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Abstract This study investigates image-data-driven

deep learning in the stability analysis of geosystems.

For the purpose, the recent breakthrough in computer

vision represented by the Convolutional Neural Net-

work (CNN), which was later used as a core technique

in developing Google’s AlphaGo, was studied for its

capacity in assessing the stability of retaining walls.

The concept used in the famous Dogs vs. Cats Kaggle

challenge, in which machine learning algorithms are

used to classify whether an image contains a dog or a

cat, was employed. A CNN was used to analyze

images for retaining walls to tell whether a wall is

‘‘cat’’ (safe) or ‘‘dog’’ (failed). For quantitative

analysis, 2D images for retaining walls, organized as

datasets of sizes from 500 to 200,000, were generated

using a stochastic method and labeled using a tradi-

tional mechanistic method. An accuracy of 97.94%

was achieved for predicting whether the retaining wall

is safe via binary classifications with the CNN. Testing

via the analysis of 20,000 additional images, which

were independent and identically distributed, con-

firmed the results. Further investigations into the

dataset sizes and computational power yielded quan-

titative insights into the influence of data and

computing resources on the application of deep

learning in the stability analysis of geosystems. The

study, for the first time, proves the feasibility of

stability analysis of geosystems with image data and

provides a potential big data solution for geotechnical

engineering as well as other civil engineering areas.

Keywords Image data � Deep learning � Stability

analysis of geosystems � Convolutional neural

network � Big data

1 Introduction

This paper presents an exploratory effort for connect-

ing geotechnical engineering to Artificial Intelligence

(AI)–one area that is significantly changing our lives

in recent years. Since the breakthrough in 2006
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(Hinton and Salakhutdinov 2006), deep learning with

Deep Neural Networks (DNN) has been helping

machines to gain intelligence to outperform humans

in many aspects: from text processing (Collobert and

Weston 2008), speech recognition (Dahl et al. 2012;

Hinton et al. 2012) and driverless cars (Nguyen et al.

2015) to disease diagnosis (Fakoor et al. 2013; Li et al.

2014) and stock market forecasting (Ding et al. 2015).

In a recent triumph, Google’s DNN program,

AlphaGo, beat a top Go professional (Silver et al.

2016). These remarkable advances in AI are deemed

as the 4th industrial revolution by many people

(Kelnar 2016) and are reshaping many areas of

modern society including scientific research (Ohlsson

2011). One of the biggest changes is the shift of focus

from models to data (Kitchin 2014). Deep learning

enables knowledge extraction from massive amounts

of data, making the data outweigh the machine (or

model). This shift happens in this era of big data, when

data are explosively expanding due to the widespread

application of low-cost sensors, electronic devices,

and large-volume storage (Manyika et al. 2011). In

geotechnical engineering, there have been incalcula-

ble and explosively increasing data from Geophysical

Information Systems (GIS), weather stations, field

monitoring, case studies and lab testing, the majority

of which are collected/stored as images and live

images (videos). But unfortunately, these data are

mostly underutilized because they cannot be analyzed

with the traditional model-driven methods in geotech-

nical engineering.

2 Background

2.1 Traditional Neural Network Application

in Geotechnical Engineering

The precursor of deep learning is the Artificial Neural

Networks (ANNs)–a topic that has been extensively

studied in geotechnical engineering. ANNs are a form

of AI attempting to mimic the behavior of the human

brain and nervous system (Shahin et al. 2001). A surge

of interest was sparked in the late 1980s and widely

spread in 1990s in geotechnical engineering. ANNs

were applied to almost all aspects of geotechnical

engineering with some degree of success (Park et al.

2011; Sakellariou and Ferentinou 2005; Shahin et al.

2001, 2008). Specifically, ANNs have been used

extensively for modeling the load capacities of deep

foundations (Ahmad et al. 2007; Ardalan et al. 2009;

Das and Basudhar 2006; Goh et al. 2005; Hanna et al.

2004; Shahin 2010; Shahin and Jaksa 2009), ground

anchors (Shahin and Jaksa 2005, 2006), behavior of

shallow foundations (Chen et al. 2006; Kuo et al.

2009; Padmini et al. 2008; Provenzano et al. 2004;

Shahin et al. 2005, 2003, 2002), constitutive relation-

ships of soils (Banimahd et al. 2005; Basheer 2002; Fu

et al. 2007; Gao et al. 2004; Habibagahi and Bamdad

2003; Hashash et al. 2004; Lefik and Schrefler 2003;

Najjar and Huang 2007; Shahin and Indraratna 2006),

shear strength and stress history (Baykasoğlu et al.

2008; Byeon et al. 2006; Çelik and Tan 2005; Kaya

2009; Kurup and Dudani 2002; Lee et al. 2003;

Narendra et al. 2006; Yang and Rosenbaum 2002),

swelling pressure (Ashayeri and Yasrebi 2009; Erzin

2007), compaction and permeability (Abdel-Rahman

2008; Das et al. 2011; Sinha and Wang 2008), soil

composition and classification (Bhattacharya and

Solomatine 2006; Kurup and Griffin 2006), dynamic

properties (Garcıa et al. 2006; Kaya 2016; Romo and

Garcıa 2003), dams (Kim and Kim 2008; Yu et al.

