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Abstract

Antibiotic resistance genes (ARGs) are commonly detected in the atmosphere, but questions
remain regarding their sources and relative contributions, bacterial hosts, and corresponding
human health risks. Here we conducted a qPCR- and metagenomics-based investigation of
inhalable fine particulate matter (PM>s5) at a large wastewater treatment plant (WWTP) and in
ambient air of Hong Kong, together with an in-depth analysis of published data of other
potential sources in the area. PM> 5 was observed with increasing enrichment of total ARGs
along the coastal-urban—-WWTP gradient and clinically relevant ARGs commonly identified
in urban and WWTP sites, illustrating anthropogenic impacts on the atmospheric accumulation
of ARGs. With certain kinds of putative antibiotic-resistant pathogens detected in urban and
WWTP PM; s, a comparable proportion of ARGs co-occurred with MGEs was found between
the atmosphere and WWTP matrices. Despite similar emission rates of bacteria and ARGs
within each WWTP matrix, about 11-13% of the bacteria and >57% of the relevant ARGs in
urban and WWTP PM, 5 were attributable to WWTPs. Our study highlights the importance of
WWTPs in disseminating bacteria and ARGs to the ambient air from a quantitative perspective,
and thus the need to control potential sources of inhalation exposure to protect the health of

urban populations.

Keywords

WWTP; inhalable antibiotic resistome; emission rate; ARG host; pathogen; health risk.

Synopsis: The study highlights the important role of WWTPs in disseminating bacteria and
antibiotic resistance genes (ARGs) to the ambient air of urban areas from a quantitative

perspective.
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1. Introduction

Antibiotic resistance has become a growing threat to public health. It is estimated that the
continued development of antimicrobial resistance will result in 10 million deaths per year and
100 trillion USD in economic losses by 2050 [1]. Some ARGs are intrinsic to some bacteria;
however, other ARGs are mobile and can be horizontally transferred to a broad range of host
bacteria, a phenomenon that appears to be exacerbated by anthropogenic activities [2]. Inputs
of antimicrobials and antibiotic resistance genes (ARGs) to terrestrial and aquatic
compartments from various human, agricultural, and industrial sources have now been widely
documented [3-10], but only recently is the atmosphere beginning to be recognized as a
potential key reservoir of ARGs [11-14]. Notably, ARGs have been found to be associated with
airborne particles. In particular, ARGs associated with fine particulate matter (PM2.s) pollution
present a concern because PM» 5 can penetrate deep into the human lung. While other studies
have begun to consider the implications of ARG exposure via water/food ingestion and skin
contact, there is a need to better characterize the range of inhalation exposures to ARGs [14-
16]. Such exposures are of particular concern when it can be confirmed that ARGs are carried
within pathogens suspended in the atmosphere, as has been suggested by prior studies [13,17-

19].

Recent studies are painting a picture of differential ARG distribution in the atmosphere at
global and regional scales [11,16], implying that spatial heterogeneity of ARG sources is likely,
including in the numbers and types of ARGs emitted. This is in addition to varying atmospheric
conditions (e.g., smog) that can influence the transport of resistant strains and potentially also
impose selective pressure on their survival. Various potential sources of airborne ARGs have
been recognized, including typical anthropogenic ARG hotspots, such as livestock farms,

wastewater treatment plants (WWTPs), hospitals, and solid waste treatment systems [20-22].
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Diminishing concentrations of source-indicative bacterial and ARG species in the atmosphere
with increasing distance from putative source sites, along with close resemblance of ARG
profiles between putative sources and nearby aerosols provide strong evidence of key
anthropogenic sources [22,23]. However, there is a need to move towards quantifying ARG
contributions from various putative sources to the ambient air. Recently, some quantitative
source-predictive models, such as SourceTracker [24], have been applied towards source
apportionment of ARGs found in sediment and urban stream samples [25,26]. They could

potentially be extended to airborne ARGs.

Among putative airborne sources, WWTPs are prime candidates for consideration. They are
fundamental to urban infrastructure and are known to receive high concentrations of
antimicrobials, antibiotic-resistant bacteria (ARB), pathogens, and ARGs. Recent studies
indicate that the treatment processes (e.g., aeration) of WWTPs tend to produce bioaerosols of
less than 1-2 pum in size, which is within the respirable range [27,28]. Some studies have
correspondingly noted the frequent occurrence of bioaerosol-inducing respiratory symptoms
among WWTP operators [29]. In contrast to bacteria, few studies have touched on the field of
ARG emissions from wastewater and sludge, especially through metagenomics-based
approaches. One recent study provided qualitative comparisons of antibiotic resistome (i.e.,
total ARGs carried across a sample) profiles between activated/dewatered sludge and
bioaerosols, but did not provide a quantitative assessment, such as emission rates [30].
Moreover, antibiotic-resistant pathogens are known to exist in WWTP bioaerosols, as
confirmed by culture-dependent methods [31]. The systematic screening of metagenomic data
to identify linkages of ARGs with potential pathogenic host bacteria in WWTP aerosols of
inhalable range could help to better define the range and extent of associated inhalation

exposure and risks, in particular with considerations of World Health Organization (WHO)



102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

priority pathogens and clinically-relevant ARGs [32,33]. Further examining the co-occurrence
of ARGs with mobile genetic elements (MGEs) could provide additional insight into the extent

to which horizontal gene transfer (HGT) occurs among airborne bacteria.

