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Abstract: Subsurface drainage has been widely accepted to mitigate the hazard of landslides in areas
prone to flooding. Specifically, the use of drainage wells with pumping systems has been recognized
as an effective short-term solution to lower the groundwater table. However, this method has not
been well considered for long-term purposes due to potentially high labor costs. This study aims
to investigate the idea of an autonomous pumping system for subsurface drainage by leveraging
conventional geotechnical engineering solutions and a deep learning technique—Long-Short Term
Memory (LSTM)—to establish a geotechnical cyber-physical system for rainfall-induced landslide
prevention. For this purpose, a typical soil slope equipped with three pumps was considered in a
computer simulation. Forty-eight cases of rainfall events with a wide range of varieties in duration,
total rainfall depths, and different rainfall patterns were generated. For each rainfall event, transient
seepage analysis was performed using newly proposed Python code to obtain the corresponding
pump’s flow rate data. A policy of water pumping for maintaining groundwater at a desired level
was assigned to the pumps to generate the data. The LSTM takes rainfall event data as the input
and predicts the required pump’s flow rate. The results from the trained model were validated
using evaluation metrics of root mean square error (RMSE), mean absolute error (MAE), and R2.
The R2-scores of 0.958, 0.962, and 0.954 for the predicted flow rates of the three pumps exhibited
high accuracy of the predictions using the trained LSTM model. This study is intended to make a
pioneering step toward reaching an autonomous pumping system and lowering the operational costs
in controlling geosystems.

Keywords: landslide prevention; disaster resilience; geotechnical cyber-physical systems; long
short-term memory; deep learning; transient flow

1. Introduction

Natural disasters cause severe human and economic losses all over the world [1].
Landslides account for approximately 5% of natural disasters and result in economic losses
of $1.6 to $3.2 billion in the United States and approximately 25-50 deaths annually [2].
Researchers have conducted landslide susceptibility assessments in which landslide suscep-
tibility is defined as the probability of landslide occurrence in an area considering various
geoenvironmental conditions, and rainfall has been identified as one of the main factors
influencing landslide occurrence [3-7]. The 2010 Maierato landslide [8], the 2014 Oso
landslide [9], the 2018 Mengdong landslides [10], and annually occurring landslides in
Rize, Turkey [11] are examples of rainfall-induced landslides. The frequency, duration, and
intensity of rainfall events have been affected by climate change in recent decades, leading
to an increase in landslides [12-15]. Intense and prolonged precipitation can cause a rise in
the groundwater table, which decreases the stability of the slope. Additionally, the rain
infiltrating the slope increases the degree of saturation and the unit weight of soil. The
resultant increase in soil saturation also causes a decrease in the matric suction and shear
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strength of the unsaturated soil [16-19], which can adversely impact the safety of geosys-
tems such as slopes. The magnitude and rate of the impact on the soil properties and the
safety factor of a slope depend on the intensity and the duration of the rain [20,21]. Slope
failures induced by rainfall events and the above mechanisms can cause massive economic
losses and fatalities [2]; for example, [22] reported that monsoon flooding and landslides in
the 2019 summer impacted more than 7 million people in Nepal, India, and Bangladesh.

To mitigate landslide hazards in areas prone to flooding, drainage has been widely
used as a stabilization method [23-26]. Lowering the groundwater table using subsurface
drainage systems increases slope stability. The lowered water table reduces the driving
forces, which increases the factor of safety (FS). Most drainage systems are designed to use
the gravity flow to reduce costs. In some cases, a pumping system might be necessary to
remove water from deep drainage wells due to an inadequate gravity force [27].

Deep wells equipped with pumps and well-point systems are two pumping-based
techniques that can lower the groundwater level in shallow and deep excavations, respec-
tively [28]. For example, deep wells equipped with pumps were utilized as a primary
solution to stabilize a slope near Genoa, Italy, in 1987 [29,30]. Such systems are also
applicable in mining projects to reduce the risk of liquefaction of mine tailings due to
earthquakes [31]. The operation of a well-point system requires a specialist operator to tune
the flow valves to prevent the water level from falling below the top of the screen, as any air
entering the system might cause a pump malfunction. Regular checks may also be required
in pumping-based techniques to control seepage in sites subject to flooding [28,32]. The
high operational cost of such systems is the primary factor preventing pumping systems
from developing into long-term solutions for dewatering [28].

To overcome such problems, the goal of this study is to investigate the idea of an
autonomous pumping system for subsurface drainage by leveraging conventional geotech-
nical engineering solutions and deep learning techniques to establish a geotechnical cyber-
physical system (CPS) for rainfall-induced landslide prevention. To the best of our knowl-
edge, this study is the first to explore the application of deep learning techniques in practical
geotechnical CPSs. Specifically, we propose to use the Long Short-Term Memory (LSTM)
recurrent network to learn the control policy of water pumping from the observed data
during rainfall events so the trained LSTM can be used to run pumps for desired control
outcomes with the predicted pump’s flow rate. A virtual environment was created to
generate the data for training and testing of the proposed LSTM model, which has been
validated with commercial software. Accordingly, Python code was developed to imple-
ment a transient seepage model for a typical soil slope equipped with three pumps and
subjected to rainfall events. The proposed numerical simulation framework was integrated
with deep learning, which cannot be achieved with commercially available software for
transient seepage analysis. The LSTM model was then trained to take the rainfall data as
input and predict the required pump’s flow rate data.