2007), blasting (Lu 2005), mining (Singh and Singh

2005), environmental geotechnics (Shang et al. 2004),

rock mechanics (Gokceoglu et al. 2004; Ma et al.

2006; Maji and Sitharam 2008; Millar and Hudson

1994; Singh et al. 2007, 2005; Sitharam et al. 2008),

site characterization (Caglar and Arman 2007), tun-

nels and underground openings (Alimoradi et al. 2008;

Benardos and Kaliampakos 2004; Chen et al. 2009;

Neaupane and Achet 2004a, b; Neaupane and

Adhikari 2006; Yoo and Kim 2007), slope stability

and landslides (Cho 2009; Deng and Lee 2001; Erzin

and Cetin 2013; Farrokhzad et al. 2011; Ferentinou

and Sakellariou 2007; Goh and Kulhawy 2003;

Kanungo et al. 2006; Kostić et al. 2016; Mayoraz

and Vulliet 2002; Neaupane and Achet 2004a, b;

Neaupane and Achet 2004a, b; Shangguan et al. 2009;

Wang et al. 2014; Wang and Sassa 2006), and

subsurface characterization (Gangopadhyay et al.

1999; Moayedi and Hayati 2018; Samui and Sitharam

2010). Traditional ANNs have also been applied to the

stability analysis of earth-retaining structures on

lateral deflection of walls (Chua and Goh 2005; Goh

et al. 1995; Hopmans et al. 2002; Kung et al. 2007),

lateral thrust and its point of application (Yildiz et al.

2010), risk of serviceability (Goh and Kulhawy 2005),

internal stability (Kasa et al. 2011), frequency (Heidari
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2011), optimal design (Gowda et al. 2012), and

seismic response (Ozturk 2014).

Despite the interest and success, the application of

ANNs as well as other AI approaches in geotechnical

engineering has been stagnating. This can be seen

from the conclusive remarks of the two widely-cited

review papers of Shahin and his co-workers, which

summarized the practice before and after 2001 (Shahin

et al. 2001, 2008). The 2005 review paper was

presented to ‘‘attract more geotechnical engineers to

pay better attention to this promising tool’’ while the

2009 paper commented that the ‘‘neural networks for

the time being might be treated as a complement to

conventional computing techniques rather than as an

alternative’’. The advantage of ANNs is its ability in

handling pattern recognition and modeling of non-

linear relationships of multivariate dynamic systems

(Sakellariou and Ferentinou 2005), especially those

complex engineering problems that are beyond the

computational capability of traditional research

approaches (Shahin et al. 2008). The disadvantage is

the concerns in robustness, transparency, extrapola-

tion, and uncertainty. In summary, the AI tide

represented by ANNs did not replace traditional

geotechnical methods or even become widely-ac-

cepted alternatives. The reason is most likely that there

were not many problems that ANNs can handle and

traditional geotechnical methods cannot, while ANNs

are less connected to physics and did not show a

satisfactory level of intelligence back then.

2.2 Recent Breakthroughs in Deep Learning

and Image Recognition

Most of the studies summarized in the above sub-

section were built on Artificial Neural Network (ANN)

techniques which had matured before the 1990s. This

surge of interest quickly evaporated with the slump

ANN research in the late 1990s. With the ascent of

Support Vector Machines and the failure of backprop-

agation, ANN research enters a dark time in the early

2000s, a time when even the founders of deep learning,

i.e., LeCun and Hinton, had their papers and grant

proposals routinely rejected due to their subject being

neural networks. As a result, as Hinton tells, they

hatched a ‘‘conspiracy’’: ‘‘rebrand’’ the frowned-upon

field of neural nets with ‘‘Deep Learning’’. However,

the turning point was not the name, but a breakthrough

published in Science in 2006 (Hinton and

Salakhutdinov 2006), in which Hinton and his co-

workers proved the possibility of training deep

networks using the restricted Boltzmann machine.

Real momentum for the deep learning snowball was

gained because of the work in computer vision

initiated in (Krizhevsky et al. 2012), which beat other

machine learning methods in the ILSVRC-2012

computer vision competition. Since then, such com-

petitions have been predominated by deep learning

algorithms. The core idea of the deep learning in

computer vision, or more specifically, image recogni-

tion/classification, is the use of a Convolutional Neural

Net with pooling and convolution layers, variations in

the input data, very efficient GPU implementation,

ReLU neurons, and dropout layers. These life-chang-

ing breakthroughs were soon sensed by many industry

giants such as Microsoft, Google, and IBM, which

significantly promoted the development of deep

learning (Hinton et al. 2012). This innovation started

from computer vision and speech recognition soon

swept other areas such as driverless cars, natural

language processing, drug discovery and toxicology,

biomedical informatics, customer relationship man-

agement, and stock prediction.

Despite its new birth, this innovation has been

becoming a force changing the world, including many

research areas. Taking computer linguistics for exam-

ple, deep learning hit this area as a ‘‘tsunami’’ in the

2015 Natural Language Processing (NLP) conference

(Manning 2016)–this major computer linguistics con-

ference was predominated by deep learning within one

year. Engineering disciplines have been significantly

impacted by computer science innovations, which can

be seen from NSF’s promotion of new concepts such

as ‘‘big data’’, ‘‘cyber-physical system’’, and ‘‘smart

city’’. Based on these facts, one may be wondering

‘‘when will deep learning especially the above image-

data-driven machine learning technique majorly

impact engineering disciplines?’’ and ‘‘what a role

will geotechnical engineering play in this process?’’.

