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The hidden-state speciation and extinction (HiSSE) model helps avoid spurious results when testing whether a character affects
diversification rates. However, care must be taken to optimally analyze models and interpret results. Recently, Tonini et al. (TEA
hereafter) studied anuran (frog and toad) diversification with HiSSE methods. They concluded that their focal state, breeding in phy-
totelmata, increases net diversification rates. Yet this conclusion is counterintuitive, because the state that purportedly increases
net diversification rates is 14 times rarer among species than the alternative. Herein, | revisit TEA's analyses and demonstrate
problems with inferring model likelihoods, conducting post hoc tests, and interpreting results. | also reevaluate their top models
and find that diverse strategies are necessary to reach the parameter values that maximize each model’s likelihood. In contrast to
TEA, | find no support for an effect of phytotelm breeding on net diversification rates in Neotropical anurans. In particular, even
though the most highly supported models include the focal character, averaging parameter estimates over hidden states shows
that the focal character does not influence diversification rates. Finally, | suggest ways to better analyze and interpret complex

diversification models—both state-dependent and beyond—for future studies in other organisms.
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traits that can be split by speciation (Goldberg and Igic 2012;
Magnuson-Ford and Otto 2012). The methods have seen wide

We hope HiSSE is viewed as a step away from [thinking that use. For example, the previously cited six articles have been cited

afocal trait acts in isolation], as we no longer have to necessar-

ily focus analyses, or even interpret the results, by reference to a combined 2472 times as of the writing of this article (Google

the focal trait by itself, but can instead estimate how important Scholar, 6 May 2021).
it is as a component of diversification overall.” Despite their utility, these methods also come with chal-
Beaulieu and O’Meara (2016) lenges (FitzJohn 2012; Davis et al. 2013; Maddison and FitzJohn

2015; Rabosky and Goldberg 2015). A key problem is that anal-
yses of empirical phylogenies tend to show a statistically sig-
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In the last 15 years, increasingly detailed methods have been

developed to model the effect of character states on diversifica- . ] ~ ] .

. . L. L . nificant fit between diversification and the tested character even
tion rates (i.e., speciation and extinction rates). These models in-

clude the effects of binary traits (Maddison et al. 2007), multi-

state discrete traits (FitzJohn 2012), quantitative traits (FitzJohn

2010), and geographic traits (Goldberg et al. 2011) or other

when that character has nothing to do with diversification (Ra-
bosky and Goldberg 2015). This happens when a model with di-
versification rates held constant across the tree is compared to
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a model that allows rates to vary with character states. When
a tree has any kind of variation in diversification rates, the lat-
ter model will often be favored even if rate variation is un-
related to the tested character (FitzJohn 2012; Beaulieu and
O’Meara 2016). The state-dependent model is favored simply be-
cause the alternative—constant rates across the whole tree—is
untenable. Beaulieu and O’Meara (2016) introduced the hidden-
state speciation and extinction model (HiSSE) as a solution to
this problem. HiSSE allows heterogeneity in diversification rates
beyond that explained by the focal character alone. Beaulieu
and O’Meara (2016) also developed character-independent di-
versification (CID) models, which model diversification-rate
heterogeneity completely independent of the focal character.
When testing the effect of a focal character, these CID mod-
els provide a more realistic null model than the constant-rates
model. Overall, HiSSE models represent reasonable alternatives
to the hypothesis that the focal character alone affects rates.
As indicated in the quote at the beginning of this article, the
framework emphasizes considering focal characters as one of
many factors that likely affect diversification (Caetano et al.
2018). Moreover, recent extensions to these methods allow the
analysis of multiple focal traits (Herrera-Alsina et al. 2019;
Nakov et al. 2019).

This solution is helpful and hopeful. However, care must be
taken when implementing and testing these models, as their in-
creased number of parameters make them potentially complex.
For example, in the simplest possible case of a single binary char-
acter, models can have as few as three parameters (one speciation,
one extinction, and one transition rate) or up to 16: two states of
a focal character and two states of a hidden character allow four
speciation rates, four extinction rates, and eight transition rates.
With so many options, choosing one’s models to test, finding
their maximum-likelihood parameter estimates, and interpreting
results can challenge researchers.

In a recent article published in this journal, Tonini et al.
(2020; hereafter TEA) used HiSSE models to test the impact
of breeding in water-filled holes in plants, called phytotelmata,
on diversification rates in Neotropical frogs. They compared 47
models and found that most statistical support fell on two models
in which diversification rates varied by both observed and hid-
den states. TEA interpreted these results as indicating higher di-
versification rates in taxa that breed in phytotelmata than those
that do not, but they greatly underemphasized the role of the
hidden states and their effect on diversification. Herein, I rean-
alyze TEA’s data and find that even though the top models for
their data include the focal character of phytotelma breeding, pa-
rameter distributions show that this character has no discernible
effect on diversification rates. Moreover, I show that TEA’s
analyses demonstrate some of the challenges of testing HiSSE
models. These challenges include finding the optimal models for
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the data, conducting post hoc analyses of results from HiSSE
analyses, and interpreting results. I conclude by suggesting ways
to improve future analyses of HiSSE models specifically and
complex diversification models more generally.