Given the hypothesis that WWTPs are a major source contributor to urban airborne bacteria
and ARGs, we conducted a qPCR- and metagenomics-based study of the bacterial and ARG
profiles of various compartments and surrounding PM; 5 at a large WWTP in Hong Kong, with
urban and coastal PM> s included as well. Based on assembled contigs, we assessed the mobility
of ARGs and potential carriage by pathogenic bacteria, i.e., the “resistome risk” [34] of
airborne ARGs across urban land-use types. Metagenomes of samples in the current study were
further congregated with publicly available sequencing data of other putative emission sources
to predict the source profiles of airborne bacteria and ARGs in WWTP and urban areas. A
simple one-box model was then applied to estimate the airborne emission potential of bacteria
and ARGs in WWTP-relevant matrices to surrounding environments. Overall, we aimed to
quantify the contribution of WWTPs to airborne bacteria and ARGs in urban environments,
which can help to advance understanding of the potential exposure risks of airborne antibiotic

resistance posed to large urban populations.

2. Materials and Methods

2.1 Site description and sampling strategy

A PM> s sampling campaign was performed at the Stonecutters Island Sewage Treatment
Works (SCISTW), the campus of The Hong Kong Polytechnic University (PU), and the Hok
Tsui Regional Air Monitoring Station (HT) in Hong Kong, representing WWTP, urban, and
coastal background environments, respectively (Fig. 1A; Table S1). SCISTW is the largest

sewage treatment plant in Hong Kong, serving almost half the city’s population, with a
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designed daily capacity for treating 2.45 million m® of sewage. It applies the process of
chemically enhanced primary treatment (CEPT) without secondary biological treatment before
discharging the dinsinfected effluent. The sampling period lasted from 24 to 30 October 2016
at SCISTW and HT, and from 28 October to 4 November 2016 at PU. 24-hour PM» 5 samples
were collected daily on pre-baked (500°C for 5 h) quartz filters (8 x 10 in.?, PALL) using high-
volume air samplers (TH-1000C II, Wuhan Tianhong Instruments Co., Ltd., China) at a flow
rate of 1 m® min’!. Single samplers were set up to collect PMa 5 samples at PU and HT, while
four sites were selected for simultaneous sampling at SCISTW, namely the flocculation tank
(FT), sedimentation tank (ST), primary sludge storage tank (SST), and barge facility for
primary sludge transportation (BF) (Figs. 1B and S1). One sampler was placed beside each of
the abovementioned sites, except the BF site equipped with two samplers in 2 m intervals as
duplicates. A blank filter was placed in a non-operating sampler at the flocculation tank, PU,
and HT for quality control. Correspondingly, aqueous sewage samples, including screened
influent, flocculation tank sewage, sedimentation tank effluent, and final effluent after de-
chlorination, as well as CEPT sludge (primary) before centrifugation and sludge cake (primary)
ready for transport to be incinerated at a sludge treatment facility (T-PARK), were collected
daily from 24 to 28 October 2016 in SCISTW (Fig. 1B). Samples were kept at 4°C and
transported immediately to the laboratory for analysis. More detailed information on SCISTW,
the meteorological parameters, and the collected samples (sampling period and sample size) is

provided in Section S1, Figs. S2 and S3, and Tables S2 and S3 in the Supporting Information.

2.2 Sample pretreatment and DNA extraction
Since quartz filter is not suitable for direct DNA extraction due to its hygroscopicity, each
PM> s sample was cut into segments and repeatedly sonicated with sterilized 1x phosphate-

buffered saline (PBS) for three times (20 min each time) in an ice-water bath to get particles
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off from quartz filters. PBS extracts from the same sample were combined and filtered through
a 0.2-um polyethersulfone (PES) membrane disc filter (47 mm, PALL). Blank filters were
treated simultaneously using the same operation procedure. Influent, flocculation tank sewage,
and sedimentation tank sludge collected from the sludge storage tank (~100 mL) were
centrifuged at 9840 g and 4°C for 10 min upon arrival at the laboratory; the supernatant was
carefully discarded, and the pellets were kept. With regard to the sedimentation tank effluent
and de-chlorinated discharge, 250 mL solutions were filtered through 0.2-pum PES membranes
(PALL). All samples were preserved at —80°C before DNA extraction. All the tools and

consumables used were sterilized.

DNA extraction was conducted using the FastDNA SPIN Kit for Soil (MP Biomedicals)
according to the manufacturer’s instructions, except for a modified purification step involving
the use of Agencourt AMPure XP beads (Beckman Coulter) for PM» s samples [17,35]. The
0.2-um membrane disc filters of effluent and PMb» s were first cut into pieces, while the pellets
from sewage and sludge (around 150 mg) were directly used as inputs for the DNA kit. DNA
extraction efficiency of the current method for air samples has been estimated in our prior study
[36] and listed in Table S4. For each sewage/sludge/effluent sample, DNA extracted in
triplicate were pooled together to reduce heterogeneity and then purified using the DNeasy
PowerClean CleanUp Kit (QIAGEN). DNA extracts of PM>s from every three or four
consecutive days in each site were combined to ensure sufficient material for a downstream
analysis; DNA extracts of other samples from the same sites were combined in a manner
corresponding to the time divisions of the PM> s samples and based on the daily flow of influent
(Table S2). Finally, 13 PM2s DNA samples covering the entire sampling period, 3 DNA
samples of the field blanks, and 3 sewage, 2 effluent, and 2 sludge DNA samples covering

around half of the sampling period were used for downstream experiments (Table S3).