2.3 Trend and Difficulty in Data-Driven Studies

Data is another reason that deep learning is becoming a

world-changing force (Chen and Lin 2014). Deep

learning models or machines, especially those DNNs

dealing with image data, enable learning from image

and video data, which account for a major part of the

‘‘big data’’ (Kaisler et al. 2013; Wu et al. 2014).
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Learning from these data significantly improves the

machines’ intelligence. The knowledge gained from

the data has been surpassing that from the improve-

ments of the machines. As a result, data have become a

major resource. For instance, big data trends have been

driving the future of businesses, leading to the wide

acceptance of and transitions to data-driven marketing

and data-driven companies. In industry giants such as

Google, ‘‘data drives ’everything’’’ (Metz 2009).

All the above changes have been occurring in the

background of ‘‘big data explosion’’ (Lohr 2012). In

geotechnical engineering, there exists a great amount

of GIS data and more and more data created by remote

sensing techniques. Additionally, the decreasing costs

of cameras and storage devices help popularize the

documentation of testing and construction in terms of

images and videos. Despite the explosive occurrence

of such data, our primary research tools, such as

traditional physically-based analytical and numerical

methods, only take a few inputs. Thus, most of the data

mentioned above are underutilized or totally wasted.

From another angle, these data, including the knowl-

edge contained in the data, are barely extracted or

utilized.

3 Methodology

3.1 Overview

The goal of this study is to understand the image-data-

driven deep learning in geosystems with an explora-

tory investigation into the stability analysis of retain-

ing walls. To achieve the goal, the recent breakthrough

in computer vision (Russakovsky et al. 2015), which

was later used as one of the core techniques in the

development of Google’s AlphaGo (Moyer 2016), is

studied for its capacity in assessing the stability of a

typical geosystem, i.e., retaining walls. The core

concept enabling the breakthrough, Convolutional

Neural Networks (CNN), which helped machines

surpass humans in visual classification capacity, is

used to process the big data in geotechnical engineer-

ing, which primarily consist of images and live images

(videos) and cannot be analyzed using traditional

geotechnical methods. As shown in Fig. 1, the concept

used in the famous Dogs vs. Cats Kaggle challenge, in

which machine learning algorithms are used to

classify whether an image contains a dog or a cat, is

employed. A CNN is employed to analyze images for

a retaining wall to tell whether the wall is a ‘‘cat’’

(safe) or a ‘‘dog’’ (failed). For quantitative analysis,

2D images for retaining walls are generated using a

stochastic method and analyzed using a traditional

mechanistic method for labeling. These labeled image

data are used as input to train CNNs for supervised

learning. The trained CNN is tested against another

independent set of data generated in the same way as

the training data. The study is proposed based on the

hypothesis that telling a failed structure from a safe

one is not essentially different from telling a dog from

a cat in images in deep learning.

3.2 Convolutional Neural Networks

CNN, which are also frequently called ConvNets, are a

special type of feed-forward network. CNNs are

inspired by the connectivity pattern between neurons

in the animal visual cortex. Each cortical neuron

responds to stimuli only in a restricted region of the

visual field, i.e., receptive field. The receptive fields of

different neurons partially overlap to cover the entire

visual field, i.e. the image. Such an organization

empowers the CNN with an ability to extract features

automatically: each neuron captures the local features

in the image area that it can see, and such features can

be extracted into a higher-level of features by another

layer of neurons. As shown in Fig. 2, a CNN first

identifies line features and then further extracts shapes.

This overcomes one major drawback in traditional

image classification algorithms, in which a lot of effort

is required for manual pre-processing. In other words,

the CNN learns the filters that are hand-engineered in

traditional algorithms. This independence from prior

knowledge and the save of human effort in the feature

design are a major advantage. In addition, CNNs can

contain special layers such as convolutional layers and

pooling layers, allowing the networks to encode

certain image properties. Due to the above character-

istics, CNNs exhibit exceptional performance in visual

recognition tasks.

3.3 Architecture

As shown in Fig. 3, a CNN is usually composed of an

input layer, multiple hidden layers, and an output

layer. These hidden layers typically consist of convo-

lutional layers, pooling layers, ReLU layers, fully
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connected layers, and normalization layers. The

convolutional, pooling, and ReLU layers act as

learnable feature extractors, while the fully connected

layers act as a machine learning classifier. Further-

more, the early layers (close to input) of the network

encode generic patterns of the images, while later

layers encode the detailed patterns of the images. It is

noted that only the convolutional layers and fully-

connected layers have weights. Learning these

weights is the primary goal of the training phase.

A CNN with weights learned from labeled samples is a

trained model, which can be used to classify/predict

unlabeled samples (or called instances). This subsec-

tion for architecture explains the key components of

the CNN used in this study.

