Bootstrapping Motor Skill Learning with Motion Planning

Ben Abbatematteo*, Eric Rosen®, Stefanie Tellex, George Konidaris
Department of Computer Science
Brown University, Providence RI
{babbatem, er35,stefielO, gdk}@cs .brown.edu

Abstract— Learning a robot motor skill from scratch is
impractically slow; so much so that in practice, learning
must typically be bootstrapped using human demonstration.
However, relying on human demonstration necessarily degrades
the autonomy of robots that must learn a wide variety of skills
over their operational lifetimes. We propose using kinematic
motion planning as a completely autonomous, sample efficient
way to bootstrap motor skill learning for object manipulation.
We demonstrate the use of motion planners to bootstrap
motor skills in two complex object manipulation scenarios
with different policy representations: opening a drawer with
a dynamic movement primitive representation, and closing a
microwave door with a deep neural network policy. We also
show how our method can bootstrap a motor skill for the
challenging dynamic task of learning to hit a ball off a tee,
where a kinematic plan based on treating the scene as static is
insufficient to solve the task, but sufficient to bootstrap a more
dynamic policy. In all three cases, our method is competitive
with human-demonstrated initialization, and significantly out-
performs starting with a random policy. This approach enables
robots to to efficiently and autonomously learn motor policies
for dynamic tasks without human demonstration.

I. INTRODUCTION

Robots require motor policies for interacting with objects
in their environment. Reinforcement learning (RL) provides
a framework for acquiring motor policies without explicitly
modeling the unknown world, but model-free RL methods
like policy search [1] have high sample-complexity, and
often fail to learn a reasonable policy from random ini-
tialization. Supervised approaches for policy learning like
Learning From Demonstration (LfD) [2] can encode human
prior knowledge by imitating expert examples, but do not
support optimization in new environments. Combining RL
with LfD is a powerful method for reducing the sample
complexity of policy search, and is often used in practice
[3, 4, 5, 6]. However, this approach typically requires a
human demonstrator for initialization, which fundamentally
limits the autonomy, and therefore utility, of a robot that
may need to acquire a wide range of motor skills over
its operational lifetime. More recently, model-based control
techniques (including Model Predictive Control [7] and LQR
[3]) have been proposed as exploration methods for policy
search; these methods still require human demonstrations or
complete dynamic models of both the robot and every object
in the scene.

We propose the use of kinematic motion planning to
initialize motor skill policies. While previous work has

“These authors contributed equally.

(b)

Fig. 1: A robot using our method to autonomously learn to
close a microwave that is out of reach. (a) The robot uses a
motion planner to generate an initial attempt at closing the
microwave door using a kinematic model of the microwave.
The resulting plan is unable to fully close the microwave door
because of the robot’s limited reach. (b) After bootstrapping
a motor skill with the trajectory from (a), the robot learns a
motor skill that gives the door a push, exploiting its dynamics
to fully close the microwave.

leveraged sample-based motion planners for learning motor
skills [8, 9, 10], they only focus on either free-space motions
or do not learn a closed-loop controller. To our knowledge,
this is the first use of motion planning to provide initial
demonstrations for learning closed-loop motor skill policies
by leveraging estimated object kinematics.

We show that given a (potentially approximate, and readily
estimated) kinematic description of the environment and the
robot, off-the-shelf motion planning algorithms can generate
feasible (potentially successful but inefficient) initial trajec-
tories (Figure 1a) to bootstrap an object-manipulation policy
that can subsequently be optimized using policy search (Fig-
ure 1b). This framework enables the robot to automatically

produce its own demonstrations for effectively learning and
refining object manipulation policies. Our work enables the
robot to exploit kinematic planning to realize the benefits of
an initial demonstration fully autonomously.

To evaluate our method, we used two different motor
policy classes (Dynamic Movement Primitives (DMPs) [11]
and deep neural networks [12]). We compared bootstrapping
with motion planning against learning from scratch in three
simulated experiments, and against human demonstrations in
real hardware experiments. We show that motion planning
using a kinematic model produces a reasonable, though
suboptimal, initial policy compared to a supervised human
demonstration, which learning adapts to generate efficient,
dynamic policies that exploit the dynamics of the object
being manipulated. Our method is competitive with human-
demonstrated initialization. It serves as a suitable starting
point for learning, and significantly outperforms starting
with a random policy. Taken together, these results show
that our method is competitive with human demonstrations
as a suitable starting point for learning, enabling robotics
to efficiently and autonomously learn motor policies for
dynamic tasks without human demonstration.