177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

2.3 qPCR quantification of 16S rRNA genes and shotgun metagenomic sequencing

DNA extracts of PM> s and sewage/sludge/effluent samples were diluted 10 and 100 times,
respectively, to minimize PCR inhibition before quantification of the 16S rRNA gene on a
StepOnePlus Real-Time PCR System (Applied Biosystems). The dilution factor was
determined by testing a number of randomly selected samples (for details of qPCR, please refer
to Section S2 of the Supporting Information). Subsequently, around 25-100 ng undiluted DNA
of each sample was used for low-input library construction and shotgun metagenomic
sequencing on an [llumina Hiseq X Ten platform with the PE150 strategy. In total, 444 GB of
clean data from 20 samples (excluding field blanks that failed in library construction) were
obtained after trimming sequencing adaptors and filtering low-quality reads using fastp
(v0.21.0 with default parameters) [37]. The sequencing data were uploaded to the NCBI
BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) with the accession number of

PRINA693982.

2.4 Bioinformatic and statistical analysis

Taxonomy classification was conducted in Kraken 2 (v2.0.8-beta) [38] and Bracken (v2.5.0)
[39] using the standard Kraken 2 database. ARGs were predicted using the DeepARG (v1.0.2)
pipeline [40] (--deeparg_identity 70 --gene coverage 5 --deeparg_probability 0.8) and doubled
checked by manual inspection. Alpha diversity (Shannon index) was calculated (“vegan”
package [41] in R) after a rarefaction of all sequencing data to 17,754,687 reads per sample,
the minimum read number in all of the samples (Table S5), using the segkit tool [42]. Venn
diagrams and Upset plots revealing the intersections of bacterial communities and ARG
profiles among different sample types were drawn using the “UpSetR” package [43] in R.

Afterwards, a non-metric multidimensional scaling (NMDS) analysis was conducted to
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differentiate the bacterial and ARG profiles among different samples based on Bray—Curtis
dissimilarity, which was followed by a further identification of the determined biomarkers with
a linear discriminant analysis (LDA) effect size (LEfSe) method [44]. Procrustes analysis was
then used to check the similarity of bacterial and ARG distribution. Permutational Multivariate
Analysis of Variance (PERMANOVA) and Dunn’s test for a post-hoc Kruskal-Wallis

comparison were conducted using a “vegan” package [41] in R.

To evaluate the co-occurrence patterns of ARGs, MGEs, and bacteria, clean sequencing data
were assembled on the MetaStorm platform [45] using the built-in iterative de Bruijn graph de
novo assembler for short reads sequencing data with highly uneven sequencing depth (IDBA-
UD) [46]. The output contigs (summary statistics in Table S5) were then deposited in the
NanoARG platform [47] for annotation of ARGs, MGEs, and putative bacterial hosts. Briefly,
ARGs were predicted against DeepARG database using DeepARG-LS model (--iden 70 --prob
0.5 --cov 40) [40]; MGEs were aligned to a combined NCBI non-redundant database and
integron-integrase (I-VIP) database using DIAMOND (--id 70 --evalue 1e-5 --query-cover 40)
[48]. Taxonomy annotation was conducted using Centrifuge with default parameters [49].
Samples with less than 10 ARG-carrying contigs assembled were excluded from downstream
contig-based analyses. Human pathogens, including those known to commonly manifest in
resistant infections, such as ESKAPE (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter spp.) and other WHO priority pathogens in urgent need of novel antibiotics for
treatment (Table S6), were identified according to the pathogen list (species level) summarized
in a previous study [50] with minor updates (Table S7). The genetic location (chromosome or
plasmid) of the identified ARGs was analyzed using PlasFlow (v1.1 with default parameters)

[51]. ARGs co-localized with integrase/transposase/recombinase-encoding genes were
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considered potentially mobile. Assembled data were uploaded to the online MetaCompare
platform to evaluate the potential horizontal dissemination risks of ARGs [34], which was
based on the co-occurrence patterns of ARGs, MGEs, and pathogen-like sequences on
assembled contigs. In addition, although constrained by the total sequencing depth,
metagenome-assembled genomes (MAGs) were constructed using metaWRAP (v1.2.1) [52]
and annotated for ARGs, MGEs, and bacterial hosts (detailed information in Section S3 in the

Supporting Information).