Background

Nearly half of all living species of anurans (frogs and toads) oc-
cur in the Neotropics (AmphibiaWeb 2020). Most species breed
terrestrially or in bodies of water at ground level (Duellman and
Trueb 1986; Gomez-Mestre et al. 2012). However, specialized
breeding in phytotelmata occurs across many families of anurans.
Therefore, TEA studied the evolution of breeding in phytotelmata
and its potential effects on diversification in Neotropical anurans.
They asked two key questions: (1) What are the frequencies of
changes among breeding strategies (e.g., how many times has
breeding in phytotelmata evolved; is its origination more com-
mon than its reversals)? (2) Does the evolution of breeding in
phytotelmata affect net diversification rates?

To address these questions, TEA considered many models
for the joint evolution of diversification and phytotelma breed-
ing. These models varied in three types of parameters: speciation
rate, extinction rate, and rate of character-state transitions. They
included both the observed character (phytotelma breeding) and
hidden states. TEA then used the results of these analyses to es-
timate both the frequency of transitions and their potential ef-
fects on diversification rates. TEA also conducted complemen-
tary analyses based on the methods of Bromham et al. (2016) and
Hua and Bromham (2016). Given the distinctness of these latter
models and their inconclusive results for TEA’s dataset, I do not
discuss them in this note. I focus exclusively on the use and inter-
pretation of the state-dependent diversification models, as these
latter models drove their article’s title and the major conclusions
in the abstract, results, and discussion.

A comparison of TEA’s data with their conclusions suggests
cause for concern. They inferred that net diversification rates
were higher for phytotelm-breeding taxa, yet phytotelm breed-
ing is a relatively rare state, often associated with single terminal
branches. By contrast, one would generally expect a state that
increases net diversification rates to be somewhat common and
associated with many branching events in the tree. Moreover,
TEA concluded from additional analyses that phytotelm breed-
ing has independently driven higher diversification rates within
many families. However, as in the whole-tree analysis, many of
those same families showed very few branching events associated
with phytotelm breeding.

This nonintuitive relation between TEA’s data and their con-
clusions warrants a closer look. Herein, I examine their analy-
ses and results by focusing on three issues: obtaining maximum-
likelihood estimates of model parameters, conducting down-
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stream analyses with the rate estimates from these models, and
interpreting results. I then perform several additional analyses to
illustrate how likelihood optimization may be sensitive to search
parameters. Finally, based on the results of these analyses, I sug-
gest how to improve inference in complex diversification analy-
ses.

Data Analyses

I first attempted to replicate TEA’s HiSSE analyses to examine
parameter values and better understand their results. I only con-
ducted analyses of TEA’s 1579-taxon reduced dataset, given that
all their presented results are based on this dataset. I assumed a
sampling fraction for the two phytotelma-breeding states based
on the differences in state totals between the full, 3105-taxon
dataset and the reduced, 1579-taxon dataset. For all other search
parameters, I assumed default values unless otherwise indicated.
I later extended these analyses to explore potential problems with
TEA’s results, as well as to show more general challenges in like-
lihood optimization of HiSSE models (see Optimal Searching of
Model Likelihoods below). I conducted all analyses in R version
4.0.2 (R Core Team 2020) with the package hisse version 1.9.8
(Beaulieu and O’Meara 2016), using the function “hisse.new”
and its associated functions. Note that although recent work sug-
gested the likelihood in hisse improperly conditions on clade sur-
vival (Herrera-Alsina et al. 2019), subsequent analyses showed
that different conditioning schemes have little effects on results
(Nakov et al. 2019). Thus, I used hisse with the default condition-
ing to maximize consistency with the analyses of TEA. Finally, I
provide all analysis code and results in the Supplementary Infor-
mation.

Problems with Post Hoc Tests and
Interpretation of Results

A key advance of the HiSSE framework is that candidate models
can accommodate diversification-rate variation that is partly re-
lated or even unrelated to the focal trait (Beaulieu and O’Meara
2016; Caetano et al. 2018). This property is particularly relevant
for large phylogenies, which will almost certainly have some rate
variation across taxa (O’Meara 2012; Beaulieu and Donoghue
2013; Rabosky 2014; Beaulieu and O’Meara 2016). A key con-
sequence of this framework, therefore, is that support for a state-
dependent model may not necessarily indicate that a focal char-
acter is important for explaining rate variation.