II. BACKGROUND

Our goal is to efficiently and autonomously learn robot
motor skill policies. To do so, we develop an approach that
uses kinematic motion planning to generate initial trajec-
tories, fits a policy to those trajectories using behavioral
cloning, and subsequently optimizes that policy via pol-
icy search. We now briefly describe policy search, policy
representations, learning from demonstration, and motion
planning.

A. Policy Search

Policy search methods [1] are a family of model-free
reinforcement learning algorithms that search within a para-
metric class of policies to maximize reward. Formally, given
a Markov Decision Process M = (S, A,R,T,v), the
objective of policy search is to maximize the expected return
of the policy my:

max [
0 M,

T
thn] : (1)
t=0
These approaches can learn motor skills through interaction
and therefore do not require an explicit environment model,
and are typically agnostic to the choice of policy class
(though their success often depends on the policy class
having the right balance of expressiveness and compactness).
However, their model-free nature leads to high sample com-
plexity, often making them infeasible to apply directly to
robot learning.

Policy representation describes the class of functions
used as the mapping from states to actions; we use two
common representations in this paper (Dynamic Movement
Primitives and neural networks), but our method is class
agnostic.

Dynamic Movement Primitives [11] are a description of
a non-linear second-order differential equation that exhibits
attractor dynamics modulated by a learnable forcing func-
tion. DMPs are a popular representation for motor policies
because they are parameter-efficient —n joints are controlled
using n independent DMPs coupled only through time,
which is very compact— can express both point and limit
cycle attractors, enable real-time computation, and exhibit
temporal invariance that does not effect the attractor land-
scape. We refer the reader to Ijspeert et al. [11] for a more
formal introduction.

Neural network controllers have received significant at-
tention in recent years; they are able to learn hierarchical
feature representations for approximating functions (in our
case, motor skills) operating on high-dimensional input such
as robot sensor data [12]. They are more expressive than
restricted policy classes such as DMPs and can operate
directly on high-dimensional state spaces (e.g. images), but
typically exhibit high sample complexity.

We chose these two different motor policy classes because
they represent opposite ends of the policy spectrum: deep
neural networks are extremely expressive in what policies
they can represent, but are extremely sample inefficient
compared to structured motor primitives like DMPs, which
are more structured and less expressive.

Learning from Demonstration methods [2] broadly con-
sist of two families of approaches that either mimic (Behav-
ioral Cloning) or generalize (Inverse Reinforcement Learn-
ing) demonstrated behavior. Inverse reinforcement learning
methods estimate a latent reward signal from a set of
demonstrations; we assume a given reward function, and omit
a discussion of inverse reinforcement learning methods here.

Behavioral cloning methods [13, 14, 15] attempt to di-
rectly learn a policy that reproduces the demonstrated data.
Given a dataset of expert demonstrations D), the objective
of behavioral cloning is: maxg_ ,)cp mo(als). These
methods often result in policies with undesirable behavior
in states not observed during demonstrations, though this
can addressed with interactive learning [16, 17, 18]. In our
approach, the existence of a reward function enables the
agent to learn robust behavior outside of the initial training
distribution. Moreover, our experiments demonstrate our
approach’s ability to extrapolate beyond suboptimal initial
demonstrations.

Many approaches investigate incorporating human-
provided demonstrations into policy search to drastically
reduce sample complexity via a reasonable initial policy
and/or the integration of demonstrations in the learning
objective [5, 4, 3]. Approaches like these (and ours) are
complimentary to exploration strategies for behavioral
policies during policy learning.

B. Motion Planning

The pose of an articulated rigid body can defined by the
state of its movable joints. The space of these poses is
called the configuration space C [19]. Motion planning is
the problem of finding a path (sequence of poses) through

configuration space such that the articulated object is moved
to a desired goal configuration, without encountering a
collision.

While there exist many different families of motion plan-
ning algorithms, such as geometric, grid-based, and proba-
bilistic road maps [20], they all operate in a similar fashion:
given a configuration space C and start and goal joint config-
urations gp, ¢* € C, return a valid path of joint configurations
{q:}L_, between the start and end configurations.