The proposed method can identify unnoticed knowledge in observed data that can
enable autonomous water pumping in geosystems toward data-driven resilience. The
proposed system can significantly reduce operational costs and improve safety by replacing
human-controlled and managed geosystems. The main scientific contributions can be
summarized as follows:

e  Geotechnical CPS: This study is the first to leverage LSTMs for subsurface drainage
control for landslide prevention as a concept. The established geotechnical CPS in this
study can be used for establishing autonomous pumping systems to increase safety
and to reduce the operational costs of geosystems.

e  Data-driven disaster resilience: The proposed method can learn from data and experi-
ences by integrating deep learning techniques into geotechnical engineering solutions,
which is among the first to control an infrastructure system involving complex physics
in geomaterials and to provide unique interventions to hazard prevention toward
data-driven disaster resilience.
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e  Physics-based model for data generation: We establish a new physics-based model
for the transient seepage analysis of geosystems considering precipitation and pump-
ing, which is needed to stimulate the behavior of such CPSs for improved drainage
and landslide prevention. The developed model is written in Python as a free and
open-source framework. This new model is then employed to generate data for deep
learning (i.e., training and testing) and utilized as the independent testing environ-
ment to validate predictions for controlling groundwater. Integration with other
deep learning algorithms is an advantage of the proposed model compared with
the commercially available software for transient seepage analysis. Additionally, the
governing equation and the auxiliary equations applied in this study can be easily
modified to allow for more complex seepage analysis.

The rest of the paper is organized as follows: Section 2 discusses the data generation
approaches; Section 3 introduces the background of LSTM, then explains the proposed
model, required data preprocessing, and evaluation criteria; Section 4 presents the results
and discussions; and, finally, Section 5 concludes the study.

2. Data Acquisition

To generate the data for training and testing of the proposed LSTM model, a tran-
sient seepage model was developed to simulate a lab-scale geosystem equipped with
three pumps and subjected to rainfall events. In our previous study, we established a
similar physical model that seamlessly coupled seepage and slope stability analysis to
better understand the influence of water level changes on the safety status of slopes [33].
The computational framework of the physical model was cross-validated by commercial
software in our previous study [33].

The goal of this study is to explore integrating the physical geosystems and the man-
made interventions with a deep learning algorithm (i.e., LSTM) to learn the policy of water
pumping from historical data and to establish an autonomous water pumping system for
long-term use. Landslides are often the results of extreme weather events, as explained
in Section 1. The data directly influencing slope stability for landslide prevention include
the following four categories: (1) the geomaterial characteristics of the slope, mainly the
associated unsaturated and saturated soil parameters; (2) the geometry of the slope and the
pumps; (3) rainfall data and detailed information on pumps including each pump’s flow
rate policy, location, and initial water table; and (4) time variables. Thus, we first present
the data generation in Section 2.

2.1. Generation of Rainfall Data

The design of rainfall events requires the determination of three basic parameters:
(1) duration, (2) depth of precipitation, and (3) rain intensity. According to German guide-
lines, DVWK (Deutschen Verbandes fiir Wasserwirtschaft und Kulturbau (DVWK)), there
are four possible intensity distribution patterns for rainfall events, as shown in Figure 1 [34].
In the first typical rainfall pattern, Figure 1a, the rainfall intensity is constant over time.
Figure 1b shows the rainfall distribution with a descending pattern. In this type of distri-
bution, maximum rainfall intensity occurs at the onset of precipitation. In the third type
of distribution shown in Figure 1lc, the maximum intensity occurs in the middle of the
rainfall event duration, similar to a normal distribution. In the last type in Figure 1d, the
rainfall intensity increases over time and reaches the maximum intensity at the end of
the precipitation.
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Figure 1. Typical rainfall intensity distributions with (a) constant intensity over time, (b) maximum
intensity at the beginning of precipitation, (¢) maximum intensity in the middle of precipitation, and
(d) maximum intensity at the end of precipitation.

Forty-eight sets of rainfall data with a wide range of varieties in duration, total
precipitation depth, and patterns were generated. Three values, (i.e., 10 min, 15 min, and
20 min, were selected for the rainfall duration. Four values were considered for the total
rainfall depth: 10 mm, 15 mm, 20 mm, and 25 mm. Generated rainfall events typically
have one of the four typical patterns described in Figure 1a—d, which will be referred to as
types “a”, “b”, “c”, and “d”, respectively. It is noted that the maximum rainfall intensity in
all cases was less than the saturated hydraulic conductivity of the chosen soil to prevent

runoff, allowing all precipitation to infiltrate the soil [35].

2.2. Pump Flow Rate Data Acquired from Transient Seepage Analysis
2.2.1. Governing Equation for the Transient Seepage Model

A transient seepage analysis was performed to obtain the corresponding pump’s flow
rate for each rainfall event. The governing equation for a transient saturated-unsaturated
seepage model was obtained by modifying the Richards Equation [36],

o(h+z)

Sat

=KxV(V(h+z))+4qmn, 1)
where 1 is the pressure head with the unit of meter, z is the elevation head with the unit of
meter, g is the sink/source term representing the applied flux at the boundaries with the
unit of meter per second, and S and K are defined based on the saturation degree as follows,

Saturated Flow —+ K =K;, S = S; @)
Unsaturated Flow — K = K,K,, S= S, ’

where, for the saturated flow, S; is the specific storage of saturated flow with the unit of
1/m, and K; is the saturated hydraulic conductivity with the unit of meter per second; for
the unsaturated flow, S, is the specific moisture content with the unit of 1/m and KK is
the unsaturated hydraulic conductivity, in which K; is the relative hydraulic conductiv-
ity. Relative hydraulic conductivity defines the way in which the hydraulic conductivity
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changes with the degree of effective saturation (S,). The following equation proposed by
van Genuchten [37] was adopted for formulating K;:

K, = 5?(1 f (1 _ sg/“)”)z, 3)

p\r]
”(PT)) } , ()

where 4, b, and Py (with the unit of Pascal) are fitting parameters derived from the Soil-
Water Characteristic Curve (SWCC), S, is the effective saturation degree, and i (with the
unit of Pascal) is the matric suction [17]. The matric suction is calculated using i = yh,
where 7, is the unit weight of water.

The specific moisture content for unsaturated flow (S.) defines the rate of change in
the water content per unit change of the negative water head [36]. S, is the derivative of
volumetric water content 6 with respect to h:

.
—a
R , 5
( Po ) .

1 —a
20 9S, na P\ T
= _— = — T e—— 1 —
Se ’ah "oh T ha—1) ( * <p0> )
where 7 is the soil porosity.

