded parameter space for one set of

searches, then added simulated annealing (still bounding param-

eter space) for another, leading to 96 total searches for each of

the six models. Starting values are included in the Supporting

Information.

In the first set of analyses with default starting values, like-

lihood searches using all default options in hisse produced uni-

formly suboptimal results. Bounding parameter space improved

inference for some models, as did using simulated annealing

(Table 2). Generally, relative model support varied dramatically

under different search conditions (Fig. 1), and all three modifica-

tions (bounding parameters, using simulated annealing, and do-

ing both) were necessary to find the maximum likelihood peaks

across all six models (Table 2).

Different starting parameter values also affected the likeli-

hood searches, sometimes dramatically. Across the 48 different

sets of starting values, all six models had at least one set of

starting values where that model was the most strongly favored

(Fig. 2). Most searches favored Suicide 4, Suicide 6, or CID4, the

latter two of which showed very low weights in the final results

(Table 3). The optimal model across all searches, Full 2, was only

the optimal model under 12.5% of the starting values (Fig. 2). The

dramatic variation in likelihoods and model support across these
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Figure 1. Variation in statistical support for six models as a function of likelihood search conditions, all estimated with default starting

parameter values. “Minimum AICc across searches” results from taking the minimum (i.e., optimal) AICc for each model across the first

four searches and recalculating AICc weights.

Figure 2. Variation in statistical support for sixmodels as a function of likelihood search starting conditions, showing the drastic variation

in support for different models based only on variation in starting parameter values of the likelihood search. Each bar represents the

weights calculated across the six models for one of 48 sets of starting parameter values. For each model under each set of starting

parameter values, I present AICc weight calculated from the highest likelihood across two searches: one in which bounds of parameter

valueswere adjusted, and another that both adjusted bounds and also used a two-step optimization procedurewith simulated annealing.

Order of bars on the horizontal axis is arbitrary, as I manually grouped searches with similar model weights.

searches shows the sensitivity of searches to starting parameter

values, at least for this dataset. This sensitivity is not inherently

problematic when conducting HiSSE analyses; in practice, one

considers different sets of starting values in an attempt to reach

a model’s maximum likelihood peak across all sets (e.g., Nakov

et al. 2019). However, I demonstrate the dramatic variation in re-

sults here because the default starting values in hisse should be

considered simply as representing one of these 48 sets. In other

words, if all models are only estimated under the single set of

default starting parameter values, one could obtain any of these

outcomes, even though very few of them match the final results

(Table 3).

Across all likelihood searches I conducted for this article,

the models Full 2 and Suicide 4 had the lowest AICc values and

thus highest AICc weights (Table 3), with comparable support

for the two models. These models are similar, with Full 2 al-

lowing additional variation in turnover rates. Model-averaged pa-

rameter estimates were hard to interpret, as nonphytotelm breed-

ing had the highest net diversification rate under one hidden

state but the lowest under the other (Table 4). Thus, I esti-

mated diversification rates for the phylogeny’s tips, as described

in the previous section. These tip estimates allowed me to av-

erage over models and hidden states to address potential dif-

ferences in focal states. Net diversification rates of phytotelm-
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breeding taxa fell squarely within the center of the distribu-

tion of nonphytotelm-breeding taxa (Fig. 3), as found by TEA

(their fig. 3). Moreover, speciation and extinction rates showed

the same patterns (Fig. 3). In contrast to TEA, however, I inter-

pret these distributions as showing that net diversification, spe-

ciation, and extinction rates are all largely insensitive to vari-

ation in the focal character of phytotelm versus nonphytotelm

breeding.