Probabilistic motion planners provide a principled ap-
proach for quickly generating collision-free robot trajecto-
ries. However, online replanning is expensive, and kinematic
motion planners are only as effective as their kinematic
models are accurate: they generate trajectories directly, and
thus cannot be improved through subsequent interaction and
learning. Furthermore, kinematic planners typically produce
trajectories that only account for kinematics, not dynamics:
they explicitly do not account for forces involved in motion,
such as friction, inertial forces, motor torques, etc, which are
important for effectively performing contact-rich, dexterous
manipulation.

The process of computing the position and orientation p €
SE(3) of alink in a kinematic chain for a given joint variable
setting (a point in configuration space) is termed forward
kinematics. Inversely, computing a configuration to attain a
specific end effector pose p is termed inverse kinematics. We
denote the forward kinematics functions p = f(q).

III. BOOTSTRAPPING SKILLS WITH MOTION PLANNING

Our methodology is inspired by how humans generate
reasonable first attempts for accomplishing new motor tasks.
When a human wants to learn a motor skill, they do not
start by flailing their arms around in a random fashion, nor
do they require another person to guide their arms through a
demonstration. Instead, they make a rough estimate of how
they want an object to move and then try to manipulate it to
that goal. For example, before being able to drive stick shift,
a human must first learn how to manipulate a gear shifter
for their car. Just by looking at the gear shifter, humans can
decide (1) what they should grab (the shaft), (2) where they
want the shaft to go (positioned in a gear location), and (3)
how the shaft should roughly move throughout the action (at
the intermediate gear positions). Similarly, a robot that has a
good kinematic model of itself, and a reasonable kinematic
model of the object it wishes to manipulate, should be able to
form a motion plan to achieve the effect it wishes to achieve.

That plan may be inadequate in several ways: its kinematic
model may be inaccurate, so the plan does not work; object
dynamics (like the weight of a door, or the friction of
a joint) may matter, and these are not represented in a
kinematic model; or a feasible and collision-free kinematic
trajectory may not actually have the desired effect when
executed on a robot interacting with a real (and possibly
novel) object. These are all the reasons why a novice driver
can immediately shift gears, but not very well. But such a
solution is a good start; we therefore propose to use it to
bootstrap motor skill learning.

Our approach, outlined in Figure 2, leverages the (partial)
knowledge the robot has about its own body and the object
it is manipulating to bootstrap motor skills. Our method
first assumes access to the configuration space of the robot,
denoted as Cg, as well as its inverse kinematics function
fr ! This assumption is aligned with the fact that the robot
often has an accurate description of its own links and joints
and how they are configured during deployment. However,
the world is comprised of objects with degrees of freedom
that can only be inferred from sensor data. Therefore, our
approach only assumes access to estimated kinematics of the
object to be manipulated, in the form of configuration space
Co and forward kinematics fo. Recent work has shown that
estimating these quantities for novel objects from sensor data
in real environments is feasible [21, 22], though state-of-the-
art estimates still include noise.

Kinematics Estimate

Motion
Planner

Object Trajectory
2= {00!

Motion
Planner
Robot
Kinematics

Fig. 2: System overview illustrating our proposed framework
for generating demonstrations with a motion planner and
subsequently performing policy search. The dashed box
contains the steps from Algorithm 2.

Forward
Kinematics

Grasp Estimate
in SE(3)

End Effector
Trajectory in
SE(3)

Raobot
Trajectory |
Ta={a}

Behavior
Cloning

Policy Search p<

Finally, our approach assumes that the task goal can
be defined in terms of kinematic states of the robot and
environment. Examples of such tasks include pick-and-
place, articulated object manipulation, and many instances of
tool use. (Note that this requirement cannot capture reward
functions defined in terms of force, for example exerting a
specific amount of force in a target location.) Such a goal,
together with object and robot kinematics, enables us to
autonomously generate useful initial trajectories for policy
search.

Our approach is outlined in Algorithm 1, and can broken
down into five main steps: 1) collect initial trajectories from
a motion planner using estimated object kinematics, 2) fit
a policy with these initial trajectories, 3) gather rollouts to
sample rewards for the current policy based on the kinematic
goal, 4) update the policy parameters based on the actions
and rewards, 5) repeat steps 3-4.