Specific storage of the saturated flow S is the volume of water released from a
unit volume of aquifer per unit decline in the hydraulic head. S; is a function of the
compressibility values of soil and water and the soil porosity [38]:

Se =

-1

1 dVy

= Vidn

= pwg(Cs +nCy), (6)

where p,, is the density of water with the SI unit of kg/m?,g is the gravitational acceleration,
Cs is the soil compressibility with the ST unit of ms?/kg, and C,, is the water compressibility
with the SI unit of ms?/ kg.

2.2.2. Geometry and Boundary Conditions

As shown in Figure 2, a typical slope profile consisting of three pumps, was used
in the analyses. The slope geometry, boundary conditions, and location of pumps were
determined from the lab-dimensional model. It was assumed that there was no input flux
other than rainfall. Pumps were modeled as a sinkhole. The diameter of the sinkhole for all
of the three pumps was 2 inches. The initial groundwater table is set to the level of 6 inches.

C (15,19) | D (48,19)
D) B (10,9)
Hg PGS P,(29.6) P,(41.6) E
J" Pumpl Pump2 Pump3
‘ @ C 52,1 @ C (29,2,1) @ C (41,2,1)
G (0,0) F (48,0)

Figure 2. Cross-section of soil slope equipped with pumps subjected to rainfall (Units: Inch).
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The no-flux boundary condition was applied to the left and right sides of the slope
above the groundwater table (i.e., DF and GA) and along the bottom of the slope (i.e., FG).
This type of boundary condition was formulated using a Neumann boundary condition as
Equation (7),

Neumann BC: —V(h+z) - 7 =0on T'(pF, kG, Ga) for t >0, (7)

The slope’s surface boundaries (i.e., AB, BC, and CD) were set to the influx boundary
conditions to simulate rainfall infiltration at the slope’s surface. Water ponding was not
considered for the slope’s surface since the rain intensities (I;) were less than the soil
infiltration capacity,

Neumann BC: —V(h +z) - 7 =1 on T'(aB, BC, cp) for t >0, (8)

The outflux boundary condition was adopted for the sinkhole boundaries of the
pumps. The definition of flux is the discharge per unit area per unit time (i.e., m/s). Based
on this definition, the Neumann boundary condition for the pumps was formulated as
Equation (9):

Neumann BC: -V (h +z) - "= tsz—npr on I' pump 1, Pump 2, Pump 3) fort >0, )
where Q) is the full capacity of the pumps, which was considered to be 1 gpm (gallon
per minute), r is the radius of the sinkhole for the pumps, and « is a value between 0 and
1 that was defined based on a simple policy for each pump to keep the water level at the
target level. The target level in this model is the initial water level (i.e., 6”). The policies for
pumps 1, 2, and 3 were formulated according to the range of water head at points Py, Py,
and P; (see Figure 2), which are presented in Equations (10)—(12), respectively:

If7(P) =0m — & =0
Pump1: If0<h(P;) <04m — a=h(P;)x25, (10)
Ifh(P;) >04m — a=1

Ifh(P) =0m — a=0
Pump2: If0<h(Py) <01lm — a=h(Pp) x10, (11)
f7(Py) > 01m — a=1

Ifh(P3) =0m — a=0
Pump3: If0<h(P3) <015m — a = h(P3) x 6.67, (12)
Ifh(P3) >015m — a=1

where h(P1), h(P7), and h(P3) are the water head values at points Py, P,, and P3, respec-
tively. The purpose of this study is to prove that a control policy such as that used by an
experienced engineer to control the drainage of a geosystem can be learned. If successful,
we can utilize existing control data or engineers’ experiences to generate an autonomous
subsurface drainage control system. To support proof of concept, the above policy and a
clear mathematical formulation were adopted.

2.2.3. Soil Properties

Soil properties for the transient saturated-unsaturated flow model are presented in
Table 1. Figure 3 represents the SWCC and the relationship between the relative hydraulic
conductivity and the effective saturation for the chosen sandy soil. It is noted that the
values for the specific storage (Ss) for saturated flow were assumed based on the ranges
provided by [38] for sandy soils. To focus on the proof of the concept in this study, sandy
soil was selected in this study, considering the relatively short seepage analysis time and
low computational cost. Proving this concept with coarse-grained soils can also confirm
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the applicability of this method to other soils as long as the governing physics principles
behind the transient seepage analysis do not change significantly.

Table 1. Soil properties for the transient saturated-unsaturated flow model.

Model Input Definition Sand
Ks Saturated hydraulic conductivity (m/s) 3x107*
Ss Saturated specific storage (1/m) 1x10°4
a Empirical parameter 0.6
b Empirical parameter 0.5
Py Empirical parameter (Pa) 1200
n Porosity 0.32
100,000 —— 1.0
H=TE &
- 0.8 &
=
=
—~ 10,000 =
=
Y - 06 §
= 2
2 C
] 04 K
@« 1,000 4 z
—— Effective saturation | 02 £
T =
— — - Relative hydraulic conductivity ™~
100 T 0.0

0 0.2 0.4 0.6 0.8 1

Effective saturation

Figure 3. SWCC and relative hydraulic conductivity K, of the soil.

2.2.4. Numerical Implementation

The seepage analysis was implemented using the DOLFIN package, a Python interface
of FEniCS. FEniCS is a finite element analysis platform to solve nonlinear partial differential
equations (PDEs). The procedure for solving the governing equation for the transient
seepage analysis was summarized in Figure 4. The required input parameters to solve
the PDE included unsaturated soil characteristics (a, b, Py, n); saturated specific storage
(Ss); saturated hydraulic conductivity (Ks); slope geometry; the geometry of pumps; the
location of points Py, Py, and P3, boundary conditions including the rain intensity and
the pumps’ flow rate policy, the initial groundwater table, and time variables (total time
T = 120 min, and time interval At = 1 min). A total time of 120 min was considered in
the seepage analysis to ensure that the groundwater reaches its initial condition at the end
of pumping. A mesh of 3-node Lagrangian elements was generated in the computational
domain of the slope (Q)). Boundary conditions were applied to the subdomain as described
in Section 2.2.2. The initial boundary condition was specified as the solution to the PDE
at t = 0. Auxiliary equations for the unsaturated hydraulic conductivity and effective
saturation were defined. Next, the PDE for the governing equation was reformulated as
a finite element variational problem. For each time step, the boundary conditions for the
slope’s surface and the pumps were updated based on the rain intensity and water head of
points Py, Py, and P3 at the time #;. Solving the PDE gives the total water head distribution
at the time t; which was utilized to update the pumps’ flow rate at the time t;1. The
output of the seepage analysis is the flow rate of pumps during and after the rainfall event.
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-Unsaturated soil parameters (a, b, Py, n)
and saturated soil parameters (K, Sg)
-Geometry of slope and pumps