3.3.1 Convolutional Layer

Theoretically, fully connected feedforward neural

networks (without convolutional and pooling lay-

ers) can also be used to learn features and classify

image data. But, this use is still not realistic at this time

because this architecture requires a number of neurons

to learn from pixels. The required computation cost

would be too high to afford due to the pixels numbers

of normal image data. The convolutional layers help

solve this problem by reducing the number of free

parameters and consequently allowing the network to

be deeper with fewer parameters (Aghdam and Heravi

2017). Attributed to this innovation, the CNN resolves

the vanishing or exploding gradients problem in

training deep neural networks with many layers.

As shown in Fig. 4, a convolutional layer consists

of a set of learnable filters (or called neurons or

kernels) that are slid over the image spatially. Math-

ematically, this corresponds to computing dot prod-

ucts between the entries of the filter, i.e., the matrix in

Fig. 1 Concept of stability analysis with binary classification using deep learning

Fig. 2 Schematic of feature extraction in CNN

Fig. 3 Architecture of a typical CNN
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Fig. 4, and different regions of the same size from the

input image (Stanford’s deep learning tutorial). The

entries of the filter are the weights of the convolutional

layer. Therefore, if the filter sliding over different

image regions was viewed as different filters, the

filters in the convolutional layer are essentially

identical. These filters will be activated when they

identify the same specific structures (features) in the

images, e.g., lines, depending on the size of the image

regions that the filers are applied to. It is worthwhile to

mention that the filters should extend to the full depth

of the input image. Thus, for a colored image, the filter

should have a depth of 3 to cover all 3 color channels

(red, green, blue) of the image. The mathematical

convolution operation emulates the response of an

individual neuron to visual stimuli (Glauner 2015).

3.3.2 Pooling Layer

CNNs may include local or global pooling layers,

which combine the outputs of multiple neurons from

one layer into a single neuron in the next layer

(Ciresan et al. 2011; Krizhevsky et al. 2012). Two

common types of pooling layers are the max pooling

and average pooling. The max pooling uses the

maximum value from a cluster of neurons as the

output, as illustrated in Fig. 5, while the average

pooling uses the average value. Mathematically,

pooling is a non-linear down-sampling. The use of a

pooling layer can progressively reduce the spatial size

of the image data, and consequently, reduce the

number of parameters and computation operations for

the network. Also, pooling can also remove redundant

specific features and consequently help control over-

fitting. This study adopts the max pooling, and detailed

parameters for these pooling layers will be presented

later.

3.4 Geosystem Stability Analysis with CNN

Classifier

Many existing CNNs can be applied to analyze the

image data of geosystems with minor modifications.

Since there have been no attempts at applying this

relatively new computer vision technique to stability

analysis of geosystems. There are still several issues

that significantly differentiate the application of CNNs

in geosystems from the normal use of CNNs in

computer science and thus are critical to the success of

such efforts. Described in this sub-section are three

critical issues that were learned in this pioneering

study. The detailed setup of learning algorithms will

be introduced in the next section for deep learning and

results.

3.4.1 Labeled Data

As explained in the introduction section, data are a

major driving force for deep learning. No study has

been reported on the use of image data for stability

analysis of geosystems. Therefore, it is unclear how to

obtain and utilize such data. In this study, the major

purpose is to prove the feasibility of applying image-

data-driven deep learning to geosystems, so the focus

was placed on clean image data with 2D profiles of

retaining walls generated by a computer. In this way, a

large amount of high-quality data can be obtained

without being distracted by less-relevant image pre-

processing such as de-noising and thus can focus on

the validation of the concept.

As shown in Figs. 2d and 6 images for cantilever

retaining wall systems with different geometries were

constructed using random numbers generated by

Fig. 4 Neurons of a convolutional layer connected to their

receptive fields

Fig. 5 Mathematical operations in max pooling using a 2 9 2

filter and a stride of 2
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MATLAB. As shown in Fig. 6, the retaining wall and

the soil bodies on its two sides were generated in a

18 m 9 18 m rectangular region (canvas). The

parameters in Table 1 were used to generate the image

data to reach a compromise between the data vari-

ability and the classification balance (between failed

and safe). As the first attempt at image-data-based

deep learning for the stability analysis of geosystems,

this study is focused on the geometry and thus adopts

fixed material properties, which will be explored in the

follow-up studies. The cohesion, internal friction

angle, and density of the soil are 30 kPa (c), 308 (/),

and 18.5 kN
�

m3( c), respectively; and the density of

the retaining wall (assumed to be made of concrete) is

23.5 kN
�

m3( cc).

Labeled training datasets with 500, 1000, 2000,

5000, 10,000, 20,000, 400,000, 800,000, 120,000, and

200,000 images were generated with the above

geometries for labeling, i.e., safe and failed. For each

training dataset, 5/6 of the images were used for

training and the rest 1/6 were used for validation (also

called cross-validation in many deep learning publi-

cations). 5000 additional images were generated in the

same way for testing. All the image data for training,

validation, and testing were generated independently.

The retaining walls in the generated images were

analyzed using Rankine’s pressure theory for their

stability against overturning (Das 2015). The images

were labeled as safe or failed, depending on weather

ratio between the stabilizing momentum, Ms, and

overturning momentum, Mo, is greater than 1.