0.8

0.6 035

Algorithm
£ 030 — pi2

—— K+ pi2 (ours)
—— Kinematic Plan

Algorithm £ Algorithm
— NPG K — 2
04 —— IK + DAPG (ours) - —— IK + pi2 (ours)
— Kinematic Plan —— Kinematic Plan 025

Return

02

,/ 01 015
0.0

0 20 40 60 80 100 0 20 40 60 80 100
Rollouts Rollouts

0 20 a0 60 80 100
Rollouts

(a) Microwave closing (MLP) (b) Drawer opening (DMP) (c) T-ball (DMP)

Fig. 3: Simulation Results. a) Comparison of our method optimized with DAPG against Natural Policy Gradient starting with
a random policy in a microwave closing task using Gaussian multi-layer perception policies. b) Comparison of our method
against PI2-CMA starting with a random policy in a drawer opening task with DMP policies. ¢) Our method compared with
PI2-CMA with a initially random policy in t-ball with DMP policies. Results are shown as mean and standard error of the
normalized returns aggregated across 20 random seeds.

(a) Human Demonstration (b) Bootstrapped from (a) (c) Motion Plan Demonstration (d) Bootstrapped from (c)

Fig. 4: Real-world Ball Hitting Images comparing bootstrapping motor skills with a human demonstration vs. a motion
planner on a real-world robot hitting a ball off a tee. In both cases, the bootstrapped motor skill outperforms the initial
demonstration. Videos can be found in our supplemental video. (a) A demonstration provided by a human teleoperating the
robot. (b) A motor skill bootstrapped by the human demonstration. (¢c) A demonstration provided by a motion planner. (d)
A motor skill bootstrapped by the motion planner demonstration.

Algorithm 1 Planning for Policy Bootstrapping A. Fitting a Policy to a Demonsiration

After collecting initial demonstrations from the motion

—1 *

1: procedure PPB(Cr, f5", Co, fo,90) planner, D, we can bootstrap our motor policy by initializing
2 Do the parameters to the policy 6 using any behavioral cloning
3 for 0 to N do . B technique; in practice, we use Locally Weighted Regression
4: D < DU InitiaIMPDemos(Cr le Co, fo,q%) L T

)) 14O [23] for DMPs, and maximize the likelihood of the demon-
> end fo.r i stration actions under the policy for neural networks.
6 0 < FitPolicy(Dy, ..., Dy)
7 for 0 to F do B. Policy Search with Kinematic Rewards
8 To, ., T = RO.HO‘H(W’ 0,46) To improve the motor policies after bootstrapping, we can
9 ¢ < UpdatePolicy (17, .., T;,, 0) perform policy search based on the given (kinematic) reward
10: end for function. Specifically, we choose a number of epochs E
11: end procedure to perform policy search for. For each epoch, we perform

an iteration of policy search by executing the policy and
collecting rewards based on the goal gf,. We define our

Algorithm 2 Initial Motion Plan Demos reward functions using estimated object states go and goal
states q¢,, and add a small action penalty.

1: procedure INITIALMPDEMOS(CR, f5*, Co, fo, 45)

2 To < MotionPlanner(Co, ¢3)) IV. EXPERIMENTS

3 g < EstimateGrasp(Co., fo) The aim of our evaluation was to test the hypothesis
4 eepath < GraspPath(To, Co, fo, 9) that motion planning can be used to initialize policies for
5: TR + MotionPlanner(Cr, eepath, fz") learning from demonstration without human input. We tested
6 return Tg this hypothesis in simulation against learning from scratch,
7. end procedure and on real hardware, against human demonstrations, on

three tasks: microwave-closing, drawer-opening, and t-ball.

We note that we do not show asymptotic performance
because our emphasis is on learning on real hardware from a
practical number of iterations. All the elements of the motion
planner—state sampler, goal sampler, distance metrics, etc.—
are reused between problems without modification.

A. Simulation Experiments

We used PyBullet [24] to simulate an environment for
our object manipulation experiments. We used URDFs to
instantiate a simulated 7DoF KUKA LBR iiwa7 arm and
the objects to be manipulated, which gave us ground-truth
knowledge of the robot and object kinematics. For all our
simulated experiments, we compared implementations of our
method against starting with a random policy.

