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Abstract

Optimistic initialization underpins many theoretically sound
exploration schemes in tabular domains; however, in the deep
function approximation setting, optimism can quickly dis-
appear if initialized naı̈vely. We propose a framework for
more effectively incorporating optimistic initialization into
reinforcement learning for continuous control. Our approach
uses metric information about the state-action space to es-
timate which transitions are still unexplored, and explicitly
maintains the initial Q-value optimism for the corresponding
state-action pairs. We also develop methods for efficiently ap-
proximating these training objectives, and for incorporating
domain knowledge into the optimistic envelope to improve
sample efficiency. We empirically evaluate these approaches
on a variety of hard exploration problems in continuous con-
trol, where our method outperforms existing exploration tech-
niques.

1 Introduction
Reinforcement learning is the study of learning to maximize
cumulative reward while interacting with an environment
(Sutton and Barto 2018). Many tasks of interest have a nat-
urally sparse reward signal, for example reaching a goal or
satisfying a given condition. Learning in this case is signif-
icantly harder than when rewards are naturally dense, be-
cause the agent may not receive any guiding signal during
most of its training. A common approach in these cases is to
augment the sparse reward with a dense reward built using
domain knowledge, to guide training in helpful directions
(Randløv and Alstrøm 1998). However, there are three prob-
lems with this approach. First, it is not always clear how to
construct such a reward signal. Second, the learned policy
under this changed reward function may no longer be op-
timal (or even good) in the original task (Ng, Harada, and
Russell 1999). Finally, this approach may not be enough to
ensure sufficient exploration in challenging exploration do-
mains.

In the absence of a dense learning signal, the agent needs
alternative ways to motivate its decision-making. A com-
mon approach is optimistic initialization in which unob-
served transitions are assumed to be maximally desirable un-
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til proven otherwise, thus encouraging the agent to explore
(Brafman and Tennenholtz 2002; Strehl et al. 2006; Jaksch,
Ortner, and Auer 2010). In the discrete state-action set-
tings, optimistic initialization is well understood and leads
to strong theoretical regret bounds (Strehl et al. 2006). When
using function approximation, however, naı̈ve attempts at
optimistic initialization are quickly learned away due to gen-
eralization (Rashid et al. 2020; Machado, Srinivasan, and
Bowling 2015).

We introduce Deep Optimistic Initialization for Explo-
ration (DOIE), a novel, practical method for optimistically
initializing value functions that enables precise control over
the effect of generalization on optimism. Our method uses
a nearest-neighbors-based optimism module that identifies
the degree to which state-action pairs are similar to those al-
ready observed by the agent. We then compute an optimistic
value function by using this similarity measure to interpo-
late between a learned value-estimate and an optimistic en-
velope that describes an upper bound of the optimal value
function. In contrast to an engineered dense reward, this en-
velope can be defined using very little domain knowledge.
However, through value shaping, more domain knowledge
can be used to define a tighter envelope and speed up learn-
ing.

DOIE drastically improves exploration in sparse-reward
domains, and is amenable to principled approximation
schemes which allow for its use over long time scales. In
the limit of complete exploration this method reduces to
standard Q-learning and therefore does not modify the fixed
point optimal policy. On the other extreme, with no interac-
tion, the effective Q function is the optimistic envelope, thus
satisfying optimistic initialization.

We empirically investigate our method’s behavior on a va-
riety of challenging sparse reward continuous control prob-
lems, demonstrating state-of-the-art performance on a maze
navigation domain and improved sample-efficiency com-
pared with exploratory baselines on sparse-reward tasks in
the DeepMind Control Suite (Tassa et al. 2018).

2 Background
We consider sequential decision making problems repre-
sented as Markov Decision Processes (MDPs) denoted by
〈S,A, T, R, P0, γ〉, where S , A and γ are the state space,
action space, and the discount factor, respectively. The tran-



sition and reward functions are given by T (s, a) and R(s, a)
respectively, and P0(s) is the initial state distribution. In this
work we focus on continuous control problems with con-
tinuous state-and-action spaces. We further define the state-
action space as X := S ×A and denote a point in that space
as x := concat(s, a).

We seek to learn an action-selection strategy, or policy,
which results in high cumulative discounted reward. For a
given policy π, we define the state-action value function, or
Q-function:

Qπ(st, at) = Eπ[R(st, at) + γQπ(st+1, π(st+1)].