SF ¼ Ms

Mo
ð1Þ

Ms ¼ cBh H � Hbð Þ B� Bh

2

� �
þ 1

2
cBh H1 � Hð Þ

B� Bh

3

� �
þ ccBs1 H � Hbð Þ Bt þ Bs2 �

1

2
Bs1

� �

þ 1

2
cc Bs2 � Bs1ð Þ H � Hbð Þ Bt þ Bs2 � Bs1ð Þ 2

3

� �

þ ccBHb
B

2
þ Pp

D

3
þ Pa sin að ÞB

ð2Þ

Mo ¼ Pa cos að ÞH1

3
ð3Þ

where Pa ¼ cH2
1Ka

�
2 � 2cH1

ffiffiffiffiffi
Ka

p
and Pp ¼

cH2
1Kp

�
2 þ 2cH1

ffiffiffiffiffiffi
Kp

p
are active and passive Rank-

ine’s forces, respectively, in which Ka ¼ tanðp=4 �
/=2Þ2

and Kp ¼ tanðp=4 þ /=2Þ2
are Rankine’s

active and passive pressure coefficients, respectively.

No safety factors were introduced in this pure

mechanistic analysis. An assumption underneath the

use of the above theory is that the theory has no model

bias especially any potential bias/uncertainty in the

calculation of Rankine’s earth pressure coefficients.

3.4.2 Transfer Learning

Another critical technique to ensure the success of the

image-data-driven deep learning in geosystems is

transfer learning. It was found that, if the CNN is

trained from scratch, that is, with initial weights

generated from random numbers, the accuracy would

remain at a very low level, e.g., less than 70%. The

transfer learning technique was proven to be a very

practical and powerful technique for building geosys-

tem classifiers.

The idea behind transfer learning is analogous to

cooking: for cuisine, it will be much more efficient to

buy household food ingredients from groceries stores

instead of growing the vegetables and hunting for the

meats. Transfer learning starts the training from a

trained model on a different dataset and adapts the

trained model to the problem to be addressed. There

are two strategies for transfer learning. The first

strategy is to fine-tune the trained model, either the

whole network or some layers, directly on the new
Fig. 6 Example of image data used in deep learning
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dataset via backpropagation. The second strategy is to

use a trained model as a fixed feature extractor:

replacing the fully-connected layers with new ones

while fixing the other layers (as feature extractors) in

training for new models. This study adopted the first

strategy and an existing well-trained CNN, i.e.,

bvlc_reference_caffenet (Caffe’s Model Zoo library),

which was trained on the ImageNet dataset consisting

of millions of images across 1000 categories.

3.4.3 Deep Learning with GPU

Another factor critical to the success of the image-

data-driven deep learning in geosystems is the use of

GPU, which is also a key to the recent advances in

computer vision. CNNs require large datasets and a lot

of computational time to train. Although training

small CNNs for simple problems with normal CPUs

could be possible, our computing experiments indi-

cated that a GPU is essential. It takes days to train our

CNN with an 8-core Intel i7-4790 3.6 GHz CPU using

4000 images. However, the time is shortened to less

than one hour with an entry-level GPU, i.e., NVIDIA

K620, and to several minutes with advanced GPU, i.e.,

NVIDIA K80. The deep learning framework used in

this study, i.e., Caffe (Jia et al. 2014), provides options

for GPU computation.

4 Deep Learning and Results

This section presents details for building, training,

validating, and post-processing a CNN using an open-

source deep learning framework, Caffe, and Python.

The results will also be delivered and discussed.

4.1 Procedure

Caffe is a deep learning framework developed by the

Berkeley Vision and Learning Center, which comes

with a C??, a Python, and a MATLAB interface. The

Python interface was adopted and most of the deep

learning work was conducted in a Linux environment

(Red Hat distribution). The following are the five steps

in deep learning with a CNN using Caffe.

1. Data preparation: The images as input are first

cleaned and stored in a format that can be used by

Caffe. A Python script was developed to handle

both the pre-processing and storage of the images.

2. Model definition: A CNN is defined by specifying

its architecture parameters in an architecture

configuration file with the extension of.prototxt.

3. Solver definition: The training of CNN using

techniques such as back-propaga2. tion is by

nature an optimization process. The parameters of

this optimizer, or called solver, were defined in a

model configuration file with the extension

of.prototxt.

4. Model training: Training consisting of alternate

supervised learning and validation is carried out in

iterations by executing one Caffe command in a

shell (e.g., Bash in Linux). The trained model in

terms of weights is stored in a file with the

extension of.caffemodel.

5. Prediction and Testing: The trained model in.caf-

femodel files is utilized to make predictions of

data independent of the training data. If such data

are labeled, then the predictions can be used to

validate the trained model. A Python script is

written to automate the prediction process.