For all three tasks, the state was represented as s; =
[qr,qo]T where gr denotes robot configuration and go
denotes object configuration. The action space A was com-
manded joint velocity for each of the 7 motors. The reward
at each timestep r; was given as:

re = —c ||¢5 — qo0l|3 — af Ray, 2)

where go denotes the object state at time ¢, gf, denotes
desired object state, and a; denotes the agent’s action. We
set ¢ = 60 and R = I x 0.001 for all experiments. As
such, maximum reward is achieved when the object is in
the desired configuration, and the robot is at rest.

Our first simulated task was to close a microwave door,
which consisted of three parts: a base, a door, and a handle.
The pose of the handle was used for the EstimateGrasp
method in Algorithm 2. The robot was placed within reach-
ing distance of the handle when the microwave door was
in an open position, but was too far to reach the handle
in its closed configuration. Thus, the agent was forced to
push the door with enough velocity to close it. We used
Gaussian policies represented as multi-layer perceptrons with
two hidden layers of sizes (32,32) in this experiment. The
randomly initialized policy was optimized with natural policy
gradient [25]. Ten demonstrations were generated by perturb-
ing the start state and initial kinematic plan with Gaussian
noise. The behavior cloning was performed by maximizing
likelihood over the demonstration dataset for 10 epochs. Our
pretrained policy was optimized using Demo Augmented
Policy Gradient [4], which essentially adds the behavior
cloning loss to the natural policy gradient loss, annealing
it over time. This ensures that the agent remains close to
the demonstrations early in learning, but is free to optimize
reward exclusively as learning progresses. Results are shown
in Figure 3a.

The second simulated task was to open a drawer (Figure
5). This task required the agent to grasp the drawer’s handle
and pull the drawer open.

Again, the pose of the object’s handle was used for
EstimateGrasp method in our algorithm. In this experiment,
we used DMP policies. The weights, goals, and speed
parameters of the policies were optimized using PI>-CMA
[26]. We used 32 basis functions for each of the DMPs.
The pretrained policy was initialized using Locally Weighted

Fig. 5: Opening a Drawer experiment in simulation, where
the robot needs to apply enough force on the handle to
slide the drawer open. (a) An image of the starting pose
of the robot arm and drawer. When learning from scratch,
the robot random explores for many steps before grasping
the handle. (b) An image of the robot using our method
to produce an initial demonstration from a motion planner
based on the drawer’s kinematics. This demonstration guides
the robot to the handle, but ignores the dynamics of the heavy
drawer which leads to failure. (c) An image after the robot
has bootstrapped a skill with our method. The final policy
learns to leverage the dynamics to precisely grasp the handle
and then produce a strong pulling force to open the drawer
completely.

Regression (LWR) [23] with a single demonstration. The
results of this experiment are shown in Figure 3b.

The third simulated task was to hit a ball off a tee. The
ball started at rest on top of the tee. The pose of the ball
was used in the EstimateGrasp method. The object state
was defined as the object’s y position relative to its initial
pose. This is a poor initialization for a hitting task because
it is based only on the ball’s kinematics and ignores the
dynamics involved in swinging, resulting in low-return, but it
is effective for bootstrapping policy search. This experiment
again used DMPs initialized with LWR and optimized with
PI2-CMA. Results of this experiment are visualized in Figure
3c.

Across all three tasks, we observe that policies initialized
with our method dramatically outperform starting learning
with a random policy. This confirms our hypothesis that using
motion planning to generate demonstrations significantly
speeds the acquisition of motor skills in challenging tasks
like articulated object manipulation and t-ball.

B. Real-world Experiments

For all our real-world experiments, we used a 7DoF Jaco
arm [27] to manipulate objects (Figure 1). We used ROS and
Movelt! [28] as the interface between the motion planner
(RRT* [29] in our experiments) and robot hardware. For
all real-world experiments, we compared implementations of
our method against bootstrapping with a human demonstra-
tion, which we supplied.” To collect human demonstrations,
we had an expert human teleoperate the robot with joystick
control to perform the task. For all tasks, the state space,
action space, and reward were defined in the same way as
in our simulated results (Section IV-A). Both experiments
used DMP policies initialized with LWR [23] and optimized
with PI2-CMA [26] with 10 basis functions for each of the
DMPs.