We can extract a policy from a given Q-function by choosing
the action with maximum value:

πQ(s) = arg max
a

Q(s, a).

A common method of iteravely improving a Q function pa-
rameterized by θ is through temporal difference (TD) learn-
ing (Sutton 1988; Watkins and Dayan 1992):

θ ← θ + αδ∆θQ̂(s, a; θ)

where δ = r + γmax
a′

Q̂(s′, a′; θ)− Q̂(s, a; θ) (1)

and (s, a, r, s′) tuples are drawn from experience. The
fixed point of this update equation is the Q-function that de-
scribes the optimal policy:

Q∗(st, at) = Eπ∗ [R(st, at) + γmax
a′

Q∗(st+1, a
′)]

To have principled generalization with continuous states
and actions, methods generally require an understanding of
which interactions are similar to others (Kakade, Kearns,
and Langford 2003). We formalize this by having access to
a metric over the space X , characterized by a distance func-
tion d(x1, x2).

3 Related Work
The problem of exploration with sparse rewards has been
thoroughly studied in tabular domains (Brafman and Ten-
nenholtz 2002; Strehl et al. 2006; Kearns and Singh 2002).
A prevailing approach for exploration in such domains is
optimism in the face of uncertainty (OFU), where the agent
assumes high value for unobserved state-actions to drive it-
self towards new experience (Jaksch, Ortner, and Auer 2010;
Ortner and Auer 2007; Brafman and Tennenholtz 2002). In
Q-learning, OFU can be implemented through optimistic ini-
tialization, a method in which the Q-table is initialized to
some maximum value and carefully lowered towards the em-
pirical estimates (Strehl et al. 2006).

However, tabular exploration methods are impractical in
high-dimensional or continuous environments, where an in-
finite number of different states are realizable. Modern ma-
chine learning methods have scaled to such problems using
deep function approximation, where the Q-value of each ac-
tion is represented as the output of a neural network (Mnih
et al. 2015). In continuous control problems, deriving a pol-
icy from this Q-function is non-trivial, as it requires finding

the maximum action-value over a continuous space of ac-
tions. A common strategy is to train a policy network to find
the maximum-value action for a given state; however un-
der this framework, optimistic modifications to a Q-function
are not immediately reflected in the policy. To more directly
investigate the effect of optimistic Q-values, we apply our
exploration algorithms on top of RBFDQN (Asadi et al.
2021), a continuous control architecture that achieves state-
of-the-art performance by extracting a policy directly from
its value function without using a policy network. However,
as demonstrated in Appendix D, our approach can also be
applied to state-of-the-art policy-based methods, with simi-
lar results.

A variety of works attempt to generate more scalable
forms of optimism to aid exploration in the function-
approximation setting. Prior work has investigated modify-
ing the bias term of a Q-function to induce optimistic initial-
ization (Machado, Srinivasan, and Bowling 2015), though
this form of optimism can be quickly learned away in the
deep function approximation setting. Various other methods
have introduced novelty-bonuses to aid exploration. Notable
examples include bonuses based on density estimation and
pseudocounts (Bellemare et al. 2016; Ostrovski et al. 2017),
the error of predicting a random neural network’s output
(RND) (Burda et al. 2019), and the error of predicting an
environment’s transition dynamics (model-predictive error,
or MPE) (Houthooft et al. 2016; Pathak et al. 2017). These
bonuses can be applied both during bootstrapping (Belle-
mare et al. 2016) and during action-selection (Rashid et al.
2020). Though these methods scale to large problems, they
often do not utilize information which may be known about
an environment’s structure.

In more structured environments, an agent can fre-
quently take advantage of metric-based learning (Kakade,
Kearns, and Langford 2003). Recent theoretical results have
bounded cumulative regret by assuming Lipschitz continuity
of either the optimal Q-function or the transition function, in
both deterministic (Ni, Yang, and Wang 2019) and stochas-
tic (Pazis and Parr 2013; Touati, Taiga, and Bellemare 2020)
domains. However, due to their restrictive assumptions these
methods may be computationally impractical to apply as the
dimensionality of the learning domain increases.