Table 1 Parameters for

generating the image data of

retaining walls

q is a random number

between 0 and 1 generated

by MATLAB. The

parameters and design

correlations are from Das

(2015)

Parameter Description Formulation

H height of the wall 4 þ 11q

B length of the base slab ð0:5 þ 0:4qÞH
Bt length of the toe 0:1H

Bs2 width of the bottom of the stem 0.1 H

I slope of the front surface of the stem 0.2 ? 0.03 q

Bs1 width of the top of the stem BS2 � H � Is
Bh width of the heel B - Bt - BS2

a angle of the soil behind the wall 20 q

Hb height of the base 0.1 H

D height of soil in front of the toe Hb þ 0:1 � q � HðD� 0:6Þ
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4.2 Data Preparation

First, the image data with labels, i.e., safe or failed,

was generated for both training/validation and predic-

tion/testing, using the geometries and random num-

bers given in the previous section (Labeled Data

Subsection). The retaining wall region and the soil

region were filled with different colors. The edge of

the retaining wall region used a different color. The

two types of images, i.e., training (including cross-

validation) and testing (prediction), were stored in two

different folders.

Next, the image data were histogram-equalized and

resized. In detail, histogram equalization was applied

to all the training images (three channels) for adjusting

the contrast of the images. The images were then

resized to 227 9 227 pixels. The training data were

divided into two sets: 5/6 of the training images for

training and the test 1/6 for validation. The training,

validation, and testing data were stored as separate

LMDB databases, which are a common format of

input data for Caffe.

Next, a Python module from the Python interface of

Caffe, i.e., compute_image_mean, was utilized to

obtain the mean image of the training data. Then, the

mean image was subtracted from each input image to

ensure that every feature pixel has zero mean. This is a

common preprocessing step in supervised machine

learning with image data to help improve the deep

learning outcome. The pre-defined mean values of the

R, G, B channels are 104, 117, and 123, respectively.

4.3 Model Definition in Caffe

In this study, attempts were made to obtain a model

using a CNN with an architecture shown in Fig. 7. As

can be seen, this CNN, which is named GeoNet,

contains a deep net consisting of multiple convolu-

tional (Conv), ReLU, pooling (Pool), normalization,

drop-out (Drop), and fully-connected (FC) layers. The

arrows between layers show the direction of the data

flow. The architecture was developed from a popular

CNN model called AlexNet (Krizhevsky et al. 2012).

This architecture was proven to be suitable for the

binary classification tasks in this study, while more

recent CNNs with deeper and wider architectures such

as ResNet and Inception can be employed for more

complex tasks.

The parameters of GeoNet was stored in a file with

the extension of.prototxt. Table 2 lists the major

parameters for different layers.

4.4 Solver Definition in Caffe

The solver in Caffe specifies the parameters for

optimization. These parameters were defined in

a.prototxt file. In detail, the solver adopted an adaptive

learning rate method, AdaDelta (Zeiler 2012) for the

optimization, and the initial learning rate was fixed at

0.001. The weight decay term for preventing overfit-

ting is 0.0005 (weight_decay). The maximum training

iteration number was set to 40,000 (max_iter). If this

value is too small, convergence cannot be guaranteed;

if it is too large, oscillations may be produced, leading

to a waste of training time. Other parameters such as

display frequency (display) and result recording

frequency (snapshot) do not impact the training and

Fig. 7 Architecture of the CNN used in this study
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validation results, and thus, can be chosen based on the

needs and available resources. The solver mode is

GPU (solver_mode).

4.5 Training

With the model and solver defined in the above sub-

sections, the training (including validation) process

was started with the ‘‘train’’ tool provided by Caffe via

command line in Bash as follows: ‘‘path_to_train train

–solver path_to_solver/solver_name.prototxt 2[&1

| tee path_to_log/log_name.log’’. The model parame-

ters were defined in a file named ‘‘solver_name.pro-

totxt’’. This files also contains the paths for both the

model definition file and the result file. Depending on

the result recording frequency, the trained model, i.e.,

weights for neurons in the network, were saved as a file

in the path and name that was specified in the solver

file, appended with the iteration number. For example,

if the snapshot_prefix was defined as path_to_re-

sult/model_name, then the trained model after 2000

iterations would be stored in the file ‘‘model_-

name_2000’’ in the folder of ‘‘path_to_result’’.

As mentioned in the previous section, if deep

learning is conducted using the above data, model, and

solver, it is very difficult to obtain good training

results. A much more efficient way is to start training

from a trained model, which was not necessarily

trained with our data or even image data containing the

same type of object. This is because most images share

similar low-level features such as lines. Here a very

useful fine-tuning technique, transfer learning, was

utilized. The transfer learning in this study was

conducted with bvlc_reference_caffenet from Caffe’s

repository, Model Zoon, which has been widely used

by researchers and machine learning practitioners to

share their trained models. The model bvlc_refer-

ence_caffenet was trained with the ImageNet dataset

which contains millions of images across 1000

categories. The command was very similar to that

for training from scratch and can also be used to restart

a training process from any previously-stored model.

The model configuration file used in the transfer

learning was identical to that in the original training

process.

The training alternates between training and vali-

dation iterations. The loss in the training and the loss

and accuracy in the validation were saved to the log

file at the frequency specified in the solver configu-

ration file (via model parameters ‘‘display’’ and

‘‘test_interval’’). The variations of the loss and the

accuracy can be plotted in real time during the training

(including validation) process using Python scripts or

plotted manually after the training is finished. A script

file was developed based on open-source code

CaffePlot.py.

Table 2 Major model

configuration parameters

The default values in Caffe

were used if not specified.