TEA tested 47 total models belonging to seven classes, pri-
marily derived from Bromham et al. (2016): full, baseline, dead-
end, suicide, lonely, irreversible, and CID. They reported that two
versions of the suicide class, Suicide 4 and 6, were the models
most highly supported by their data. What did these models say

about the effect of phytotelm breeding on diversification rates?
Parameter values are often instructive, but they can also defy sim-
ple interpretation when hidden states give mixed signals. For ex-
ample, with all possible combinations of the two focal states (0,
1) and two hidden states (A, B), there are four sets of rates (i.e.,
one rate each for OA, 1A, 0B, and 1B). Imagine that net diver-
sification rates are highest under 0B, lowest under OA, and in-
termediate in 1A and 1B. In this situation, one cannot determine
whether rates are generally higher for focal states O or 1, because
those rates depend on the underlying (and unobserved) hidden
states. In this situation, Caetano et al. (2018) suggested estimat-
ing diversification rates for the tip taxa. Because we know the
focal states for tip taxa, but we do not know which hidden states
they have, we can weight their focal states’ diversification rates—
two estimates each, one for each hidden state—by the marginal
likelihood of the hidden states at the tips. For example, imagine
that a hypothetical species with focal state 1 has a likelihood of
0.25 of hidden state A and 0.75 of B. If the net diversification
rate of state 1A is 0.2 and state 1B is 0.4, then the estimated rate
for state 1, integrating over the two hidden states, is 0.25 x 0.2 4
0.75 x 0.4 = 0.35 (Caetano et al. 2018). Doing this for all taxa
produces a distribution of rates for the two focal states, which
can be plotted to visualize their potential differences. Such dis-
tributions also show how differing likelihoods of hidden states
along branches allows HiSSE to model continuous variation in
realized diversification rates, even though the focal states are dis-
crete (Nakov et al. 2019).

To assess whether phytotelm breeding affected diver-
sification rates, TEA presented means and variation in
net diversification rates for their focal states, which came
from tip rates calculated as I described above. On av-
erage, phytotelm-breeding species had higher net diver-
TEA
then tested this mean difference with a t-test, presenting

sification rates than nonphytotelm breeding taxa.
P < 2.2 x 107'% to indicate a significantly higher rate in
phytotelm-breeding taxa.

Yet this test and interpretation of tip rates are highly prob-
lematic for two reasons. First, TEA’s t-test is statistically un-
sound because it assumed phylogenetic independence of taxa.
Even if the test incorporated phylogeny, however, it would still
be problematic because of a more important source of noninde-
pendence: the rates were estimated and assigned to taxa based
on a diversification analysis of the whole tree, yet TEA analyzed
the tip rates as if they were data collected independently for each
species. Most common phylogenetic comparative tests of con-
tinuous characters account for the nonindependence of taxa by
specifying that the more closely related taxa are, the more similar
their phenotypes will be (Felsenstein 1985; Hansen and Martins
1996; O’Meara 2012). This is not necessarily true in the case of
state-dependent diversification, because similarity of taxa in their
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estimated diversification rates depends only on whether they have
the same character states. And although closely related taxa may
often have the same character states, the diversification rates es-
timated for these states depend on their distribution across the
whole tree. Species A may have an entirely different net diversi-
fication rate than its sister species B because they have different
character states, but A may have the same rate as a distant species
7 with the same character state. That said, hidden-state mod-
els can show phylogenetic clustering of rates, as closely related
species with the same observed states also tend to have similar
probabilities of the underlying hidden states, meaning they will
also have similar estimated diversification rates (Caetano et al.
2018; Nakov et al. 2019). A phylogenetic test (e.g., a phyloge-
netic ANOVA or PGLS; Garland et al. 1993; Rohlf 2001) will
thus still likely perform better than the nonphylogenetic z-test of
TEA. However, such tests are more generally unnecessary, be-
cause the formal comparison of diversification models with AICc
(or any other model-comparison framework) indicates clearly the
support for one model versus another. When one model allows
rates to be higher for one character state than another, and that
model is highly supported statistically, then downstream tests are
superfluous at best and possibly misleading.

Second, the statistical significance of the t-test seemingly
misled TEA about the biological significance of their results. Al-
though a very large sample size (here, 1579 species) often leads to
statistical significance, that significance may not be biologically
meaningful (Johnson 1999; Anderson et al. 2000; Stephens et al.
2007). TEA’s figure 3—a histogram of tip net diversification
rates for the focal states—shows this well (see also Fig. 3 herein,
based on reanalysis). Even though the mean rate of phytotelm
breeders is higher than that of nonphytotelm breeders, the distri-
bution of rates in the latter group completely overlaps the distri-
bution of the former. Moreover, about one-third of nonphytotelm-
breeding taxa were inferred to have the highest rates across all
taxa. So although some nonphytotelm-breeding taxa have lower
rates, many have much higher rates. Simply plotting the data thus
suggests no effect of phytotelm breeding on net diversification
rates.