An additional way to improve exploration performance
is by incorporating domain knowledge into learning algo-
rithms. For example, in discrete MDPs, specifying tighter
upper bounds for Q-values can increase learning speed (Abel
et al. 2018). For online learning, potential-based reward
shaping biases exploration towards user-defined “high po-
tential” regions of the state space (Ng, Harada, and Russell
1999). When a goal-state is known, various goal-diversity
methods can be used to improve exploration (Pitis et al.
2020; Trott et al. 2019). For situations where a general out-
line of the desired policy is known, defining initiation and
termination conditions in the options framework (Sutton,
Precup, and Singh 1999) biases exploration towards learn-
ing useful sub-policies.

Our work is situated at the intersection of these three lines
of progress: bonus based exploration (Taı̈ga et al. 2020),
RL in metric spaces (Kakade, Kearns, and Langford 2003)



Algorithm 1 Iterative Covering Set Creation
Input: radius ε
Initialize X̂ = {}.
for each episode do
s← env.reset()
for each step do
a = π(s)
x = (s, a)
dmin = min

(x′)∈X̂
d(x, x′)

if dmin > ε then
X̂ ← X̂ ∪ {x}

end if
s ∼ T (s, a)

end for
end for

Figure 1: Left: Algorithm describing covering-set creation. Right: A visualization of d̂min in a 2-dimensional state-action
space. Green points at the center of each circle represent the filtered covering-set. Blue points represent observed state-actions.
Red points represent “query points”. The blue solid line is d̂min. Note that d̂min = 0 for the red point within the covering-ball,
and that d̂min ≤ dmin always. The approximation d̂min is equivalent to assuming we have encountered every point in each green
ball. If the green balls cover the entire state-action-space, then d̂min ≡ 0.

and incorporating domain knowledge using shaping (Ng,
Harada, and Russell 1999). We assume continuity of the op-
timal Q function, and provide a practical method for neural-
network based learning while maintaining optimism of tran-
sitions far from those which have previously been encoun-
tered. In contrast to other bonus-based methods, we di-
rectly take advantage of the metric structure present in many
continuous control problems. We further provide a simple
method for incorporating domain knowledge into the learn-
ing algorithm for faster convergence, which in challenging
exploration problems can be more effective than a hand-
crafted dense reward (Mataric 1994).

4 Optimistic Initialization in Continuous
MDPs

The intuition behind DOIE is to construct a modified Q func-
tion that takes on an optimistic value for transitions far out-
side the agent’s experience, and smoothly relaxes to empir-
ical estimates for transitions near those which have been
observed. This can be achieved through the use of known-
ness, a quantity which equals 1 for observed transitions, and
smoothly decays to 0 for state-actions far away from any
observations. Given a knownness function κ(s, a) satisfying
these properties, we can construct an optimistic Q-function,
Q+, as follows:

Q+(s, a) = κ(s, a)Q(s, a) + (1− κ(s, a)) Qmax(s, a).
(2)

Choosing an optimistic upper-bound where Qmax ≥ Q∗

everywhere ensures that Q+(s, a) ≥ Q(s, a), and thus in-

centivizes the agent to explore regions of the state space
with low knownness. Qmax frequently can be specified using
commonly-known quantities of an environment. For exam-
ple, when the maximum per-timestep reward rmax is known,

Qmax =
rmax

1− γ
.

When an episode terminates after achieving the reward, such
as in goal-directed tasks,

Qmax = rgoal.

We use this optimistic Q function for both bootstrapping:

Q(s, a)← r(s, a) + max
a′

γQ+(s, a′) (3)

and action-selection:

πQ+(s) = arg max
a

Q+(s, a). (4)

We now describe the measure of knownness for a state-
action pair. As stated earlier, we would like knownness
to quantify similarity of the state-action to previously ob-
served state-actions. We assume X is endowed with a met-
ric, d(x1, x2), that quantifies such similarity, as is common
in many works in continuous RL (Ni, Yang, and Wang 2019;
Asadi, Misra, and Littman 2018). We define knownness as a
function of the distance to the closest state-action which the
agent has observed:

κ(x) = β(dmin(x)) (5)

dmin(x) = min
x′∈X

d(x, x′). (6)



where β(d) is a kernel function such that β(0) = 1 and
decays monotonically to zero as d goes to infinity, and X is
the set of all previously observed state-actions. In this work
we use

β(d) =
1

1 + (d/d0)2
(7)

where d0 is a lengthscale parameter that quantifies how
quickly the value of Q can change. This function mimics
the Gaussian function near the origin, but does not fall away
exponentially as d increases.