2.5 Source tracking and estimation of bacterial and ARG emissions from WWTPs

SourceTracker (v1.0.1) [24] was adopted in R with default parameters to explore the
contributions of diverse putative sources (e.g., soil, freshwater, seawater, sediment, landfill
leachate, human skin, oral cavity, human airway, and WWTP sewage/sludge/effluent) to the
airborne bacteria and ARGs. About 345 shotgun metagenomic sequencing data in total,
including 338 downloaded from the NCBI and MG-RAST databases (listed in Table S8) and
7 from this study (sewage/effluent/primary sludge), were used as source samples in source
tracking, while the remaining 13 PM> s samples were treated as sink samples. To focus on the
local situation, most of the downloaded samples were from Hong Kong and South China,
except those without suitable metagenomic data from Hong Kong. Considering that WWTPs
with secondary treatment systems could also be an important source, sequencing data of
activated sludge from the largest secondary WWTP in Hong Kong, namely the Sha Tin Sewage
Treatment Work, were also retrieved from the NCBI database and included in source tracking.
All data were subjected to the same bioinformatic analysis pipeline in fastp, Kraken 2, Bracken,
and DeepARG. Bacterial profiles at the species level and ARG profiles at the ARG subtype
level, after removing those presented in less than half of the samples in each source, were used

as the input for SourceTracker. The prediction performance of SourceTracker based on the
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current source data was evaluated using leave-on-out cross-validation strategy as proposed by

Liet al. [25]

To further estimate the emission of bacteria and ARGs from different WWTP media to the
ambient air (PM; s-based), a simple one-box model was applied for calculation (Fig. 1C) with
the following assumptions: 1) the flux of PM; s-associated bacteria and ARGs in and out of the
box was from top to bottom; 2) there was no deposition inside the box; and 3) PM; s-associated
bacteria and ARGs were well mixed within the box and under a steady state during the
sampling period. In sum, SCISTW was regarded as a cubical box of length L, width W, and
height H. The emission potential of bacteria (using the 16S rRNA gene as an indicator) and
ARGs from different WWTP matrices within the box was calculated based on the law of

conservation of mass following Equations 1-4.

d(LS/tHC) = Etotar + (Cin — O)v,WH + (C;, — C)vy, LH; for a steady state, Z—i =0
Equation 1
E; = Etotaili> i i = 1 and i = sewage, sludge, and effluent
Equation 2
E; = Q;q;, i = sewage, sludge, and effluent
Equation 3
Emission rate; = C(:Zrici’ i = sewage, sludge, and effluent
Equation 4

In Equation 1-4, C;;,, and C represent the concentration of target genes (PMa s-associated 16S
rRNA gene or ARGs [copy m™]) in the inflow air and air within the box, respectively. t refers
to time (s). v;, and v, are the decomposed wind speeds (m s™!) parallel to the length and width
direction of the box, respectively, while E is the emission of target genes per unit of time (copy

s™1) from the whole SCISTW (fotal) or different matrices (i) inside. p; refers to the contribution

11
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of the individual matrix (i) to PM2 s-associated bacteria or ARGs within SCISTW, which can
be converted from the result of SourceTracker. Q; is the daily flow of sewage/effluent (m> d™!)
or CEPT sludge (kg d™!). ; is the emission of target genes (respirable size) per unit volume of
sewage/effluent (copy m™) or per unit weight of sludge cake (copy kg') to the atmosphere.
Conc; refers to the concentration of target genes in sewage/effluent (copy m™) or sludge (copy
kg™!). In this study, 350 m in length, 285 m in width, and 12 m in height were adopted according
to the occupied area of SCISTW and the height of flocculation/sedimentation tanks plus the
height of the air sampler. The concentration of PM; s-associated 16S rRNA genes (or ARGs)
in HT with the contribution from WWTP deducted, and that in SCISTW were used as C;,, and
C, respectively. The amount of 16S rRNA genes (PM2 s, sewage, sludge, and effluent) was
quantified by qPCR, while the total amount of ARGs was the product of the amount of 16S
rRNA genes and the relative abundance of ARGs (normalized to the 16S rRNA genes)
predicted by DeepARG. v; and v, were calculated from the wind speed and wind direction
during the sampling period recorded by our weather station (Fig. S2). The daily inflow of
influent (Table S2) was used as Qgewage and Qeffruent> While Qgpqge Was estimated to be

600,000 kg d”! during the sampling period.

3. Results and discussion

3.1 Differences in bacterial community composition in PM2.s compared with aqueous and
solid WWTP samples

Overall, more than 99% of the annotated bacterial reads could be assigned to the species level
(rarefaction curves presented in Fig S4). A high number of shared bacterial species between
sewage/primary sludge/effluent and PMzs (97% of all bacterial species identified) was
observed (Fig. S5A). This suggests that PM> 5 could be substantially influenced by WWTPs as

a source, even significantly downwind. However, the PM> 5 bacterial community structure at
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the species level was significantly different from that in sewage/primary sludge/effluent
samples in SCISTW (p < 0.001) (Figs. 2A and S6), even though the bacterial species they
contained were similar. As revealed by a LefSe analysis, Actinobacteria, which play an
important role in decomposing organic materials [53], could be indicative taxa in the
atmosphere, in contrast to sewage, primary sludge, and effluent in SCISTW rich in
Pseudomonas (LDA score > 4.5, p < 0.05) (Fig. 2B). When making comparisons along the
land-use transect, the bacterial community structure in urban and SCISTW PM»s was more
stable than the coastal background PM; s, as reflected by the higher Shannon index scores (Fig.
2C) and was well-separated from them (Fig. 2A). This pattern is consistent with different
dominant sources of airborne bacteria across local geographical locations under different levels
of disturbance from human activities. Compared with coastal areas, an increase of over one
order of magnitude in the concentration of PMb»s-associated 16S rRNA gene (indicating
bacterial loads) was noted in urban/SCISTW sites (Fig. 2D), which also suggests higher
absolute contributions of potential sources and a more bacteria-favorable atmospheric

condition in human-impacted areas.