This conclusion seems nonintuitive. If state-dependent mod-

els that include the focal character are favored, how can the fo-

cal character not affect diversification rates? The answer to this

question is unclear, but I suspect that the focal character func-

tions simply to increase the number of different diversification-

rate regimes that are fit to the tree (four in the top two mod-

els), which is favored because of the complex heterogeneity in

rates across a large phylogeny. In other words, there is noth-

ing special about the focal character per se, but in combination

with the hidden character it allows for four sets of speciation and

extinction rates to be fit to the tree. To confirm this interpreta-

tion of no direct effect of the focal character, I also conducted

analyses with FiSSE, an alternative, simulation-based method for

testing the hypothesis of character state-dependent diversifica-

tion (Rabosky and Goldberg 2017). With FiSSE, one first cal-

culates a test statistic analogous to the mean difference in speci-

ation rate under the two states of a focal character. Binary char-

acters unrelated to diversification are next simulated on the ob-

served phylogeny. The same test statistic is then calculated for

these null characters, and finally the observed test statistic is com-

pared to the null test statistics to calculate a P-value. I conducted

FiSSE analyses in R with code provided by Rabosky and Gold-

berg (2017), using most default options and 999 simulation repli-

cates. The observed test statistic suggested slightly higher speci-

ation rates in nonphytotelm-breeding taxa, but it fell squarely in

the middle of simulated (null) test statistics, with a two-tailed P

= 0.974. This test thus supports similar rates of speciation be-

tween the two breeding states, which confirms that phytotelm

breeding has no effect on diversification rates in Neotropical

anurans.

Given these results, why did HiSSE models that included the

focal character (Full 2, Suicide 4) outperform CID4, which was

explicitly designed to detect a complex pattern of CID (Beaulieu

and O’Meara 2016; Caetano et al. 2018) and contained four sets

of turnover rates and extinction fractions, as in Full 2? One possi-

bility is that the transition-rate matrix heavily influences the like-

lihood of models for this dataset, and the matrices I specified for

CID4 more poorly modeled the data than those of Full 2 and Sui-

cide 4. Davis et al. (2013) showed with simulations that when one

character state is much rarer than another, BiSSE (and by exten-

sion, possibly other SSE methods) tends to assign the source of

state rarity to asymmetric transition rates, even when the source
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Figure 3. Histograms of estimated tip diversification rates. Rates were averaged across the top twomodels I estimated, Full 2 and Suicide

4 (Table 3). Note that tip branches have observed focal states (i.e., phytotelm breeding and nonphytotelm breeding) and unobserved

hidden states, each with their own diversification rates (Table 4). Thus, the presented tip-rate estimates (given observed focal states)

account for hidden states by weighting diversification rates by the marginal likelihood support for each hidden state (Caetano et al.

2018).

of rarity is due to differential speciation or extinction rates. They

found this occurred when the rarer state had a frequency of less

than 10%; here, phytotelm breeding occurs in 7.1% of taxa. Thus,

this dataset may be particularly challenging for SSEmethods, and

its likelihood may be strongly affected by the exact form of the

transition matrix. Given the size of this transition matrix—with

up to 32 distinct rates under CID4—deciding how to optimally

specify it will remain a future challenge.

To summarize, I found that optimization of state-dependent

diversification models is particularly challenging for this dataset.

This meant that even the simplest state-dependent models

(BiSSE) analyzed by TEA were not estimated well under default

Table 3. Maximum likelihood estimates of HiSSE models across all searches in this article, with AICc support.

Model Nested within k ln L AICc wi

Full 2 None 16 –6579.35 13,191.05 0.554
Full 3 Full 2 14 –6585.85 13,199.97 0.006
Suicide 4 Full 2 14 –6581.65 13,191.57 0.427
Suicide 6 Full 2, 3; Suicide 4 13 –6586.50 13,199.23 0.009
CID2 Full 2, 3; Suicide 4, 6 12 –6592.64 13,209.48 0.000
CID4 None 16 –6584.45 13,201.24 0.003

“Nested within” = models in this table in which each row’s model is nested. “k” = number of free parameters. “ln L” = maximum log-likelihood found across

all analyses and conditions described in this article. “AICc” = Akaike Information Criterion adjusted for small sample size. “wi“ = AICc weights.

Table 4. Parameter estimates averaged across the top two models, Full 2 and Suicide 4.