A natural metric for such a task is L2. We can make this
metric more flexible by allowing for different weighting of
different state-action dimensions in the following way:

d(x1, x2) = |Ax1 −Ax2|2 (8)

We note that this definition of knownness is similar to
one presented in prior work (Nouri and Littman 2009), ex-
cept that ours modulates only the next-state’s value, rather
than the entire update target. This is more suited to continu-
ous control, where domains are often only mildly stochastic
and thus every (s, a) in an agent’s experience will be largely
known, while the same cannot be said about every (s′, a′).

4.1 Covering sets for Efficient Knownness
The computational complexity of a naı̈ve implementation of
our knownness calculation scales linearly with the number
of state-actions visited. For tasks which require substantial
interaction to solve, this quickly becomes infeasible. We in-
troduce a simple approximation algorithm which maintains
a filtered set of state-actions that is an ε-covering of all seen
state-actions so far (Algorithm 1). A subset X̂ of X is an
ε-covering if:

∀x ∈ X ∃x̂ ∈ X̂ s.t. d(x, x̂) ≤ ε.

We define d̂min(x) as the distance of x to the ε-ball around
any member of the covering-set:

d̂min(x) = max

{
min
x′∈X̂

d(x, x′)− ε, 0

}
, (9)

and analogously the approximate knownness as:

κ̂(x) = β(d̂min(x)). (10)

We choose dmin as such so that κ̂(x) is an efficiently-
computable upper bound of the true knownness (proof in
Appendix A):

κ̂(x) ≥ κ(x). (11)

Furthermore, if X is a compact metric space, and X̂ is an
ε-covering of X , it follows that κ̂(x) = 0 for all x ∈ X .
Thus, this approximation preserves the desirable property
that knownness goes to 0 everywhere in the limit of thorough
exploration. Figure 1 diagrams the filtering process and the
relationship between κ̂(x) and κ(x), and provides intuition
on the lower-bound of equation 11. We examine the time,
space, and performance tradeoffs of this approximation in
section 5. Details for adaptive filtering in domains where the
scale of the state space is not known a priori can be found in
Appendix B.

4.2 Value Shaping
An attractive property of optimistic initialization is that it
allows for easy incorporation of domain knowledge through
specifying a shaped upper bound to the Q-function. At a high
level, optimistic initialization works by pinning the values
of completely unknown state-actions to Qmax, and “whit-
tling down” the excess optimism through interaction, until
Q(s, a) approaches Q∗(s, a). How much whittling is neces-
sary is a function of how over-optimistic Qmax is. For exam-
ple, if Qmax(s, a) = Q∗(s, a) then the initial policy of Q+

will be optimal, and no further learning is necessary.

Figure 2: Fraction of state space explored by all explo-
ration methods over 2000 episodes. While both DOIE and
OMEGA eventually cover the state space, DOIE accom-
plishes it in roughly half the episodes.

Figure 3: Success percentage of Optimistic Initialization
and baselines on PointMaze over 2000 episodes. The shaded
region represents the standard deviation over 5 runs. Only
OMEGA and DOIE reach the goal in the allotted time.



Figure 4: State visitation of the three best-performing models throughout the first 1000 episodes on PointMaze. Left: OPIQ,
center: OMEGA, right: DOIE. Color denotes episode number, with blue being near the beginning of training and yellow near
the end.

Clearly, being given Q∗(s, a) as an initialization is an un-
realistic scenario, because learningQ∗ is the goal of interac-
tion. However, it is often possible to use domain knowledge
to lessen the distance between Qmax andQ∗ while maintain-
ing the crucial property that Qmax(s, a) ≥ Q∗(s, a) every-
where. In section 5.3, we provide an example of value shap-
ing which accelerates learning for a task where the agent has
access to the location of its terminal goal-state.