Our first real-world task was to close a microwave door,
similar to the one described in our simulated domain (Section
IV-A). As in the simulated microwave task, we used the pose
of the handle for the EstimateGrasp method in Algorithm
2, and also the robot was similarly placed such that it was
forced to push the door with enough velocity to close. We
placed an AR tag on the front-face of the microwave to track
the microwave’s state using a Kinect2. Results are shown in
Figure 6.

We observe that the human demonstration is better than
the one produced by the motion planner, which we credit to
the fact that the motion of the door was heavily influenced by
the dynamics of the revolute joint which the motion planner
did not account for. Nonetheless, both policies converge to
a similar final performance, with our method converging
slightly faster. Note the importance of the policy search: the
motion planner alone is insufficient for performing the task
efficiently.

“We acknowledge this potential bias in expert trajectories, and qualify
our decision by only training on human demonstrations that at least
accomplished the task.

0.8 1

0.6 4

Return

0.4 4

7/

0.0 4

Demonstration
—— Planner
Human

T T T
) 10 20 30 40 50 60 70 80
Rollouts

Fig. 6: Hardware experiment comparing our initialization
scheme with human demonstration. Results are shown as
mean and standard error, aggregated across three random
seeds.

Our second real-world task was to hit a ball off a tee as
far as possible (Figure 4). Similar to our simulated task, the
ball started at rest on top of the tee. The pose of the ball
was used in the EstimateGrasp method. The object state was
defined as the object’s y position relative to its initial pose.
We placed scotchlite-reflective tape on the surface of the ball
and conducted our experiments within an OptiTrack motion-
capture cage to track the object pose. We observe that when
using a motion planner to hit the ball, it moves the bat in
a linear motion to make contact, therefore transferring only
horizontal motion to the ball. We qualitatively observe that
during policy search, the robot learns a dynamic policy that
accounts for the dynamics of the ball by applying force under
the ball to “scoop” the ball upwards and forwards.

V. RELATED WORK

To our knowledge, our method is the first to use an object’s
estimated kinematics in conjunction with a known robot
model to bootstrap motor policy learning.

While classic robot motor learning papers [13] leverage
the known kinodynamics of the robot, they do not discuss
kinematics of external objects or grasp candidates to boot-
strap motor policies for object manipulation. We emphasize
that we cannot form dynamic plans in the problem setting we
are interested in: objects with unknown a priori dynamics.

Recently, Model-Predictive Control (MPC) has been used
in the context of imitation learning and reinforcement learn-
ing to address the high sample complexity of policy search
[7]. These approaches require a priori object dynamics, or
human demonstrations to fit learned models; in contrast, our
approach requires only object kinematics, which are much
more readily estimated from visual data at runtime [21, 22].
As such, our approaches enables the learning of manipulation
skills to be more autonomous than existing MPC-based meth-
ods. Tosun et al. [8] proposed a neural network model for

generating trajectories from images, using a motion planner
during training to enable the robot to generate a trajectory
with a single forward pass at runtime. While this approach
uses a motion planner for behavior cloning, it stops short of
optimization to improve the resulting policy. By contrast, our
method uses object kinematics to produce initial trajectories,
while Tosun et al. [8] only use the robot’s kinematic model,
which is insufficient when the task is to manipulate an object
to a specific joint configuration.

Kurenkov et al. [30] proposed training an initially random
RL policy with an ensemble of task-specific, hand-designed
heuristics. This improves learning but the initial policy is still
random, yielding potentially unsafe behavior on real hard-
ware, and delaying convergence to a satisfying policy. By
contrast, we choose to initialize the policy with demonstra-
tions from a kinematic planner, ensuring feasibility, safety,
and rapid learning. Moreover, we argue that motion planning
is the principled heuristic to use to accelerate learning, as
it is capable of expressing manually programmed heuristics
like reaching and pulling. Finally, our approach can use the
existing estimated object kinematics to provide a principled
reward signal for model-free reinforcement learning.

Recently, residual reinforcement learning approaches have
been developed which learn a policy superimposed on
hand-designed or model-predictive controllers [31, 32]. Our
method is compatible with these approaches, where demon-
strations from the motion planner can be used as a base
policy on top of which a residual policy can be learned
based on kinematic rewards. These methods typically suffer
from the same limitations as MPC-based methods mentioned
above.