-Define rain intensity and pumps’ flow
rate policy, location of points Py, P, and
P, initial water table

- Time variables (total time , time interval)

Inputs

-Define slope domain and generate a mesh
-Define subdomains for boundary condition
¢— -Define initial condition (total water head)
-Define auxiliary equations (Se, Sc, Kr)

-Reformulate the PDE as a
FEM variational problem
-Apply boundary conditions
to the subdomains

-Set t=0
v
o Eor i 11]; ranie- Ct=dt
= =number o time -Update the boundary condition for rainfall
intervals: -
. attime t
True -Update pumping policy based on the pore

water head (h) at points P1, P2, P3

v

Solve PDE to get pore
water head distribution at
Favlsc time t

Plot (flow rate of pumps 1, |
2, and 3 over time) Sl

Figure 4. Flowchart of the written python code using DOLFIN package to solve the governing
equation for transient seepage analysis.

fi< number of time
intervals

Figure 5 shows the output of the seepage analysis for pumps’ flow rate in a typical
rainfall event. The seepage analysis was performed for all generated rainfall events (48 sets).
Since the flow rates of all the three pumps reached zero at the end of each set, the datasets
from all 48 sets were combined to produce a time series of the pumps’ flow rate and rainfall.
The time series of rainfall shown in Figure 6 was used as the input to the LSTM model,
and the corresponding flow rates for pumps 1, 2, and 3 shown in Figure 7 were defined as

the output.
a5 _
e #R 10 s Rain intensity 0.4 _
% Pumpl E
g 3x10° A =+ =Pump2 F 0.3 22
,E' Pump3 £
§ 2x105 4 - 02 ¢
: £
2 1x105 1 . 01
<4 ~ . E
0 v e —— S T == T 0
DONOOTOOVOVNODFTOONNDTOONN®O

Time, min

Figure 5. Pump flow rates as the output of the seepage analysis in a typical generated rainfall event
(duration = 15 min, rainfall depth = 15 mm, and pattern “d”).
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——Rainfall
1x104 7

8 x 105 4
6x10° -
4x10°

2x 105

Rain Intensity (m/s)

0 1000 2000 3000 4000 5000
Time (min)

Figure 6. Generated time series of rainfall.

—— Pumpl
1.00 q
! ) Pump2
0.80 - | i - Pump3
0.0 | i ; i i
040 4 |

020 4 ¢

Flow rate of pump (gpm)

Time (min)

Figure 7. Time series of flow rates for pumps 1, 2, and 3 corresponding to the generated rainfall data.

3. Methodology

In the past decades, machine learning techniques have been applied to autonomous
systems because of their ability to discover knowledge from observed data [39]. These
techniques have been widely used because they do not require predefined input/output
relationships [40]. The LSTM is a type of recurrent neural network (RNN) that has a
memory cell to store information and dependencies long term [41]. The LSTM has shown
promising results in time-series prediction tasks such as traffic flow prediction [42], travel
time prediction [43], predicting water table depth in an agricultural area [44], flood fore-
casting [45], rainfall prediction [46], prediction of water levels in sewer systems [47], steam
flow forecasting of small rivers [48], and prediction of displacement in multifactor-induced
landslides [49]. Besides, the LSTM performs better when capturing various data patterns
than the traditional neural network models [50,51]. Thus, the deep learning model for the
proposed autonomous water pumping system was established with the LSTM.

3.1. Background: Long Short-Term Memory

The LSTM was initially proposed by [41]. The LSTM is a special kind of RNN that
transfers historical information and long-term dependencies through time sequences [52].
Figure 8 shows the general structure of an RNN, which includes three layers: the input,
hidden, and output layers. The output of each time step depends on the current time step’s
input and the output from the previous time step. This dependency is transferred by the
hidden layer units connected through time. In an RNN unit, the recurrent hidden state at
time step t (i.e., h) is updated using Equation (13).

hy = tanh(U - X¢ + W - ly_q + by,), (13)

where X; is the input at time-step t, U is the weight matrix between the input and the
hidden layer, W is the weight matrix between hidden units, #;_; is the hidden state in
the previous time-step, by, is the bias vector of the hidden layer, and tanh is a hyperbolic
tangent function that transforms the input to a value between —1 and 1. The output of the
time step t (i.e., y¢) is obtained from Equation (14).

yt =V. ]/lt—I—by, (14)
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where V is the weight matrix between the hidden layer and the output layer and by is
the bias vector of the output layer. Although the RNN is a rigorous tool in time series
prediction, it could not preserve the dependencies for a long time [52,53].

Output Layer - N : G

G
Hidden 7, . h, ~.
Layer W tanh v
Input Layer S X L J ¢ - 2

Figure 8. The general structure of the recurrent neural network (RNN).

The LSTM has a memory cell that helps maintain long-term dependencies, as illus-
trated in Figure 9. Three gates control this memory cell: input gate, forget gate, and output

gate [43,54]. The state of the three gates is updated in each time step using the following
equations Equations (15)—(17).

" - ®
(X

> - —
hr-l L 1, G h,
Forget Input Output
Gate Gate tanh Gate

Figure 9. The structure of the LSTM unit.