TEA next used a family-by-family breakdown of these same
tip rates to conclude that eight of nine families showed higher
rates in phytotelm-breeding taxa. Graphically, one again notices a
contrast between TEA’s conclusions and their data: the overlap in
distributions across different families (TEA’s fig. 4) is similar to
the overlap in analysis of the full phylogeny (TEA’s fig. 3), with
the rate distributions of phytotelm-breeding taxa broadly over-
lapped by those with the alternative state. Phytotelm-breeding
taxa have net diversification rates outside the central 50% of the
nonphytotelm-breeding distribution in only three of these fami-
lies (Craugastoridae, Leptodactylidae, and Microhylidae). Even
in these three cases, TEA’s figure 2 (a map of phytotelm breed-
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ing on their phylogeny) shows an additional problem. Although
they treat these family-level analyses as independent support of
their whole-tree results, the family results are clearly not inde-
pendent. For example, no phytotelm-breeding lineage in Crau-
gastoridae shows branching (i.e., speciation), and those three lin-
eages have relatively long branches. Such data cannot support
a higher net diversification rate than in nonphytotelm-breeding
taxa, which in the same family have hundreds of such branching
points and many short branches. This problem resembles TEA’s
t-test of the whole tree: the family-level tip rates come from an
analysis of the entire tree, so the rates for phytotelm breeding
in one family are linked to the rates in another. To test whether
families independently supported an overall pattern, such fami-
lies would need to be analyzed independently (e.g., doing HiSSE
analyses at the family level). However, most families were
likely too small to robustly conduct HiSSE analyses (Beaulieu
and O’Meara 2016), making the utility of such analyses
doubtful.

In summary, TEA used an analysis of the whole, 1579-
species tree to estimate net diversification rates for each species.
They then compared these rates for states of their focal charac-
ter using nonphylogenetic t-tests, for both the whole tree and in-
dividually for nine families, which were statistically invalid for
multiple reasons. TEA also plotted rate distributions that showed
no difference in rates for the two focal states, neither at the whole-
tree nor family levels, yet concluded in both cases that phy-
totelm breeding increased rates. Notably, TEA’s complementary,
simulation-based analyses of summary metrics (Bromham et al.
2016; Hua and Bromham 2016) were more consistent with my
conclusion than theirs: both model adequacy and power simula-
tions of three metrics showed that the dataset contained insuffi-

cient information to support any particular diversification model.

Optimal Searching of Model
Likelihoods

Perhaps a more basic problem with interpreting the results of
TEA is that their analyses did not reach maximum likelihood
peaks for many models. Likelihood statistics function by search-
ing for the parameter values that, for a given model, maximize the
probability of the observed data given the model (i.e., the likeli-
hood). Complex diversification models can be difficult to opti-
mize, meaning finding the parameter values that maximize the
likelihood. The search may fail to converge, or it may become
trapped on a likelihood peak lower than the global optimum.
Thus, one must recognize that model-fitting results may repre-
sent suboptimal, local likelihood peaks. A simple way to check
this possibility is to compare nested models; a general model
must have an equal or higher likelihood than a more specific
nested model (Edwards 1972; Huelsenbeck and Crandall 1997).
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improved inference for five of seven models (Table 1). Adding
simulated annealing to the likelihood search improved inference
even more, with six of seven models showing a log-likelihood
improvement of at least 15 units over default searches (Table 1).
In terms of model comparison, this means that any one of the first
five models estimated under simulated annealing (worst: Baseline
BiSSE AICc = 13,444.82) would have bested all AICc values
presented for these same models by TEA (their best: Full BiSSE
AICc = 13,450.19). When both bounding parameter search space
and using simulated annealing, I found identical likelihoods as
simulated annealing alone (Table 1), which suggests that at least
for simple models, simulated annealing may consistently reach
the same likelihood peaks under different conditions.

Overall, neither speciation nor extinction rate is affected by
phytotelm breeding in the optimal BiSSE model (Mk2). More-
over, the two other models (Full and Suicide) that have appre-
ciable AICc support are more generalized versions of Mk2, with
nearly identical likelihoods (Table 1), suggesting scarce informa-
tion in the dataset to support them. Their AICc weights result al-
most exclusively from parameter penalization: an AICc compari-
son of any three models with this sample size and log-likelihood,
but differing by one or two parameters, would give nearly the
same model weights as here (w, = 0.667, w,, ;| = 0.244, w,, 1 »
= 0.089, where n indicates a baseline number of free parameters;
compare to Table 1). Finally, BiSSE models have a high propen-
sity to spuriously assign rate variation to focal characters when
no other option is given (Rabosky and Goldberg 2015; Beaulieu
and O’Meara 2016), yet they did not do so here. These results
all suggest little to no signal in TEA’s dataset for a relationship
between phytotelm breeding and diversification in frogs.

