
1 
 

Inhalable antibiotic resistome from wastewater treatment plants to 1 

urban areas: Bacterial hosts, dissemination risks, and source 2 

contributions 3 

 4 

Jiawen Xiea,b, Ling Jina,b,c, Dong Wud, Amy Prudene, Xiangdong Lia,b* 5 

 6 

a Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 7 

Hung Hom, Kowloon, Hong Kong SAR, China 8 

b The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China 9 

c Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 10 

Hung Hom, Kowloon, Hong Kong SAR, China 11 

d Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering 12 

Research Center of Biotransformation of Organic Solid Waste, School of Ecological and 13 

Environmental Science, East China Normal University, Shanghai 200241, China 14 

e Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, 15 

United States 16 

 17 

Jiawen Xie (jiawen.xie@connect.polyu.hk) 18 

Ling Jin (ling.jin@polyu.edu.hk) 19 

Dong Wu (dwu@des.ecnu.edu.cn) 20 

Amy Pruden (apruden@vt.edu) 21 

 22 

*Corresponding author 23 

Email: cexdli@polyu.edu.hk 24 

Tel: (852) 2766-6041 25 

Fax: (852) 2334-6389 26 

mailto:jiawen.xie@connect.polyu.hk
mailto:ling.jin@polyu.edu.hk
mailto:dwu@des.ecnu.edu.cn
mailto:apruden@vt.edu
mailto:cexdli@polyu.edu.hk


2 
 

Abstract 27 

Antibiotic resistance genes (ARGs) are commonly detected in the atmosphere, but questions 28 

remain regarding their sources and relative contributions, bacterial hosts, and corresponding 29 

human health risks. Here we conducted a qPCR- and metagenomics-based investigation of 30 

inhalable fine particulate matter (PM2.5) at a large wastewater treatment plant (WWTP) and in 31 

ambient air of Hong Kong, together with an in-depth analysis of published data of other 32 

potential sources in the area. PM2.5 was observed with increasing enrichment of total ARGs 33 

along the coastal–urban–WWTP gradient and clinically relevant ARGs commonly identified 34 

in urban and WWTP sites, illustrating anthropogenic impacts on the atmospheric accumulation 35 

of ARGs. With certain kinds of putative antibiotic-resistant pathogens detected in urban and 36 

WWTP PM2.5, a comparable proportion of ARGs co-occurred with MGEs was found between 37 

the atmosphere and WWTP matrices. Despite similar emission rates of bacteria and ARGs 38 

within each WWTP matrix, about 11–13% of the bacteria and >57% of the relevant ARGs in 39 

urban and WWTP PM2.5 were attributable to WWTPs. Our study highlights the importance of 40 

WWTPs in disseminating bacteria and ARGs to the ambient air from a quantitative perspective, 41 

and thus the need to control potential sources of inhalation exposure to protect the health of 42 

urban populations. 43 

 44 

Keywords 45 

WWTP; inhalable antibiotic resistome; emission rate; ARG host; pathogen; health risk. 46 

 47 

Synopsis: The study highlights the important role of WWTPs in disseminating bacteria and 48 

antibiotic resistance genes (ARGs) to the ambient air of urban areas from a quantitative 49 

perspective. 50 

 51 
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1. Introduction 52 

Antibiotic resistance has become a growing threat to public health. It is estimated that the 53 

continued development of antimicrobial resistance will result in 10 million deaths per year and 54 

100 trillion USD in economic losses by 2050 [1]. Some ARGs are intrinsic to some bacteria; 55 

however, other ARGs are mobile and can be horizontally transferred to a broad range of host 56 

bacteria, a phenomenon that appears to be exacerbated by anthropogenic activities [2]. Inputs 57 

of antimicrobials and antibiotic resistance genes (ARGs) to terrestrial and aquatic 58 

compartments from various human, agricultural, and industrial sources have now been widely 59 

documented [3-10], but only recently is the atmosphere beginning to be recognized as a 60 

potential key reservoir of ARGs [11-14]. Notably, ARGs have been found to be associated with 61 

airborne particles. In particular, ARGs associated with fine particulate matter (PM2.5) pollution 62 

present a concern because PM2.5 can penetrate deep into the human lung. While other studies 63 

have begun to consider the implications of ARG exposure via water/food ingestion and skin 64 

contact, there is a need to better characterize the range of inhalation exposures to ARGs [14-65 

16]. Such exposures are of particular concern when it can be confirmed that ARGs are carried 66 

within pathogens suspended in the atmosphere, as has been suggested by prior studies [13,17-67 

19]. 68 

 69 

Recent studies are painting a picture of differential ARG distribution in the atmosphere at 70 

global and regional scales [11,16], implying that spatial heterogeneity of ARG sources is likely, 71 

including in the numbers and types of ARGs emitted. This is in addition to varying atmospheric 72 

conditions (e.g., smog) that can influence the transport of resistant strains and potentially also 73 

impose selective pressure on their survival. Various potential sources of airborne ARGs have 74 

been recognized, including typical anthropogenic ARG hotspots, such as livestock farms, 75 

wastewater treatment plants (WWTPs), hospitals, and solid waste treatment systems [20-22]. 76 
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Diminishing concentrations of source-indicative bacterial and ARG species in the atmosphere 77 

with increasing distance from putative source sites, along with close resemblance of ARG 78 

profiles between putative sources and nearby aerosols provide strong evidence of key 79 

anthropogenic sources [22,23]. However, there is a need to move towards quantifying ARG 80 