5 Empirical Results
We test our method on three sets of domains. First, we
investigate our method’s exploration performance in detail
on a challenging point navigation task, achieving state-of-
the-art sample efficiency. We then compare our method to
a variety of exploration baselines on modified versions of
the benchmark tasks in the DeepMind Control Suite (Tassa
et al. 2018). Finally, we investigate the efficacy of reward
and value shaping in MountainCar (Singh and Sutton 1996).
Details on architectures, training procedures, resource usage
and shaping functions are included in Appendix D. All code
used to generate results is included as supplementary mate-
rial.

5.1 PointMaze
PointMaze (Trott et al. 2019) is a challenging continuous
control problem with sparse rewards where an agent at-
tempts to navigate a 2D maze (pictured in Figure 4) from the
lower-left corner to the upper-right corner. As in prior work,
the agent has 50 steps before it is reset to the starting region;
an optimal agent would reach the goal in roughly 25 steps
(Trott et al. 2019). Neither uniform random exploration nor
ε-greedy training (Sutton and Barto 2018) solves this prob-
lem within 5,000 episodes, so some form of directed explo-
ration is necessary for efficient learning.

We compare against the following bonus-based explo-
ration methods:
• Random Network Distillation (RND), a bonus derived

from the error of predicting a randomly-initialized neural
network’s output (Burda et al. 2019).

• Model-Predictive Error (MPE), a bonus derived from the
error of predicting the environment’s transition model
(Pathak et al. 2017).

• Pseudocounts with action-selection bonus (OPIQ), with
counts calculated from a discretization of the normalized
state-action space (Rashid et al. 2020).

We also compare against a previous method which en-
forces optimistic initialization through the value function’s
bias term (OptBias) (Machado, Srinivasan, and Bowling
2015), and against OMEGA (Pitis et al. 2020), a goal-
conditioned exploration algorithm which achieves previous
state-of-the-art performance on this domain. For OMEGA
we use publicly available code; for all other methods we in-
tegrate the novelty-bonus or initialization into an RBFDQN
(Asadi et al. 2021) base agent. Finally, we include ε-greedy
RBFDQN and a random agent as non-exploratory baselines.
Details of all architectures and bonuses are included in Ap-
pendix D.

Figure 5: Comparison of exploration amounts versus
knownness speedup for various approximation filter radii.
As filtering becomes more aggressive, exploration is less ef-
fective.



Ability to Explore We begin by investigating the ability
of our method to efficiently explore the state space. We vi-
sualize the agent’s trajectories through training in Figure 4.
By the 1000th episode, optimistic initialization has guided
the agent through the majority of the state space, while none
of the baseline exploration methods have yet explored in the
region of the goal. We quantify this exploration in Figure 2
by partitioning the maze into a 40 by 40 grid, and tracking
the number of these squares that each agent visits through-
out training. Optimistic initialization quickly covers the state
space after 1000 episodes, while the strongest baseline takes
2000 episodes to cover similar area.

Performance Results Figure 3 demonstrates the learn-
ing performance of each method over 2000 episodes. Be-
sides OMEGA, the remaining baseline methods are unable
to reach the goal even after extensive hyperparameter tun-
ing. This is consistent with the exploration graphs presented
in the prior section. OMEGA is able to reach the goal con-
sistently, but first reaches the goal nearly 300 episodes after
our method.

Effect of approximation Naı̈ve nearest-neighbor calcula-
tions involve computing the distance between a query point
and every point the agent has encountered, and thus exact
nearest-neighbors is impractical for long learning interac-
tions. In section 4.1 we described a filtering method that
makes this process much faster, at the expense of the gran-
ularity of the knownness calculation. We investigate the re-
lationship between filtering amount and exploration by plot-
ting the speedup of the knownness calculation versus explo-

ration amounts at 500 episodes for a variety of filtering radii
(Figure 5). As expected, we see that increasing the amount
filtered decreases exploration performance. Our experiments
are performed with intermediate values of filtering, so as to
train acceptably quickly while still providing the benefits of
exhaustive exploration.