The BiSSE analyses illustrate how adjustment of search
options can improve likelihood estimates of even the sim-
plest state-dependent diversification models. However, they do
not address whether or how underestimating likelihoods may
have affected TEA’s results for their most supported models
and thus their study’s conclusions. So, I next reconsidered the
statistical support for TEA’s top models. To conduct many
searches to thoroughly explore each model’s likelihood surface,
I restricted my comparison to six models: the two TEA re-
port as their top models (Suicide 4 and Suicide 6), the two
more general versions of these models (Full 2 and Full 3),
and two versions of CID. The latter two models corresponded
to CID2 and CID4 in Beaulieu and O’Meara (2016). CID2
only allowed diversification-rate differences due to hidden states
(t0A = tlA # 0B = 11B; €0A = €lA # €0B = €1B)
and allowed all nondual transitions between states to dif-
fer. CID4 had four hidden states affecting turnover rates
(t0A = 1A # 0B = t1B # 10C = 11C # 10D = t1D), four
analogous extinction fractions that differed by hidden state, and
eight transition rates (all transitions from O to 1 equal, regard-
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less of hidden state; same for 1 to O; and six rates of hidden-state
change, symmetric between each pair of hidden states, regardless
of focal state). Although complex, this latter model performed
best of eight candidate CID4 models I considered in preliminary
analyses. It also matched the complexity of the most parameter-
rich model with the focal character (Full 2), an important prop-
erty of null models tested in the HiSSE framework (Beaulieu and
O’Meara 2016).

As above, I conducted default searches (following TEA),
bounded the parameter search space, and used simulated anneal-
ing. Additionally, I conducted many searches with variable start-
ing parameter values (Nakov et al. 2019), which can improve
inference when multiple local optima occur on the likelihood
surface (Rabosky and Goldberg 2015). I conducted searches for
each model under 48 sets of starting parameter values. For the
first 24 searches, I randomly sampled starting values from expo-
nential distributions whose rate parameters I based on the mean
parameter estimates of the highest-supported models in prelim-
inary analyses (Full 2 and Full 3). I chose the exponential dis-
tribution for sampling because most parameter estimates in my
preliminary analyses were small but occasionally large. For the
remaining 24 searches, I randomly sampled starting values from
uniform distributions on the interval (0,1] (for turnover and tran-
sition rates) and (0,4] (for extinction fractions). I determined
these bounds from extremes found in my preliminary analyses
of all 47 models considered by TEA. I estimated the likelihood
of each of the six models under all 48 sets of starting parame-
ter values. Moreover, I bounded parameter space for one set of
searches, then added simulated annealing (still bounding param-
eter space) for another, leading to 96 total searches for each of
the six models. Starting values are included in the Supporting
Information.

In the first set of analyses with default starting values, like-
lihood searches using all default options in hisse produced uni-
formly suboptimal results. Bounding parameter space improved
inference for some models, as did using simulated annealing
(Table 2). Generally, relative model support varied dramatically
under different search conditions (Fig. 1), and all three modifica-
tions (bounding parameters, using simulated annealing, and do-
ing both) were necessary to find the maximum likelihood peaks
across all six models (Table 2).

Different starting parameter values also affected the likeli-
hood searches, sometimes dramatically. Across the 48 different
sets of starting values, all six models had at least one set of
starting values where that model was the most strongly favored
(Fig. 2). Most searches favored Suicide 4, Suicide 6, or CID4, the
latter two of which showed very low weights in the final results
(Table 3). The optimal model across all searches, Full 2, was only
the optimal model under 12.5% of the starting values (Fig. 2). The
dramatic variation in likelihoods and model support across these
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Figure 2. Variation in statistical support for six models as a function of likelihood search starting conditions, showing the drastic variation
in support for different models based only on variation in starting parameter values of the likelihood search. Each bar represents the
weights calculated across the six models for one of 48 sets of starting parameter values. For each model under each set of starting
parameter values, | present AlCc weight calculated from the highest likelihood across two searches: one in which bounds of parameter

values were adjusted, and another that both adjusted bounds and also used a two-step optimization procedure with simulated annealing.
Order of bars on the horizontal axis is arbitrary, as | manually grouped searches with similar model weights.

searches shows the sensitivity of searches to starting parameter
values, at least for this dataset. This sensitivity is not inherently
problematic when conducting HiSSE analyses; in practice, one
considers different sets of starting values in an attempt to reach
a model’s maximum likelihood peak across all sets (e.g., Nakov
et al. 2019). However, I demonstrate the dramatic variation in re-
sults here because the default starting values in hisse should be
considered simply as representing one of these 48 sets. In other
words, if all models are only estimated under the single set of
default starting parameter values, one could obtain any of these
outcomes, even though very few of them match the final results
(Table 3).

Across all likelihood searches I conducted for this article,
the models Full 2 and Suicide 4 had the lowest AICc values and
thus highest AICc weights (Table 3), with comparable support
for the two models. These models are similar, with Full 2 al-
lowing additional variation in turnover rates. Model-averaged pa-
rameter estimates were hard to interpret, as nonphytotelm breed-
ing had the highest net diversification rate under one hidden
state but the lowest under the other (Table 4). Thus, I esti-
mated diversification rates for the phylogeny’s tips, as described
in the previous section. These tip estimates allowed me to av-
erage over models and hidden states to address potential dif-
ferences in focal states. Net diversification rates of phytotelm-
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Table 2. Likelihoods obtained under different search optimization conditions with default starting parameter values.