3.2 Broad spectrum of ARGs found in WWTP and urban PM2.s

More than eight dominant types of ARGs (their relative abundance normalized to the 16S
rRNA gene > 0.05) were identified in most of the samples (Fig. S7). The total relative
abundance (Fig. 3A) and richness (subtype number) (Fig. S5B) of ARGs in PM> 5 were elevated
across the coastal-urban—SCISTW transect, finally becoming comparable to the
sewage/primary sludge/effluent samples in SCISTW. This remarkable pattern highlights a
highly diverse airborne resistome under potential impacts by human activities, especially from
WWTPs. This pattern also mirrors the ranking of major ARG types by relative abundance

across the different samples. In general, the descending order of relative abundance was:
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multidrug resistance (0.62—1.66 copies/16S rRNA gene) > peptide, macrolide-lincosamide-
streptogramin (MLS), and aminoglycoside resistance (0.08-0.48 copies/16S rRNA gene) >
tetracycline and beta-lactam resistance (0.04—0.26 copy/16S rRNA gene) > rifamycin and
glycopeptide resistance (0.01-0.14 copy/16S rRNA gene) (Fig. S7). This pattern is
qualitatively consistent with the view that WWTPs are an important source of ARGs in urban
air environments, although we may not confirm the extent to which the proportion of the
observed similarity between PM> s and WWTP matrices was attributed to the inherent baseline

of ARGs across environment.

Even though the dominant drug resistance categories appeared to be those shared between
PM>s and other samples, as aforementioned (Fig. S7), PMas ARG profiles with a broad
composition at the subtype level were clearly separated from those of sewage/primary
sludge/effluent samples (Fig. S8). Since the ARG richness in human impacted PMys is
comparable to that in sewage/primary sludge/effluent (Fig. S5B), the lower Shannon Index
scores of the ARG profiles in PM» s samples (Fig. 3B) indicated a markedly lower evenness of
airborne ARGs in urban/WWTP sites compared to the aqueous and solid WWTP samples,
especially for sewage (p < 0.01). The LEfSe analysis further served to identify a series of
indicator ARGs that effectively discriminated between the ARG profiles of airborne particles
versus other sample types. These discriminatory ARGs were distributed across various drug
resistance types and included: tet4 (48), conferring resistance to tetracycline; bacA and rosB,
conferring resistance to peptide antibiotics; and mtrA, mexF, and cpxR, conferring resistance

to multiple antibiotics (LDA score > 3.5, p <0.05) (Figs. 3C and S9).

Yang et al. [20] observed similar airborne ARG patterns: resistances to multiple drugs and

bacitracin (a kind of polypeptide) were dominant in nearby WWTPs and urban areas.
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Remarkably, some multidrug resistance genes, such as mexF, were prevalent and enriched in
airborne particles in poultry farms and WWTPs at a higher relative abundance than that
observed in animal feces and activated sludge, respectively [20]. Observations in the present
study and Yang et al. [20]’s suggest the possibility to identify ARGs that are indicative of
contaminants from different sources. Interestingly, there was a lack of correlation between the
airborne antibiotic resistome and the taxonomic composition of the bacterial community (Fig.
3D); thus, such indicators would likely be associated with a limited number of bacterial hosts
[16]. In addition, it was of concern to discover a number of clinically-relevant ARGs, which
encode resistance to certain kinds of antibiotics in the “watch” and “reserve” groups proposed
by the WHO [54]. Such ARGs are prominent airborne biomarkers in human-impacted areas.
For example, blasnv, which confers resistance to beta-lactam, and vanR and vanA, which
encode resistance to vancomycin, were enriched in urban PM» 5. Additionally, mcr-5, which
encodes resistance to colistin (peptide), was more abundant in SCISTW air in comparison with

urban and coastal air (Fig. 3C and Table S10; LDA score > 2.5, p <0.05).

3.3 Co-occurrence patterns of ARGs, MGEs, and potential hosts to indicate the
environmental resistome risks

3.3.1 Potential mobility of airborne ARGs across sampling sites

An analysis of the assembled contigs generally indicated that ARGs were widely distributed
on both chromosomes and plasmids in bacterial genomes. Notably, plasmids were found to be
the dominant genetic location for ARGs detected in PM2s samples, in contrast to the
comparable roles between plasmid and chromosome in other more compact media in SCISTW
(Fig. 4A). However, when considering the potential mobility of ARGs, only a small minority
of the identified ARGs (at the subtype level) co-occurred with MGEs (i.e.,

integrons/transposons) on the same contig: <2% in sewage/primary sludge/effluent, around 3%
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in urban PM3 s, and none in coastal and SCISTW PM,s (Table S11 and Fig. SI0A). The
potentially mobile ARGs (PM-ARGs) in urban PM; s were less associated with humans, such
as sull (sulfonamide-resistant) and aadA (aminoglycoside-resistant), which are commonly
found in the environment [32]. A low proportion of ARGs co-occurred with MGEs at
contig/genome level have also been observed previously: in the metagenomic investigation
only a small portion of ARGs were found to have been carried physically on MGEs (<20%
ARGs on plasmid or integron), despite the fact that ARGs and MGEs were widely detected
and frequently found to be correlated in varying kinds of environmental samples, including
human and animal feces, influent/effluent and activated/digested sludge from WWTPs, soil,
sediment, permafrost, and natural water [55,56]. Moreover, in stark contrast to the diverse
range of ARGs encountered across the samples (Fig. S7), the potentially mobile ARGs (PM-
ARGs) identified in urban PM> s mainly appeared to only confer resistance to aminoglycoside
and sulfonamide (Figs. S10B and S12). The differences between the total ARG and PM-ARG

profiles suggest that dissemination rates will vary across drug resistance types.