Guided Policy Search (GPS) [3] uses LQR to guide
policy search into high-reward regions of the state-space. The
models employed are fundamentally local approximations,
and thus would benefit greatly from a wealth of suboptimal
demonstrations from the outset (as made evident by Chebotar
et al. [33]). GPS is one of the state-of-the-art algorithms
we expect to be used within our framework as the policy
search implementation (Section III-B). A critical distinction
between our work and GPS is the notion of planning trajecto-
ries in object configuration spaces and reasoning about grasp
candidates to achieve a desired manipulation. This is done
using information available a priori, and thus is immediately
capable of generating high-value policies, whereas GPS
estimates dynamics models given observed data (obtained
either from demonstration or random initialization). In the
absence of a human demonstrator, our method would provide
far more useful data at the outset of learning than running
a naively initialized linear-Gaussian controller (as evidenced
by our comparisons to random initialization).

Most similar to our line of work are those that use
sample-based motion planners for improved policy learning.
Jurgenson and Tamar [9] harness the power of reinforcement
learning for neural motion planners by proposing an augmen-
tation of Deep Deterministic Policy Gradient (DDPG) [34]
that uses the known robot dynamics to leverage sampling
methods like RRT* to reduce variance in the actor update

and provide off-policy exploratory behavior for the replay
buffer. However, Jurgenson and Tamar [9] are only able to
address domains where they can assume good estimates of
the dynamics model, such as producing free-space motions
to avoid obstacles. Our setting, in contrast, focuses on object
manipulation, where dynamics are not readily available, but
are critical for learning good policies. Jiang et al. [10] address
learning to improve plans produced by a motion planner, but
do not bootstrap closed-loop policies. Motion planners are
insufficiently expressive to leverage the dynamics in object-
manipulation tasks, especially in the presence of unknown
dynamics, and traditionally are unable to handle perceptual
data like RGB images. Our method, on the other hand,
enables motion planning to bootstrap policies that are more
expressive than the original planner.

VI. CONCLUSION

We have presented a method that uses kinematic motion
planning to bootstrap robot motor policies. By assuming
access to a potentially noisy description of the object kine-
matics, we are able to autonomously generate initial demon-
strations that perform as well as human demonstrations—but
do not require a human—resulting in a practical method for
autonomous motor skill learning.

Our methodology is agnostic to the motion planner, motor
policy class, and policy search algorithm, making it a widely
applicable paradigm for learning robot motor policies. We
demonstrate the power of our methodology by bootstrapping
different policy classes with demonstrations from humans
and a motion planner, and learn motor policies for three
dynamic manipulation tasks: closing a microwave door,
opening a drawer, and hitting a ball off a tee. Our framework
is the first to enable robots to autonomously bootstrap
and improve motor policies with model-free reinforcement
learning using only a partially-known kinematic model of the
environment. Future work will incorporate online learning
of object kinematics from perceptual and contact interaction
into the closed-loop policy learning of our approach.

ACKNOWLEDGEMENT

This research was supported by NSF CAREER Award
1844960 to Konidaris, and by the ONR under the
PERISCOPE MURI Contract N00014-17-1-2699. Disclo-
sure: George Konidaris is the Chief Roboticist of Realtime
Robotics, a robotics company that produces a specialized
motion planning processor.

REFERENCES

[1] M. P. Deisenroth, G. Neumann, J. Peters et al., “A survey on policy
search for robotics,” Foundations and Trends® in Robotics, vol. 2, no.
1-2, pp. 1-142, 2013.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469483, 2009.

[3] S. Levine and V. Koltun, “Guided policy search,” in International
Conference on Machine Learning, 2013, pp. 1-9.

[4] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[5]

[6]
[7]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

C.-A. Cheng, X. Yan, N. Wagener, and B. Boots, “Fast Policy
Learning through Imitation and Reinforcement,” arXiv e-prints, p.
arXiv:1805.10413, May 2018.

S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in cognitive sciences, vol. 3, no. 6, pp. 233-242, 1999.

Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile autonomous driving using end-to-end deep imitation
learning,” arXiv preprint arXiv:1709.07174, 2017.