Bounds + simulated

Simulated
annealing

annealing

Bounded

380

parameters

Default search

TEA

Nested within

Model

—6588.61
—6581.65
—6591.22
—6593.83
—6605.79

-6579.35
log-likelihood estimated when

—6585.85
—6590.02
—6586.53
—6603.96
—6584.58

-6591.86
log-likelihood published in Tonini et al. (2020), who considered CID2 and CID4

—6579.35
—6593.19
—6592.07
—6591.22
—6604.06
—6585.74

—6582.36
—6586.13
—6592.21
—6594.40
—6608.63
—6606.34

—6602.50
—6597.81
—6599.45
NA
NA

-6601.66
log-likelihood obtained under hisse’s default likelihood search (in version 1.9.8). “Bounded parameters”

16
14
14
12
16

13

Full 2, 3; Suicide 4, 6

Full 2, 3; Suicide 4
None

None
Full 2
Full 2

Full 2
Full 3
Suicide 4
Suicide 6
CID2
CID4

“Nested within” = models in this table in which each row’s model is nested. “k” = number of parameters estimated. “TEA"

models that differed from those | tested here. “Default search”
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log-likelihood estimated when adding a simulated annealing step to the likelihood search. Maximum

likelihood for each model across searches is indicated in bold, showing that no single strategy always produces optimal results.

adjusting parameter bounds in the search, as described in the main text. “Simulated annealing”

breeding taxa fell squarely within the center of the distribu-
tion of nonphytotelm-breeding taxa (Fig. 3), as found by TEA
(their fig. 3). Moreover, speciation and extinction rates showed
the same patterns (Fig. 3). In contrast to TEA, however, I inter-
pret these distributions as showing that net diversification, spe-
ciation, and extinction rates are all largely insensitive to vari-
ation in the focal character of phytotelm versus nonphytotelm
breeding.

This conclusion seems nonintuitive. If state-dependent mod-
els that include the focal character are favored, how can the fo-
cal character not affect diversification rates? The answer to this
question is unclear, but I suspect that the focal character func-
tions simply to increase the number of different diversification-
rate regimes that are fit to the tree (four in the top two mod-
els), which is favored because of the complex heterogeneity in
rates across a large phylogeny. In other words, there is noth-
ing special about the focal character per se, but in combination
with the hidden character it allows for four sets of speciation and
extinction rates to be fit to the tree. To confirm this interpreta-
tion of no direct effect of the focal character, I also conducted
analyses with FiSSE, an alternative, simulation-based method for
testing the hypothesis of character state-dependent diversifica-
tion (Rabosky and Goldberg 2017). With FiSSE, one first cal-
culates a test statistic analogous to the mean difference in speci-
ation rate under the two states of a focal character. Binary char-
acters unrelated to diversification are next simulated on the ob-
served phylogeny. The same test statistic is then calculated for
these null characters, and finally the observed test statistic is com-
pared to the null test statistics to calculate a P-value. I conducted
FiSSE analyses in R with code provided by Rabosky and Gold-
berg (2017), using most default options and 999 simulation repli-
cates. The observed test statistic suggested slightly higher speci-
ation rates in nonphytotelm-breeding taxa, but it fell squarely in
the middle of simulated (null) test statistics, with a two-tailed P
= 0.974. This test thus supports similar rates of speciation be-
tween the two breeding states, which confirms that phytotelm
breeding has no effect on diversification rates in Neotropical
anurans.

Given these results, why did HiSSE models that included the
focal character (Full 2, Suicide 4) outperform CID4, which was
explicitly designed to detect a complex pattern of CID (Beaulieu
and O’Meara 2016; Caetano et al. 2018) and contained four sets
of turnover rates and extinction fractions, as in Full 2? One possi-
bility is that the transition-rate matrix heavily influences the like-
lihood of models for this dataset, and the matrices I specified for
CID4 more poorly modeled the data than those of Full 2 and Sui-
cide 4. Davis et al. (2013) showed with simulations that when one
character state is much rarer than another, BiSSE (and by exten-
sion, possibly other SSE methods) tends to assign the source of
state rarity to asymmetric transition rates, even when the source



CHALLENGES IN DIVERSIFICATION ANALYSES

100 80 250
(7]
Q 200
S 75 60
o
73 150- Focal states
S 50 40 Non-p_hytotelm
S breeding
3 100 Il Phytotelm
[ breeding
>S5 25 20
Z 50 _J

0 T T 0 T T 0+ T .
0.00 0.05 0.10 0.00 0.05 0.10 0.00 0.05 0.10

Net diversification
rate (lineages / Myr)

Speciation rate
(lineages / Myr)

Extinction rate
(lineages / Myr)

Figure 3. Histograms of estimated tip diversification rates. Rates were averaged across the top two models | estimated, Full 2 and Suicide
4 (Table 3). Note that tip branches have observed focal states (i.e., phytotelm breeding and nonphytotelm breeding) and unobserved
hidden states, each with their own diversification rates (Table 4). Thus, the presented tip-rate estimates (given observed focal states)
account for hidden states by weighting diversification rates by the marginal likelihood support for each hidden state (Caetano et al.