3.3.2 Conserved bacterial hosts of airborne antibiotic resistance, including human
pathogens

Proteobacteria and Firmicutes were found to be the phyla most highly associated with airborne
ARGs encountered in this study, regardless of sampling location, carrying 30%—-83% and 13%—
46% of the total identified ARGs in the airborne bacterial community, respectively. In
SCISTW and urban sites, a substantial portion of airborne ARGs were associated with
Actinobacteria (24% and 17%, respectively) (Fig. SI0A). This observation also corresponded
to the MAG-based result on ARB profile (Fig. S11). At the species level, ARGs in PM> 5 near
aqueous sources (in coastal areas and sites near flocculation/sedimentation tanks in SCISTW)

tended to be associated with potential pathogens, including Ralstonia picketti and Ralstonia
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insidiosa, which prefer moist environments. In contrast, in the urban sampling location and
near SCISTW sludge sites, ARGs were associated with a broader distribution of both

pathogenic and ostensibly benign species (Fig. 4B and Table S12).

DNA markers pertaining to putative ESKAPE and priority pathogens identified by the WHO
(Table S6) were found to be associated with ARGs on assembled contigs from WWTP and
urban PMb> 5 samples. A lower total relative abundance of these putative antibiotic-resistant
pathogens (normalized to the total contig number) was estimated in PM2 5 (14.4 + 18.6 ppm in
the urban site and 7.3 + 3.3 ppm in SCISTW) compared with other potential source matrices
in SCISTW (98.0 £ 26.3 ppm); however, different species were dominant in airborne
communities (Fig. S13). In contrast to K. pneumoniae as the predominant species in
sewage/primary sludge/effluent, A. baumannii and S. aureus were found to be the predominant
antibiotic-resistant priority pathogens in SCISTW and urban PMb s, respectively. Antibiotic-
resistant A. baumannii existed in considerable abundance both in SCISTW air and in sewage,
primary sludge, and effluent, but was not detected in urban air in the present study. This
observation suggests that antibiotic-resistant 4. baumannii might possibly be disseminated
from aqueous and solid matrices in SCISTW to the nearby air, but that it might not be easy for
this species to survive airborne transport to downwind areas. It was also worth noting that there
has been a remarkable increase in hospital-associated cases of methicillin-resistant S. aureus
in Hong Kong over the past few years, as well as a noticeable rate of detection of carbapenem-
and multidrug-resistant Acinetobacter, extended-spectrum B-lactamase (ESBL)-producing and
cephalosporin-resistant E. coli and Klebsiella, and erythromycin- and penicillin-resistant S.
pneumoniae [57]. While certain kinds of the abovementioned resistant species were identified
in SCISTW air, including multidrug-resistant A. baumannii, vancomycin-resistant E. faecium,

and macrolide-resistant S. pneumoniae, the ARGs co-occurring with these putative priority
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pathogens in urban PM; 5 in this study were different from the drug resistance types associated
with the clinical cases in Hong Kong (Table S13). This suggests that these particular ARGs
with clinical relevance are less likely to directly migrate from a clinical environment to urban
areas via airborne communication or fail to persist long in air after transmission. However, this
result could have been too limited by the current sequencing depth to have allowed for a
comprehensive screening of antibiotic-resistant pathogens, and there was a lack of verification

of resistance by culture-based methods.

Compared to the host profile of total ARGs in PM»s5, PM-ARGs that were only detected in
urban sites were observed to be harbored by fewer taxa, i.e., only Proteobacteria (dominant)
and Firmicutes (Fig. S10). PM-ARGs appeared to be similarly constrained taxonomically in
sewage/primary sludge/effluent samples as well. Such findings correspond to a previous study
on intll, showing that ARG-carrying integrons were highly conserved in Proteobacteria [55].
In general, across this study, the associated range of bacterial taxa appeared to diminish from
the whole microbial community to ARG hosts, and then to PM-ARG hosts. Given the
uncertainty in the accuracy of the assembly of metagenomic data [58], future studies with
culture-based approaches to more closely examine the postulated relationships identified here

would be beneficial.

3.3.3 Comparable resistome risk score of PM2.5 among coastal, urban, and WWTP sites

Based on the association of ARGs, MGEs, and putative pathogens annotated on assembled
contigs, MetaCompare was employed to rank the resistome risk among samples, with a
particular focus on critical human pathogens (Table S6). Compared with sewage/primary
sludge/effluent, PM2 s generally exhibited a lower resistome risk score (p < 0.05; Figs. 4C and

S14). However, there were no significant differences in score among the PMa>s samples
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collected in the different sites (p > 0.05). This finding is consistent with the aforementioned
observation that ARGs were rarely associated with MGEs in the air examined in this study.
Putative ESKAPE pathogens carrying ARGs were more abundant in potential emission sources,
such as sewage and sludge in WWTPs. Still, it is important to consider that any pathogenic
bacteria harboring ARGs dwelling in the atmosphere could pose exposure and infection risks,
particularly in the PM» s fraction, since it is amenable to inhalation. Thus, there is a need for
human health risk assessments of environmental sources to consider the potential for exposure

to airborne ARGs.