T. Tosun, E. Mitchell, B. Eisner, J. Huh, B. Lee, D. Lee, V. Isler, H. S.
Seung, and D. Lee, “Pixels to plans: Learning non-prehensile manipu-
lation by imitating a planner,” arXiv preprint arXiv:1904.03260, 2019.
T. Jurgenson and A. Tamar, “Harnessing reinforcement learning for
neural motion planning,” arXiv preprint arXiv:1906.00214, 2019.

Y. Jiang, F. Yang, S. Zhang, and P. Stone, “Task-motion planning with
reinforcement learning for adaptable mobile service robots.” in IROS,
2019, pp. 7529-7534.

A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor land-
scapes for learning motor primitives,” in Advances in neural informa-
tion processing systems, 2003, pp. 1547-1554.

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end
training of deep visuomotor policies,” Journal of Machine Learning
Research, vol. 17, no. 39, pp. 1-40, 2016. [Online]. Available:
http://jmlr.org/papers/v17/15-522.html

C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in ICML, vol. 97. Citeseer, 1997, pp. 12-20.

P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in 2009
IEEE International Conference on Robotics and Automation. 1EEE,
2009, pp. 763-768.

J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in neural information processing systems, 2016, pp. 4565—
4573.

S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627-635.

A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and
S. Levine, “Combining self-supervised learning and imitation for
vision-based rope manipulation,” in 2017 IEEE International Con-
ference on Robotics and Automation (ICRA). 1EEE, 2017, pp. 2146—
2153.

W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell,
“Deeply aggrevated: Differentiable imitation learning for sequential
prediction,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp. 3309-3318.
T. Lozano-Perez, “Automatic planning of manipulator transfer move-
ments,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 11,
no. 10, pp. 681-698, 1981.

S. M. LaValle, Planning algorithms.
2006.

B. Abbatematteo, S. Tellex, and G. Konidaris, “Learning to generalize
kinematic models to novel objects,” Proceedings of the 3rd Conference
on Robot Learning, 2019.

X. Li, H. Wang, L. Yi, L. Guibas, A. L. Abbott, and S. Song,
“Category-level articulated object pose estimation,” arXiv preprint
arXiv:1912.11913, 2019.

S. Schaal and C. G. Atkeson, “Constructive incremental learning from
only local information,” Neural computation, vol. 10, no. 8, pp. 2047—
2084, 1998.

E. Coumans et al., “Bullet physics library,” Open source: bulletphysics.
org, vol. 15, no. 49, p. 5, 2013.

S. M. Kakade, “A natural policy gradient,” in Advances in neural
information processing systems, 2002, pp. 1531-1538.

F. Stulp and O. Sigaud, “Path integral policy improvement with
covariance matrix adaptation,” arXiv preprint arXiv:1206.4621, 2012.
A. Campeau-Lecours, H. Lamontagne, S. Latour, P. Fauteux, V. Ma-
heu, F. Boucher, C. Deguire, and L.-J. C. L’Ecuyer, “Kinova modular
robot arms for service robotics applications,” in Rapid Automation:
Concepts, Methodologies, Tools, and Applications. 1GI Global, 2019,
pp. 693-719.

S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18-19, 2012.
S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the rrt,” in 2011 IEEE International
Conference on Robotics and Automation. 1EEE, 2011, pp. 1478-1483.

Cambridge university press,

[30]

[31]

[32]

[33]

[34]

A. Kurenkov, A. Mandlekar, R. Martin-Martin, S. Savarese, and
A. Garg, “Ac-teach: A bayesian actor-critic method for policy
learning with an ensemble of suboptimal teachers,” arXiv preprint
arXiv:1909.04121, 2019.

T. Silver, K. Allen, J. Tenenbaum, and L. Kaelbling, “Residual policy
learning,” arXiv preprint arXiv:1812.06298, 2018.

T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A.
Ojea, E. Solowjow, and S. Levine, “Residual reinforcement learning
for robot control,” in 2019 International Conference on Robotics and
Automation (ICRA). 1EEE, 2019, pp. 6023-6029.

Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and
S. Levine, “Path integral guided policy search,” in 2017 IEEE in-
ternational conference on robotics and automation (ICRA). IEEE,
2017, pp. 3381-3388.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