The updated state of the input gate at the time f:

e = o (UL Xe+ Wi -1 +bp), (15)

The updated state of the forget gate at the time #:
F :U(U§-Xt+w,f~ht,1+bp), (16)

The updated state of the output gate at the time #:

_ O O

Ot —O(UX Xt+wh 'ht_l +bo)/ (17)
where U, UL, and UY are the weight matrices of the input, forget, and output gates for
the input (X}), respectively; W}{, W{ ,and WE are the weight matrices of the three gates for

hi_1 in which h;_ is the hidden state in the previous time-step, t — 1; by, bp, and bp are the

bias vectors of the three gates; ¢ is the sigmoid activation function, which transforms the
input to a value between 0 and 1 [43].
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The memory cell is updated each time step by the forget gate and the input gate,
enabling the cell to store information for a long time without a gradient vanishing problem.
The output of the memory cell C; is calculated using Equation (18). The forget gate is
responsible for forgetting irrelevant information from the past [52,54].

Cr = (L‘ ® Cvt) + (Fr®Ci_q), (18)

where C;_1 is the previous state of the memory cell and @ is the candidate input for the
memory cell at a time ¢:

Cr = tanh (UG - X, + WE -1 +bc), (19)

where U% and th are the weight matrices of the memory cell for X; and h;_1, respectively,
and bc is the bias vector of the memory cell [43].
The hidden layer’s state at time t (/1) is calculated with Equation (20):

l’lt = Ot ® tanh(Ct). (20)
The output of the LSTM unit is obtained with Equation (21):
Yt = V. ht + by, (21)

where V is the weight matrix between the hidden layer and the output layer and b, is the
bias vector of the output layer [43].

3.2. Proposed LSTM Model

In the practical water pumping system for rainfall-induced landslide prevention, the
flow rate of pumps is the operating parameter that workers can manually control. Thus,
this study aims to predict the corresponding flow rate of pumps for the given rainfall data
to realize the autonomous water pumping system and provide timely interventions. The
pumps’ flow rates depend on the information given for the rainfall intensity information
provided. The LSTM network was constructed using the Keras deep learning library (Ver-
sion 2.2.4) installed with the Tensorflow backend. It is a common practice in the literature
to divide the total data into the training and testing sets, with a ratio of 70-80 percent
for training and 20-30 percent for testing [55-57]. The data for 36 sets of rainfall events
(36 x 121 = 4356 rows), including different patterns for the rainfalls and the corresponding
data for the pumps’ flow rates (75% of the dataset), were used to train the proposed LSTM
model. Then, the model’s performance on the remaining 25% of the dataset, including
12 sets of rainfall events (12 x 121 = 1452 rows) with a new pattern and the correspond-
ing data for the pumps’ flow rates, was validated. Since this problem is a regression
task, the mean absolute error (MAE) was used as a loss function and is calculated using
Equation (22):

1Z R
MAE =) lyi — il (22)
i=1

where 7 is the total number of data, y; is the actual value, and 7; is the predicted value for
the pump’s flow rate.

3.3. Data Preprocessing
3.3.1. Scaling

Datasets including variables in different ranges and units might harm the learning
ability of the model [44]. Scaling the dataset can improve the model’s performance in the
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training process [58]. The Min-Max normalization method was applied to each feature
separately, which scaled the data values linearly between [0, 1] as follows:
X — Xmi
X ) _ min , 23
normolized Xmax — Xmin ( )
where Xmin and Xmax are the minimum and maximum values of features on their current
scale [59].

3.3.2. Transform the Dataset into a Supervised Learning Problem

This step is required to use the LSTM algorithm. The purpose is to train the LSTM
model to learn the dependencies in the dataset and map the output to the given input.
To frame the dataset as a supervised learning problem, the input and the output of the
model were defined for each time step. In this study, the input is the rainfall intensity
in the next 120 min (I, Iy, ..., Ir,,) and the expected output is the flow rates of
pump 1 (ie., q1,, q1t+1""’q1t+120)’ pump 2 (i.e., g2, 92,1, -,92;,15), and pump 3 (i.e.,
Q3r 3417+ -1 t]3t+120) in the next 120 min.

3.4. Model Evaluation Metrics

The predictions were evaluated using three performance metrics, the root mean square
error (RMSE), the mean absolute error (MAE), and the coefficient of determination (R2).
The RMSE and MAE are useful evaluation metrics for regression problems. The RMSE
(Equation (24)) and MAE (Equation (22)) take a value between [0, +-c0] and have the same
unit as the variable of interest. Values of RMSE and MAE close to 0 indicate a model’s
good performance in prediction [60]. The R2-score, also called goodness of fit, measures
how well a model can predict the desired variable and fit the observed data [61]. The R?
(Equation (25)) gives a unitless score between 0 and 1 in which the score of 1 represents the
optimal forecast model [62].

RMSE = |:’11i(]/1 ?,)2} , (24)
i=1
i (]/i yl)z
R?=1- =1 (25)
E -2

where 7 is the total number of data and ¥ is the mean value of the observed data.

4. Results and Discussions

In this section, the results generated in the search for the optimal LSTM architecture are
presented. Then, the predictions obtained from the optimal architecture for the testing set
are validated. Finally, the influence of rainfall patterns, which could affect the generalization
of the method, is discussed.

4.1. Search for Optimal LSTM Architecture and Hyperparameters

The optimal LSTM architecture was achieved by optimizing the LSTM hyperparam-
eters. LSTM hyperparameters include the numbers of LSTM layers, units in each LSTM
layer, fully connected layers (or dense layers), units in each dense layer, and epochs, as
well as the batch size and the optimization learning algorithm. The number of epochs
defines the number of times the algorithm completes the learning process on the entire
dataset (training and testing sets). The dataset is usually divided into a number of batches
to complete one epoch. The batch size refers to the number of training samples used in a
single batch. By optimizing the results of the evaluation metrics, the number of epochs and
the batch size for all models were determined to be 300 and 50, respectively. It is noted that
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each LSTM model was trained using an adaptive optimization learning algorithm, (i.e.,
Adam), with a learning rate of 0.001.

Hyperparameters were chosen from a set of selected candidate values, as shown in
Table 2. In the experimented models, the number of LSTM layers was set to be 1, 2, or
3 layers, and the number of units for an LSTM layer were selected from values of 100, 50,
30, and 20. The models have one or two dense layers. In the sequence of dense layers, the
number of units for the last dense layer represents the number of outputs, or predictions.
In the case of two dense layers, 500 was chosen as the number of units was chosen to be
500 and 363 was selected for the first and second dense layers, respectively. In the case
of one dense layer, the number of units was set the same as the output dimension of 363.
The output of this model includes 120 min (the next 121time steps) of flow rates for three
pumps (3 x 121 = 363 data points).