Rate Nonphytotelm A Phytotelm A Nonphytotelm B Phytotelm B

Speciation 0.029 0.055 0.108 0.074
Extinction 0.019 0.002 0.000 0.011
Net diversification (speciation – extinction) 0.010 0.053 0.108 0.063
Net turnover (speciation + extinction) 0.048 0.057 0.108 0.085
Extinction fraction (extinction/speciation) 0.652 0.041 0.000 0.132

Parameter estimates indicate events per million years. The letters (A, B) next to each observed state (nonphytotelm breeding and phytotelm breeding) refer

to hidden states.
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search conditions in hisse. This optimization difficulty extended

to TEA’s top models, which included hidden states. I found that

implementing three changes to the search—adjusting parame-

ter bounds, searching with simulated annealing, and conduct-

ing searches under many different starting parameter values—

greatly improved the search. The latter two strategies produced

the biggest improvement. These changes led me to a different

model, Full 2, as optimal for TEA’s data. Nonetheless, the result-

ing parameter estimates and distributions of tip rates were very

similar to those of TEA, showing no effect of phytotelm breeding

on net diversification rates. Finally, a nonparametric alternative

test gave similar results.

Ways Forward
What can be done to avoid some of the pitfalls that I highlight

in this article? My critique and analyses suggest a few best prac-

tices when estimating hidden-state diversification models. How-

ever, I should first emphasize that some of the drastic variation

in results under different analysis conditions may be specific to

the dataset presented by TEA. For example, speciation and ex-

tinction rates were positively related in phytotelm-breeding taxa

(Fig. 3; Table 4); the tight clustering of net diversification rates

in this state resulted from taxa that achieved such rates by ei-

ther having low speciation and low extinction rates or high values

for both. This observation suggests that the distribution of phy-

totelm breeding on the phylogeny may be explained equally well

by many combinations of speciation and extinction rates (i.e.,

there is a ridge in parameter space that produces similar likeli-

hoods and net diversification rates). Moreover, the rarity of phy-

totelm breeding may also challenge SSE methods. As I described

above, SSE methods may tend to attribute state rarity to heteroge-

neous transition rates rather than differential diversification rates

(Davis et al. 2013). This property could explain the surprising re-

sult that phytotelm breeding was estimated with strong support

as first originating relatively deep in the tree, as the ancestral

state for most major clades (TEA’s fig. 2). This result is biolog-

ically counterintuitive, as >90% of species do not breed in phy-

totelma. Moreover, other studies suggest arboreality—which may

be important for breeding in the often vertically distributed phy-

totelma (Lannoo et al. 1987; Lehtinen et al. 2004; Ferreira et al.

2019)—originated much more recently in anurans (Moen et al.

2016; Feng et al. 2017). Thus, the properties of the phytotelm-

breeding data, as well as the counterintuitive results relative to

frog biology, indicate that this dataset presents significant hurdles

for likelihood optimization. Such hurdles may be less substantial

in other datasets.

Regardless of the details of this particular dataset and my

focus on HiSSE, my results indicate some general ways forward

for any state-dependent diversification analysis. First, the poten-

tial complexity of these models and searches for their global

likelihood peaks necessitate transparent methods, including pub-

lished R code (which TEA did provide). Reproducibility is par-

ticularly important here because so many search conditions can

affect one’s results. Explanation for why certain models are tested

and what statistical support for them would mean biologically is

important for setting forth general ideas on how diversification

unfolds, to be tested for many other characters and taxa. Beyond

choosing specific models, it is also important to recognize that

a given dataset may be equally well explained by diversification

scenarios that will never be considered or accurately estimated,

including those that imply very different relationships between

traits, speciation, and extinction (Louca and Pennell 2020). This

is particularly true when using phylogenies of only extant species

to estimate extinction rates, whose accuracy is debated (Rabosky

2010, 2016; Beaulieu and O’Meara 2015). Regardless, given time

constraints, the number of models tested will be inversely related

to how thoroughly one can test them, and my results show that

thorough testing should not be underestimated. At a minimum,

one should not end analysis if likelihoods of simpler nested mod-

els are higher than their more general counterparts, which surely

indicates failing to reach the latter’s global likelihood peaks (Ed-

wards 1972; Huelsenbeck and Crandall 1997).