3.4 Estimating the contributions of WWTPs to the ambient airborne bacteria and ARGs
About 345 metagenomes representing different sample types collectively formed a database of
putative sources of airborne bacteria and ARGs. These samples tended to be clustered by
source category, regardless of the composition of the bacterial community or ARG profile (p
< 0.01, Fig. S16). It should be noted that activated sludge was also included as a potential
source since it was found different from CEPT sludge in both ARG relative abundance and
composition (Figs. S15 and S16). The prediction performance of the model using the current

datasets is described in Supporting Information (Section S4 and Figure S17).

Echoing the comparable bacterial community structure in PMzs between the urban and
SCISTW sites (Fig. 2), their corresponding source profiles of bacteria were relatively
consistent (Fig. 5SA). Notably, there appeared to be a dominant contribution of bacteria from
agricultural soil and plants (26%—-29%) among the identified sources. Others have also
suggested that terrestrial sources play an important role in shaping the composition of the
airborne bacterial community in human-impacted areas [17,59], along with WWTP matrices

(11%—-13%), including primary sludge (4.5-5.4%), secondary sludge (3.6—4.9%), sewage
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(1.9-2.0%), and effluent (0.8%—1.1%) in descending order, and human skin (8%—10%).
Although the leading sources of bacteria in coastal areas turned out to be of human origin
(55%), the absolute contributions from human airways, human skin, and human oral cavities
appeared to be comparable across the three sites (p > 0.05) (Fig. 5B). This finding is reasonable
since the coastal site was situated downwind of major urban areas (receiving human-related
impacts) and ~60 m above sea level (few apparent marine-indicative signals detected).
However, it should be noted that nearly 21% of the PM; s-associated bacteria in the coastal site
and around half in the other two sites could not be apportioned to the current listed sources.
This is probably because potential sources are still missing in the current model due to their

lack of representation in public databases.

In contrast to the source tracking results of bacteria, the ARG source profile was more
comparable among the three sampling sites (Fig. 5A), with less than 12% undetermined. 57%—
60% of the PM; s-associated ARGs were ascribed to WWTPs (26%—27% from primary sludge,
15%—18% from sewage, 6%—10% from secondary sludge, and 6%-9% from effluent),
followed by agricultural vegetation (10%—14%) and the remaining sources with comparable
contributions (2%—4%). The disparities between the source profiles of PM2s-associated
bacteria and ARGs could be due to the different enrichment levels of ARGs in bacterial
communities from different sources. Specifically, WWTP-originated matrices in this study
were responsible for up to 13% of the PMzs-associated bacteria, but for much higher
proportions of ARGs at the three sites, as mentioned above. This finding corroborates the view
that WWTPs, as an important ARG hotspot in urban areas, could be a major anthropogenic
source of ARGs in the atmospheric environment. In addition, the contrasting source profiles
could also suggest the dissimilar adaptability to the atmospheric environment among different

ARB or between ARB and other general bacteria after their aerosolization from source
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environments, e.g., many ARG-carrying bacteria have more similar patterns of survival,
growth, and decay than the general bacterial community. Based on the current resolved sources,
the PMas-associated ARGs in Hong Kong are more likely attributable to anthropogenic
activities in agricultural and engineering systems. Moreover, additional comparisons were
made with PM2 s collected during a similar period (unpublished data) in urban Guangzhou, a
megacity located 120 km northwest of Hong Kong. Not surprisingly, Hong Kong-style
WWTPs, characterized by mixed sewage (fresh and saline) and application of either CEPT or
secondary treatment, contributed much less to airborne ARGs of urban Guangzhou than its
contribution in Hong Kong (Fig. S18). Despite the low proportion in source profile, CEPT-
related ARG signals in Guangzhou still highlight the potential impact of Hong Kong’s sewage
treatment activities on the airborne resistome in nearby cities. These prediction results accord
with the regional pollution pattern via air transportation and reflect the feasibility of using ARG
signature in source tracking. However, the current results could be biased by the limited sample
size in this study and a certain portion of non-local metagenomic data with potentially
geographically dependent microbial features. In consideration of this eventuality, it is
important to conduct a metagenomics-based survey in various local putative sources, including
those not involved in the current study, such as hospitals and waste transfer stations, to further

improve the completeness and accuracy of the results.

Finally, the emission rates of bacteria and ARGs in WWTP, expressed as the proportion of
bacteria and ARGs in a certain source to be released to the atmosphere, were estimated. In
general, the emission rates of both bacteria and ARGs was significantly higher (by two orders
of magnitude) from primary sludge (1E-7 and 6E-8 on average for bacteria and ARG,
respectively) than from sewage and effluent (p < 0.01) under the current configuration of

SCISTW. The comparable levels of the estimated emission rates between bacteria and ARGs
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from each WWTP matrix would seem to indicate a similar aerosolization potential of general
bacteria and ARB. However, whether the antibiotic resistance property benefits the survival of
these aerosolized ARB in the harsh atmospheric environment with distinct selective pressures
(e.g., UV light, desiccation) still requires investigations. Lastly, as another important source,
WWTPs incorporating a range of secondary biological treatments should be incorporated into
future studies to fully estimate the emission of bacteria and ARGs from WWTPs to the urban

environment.