Table 2. Selected candidate values for hyperparameters of the LSTM model.

Hyperparameter Candidate Values
Number of LSTM layers 1,2,3

LSTM unit sizes 100, 50, 30, 20
Number of dense layers 1,2

Dense unit sizes 500, 363

Models with the hyperparameters mentioned above were evaluated using perfor-
mance metrics of RMSE and R? as presented in Table 3. The optimal hyperparameters for
the proposed model were achieved by evaluating the RMSE and R? scores. It can be seen
from Table 3 that increasing the LSTM layers to two or three did not improve the RMSE or
R? scores. Thus, the number of LSTM layers was optimized to one. For the unit size of the
LSTM layer, it was found that a unit number smaller than 50 affected the learning ability
of the model. For 20 and 30 units, the recorded R? scores are 0.949 and 0.932, respectively,
which are smaller than R? = 0.962 for 50 units. A higher number of units for the LSTM layer
(i.e., 100) did not improve the model’s accuracy. Based on the evaluation results, 50 was
determined the optimal value for the number of units of the LSTM layer. With an R? score
of 0.962, the model with only one dense layer showed better performance than two dense
layers which had an R? score of 0.952.

Table 3. Experimented LSTM models with selected hyperparameters.

Number of Number of Number of Fully Number of Batch Optimization RMSE

LSTM Units for Connected Layers Units for Size Epochs Algorithm, (GPM) R?

Layers LSTM Layers (Dense) Dense Layers Learning Rate
1 100 1 363 50 300 Adam, 0.001 0.017  0.954
1 50 1 363 50 300 Adam, 0.001 0.015  0.962
1 30 1 363 50 300 Adam, 0.001 0.018  0.946
1 20 1 363 50 300 Adam, 0.001 0.018  0.945
1 50 2 500, 363 50 300 Adam, 0.001 0.017  0.952
2 50, 50 1 363 50 300 Adam, 0.001 0.018  0.950
2 50, 50 2 500, 363 50 300 Adam, 0.001 0.018  0.946
3 50, 50, 50 1 363 50 300 Adam, 0.001 0.019  0.943
3 50, 50, 50 2 500, 363 50 300 Adam, 0.001 0.019  0.943

A summary of the optimized hyperparameters is reported in Table 4. The optimal
architecture comprises one LSTM layer with 50 units and a fully connected layer (or dense
layer) at the top of the LSTM layer. The number of units for the dense layer is 363, the
same as the output size. The epoch and the batch size selected for this model were 300 and
50, respectively. The proposed LSTM model has the best performance in the evaluation
metrics: RMSE = 0.015 GPM and R? = 0.962.
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Table 4. Proposed architecture for the optimal LSTM model.

Model Hyperparameters Optimal Value
Number of the LSTM layers 1
LSTM unit size 50
Number of the dense layers 1
Dense unit size 363
Epochs 300
Batch size 50
Optimization algorithm, learning rate Adam, 0.001

4.2. Training and Testing with the Optimal LSTM Architecture

The model was trained with the optimal architecture introduced in Table 4, and the
trained model was then validated on the testing set. Figure 10 shows the learning curves
of the training and the testing sets for the optimal LSTM architecture. The MAE score,
which was used as a loss function for both training and testing sets, decreases to the point
of stability as the number of epochs increases. Additionally, there is a small gap between
the training and testing loss curves. Meeting these two criteria indicates a good fit for
the model.

0.00

0.05

0.04

Loss

0.03

0.01

0 50 100 150 200 250 300
Epoch

Figure 10. Loss of the training and testing sets for the optimal LSTM architecture.

The predictions of flow rates for pumps for the testing sets with the trained model were
validated using the results of seepage analysis. Figure 11a—c compares the predicted flow
rates from the proposed LSTM model with the values from the seepage analysis for pumps
1,2, and 3, respectively. The input for both the LSTM model and the seepage analysis is the
rainfall data, and the output is the pump’s flow rate. In the seepage analysis, the pump
flow rate was obtained based on the predefined pumping policy for each pump, while the
proposed LSTM model could learn the hidden pumping policies for each pump within
the training dataset. Figure 11a—c supports the idea that the trained model can predict the
required pumps’ flow rate for the testing set to keep the water table at the target level in
response to the rainfall events. The proposed LSTM model can closely map the input data
(i.e., set of rainfall data) to the expected output data (i.e., corresponding pumps’ flow rate)
without requiring conducting a seepage analysis with prescribed pumping policies. An
evaluation of the predictions, which is presented in Table 5, also confirmed this finding.
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Figure 11. Comparison of pumps’ flow rate from the seepage analysis and predicted values using the
LSTM model for (a) pump 1, (b) pump 2, and (c) pump 3.

Table 5. Performance metrics of the proposed model on the testing set.

Predictions RMSE (GPM) MAE (GPM) R?
Pump 1 0.007 0.003 0.958
Pump 2 0.021 0.009 0.962
Pump 3 0.014 0.006 0.954

From the proposed model, predictions regarding the flow rate of pumps were eval-
uated using the performance metrics of R?>, RMSE, and MAE. Regardless of the output’s
unit, values of R? close to 1 represent high prediction accuracy. The R? score of the flow
rate predictions for pumps 1, 2, and 3 are 0.958, 0.962, and 0.954, respectively. The achieved
high values of the R? score indicate how well the proposed LSTM model fits the observed
data from the seepage analysis.