2018).

of rarity is due to differential speciation or extinction rates. They
found this occurred when the rarer state had a frequency of less
than 10%; here, phytotelm breeding occurs in 7.1% of taxa. Thus,
this dataset may be particularly challenging for SSE methods, and
its likelihood may be strongly affected by the exact form of the
transition matrix. Given the size of this transition matrix—with

up to 32 distinct rates under CID4—deciding how to optimally
specify it will remain a future challenge.

To summarize, I found that optimization of state-dependent
diversification models is particularly challenging for this dataset.
This meant that even the simplest state-dependent models
(BiSSE) analyzed by TEA were not estimated well under default

Table 3. Maximum likelihood estimates of HiSSE models across all searches in this article, with AlCc support.

Model Nested within k InL AlCc w;

Full 2 None 16 -6579.35 13,191.05 0.554
Full 3 Full 2 14 —6585.85 13,199.97 0.006
Suicide 4 Full 2 14 —-6581.65 13,191.57 0.427
Suicide 6 Full 2, 3; Suicide 4 13 —6586.50 13,199.23 0.009
CID2 Full 2, 3; Suicide 4, 6 12 -6592.64 13,209.48 0.000
CID4 None 16 —6584.45 13,201.24 0.003

“Nested within” = models in this table in which each row’s model is nested. “k” = number of free parameters. “In L" = maximum log-likelihood found across
all analyses and conditions described in this article. “AlCc” = Akaike Information Criterion adjusted for small sample size. “w;” = AlCc weights.

Table 4. Parameter estimates averaged across the top two models, Full 2 and Suicide 4.

Rate Nonphytotelm A Phytotelm A Nonphytotelm B Phytotelm B
Speciation 0.029 0.055 0.108 0.074
Extinction 0.019 0.002 0.000 0.011
Net diversification (speciation — extinction) 0.010 0.053 0.108 0.063
Net turnover (speciation + extinction) 0.048 0.057 0.108 0.085
Extinction fraction (extinction/speciation) 0.652 0.041 0.000 0.132

Parameter estimates indicate events per million years. The letters (A, B) next to each observed state (nonphytotelm breeding and phytotelm breeding) refer

to hidden states.
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search conditions in hisse. This optimization difficulty extended
to TEA’s top models, which included hidden states. I found that
implementing three changes to the search—adjusting parame-
ter bounds, searching with simulated annealing, and conduct-
ing searches under many different starting parameter values—
greatly improved the search. The latter two strategies produced
the biggest improvement. These changes led me to a different
model, Full 2, as optimal for TEA’s data. Nonetheless, the result-
ing parameter estimates and distributions of tip rates were very
similar to those of TEA, showing no effect of phytotelm breeding
on net diversification rates. Finally, a nonparametric alternative
test gave similar results.

Ways Forward
What can be done to avoid some of the pitfalls that I highlight
in this article? My critique and analyses suggest a few best prac-
tices when estimating hidden-state diversification models. How-
ever, I should first emphasize that some of the drastic variation
in results under different analysis conditions may be specific to
the dataset presented by TEA. For example, speciation and ex-
tinction rates were positively related in phytotelm-breeding taxa
(Fig. 3; Table 4); the tight clustering of net diversification rates
in this state resulted from taxa that achieved such rates by ei-
ther having low speciation and low extinction rates or high values
for both. This observation suggests that the distribution of phy-
totelm breeding on the phylogeny may be explained equally well
by many combinations of speciation and extinction rates (i.e.,
there is a ridge in parameter space that produces similar likeli-
hoods and net diversification rates). Moreover, the rarity of phy-
totelm breeding may also challenge SSE methods. As I described
above, SSE methods may tend to attribute state rarity to heteroge-
neous transition rates rather than differential diversification rates
(Davis et al. 2013). This property could explain the surprising re-
sult that phytotelm breeding was estimated with strong support
as first originating relatively deep in the tree, as the ancestral
state for most major clades (TEA’s fig. 2). This result is biolog-
ically counterintuitive, as >90% of species do not breed in phy-
totelma. Moreover, other studies suggest arboreality—which may
be important for breeding in the often vertically distributed phy-
totelma (Lannoo et al. 1987; Lehtinen et al. 2004; Ferreira et al.
2019)—originated much more recently in anurans (Moen et al.
2016; Feng et al. 2017). Thus, the properties of the phytotelm-
breeding data, as well as the counterintuitive results relative to
frog biology, indicate that this dataset presents significant hurdles
for likelihood optimization. Such hurdles may be less substantial
in other datasets.