5.2 DeepMind Control Suite

To gauge the general exploration ability of our method, we
test our method on modified versions of four sparse-reward
tasks from the DeepMind control suite (Tassa et al. 2018):
Pendulum, Hopper Stand, Acrobot, and Ball in Cup (Figure
6). Normally, each of these environments would be initial-
ized, on reset, to a random state, which actually provides
good coverage of the state space (including near the goal)
and largely obviates the need for directed exploration. To
make the problems more challenging, we modify the envi-
ronments by performing 1000 no-op actions at the beginning
of each episode in order to settle to a state far from the re-
warding region, thus increasing the exploration required to
solve the task. For more details on the environments, refer to
Appendix C. We compare to all methods listed in section 5.1
except for OMEGA, as these tasks are not goal-directed. The
tasks vary from low-dimensional (Pendulum, |X | = 4) to
relatively high-dimensional (Hopper Stand, |X | = 19). Our
method performs competitively on all domains, outperform-
ing all baselines at early-stage learning on Acrobot, Ball in
Cup, and Hopper Stand, and learning more quickly than all
but RND on Pendulum.

Figure 6: Performance on tasks in the DM Control Suite. The shaded region represents the standard deviation over 8 runs.
Colors correspond to the same methods across domains.



Figure 7: Learning curves for uniform optimistic initial-
ization (blue) as well as shaping (brown) and anti-shaping
(gold) on MountatinCar. Optimistic initialization allows us
to use value shaping for more efficient learning, while even-
tually learning an optimal policy is robust to value-shaping
misspecification. In comparison to reward shaping, value
shaping is much more effective at finding a solution. For
this task, OptBias and RBFDQN (not shown) were unable
to solve the task in the allotted time. The shaded region rep-
resents the standard deviation over all 10 runs.

5.3 Value Shaping
We now demonstrate how our method allows us to in-
corporate domain knowledge through specifying a state-
dependent Qmax, as described in section 4.2. We test our
method on MountainCar, a low-dimensional yet challenging
continuous control exploration problem that requires first
moving away from the goal in order to build momentum.
Using the goal-position sg , the agent’s max speed vmax, and
the reward for reaching the goal rg , we can calculate an up-
per bound of the optimal Q-function Q∗:

Qmax(s, a) = rgγ
|sg−s|/vmax . (12)

We limit the episode length to 80 steps, which necessitates
directed exploration in order to reach the goal. Our results
are presented in Figure 7.

In comparison to a uniform Qmax, when we provide a
tighter upper bound through value shaping we see the agent
explore much more quickly. We also include a reversal
of this shaping (anti-shaping), which maintains the upper-
bound property Qmax ≥ Q∗ but sets the upper-bound value
higher away from the goal. Though this deliberately pro-
vides the agent with bad advice, notably the agent still learns
to reach the goal, albeit more slowly. While value shaping
specifies regions of the state-space which should be explored
first, since the optimism is learned away the agent still even-
tually explores until it finds the solution in all runs.

We contrast this to augmenting the environment with a
dense reward, which is a common strategy for solving chal-
lenging sparse-reward tasks (Randløv and Alstrøm 1998).
We add to the sparse reward a shaped potential-based re-
ward (Ng, Harada, and Russell 1999) that is proportional
to the progress made towards the goal in a given timestep.

This shaping provably does not change the optimal learned
Q-function (Ng, Harada, and Russell 1999), and provides
roughly the same information as our value-shaping. Despite
this, the agent is quite slow to complete the task, and only
finds a solution in 3 out of 10 runs in the allotted time.
Through observation we discover that the agent constantly
actuates to the right, myopically maximizing its cumulative
reward but not gathering the data necessary to learn the opti-
mal solution. We posit this problem remains in more compli-
cated tasks, and that this common augmentation procedure
may frequently learn policies which are locally, but not glob-
ally, optimal.

6 Conclusion
Optimistic initialization is foundational to reinforcement
learning in discrete MDPs; in this paper we develop tech-
niques that successfully apply this concept to deep neural
networks used to solve continuous control problems. By tak-
ing advantage of the smoothness of metric spaces common
to many such problems, we develop a simple, yet effective
method for sample-efficient exploration. Thorough experi-
mentation in six domains demonstrates that the proposed
method outperforms several popular exploration algorithms.
We additionally introduce an approximation technique that
uses covering sets to preserve many desirable training prop-
erties while making our method computationally practi-
cal on long time-horizons. Finally, via value shaping, we
show how optimistic initialization can be used to incorpo-
rate domain knowledge into Q-estimates, further accelerat-
ing learning in challenging problems. We view the synthesis
of these techniques as a step towards sample-efficient explo-
ration in sparse-reward continuous control.
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