Unlike the R?, RMSE and MAE carry the same unit as the predicted values for the
pump flow rates in this study. The RMSE is the square root of the average squared
differences between the predicted values from the proposed LSTM model and the actual
values from the seepage analysis. The RMSE of the flow rate predictions for pumps 1,
2, and 3 are 0.007, 0.021, and 0.014, respectively. The RMSE values close to 0 represent
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a better prediction. Also, taking the range of a pump’s flow rate into consideration can
help interpret the RMSE values. The range of observed flow rates of pumps 1, 2, and
3 from the seepage analysis in the testing set is 0-0.24 GPM, 0-0.65 GPM, and 0-0.37 GPM,
respectively. Thus, the RMSE of the predicted flow rates for the three pumps is relatively
small compared with the range of changes in the flow rates of the pumps.

The MAE is the average of differences between the predicted values from the proposed
LSTM model and the actual values from the seepage analysis. The MAE of the flow rate
predictions for pumps 1, 2, and 3 are 0.003, 0.009, and 0.006, respectively. Values of MAE
are very small, which means the model can predict the pump’s flow rate with high accuracy.
The evaluation of the predictions using various measurements verifies the promising
performance of the proposed LSTM model in learning the pumping policy and predicting
a pump’s flow rate.

4.3. Discussion 1: Application of the LSTM Model in Controlling the Groundwater

This subsection discusses different approaches for employing the proposed LSTM
model in controlling groundwater level as an intervention method for the geotechnical
CPSs studied in this paper. For this purpose, the predicted flow rates from the LSTM
model were applied to the pumps in the slope to control the groundwater table. A seepage
analysis was then conducted to obtain the groundwater levels at the three points of Py, P,
and P53 during the rainfall events.

The pump flow rates for the 12 events in the testing set can be continuously forecasted
using the LSTM model trained with 36 events. In the method discussed in previous sections,
any error present in the initial prediction will be carried forward to subsequent predictions.
While this method is flexible and easy to implement, the accuracy of predictions will be
reduced in later predictions. To reduce accumulated errors, pump flow rates for each
rainfall event can be predicted independently. In this method, a separate LSTM model with
the optimal architecture, introduced in Section 4.1, was created to forecast the pump flow
rate for each event. After forecasting the pump flow rate for one event, the actual data
for that event was added to the training set to reduce the accumulated error for the flow
rate predictions of the next rainfall event. By moving forward, the size of the training set
increased, which improved the model’s performance on the next event’s predictions.

There are two options for applying the predicted pump flow rate in the seepage
analysis to control the groundwater. One option is to reset the groundwater table to
the initial condition at the beginning of each rainfall event. While this option can help
evaluate the pump flow rate for each rainfall event separately, it cannot represent the
real-world application. Alternatively, the groundwater level reset could be omitted during
the 12 rainfall events to simulate reality.

Based on the above descriptions, three approaches were investigated for employing
the proposed LSTM model by combining the available options for predicting the flow rates
of pumps and applying them in the seepage analysis to control the groundwater level. In
the first approach, pump flow rates for 12 rainfall events in the testing set were continuously
predicted using the LSTM model trained with 36 events. Then, the groundwater table was
reset to the initial condition at the beginning of each event to apply the pump flow rate
in the seepage analysis. In the second approach, pump flow rates were predicted similar
to the first approach. Then, the predicted flow rates were continuously implemented in
the seepage analysis without resetting the groundwater condition at the beginning of each
event. In the third approach, the training set for the LSTM model was recalibrated after
forecasting the pump flow rate for each rainfall event to reduce the accumulated error in
predictions. Then, the predicted values were continuously applied to the pumps during
the rainfall events to control groundwater level.

Figure 12a—c displays the groundwater level from the three approaches at points of P,
P5, and P3, respectively. To evaluate the application of the LSTM model, the groundwater
levels from the three approaches were compared with the groundwater levels obtained
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with the prescribed pumping policies corresponding to the rainfall events at the points
mentioned above.
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Figure 12. Comparison of the groundwater level using the three approaches of applying the proposed
LSTM model and the predefined pumping policies at (a) point Py, (b) point Py, and (c) point Ps.

A comparison of the groundwater levels using the prescribed pumping policies and
approach 1 for employing the LSTM model shows that approach 1 has a discontinuity in
control of the water table between the rainfall events. Despite positive results during the
rainfall events at the three points of P;, P,, and P3, this approach cannot represent real
conditions since the groundwater level was reset to the initial condition at the beginning
of each event. An advantage of this approach is that the predictions for each event can be
independently evaluated from the other events.

Another comparison of the groundwater levels using the prescribed pumping policies
and approach 2 for employing the LSTM model provides insight into the accumulated
error in the predictions. While this approach is easy to implement, the accuracy of results
will be reduced in time. To improve the accuracy of results, approach 3 was suggested for
employing the LSTM model. The results for approach 3 demonstrate this approach can
boost the performance of the LSTM model in controlling the groundwater level at each of
the three points (Py, Py, and P3).

To better evaluate the proposed three approaches for employing the LSTM model,
the differences between the groundwater level from each approach and the prescribed
pumping policies are shown in Figure 13. The groundwater level using the prescribed
pumping policies performs as a benchmark for evaluation. Figure 13a—c displays the
differences at points Py, Py, and P3, respectively.
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Figure 13. Differences of groundwater levels using the three approaches of employing the LSTM
model from the groundwater level using the prescribed pumping policies (benchmark) at (a) point
Py, (b) point Py, and (c) point P3.

The maximum difference from the benchmark for approach 1 at points of Py, P, and
P3 are 13.3%, 16.0%, and 17.0%, respectively. This approach shows a difference of less than
10% in the groundwater level for most of the rainfall events. The average difference of the
results for approach 1 from the benchmark is approximately 4.6% at all of the three points.

Approach 2 shows greater differences compared with the other two approaches. The
differences from the benchmark for approach 2 at points Py, P,, and P3 increase up to 34.4%,
37.5%, and 40.7%, respectively. The average difference of the results for this approach from
the benchmark is approximately 12.7% at all of the three points. The results for approach
3 demonstrate noticeably lower values of differences from the benchmark. The average
difference of the results for this approach from the benchmark is approximately 3.5% at all
of the three points.

The above discussions conclude the LSTM model has an indisputable impact on con-
trolling the groundwater table in the slope. The evaluation of the groundwater level from
different approaches of applying the predictions indicates that the model’s performance
may decrease during long-sequential rainfall events. Thus, it is worthwhile to evaluate the
predicted pump flow rates in controlling the groundwater table, in addition to the model
evaluation metrics such as R%, RMSE, and MAE.