The batch sizes for training,

validation, and testing are

both 40 for NVIDIA K620

GPU (constrained by the

available GPU memory)

and 40 and 400 for NVIDIA

K80 GPU

Layer Description

Conv1 output number: 96, kernel size: 4, stride: 4

Pool1 type: Max, kernel size: 3, stride: 2

Norm1 type: LRN, local size: 5, alpha: 0.0001, beta: 0.75

Conv2 output number: 256, pad: 2, kernel size: 5, group number: 2

Pool2 type: Max, kernel size: 3, stride: 2

Norm1 type: LRN, local size: 5, alpha: 0.0001, beta: 0.75

Conv3 output number: 384, pad: 1, kernel size: 3

Conv4 output number: 384, pad: 1, kernel size: 3, group number: 2

Conv5 output number = 256, pad: 1, kernel size: 3, group number: 2

Pool5 type: Max, kernel size: 3, stride: 2

Fc6 type: InnerProduct, output number: 4096, weight filler type: Gaussian, std: 0.005

Drop6 dropout_ratio: 0.5

Fc7 type: InnerProduct, output number: 4096, weight filler type: Gaussian, std: 0.005

Drop6 dropout_ratio: 0.5

Fc7 type: InnerProduct, output number: 2, weight filler type: Gaussian, std: 0.01

Accuracy type: accuracy

Loss type: SoftmaxWithLoss
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Typical variations of the accuracy and loss (in the

validation) are shown in Fig. 8. With NVIDIA K620

GPU, it took 14 h for GeoNet to achieve an accuracy

of 97.94%, which scores the output as the accuracy of

output with respect to the target. The loss in Figure, L,

was calculated as

L wð Þ ¼ 1

N

XN

i¼1

fw Xi
� �

þ kr wð Þ ð4Þ

where fw Xið Þ is the loss at Xi and r wð Þ is a regular-

ization term avoiding overfitting. Thus, it has been

shown that an accuracy exceeding the traditional

geotechnical ANNs’ can be achieved with an entry-

level CNN and a small amount of computational effort

while dealing with data whose size (e.g., Gigabytes),

however, exceeds the size of the data processed by

traditional ANNs (e.g., bytes) by orders (e.g., 9

orders).

4.6 Prediction and Testing

After training, the trained model can be applied to

predict/analyze image data that are independent of the

training data. Ideally, it is hoped the trained model can

be used to predict data that are out of the range of the

training data–achieving a good generalization ability.

This generalization ability has been tested to some

extent in the testing process. In fact, when the

validation dataset is independent of the training

dataset, validation serves a role similar to testing.

However, the validation may not be totally indepen-

dent of the training, because the training and

validation data, though exclusive of each other, can

still be related depending on the sampling technique

adopted. In this study, the training and validation

datasets were generated by randomly splitting the

training (and validation) datasets before training and

remained unchanged during training. However, to

provide a totally independent evaluation of the trained

CNN, the trained model was used to analyze the

20,000 independent retaining wall images generated in

the same way as the training and validation data. Such

data were also labeled using the result from the

mechanistic analysis. As a result, the labeled data can

be used to validate the predictions, which provides us

with a second validation of GeoNet.

The predictions were carried out with packages

from the Python interface of Caffe. The images were

first pre-processed in the same way as that used for the

training and validation data. The same trained model,

GeoNet, was used for predictions; therefore, the net

architecture remains the same except for changing the

final output layers from loss and accuracy layers to a

Softmax layer for classifications, which is needed for

predictions.

In binary classification problems, it is common to

use a confusion matrix consisting of True Positive

(TP), False Positive (FP), True Negative (TN), and

False Negative (FN) to measure the outcome of the.

The prediction results for 20,000 images are listed in

Table 3. The accuracy is defined as

A ¼ TPþ TN

TPþ FPþ FN þ TN
ð5Þ

The accuracy of the classification using the trained

GeoNet is 97.90%. As can be seen, the precision is

very close to the accuracy obtained in the testing

process, e.g., 97.94%. These results confirmed the

high accuracy of the trained CNN in analyzing the

stability of the geosystems via image data.
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Fig. 8 Variation of accuracy and loss in the training process

with 200 k images

Table 3 Confusion matrix for the prediction results with the

trained model

Predicted Actual

Safe Failed

Safe TP = 9797 FP = 218

Failed FN = 203 TN = 9782
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Sometimes, a trained model can exhibit signifi-

cantly different performance in different aspects of

predictions, i.e., in the selections of safe instances and

failed instances. To further evaluate the performance

of the trained CNN, the precision and recall were

calculated. Precision P, also called positive predictive

value, is the fraction of relevant instances (accurately

predicted as safe) among the retrieved instances

(predicted as safe); while recall R, also known as

sensitivity, is the fraction of relevant instances (accu-

rately predicted as safe) that have been retrieved over

the total amount of relevant instances (safe):

P ¼ TP

TPþ FP
ð6Þ

R ¼ TP

TPþ FN
ð7Þ

The precision and recall are 97.82% and 97.97%

respectively. Despite the slight difference, both of

these two values are very close to the accuracy.