3.5 Environmental Implications

This study highlights the dissemination of ARGs and their bacterial hosts from typical urban
sources like WWTPs to the ambient atmosphere based on investigations into PM s, which can
be inhaled into the human respiratory tract and thus has potential health implications.
Nevertheless, there is still a lack of emission standards of airborne bacteria and ARGs from
such sources. The high contribution of anthropogenic sources (e.g., WWTPs) to airborne ARGs
emphasize the need to regulate and manage relevant urban settings to mitigate the
dissemination of ARGs to the atmospheric environment. However, the complex interactions
between bacterial taxa and how environmental stress alters the bacterial communities after their
aerosolization from putative sources does not seem to have been considered extensively in the
algorithm. The current simple box model used to estimate the emission rates of bacteria in
WWTP-originated matrices is an initial attempt to address this issue from a macro perspective.
Future studies should also address the bacterial acrosolization within microenvironments, such
as considering the partitioning of bacteria in at the air-liquid/air-solid interface. Further, a
combination of the use of aerodynamic transport models and efforts to monitor the dynamic
process of aerosolization (coupled with chamber tests) may help to produce a more accurate

picture of the dissemination flux of bacteria and ARGs from various sources to the ambient
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atmosphere. In this study, although only a small portion of bacterially associated ARGs was
linked with MGEs in PM2s, the HGT potential of ARGs in the atmosphere should not be
overlooked. This evaluation should also consider the extracellular fraction of airborne ARGs
[36] and the phage-mediated process, an important HGT pathway in highly turbulent
environments [60], such as the atmosphere. In addition, culture-dependent techniques are
required to confirm the existence and viability of ARB identified in this study and their
expression of antibiotic resistance, as well as to verify the de facto transmission of ARGs via
HGT. Such efforts will help to provide solid evidence beyond inferences derived from
metagenomic data and further facilitate understanding of ARG dissemination mechanisms,

including the linkage to specific host species.
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780  Figure 1. Map of three sampling locations in Hong Kong (A) and the general sewage treatment
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783  emission potential of bacteria and ARGs from different SCISTW matrices to the ambient
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Figure 2. Comparison of bacterial abundance and community composition among sample
types and sampling locations. Panel (A) visualizes the NMDS results (Bray—Curtis
dissimilarity) of the bacterial community at the species level (PERMANOVA R? =0.5152, p
< 0.001, permutations = 999), which corresponds to the differentiation of key taxon indicators
among different sample types revealed by a LEfSe analysis (LDA score > 4.5, p < 0.05) in
Panel (B). Panels (C) and (D) show the alpha diversity (bacterial species-based Shannon index)
among different sample types and the absolute abundance of PMbs-associated bacteria

(indicated by the 16S rRNA gene) across the coastal-urban—SCISTW transect, respectively.
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Figure 3. Antibiotic resistome across sample types and sampling locations. Panels (A) and (B)
show the relative abundance of total identified ARGs (normalized to the 16S rRNA gene, log
scale) and the alpha diversity of ARGs (Shannon index based on ARG subtype), respectively.
Panel (C) is the relative abundance profile of indicator ARG subtypes (normalized to the 16S
rRNA gene, logl0 transformed) in PM» 5 across sampling locations determined by a LEfSe
analysis (p < 0.05). Panel (D) tests the correlation of community structure between bacteria

and ARGs via a Procrustes analysis (NMDS-based).
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805  Figure 4. Co-occurrence patterns of ARGs, MGEs, and potential bacterial hosts based on
806  assembled contigs. Panel (A) shows the genetic locations of ARGs in bacterial genomes
807  (unclassified fraction not shown), as well as the proportions of ARGs that are co-localized with
808  integrase/transposase/recombinase-encoding genes. Panel (B) presents the percentage of the
809 identified ARGs in various bacterial species in each PMz s sample (using package “pheatmap”
810 in R). Here only the antibiotic-resistant species presented in no less than two PM> 5 samples
811  are shown. The red stars indicate the (emerging) human pathogens. Panel (C) shows the co-
812  occurrence probability of the targeted components — ARGs, ARGs—MGEs, and ARGs—MGEs—
813  putative pathogens (PAT), respectively — identified in the samples. This information is
814  expressed as the contig number with critical components divided by the total assembled contig

&15  number.
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Figure 5. Contributions of various potential sources to PM> s-associated bacteria and ARGs in

coastal, urban, and SCISTW sites. Panel (A) is the source profiles of bacteria and ARGs

predicted by SourceTracker. Panel (B) shows the estimated absolute abundance of PM s-

associated 16S rRNA genes and ARGs contributed by different sources. The absolute

abundance of ARGs was assumed to be the product of the absolute abundance of the 16S rRNA

genes and the relative abundance of ARGs normalized to the 16S rRNA gene (predicted by

DeepARG). The estimated emission rates of bacteria and ARGs in different SCISTW matrices

are displayed in Panel (C), and are expressed as the proportion of bacteria or ARGs emitted to

the ambient atmosphere.
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