4.4. Discussion 2: Influence of Rainfall Patterns

This subsection is intended to evaluate the generalizability of the proposed LSTM
model. A generalized model means the model is capable of performing well on an unseen
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dataset. Since a small set of data with limited typical rainfall patterns was used in this study
to train the LSTM model, it is beneficial to prove the model can be applied to real-world
rainfall events with more complex patterns. Thus, the influence of the rainfall patterns
on the accuracy of the model predictions was investigated. For this purpose, two rainfall
datasets with different numbers of patterns were considered, as shown in Figure 14a,b.
Both datasets include 24 rainfall events with the same variation in rainfall duration and
depth. However, dataset 2 comprises more rainfall patterns types than dataset 1. The
rainfall events in dataset 1 consist of only two types of patterns (i.e., types “a” and “d”),
while the rainfall events in dataset 2 consist of four types of patterns (i.e., types “a”, “b”,
“c”, and “d”). Figure 15a,b show the pumps’ flow rates for pumps 1, 2, and 3 corresponding
to the rainfall data generated in Figure 14a,b, respectively.
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Figure 14. Two rainfall datasets with the different number of patterns (a) dataset 1 consists of rainfall
events with pattern types of “a” and “d” and (b) dataset 2 consists of rainfall events with pattern
types of “a”, “b”, “c”, and “d".
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An LSTM model was trained with the first 12 rainfall events and the corresponding
pump flow rates for both datasets. Then, the model was validated with the next 12 rainfall
events and their corresponding pump flow rates. The rainfall events in the testing set have
the same type of pattern (“d”) in datasets 1 and 2.

Table 6 presents the evaluation results of the model trained with datasets 1 and 2. The
evaluation metrics of RMSE and MAE for dataset 2 are lower than the values for dataset 1 in
all three pumps. The R? score can better demonstrate the difference between the accuracy
of the pump flow rate predictions for dataset 1 and dataset 2. The R? values for pumps 1, 2,
and 3 in dataset 1 were 0.891, 0.922, and 0.910, respectively. By increasing the number of
rainfall patterns for training the LSTM model from 1 in dataset 1 to 3 in dataset 2, the R?
values for pumps 1, 2, and 3 were improved to 0.913, 0.935, and 0.925.

Table 6. Evaluation of the model trained with dataset 1 and dataset 2.

Predictions RMSE (GPM) MAE (GPM) R?
Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2
Pump 1 0.013 0.012 0.005 0.005 0.891 0.913
Pump 2 0.033 0.030 0.014 0.012 0.922 0.935
Pump 3 0.020 0.018 0.008 0.007 0.910 0.925

Additionally, comparing the comparison of the evaluation metrics for dataset 2 in
Table 6 with the corresponding values in Table 5, it was found that the model trained with
36 rainfall events including the same types of patterns as dataset 2 has a better performance
in predicting the pump’s flow rate. This means that the model trained with a dataset
consisting of a larger number of rainfall events and pattern types improves the model’s
performance in the prediction of the pump flow rates for a given new type of pattern.

4.5. Discussion 3: Limitation and Applicability of the Proposed Model

This subsection discusses the main limitations and application of the proposed LSTM
model. They can be summarized as follows.

e  Field conditions including more complex rainfall patterns and the pondering effect of
precipitations were excluded from the numerical simulation for the data generation.
Therefore, future studies can include actual measured rainfall data to improve the
performance of the proposed LSTM model in capturing more complicated patterns.

e Ideal pump behaviors were assumed in the numerical simulation of the model, though
the pump performance may vary depending on field conditions. Further experimental
studies using the lab-scale geosystem described in Section 2.2.2 can help understand
such limitations.

e  Thisstudy employs a numerical simulation of a lab-scale geosystem for generating flow
rate data to focus on the proof of the concept. With the same concept and framework,
more complicated cases, such as field measurements from real-world slopes, can also
be employed to train LSTM, as long as the core physics underlying the transient
seepage analysis remains the same. Additional calibration and data processing may
be required before applying the proposed model to data from field measurements.

5. Conclusions

This study is the first to investigate the ability of the LSTM deep learning algorithm to
learn water pumping policy and the dependencies between the rain intensity and corre-
sponding pump flow rates to establish a geotechnical CPS for rainfall-induced landslide
prevention. The data for rainfall intensity was generated by a combination of different
durations, depths, and patterns. The corresponding pump flow rate data was obtained
by conducting the transient seepage analysis to satisfy desired drainage policies during
rainfall events. The proposed LSTM model successfully predicted the multi-step ahead of
the pump flow rate based on the rainfall intensity data given to the model as input. The
major findings of this study are as follows:
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e  Evaluation metrics of RMSE, MAE, and R? showed a promising performance of the
proposed LSTM model in predicting pump flow rates and learning the prescribed
pumping policies. The R? values of 0.958, 0.962, and 0.954 for the pump flow rate
predictions indicated high accuracy of the results.

e Anassessment of the groundwater table after applying the pump flow rates demon-
strated the model’s performance could drop during long-sequential rainfall events.
To avoid accumulated error in long-sequential rainfall events, it is suggested to use a
separate LSTM model to predict the corresponding pump’s flow rate for each rainfall
event in the testing set.

e An evaluation of the influence of the rainfall patterns demonstrated that the per-
formance of the proposed LSTM model can be improved by adding more and new
rainfall patterns.

e Aslong as the nature (i.e., physics) underlying the transient seepage analysis is the
same, the proposed method can be applied to real measurements of pump flow rates.
It is noted that this may require additional calibration and data processing for the
raw data.

e  This study also presents a numerical framework written in Python to perform transient
seepage analysis for a geosystem equipped with three pumps and subjected to rainfall
events. Two main advantages of this framework are its integration with deep learning
algorithms and its flexibility for considering more realistic field conditions.

Future studies can include more complex field conditions and rainfall patterns for gen-
erating training data, which can help to improve the performance of the proposed model.
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