Therefore, the trained CNN has a good performance in

different aspects of the predictions. It is worthwhile to

mention that an accuracy value of 97.90% does not

mean that the deep learning method is inferior to the

classic mechanistic methods, which can obtain a 100%

accuracy here. In this study, the classic mechanistic

stability analysis method was just used as a reference.

As we know, no mechanistic stability method is

accurate due to the high uncertainty in geotechnical

system analysis with typical safety factors ranging

from 1.5 to 3. The goal of this study is to show the

possibility of analyzing the stability of geosystems

with image data directly, which has never been

attempted. The mechanistic method was just utilized

as a benchmark. This study could be a groundbreaking

one in that it provides a big-data solution for

geotechnical engineering and other civil engineering

areas, especially for traditional stability analysis.

Future studies with more categories, i.e., safety

factors, instead of a binary classification of failed

and safe, and more complicated and realistic images

will advance the technique toward real-world

applications.

The data size and computing power are two major

concerns in the application of deep learning to the

stability analysis of geosystems. Though big data is an

inevitable trend in the long run, great numbers of high-

quality labeled data are still not easy to obtain.

Therefore, it is desired that deep learning can be

satisfactorily implemented with a relatively small

amount of data. This concern was studied in this study

via benchmark training with different dataset sizes.

For the purpose, datasets with different sizes, i.e., 500,

1000, 2000, 5000, 10,000, 20,000, 40,000, 80,000,

120,000, 160,000, and 200,000, were generated and

split into training (and validation) datasets using the

same ratio, i.e., 5 training to 1 validation. The data

were preprocessed in the way as explained in the

previous sections. Shown in Fig. 9 are the variations of

accuracy and loss with 5000 and 200,000 images. It

seems that, for the stability analysis problem targeted

in this study, at least 5000 images are needed. The

results of the training with 5000 images exhibits

overfitting: accuracy from validation does not improve

while loss keeps decreasing. Training with a small

dataset such as 500 is implementable, however, the

training result with an accuracy value of 80% may not

be acceptable. Therefore, in the application of deep

learning to stability analysis, the data size is still a

major factor for ensuring good training results.

To assess the influence of computing power,

training with the above-mentioned datasets was car-

ried out with two different GPU resources: 1 NVIDIA

K620 (1 physical core, 384 CUDA cores, 400 MHz,

2 GB memory, 29 GB/s bandwidth) and 2 NVIDIA

K80 (2 X 13 physical cores, 2 X 2496 CUDA cores,

562 MHz, 2 X 12 GB memory, 2 X 240 GB/s

bandwidth). Significant differences were observed by

comparing the time and results for the training with the

two GPU resources. For time, training with different

GPUs consumed significantly different amounts of
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Fig. 9 Training with different data sizes and computing power
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time. For example, for 200,000 samples and a batch

size of 40, training with K620 used over 630 min

while that with 2 K80 used only 64 min. For results,

the major differences were observed between training

processes with different batch sizes. K620 only allows

a small batch size such as 40, while K80 can easily

handle a batch size of 400 due to their different

memory sizes. In Fig. 9, the training results for 5000

images but different batch sizes, i.e., 40 (K620) and

400 (K80), are illustrated. As can be seen, training

with a small batch size exhibits a much lower accuracy

and much more oscillations in the accuracy and loss

variations. Therefore, higher computing power with

better GPUs is another critical factor in gaining better

deep learning results in the stability analysis of

geosystems.

5 Conclusions

This paper presents a study for exploring the concept

of image-data analysis of the stability of geosystems

with deep learning. A deep CNN, GeoNet, which

consists of multiple convolutional, pooling, ReLU,

drop-out, and full connection layers was employed.

The deep net functions like a brain. This brain, which

was like a newborn baby’s, was trained with images

that were labeled as ‘‘cat (safe)’’ or ‘‘dog (failed)’’ in

datasets of sizes from 500 to 2,000,000 images. With

datasets including 10,000 or more images, this training

enabled the ‘‘baby’s brain’’ to soon gain an ability to

classify retaining walls far superseding that of any

human’s, that is, with a success rate of over 97%.

Independent validations also show the values of

accuracy, precision, and recall are close to the

accuracy obtained in training and validation. Techni-

cal details for all steps of deep learning with CNNs

were provided. Further investigations into the dataset

sizes and computational power yielded quantitative

insights into the influence of data and computing

resources on the application of deep learning in the

stability analysis of geosystems. This study is a

ground-breaking one for applying the recent advances

in computer vision, including convolutional neural

network, to the stability analysis of geosystems and

also likely to be among the first of such kind in the

mechanical analysis.
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tion of compressive and tensile strength of limestone via

genetic programming. Expert Syst Appl 35(1):111–123

Benardos A, Kaliampakos D (2004) Modelling TBM perfor-

mance with artificial neural networks. Tunn Undergr Space

Technol 19(6):597–605

Bhattacharya B, Solomatine DP (2006) Machine learning in soil

classification. Neural Netw 19(2):186–195

Byeon WY, Lee SR, Kim Y (2006) Application of flat DMT and

ANN to Korean soft clay deposits for reliable estimation of

undrained shear strength. Int J Offshore Polar Eng 16(1):

73–80

Caglar N, Arman H (2007) The applicability of neural networks

in the determination of soil profiles. Bull Eng Geol Env

66(3):295–301
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