Regardless of the details of this particular dataset and my
focus on HiSSE, my results indicate some general ways forward
for any state-dependent diversification analysis. First, the poten-
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tial complexity of these models and searches for their global
likelihood peaks necessitate transparent methods, including pub-
lished R code (which TEA did provide). Reproducibility is par-
ticularly important here because so many search conditions can
affect one’s results. Explanation for why certain models are tested
and what statistical support for them would mean biologically is
important for setting forth general ideas on how diversification
unfolds, to be tested for many other characters and taxa. Beyond
choosing specific models, it is also important to recognize that
a given dataset may be equally well explained by diversification
scenarios that will never be considered or accurately estimated,
including those that imply very different relationships between
traits, speciation, and extinction (Louca and Pennell 2020). This
is particularly true when using phylogenies of only extant species
to estimate extinction rates, whose accuracy is debated (Rabosky
2010, 2016; Beaulieu and O’Meara 2015). Regardless, given time
constraints, the number of models tested will be inversely related
to how thoroughly one can test them, and my results show that
thorough testing should not be underestimated. At a minimum,
one should not end analysis if likelihoods of simpler nested mod-
els are higher than their more general counterparts, which surely
indicates failing to reach the latter’s global likelihood peaks (Ed-
wards 1972; Huelsenbeck and Crandall 1997).

Second, the sometimes-complicated parameter spaces of
state-dependent diversification models require diverse search
strategies. [ have shown here that default searches are best consid-
ered preliminary. One should consider bounding parameter space,
as it can improve inference. The two-step likelihood search with
simulated annealing is now hisse’s default; although much slower
than the alternative subplex-only search, my analyses show that
the resulting improved inference offsets its increased compu-
tational time. Moreover, many independent searches should be
started from different parameter values. That said, I do not have a
sense for the optimal way to vary these starting points, so my ap-
proach should be considered one of many options (e.g., Herrera-
Alsina et al. 2019; the MuHiSSE vignette in hisse). Minimally,
authors should describe how they decided upon the various start-
ing parameter values and provide them in supplementary data
appendices. All three of these search strategies are likely to be
important for any parameter-rich diversification model, includ-
ing recent developments that further expand the hidden-state ap-
proach (Herrera-Alsina et al. 2019; Nakov et al. 2019).

Third, one should not expand on diversification results with
downstream methods (e.g., nonphylogenetic #-tests) that ignore
the phylogenetic correlation in rates induced by the inference
model itself. Such tests are at best not independent of the original
analyses and at worst highly misleading. Furthermore, breaking
down results for subtrees (e.g., families, genera) using rate esti-
mates from the whole tree is likewise unsound. More generally,
post hoc tools—such as those suggested by Caetano et al. (2018)
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and Nakov et al. (2019)—should only be used for visual explo-
ration of results, rather than as a source of data for additional
tests. Ultimately, one must consider the biological relevance
of results beyond their statistical significance (Yoccoz 1991;
Johnson 1999; Anderson et al. 2000; Stephens et al. 2007). This
includes presenting parameter estimates and their confidence in-
tervals (Beaulieu and O’Meara 2016), an essential part of inter-
preting the often-complicated outputs of these models (Caetano
et al. 2018). It also may include testing the adequacy of the most-
supported model through simulations (Pennell et al. 2015; Ra-
bosky and Goldberg 2015; Hua and Bromham 2016). Simulation
methods of model adequacy for hidden-state models are yet to be
developed and tested; they remain an important priority for future
work.

Conclusions

Studies of diversification have exploded in recent years, and
state-dependent models are key tools in such efforts. Herein, I
stress the importance of carefully analyzing these models and in-
terpreting results. Tonini et al. (2020) presented an impressive
set of analyses, compiling data on phytotelm breeding for thou-
sands of species of frogs and analyzing its evolution using di-
verse methods. They also discussed many biological hypotheses
for how this character might affect diversification. Nonetheless,
my reanalysis shows that phytotelm breeding has no effect on
frog diversification, echoing TEA’s observation that “few lin-
eages of phytotelma-breeding frogs appear to have diversified
extensively” (Tonini et al. 2020; abstract). Although some of my
overall results are similar to those of TEA, I emphasize the coun-
terintuitive result that even if the top HiSSE model(s) includes a
focal character, it does not necessarily mean that the character in-
fluences diversification rates. Careful consideration of parameter
estimates remains vital for avoiding such errors in interpretation,
as does eschewing additional, nonphylogenetic tests on those
estimates. I hope that my additional suggestions for analyses
will be useful to researchers evaluating complex diversification
models.

Finally, previous studies have shown that many ecological
factors impact anuran diversification, including sexual-size di-
morphism, climate, and microhabitat use (Pyron and Wiens 2013;
De Lisle and Rowe 2015; Gémez-Rodriguez et al. 2015; Moen
and Wiens 2017). My analyses show that phytotelm breeding—
like other life-history traits analyzed to date (Gomez-Mestre et al.
2012)—is not among these factors that have an effect. Future
work will productively consider and weight the many factors
that might affect diversification (e.g., Moen and Wiens 2017;
Hernandez-Herndndez and Wiens 2020). Recent developments of
state-dependent models that allow analysis of multiple characters

will no doubt play an important role in this endeavor (Caetano
et al. 2018; Herrera-Alsina et al. 2019; Nakov et al. 2019).
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