Second, the sometimes-complicated parameter spaces of

state-dependent diversification models require diverse search

strategies. I have shown here that default searches are best consid-

ered preliminary. One should consider bounding parameter space,

as it can improve inference. The two-step likelihood search with

simulated annealing is now hisse’s default; although much slower

than the alternative subplex-only search, my analyses show that

the resulting improved inference offsets its increased compu-

tational time. Moreover, many independent searches should be

started from different parameter values. That said, I do not have a

sense for the optimal way to vary these starting points, so my ap-

proach should be considered one of many options (e.g., Herrera-

Alsina et al. 2019; the MuHiSSE vignette in hisse). Minimally,

authors should describe how they decided upon the various start-

ing parameter values and provide them in supplementary data

appendices. All three of these search strategies are likely to be

important for any parameter-rich diversification model, includ-

ing recent developments that further expand the hidden-state ap-

proach (Herrera-Alsina et al. 2019; Nakov et al. 2019).

Third, one should not expand on diversification results with

downstream methods (e.g., nonphylogenetic t-tests) that ignore

the phylogenetic correlation in rates induced by the inference

model itself. Such tests are at best not independent of the original

analyses and at worst highly misleading. Furthermore, breaking

down results for subtrees (e.g., families, genera) using rate esti-

mates from the whole tree is likewise unsound. More generally,

post hoc tools—such as those suggested by Caetano et al. (2018)
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and Nakov et al. (2019)—should only be used for visual explo-

ration of results, rather than as a source of data for additional

tests. Ultimately, one must consider the biological relevance

of results beyond their statistical significance (Yoccoz 1991;

Johnson 1999; Anderson et al. 2000; Stephens et al. 2007). This

includes presenting parameter estimates and their confidence in-

tervals (Beaulieu and O’Meara 2016), an essential part of inter-

preting the often-complicated outputs of these models (Caetano

et al. 2018). It also may include testing the adequacy of the most-

supported model through simulations (Pennell et al. 2015; Ra-

bosky and Goldberg 2015; Hua and Bromham 2016). Simulation

methods of model adequacy for hidden-state models are yet to be

developed and tested; they remain an important priority for future

work.

Conclusions
Studies of diversification have exploded in recent years, and

state-dependent models are key tools in such efforts. Herein, I

stress the importance of carefully analyzing these models and in-

terpreting results. Tonini et al. (2020) presented an impressive

set of analyses, compiling data on phytotelm breeding for thou-

sands of species of frogs and analyzing its evolution using di-

verse methods. They also discussed many biological hypotheses

for how this character might affect diversification. Nonetheless,

my reanalysis shows that phytotelm breeding has no effect on

frog diversification, echoing TEA’s observation that “few lin-

eages of phytotelma-breeding frogs appear to have diversified

extensively” (Tonini et al. 2020; abstract). Although some of my

overall results are similar to those of TEA, I emphasize the coun-

terintuitive result that even if the top HiSSE model(s) includes a

focal character, it does not necessarily mean that the character in-

fluences diversification rates. Careful consideration of parameter

estimates remains vital for avoiding such errors in interpretation,

as does eschewing additional, nonphylogenetic tests on those

estimates. I hope that my additional suggestions for analyses

will be useful to researchers evaluating complex diversification

models.

Finally, previous studies have shown that many ecological

factors impact anuran diversification, including sexual-size di-

morphism, climate, and microhabitat use (Pyron andWiens 2013;

De Lisle and Rowe 2015; Gómez-Rodríguez et al. 2015; Moen

and Wiens 2017). My analyses show that phytotelm breeding—

like other life-history traits analyzed to date (Gomez-Mestre et al.

2012)—is not among these factors that have an effect. Future

work will productively consider and weight the many factors

that might affect diversification (e.g., Moen and Wiens 2017;

Hernández-Hernández andWiens 2020). Recent developments of

state-dependent models that allow analysis of multiple characters

will no doubt play an important role in this endeavor (Caetano

et al. 2018; Herrera-Alsina et al. 2019; Nakov et al. 2019).
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