contributions from various putative sources to the ambient air. Recently, some quantitative 81 

source-predictive models, such as SourceTracker [24], have been applied towards source 82 

apportionment of ARGs found in sediment and urban stream samples [25,26]. They could 83 

potentially be extended to airborne ARGs. 84 

 85 

Among putative airborne sources, WWTPs are prime candidates for consideration. They are 86 

fundamental to urban infrastructure and are known to receive high concentrations of 87 

antimicrobials, antibiotic-resistant bacteria (ARB), pathogens, and ARGs. Recent studies 88 

indicate that the treatment processes (e.g., aeration) of WWTPs tend to produce bioaerosols of 89 

less than 1–2 µm in size, which is within the respirable range [27,28]. Some studies have 90 

correspondingly noted the frequent occurrence of bioaerosol-inducing respiratory symptoms 91 

among WWTP operators [29]. In contrast to bacteria, few studies have touched on the field of 92 

ARG emissions from wastewater and sludge, especially through metagenomics-based 93 

approaches. One recent study provided qualitative comparisons of antibiotic resistome (i.e., 94 

total ARGs carried across a sample) profiles between activated/dewatered sludge and 95 

bioaerosols, but did not provide a quantitative assessment, such as emission rates [30]. 96 

Moreover, antibiotic-resistant pathogens are known to exist in WWTP bioaerosols, as 97 

confirmed by culture-dependent methods [31]. The systematic screening of metagenomic data 98 

to identify linkages of ARGs with potential pathogenic host bacteria in WWTP aerosols of 99 

inhalable range could help to better define the range and extent of associated inhalation 100 

exposure and risks, in particular with considerations of World Health Organization (WHO) 101 
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priority pathogens and clinically-relevant ARGs [32,33]. Further examining the co-occurrence 102 

of ARGs with mobile genetic elements (MGEs) could provide additional insight into the extent 103 

to which horizontal gene transfer (HGT) occurs among airborne bacteria. 104 

 105 

Given the hypothesis that WWTPs are a major source contributor to urban airborne bacteria 106 

and ARGs, we conducted a qPCR- and metagenomics-based study of the bacterial and ARG 107 

profiles of various compartments and surrounding PM2.5 at a large WWTP in Hong Kong, with 108 

urban and coastal PM2.5 included as well. Based on assembled contigs, we assessed the mobility 109 

of ARGs and potential carriage by pathogenic bacteria, i.e., the “resistome risk” [34] of 110 

airborne ARGs across urban land-use types. Metagenomes of samples in the current study were 111 

further congregated with publicly available sequencing data of other putative emission sources 112 

to predict the source profiles of airborne bacteria and ARGs in WWTP and urban areas. A 113 

simple one-box model was then applied to estimate the airborne emission potential of bacteria 114 

and ARGs in WWTP-relevant matrices to surrounding environments. Overall, we aimed to 115 

quantify the contribution of WWTPs to airborne bacteria and ARGs in urban environments, 116 

which can help to advance understanding of the potential exposure risks of airborne antibiotic 117 

resistance posed to large urban populations.  118 

 119 

2. Materials and Methods 120 

2.1 Site description and sampling strategy 121 

A PM2.5 sampling campaign was performed at the Stonecutters Island Sewage Treatment 122 

Works (SCISTW), the campus of The Hong Kong Polytechnic University (PU), and the Hok 123 

Tsui Regional Air Monitoring Station (HT) in Hong Kong, representing WWTP, urban, and 124 

coastal background environments, respectively (Fig. 1A; Table S1). SCISTW is the largest 125 

sewage treatment plant in Hong Kong, serving almost half the city’s population, with a 126 
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designed daily capacity for treating 2.45 million m3 of sewage. It applies the process of 127 

chemically enhanced primary treatment (CEPT) without secondary biological treatment before 128 

discharging the dinsinfected effluent. The sampling period lasted from 24 to 30 October 2016 129 

at SCISTW and HT, and from 28 October to 4 November 2016 at PU. 24-hour PM2.5 samples 130 

were collected daily on pre-baked (500°C for 5 h) quartz filters (8 × 10 in.2, PALL) using high-131 

volume air samplers (TH-1000C II, Wuhan Tianhong Instruments Co., Ltd., China) at a flow 132 

rate of 1 m3 min-1. Single samplers were set up to collect PM2.5 samples at PU and HT, while 133 

four sites were selected for simultaneous sampling at SCISTW, namely the flocculation tank 134 

(FT), sedimentation tank (ST), primary sludge storage tank (SST), and barge facility for 135 

primary sludge transportation (BF) (Figs. 1B and S1). One sampler was placed beside each of 136 

the abovementioned sites, except the BF site equipped with two samplers in 2 m intervals as 137 

duplicates. A blank filter was placed in a non-operating sampler at the flocculation tank, PU, 138 

and HT for quality control. Correspondingly, aqueous sewage samples, including screened 139 

influent, flocculation tank sewage, sedimentation tank effluent, and final effluent after de-140 

chlorination, as well as CEPT sludge (primary) before centrifugation and sludge cake (primary) 141 

ready for transport to be incinerated at a sludge treatment facility (T·PARK), were collected 142 

daily from 24 to 28 October 2016 in SCISTW (Fig. 1B). Samples were kept at 4°C and 143 

transported immediately to the laboratory for analysis. More detailed information on SCISTW, 144 

the meteorological parameters, and the collected samples (sampling period and sample size) is 145 

provided in Section S1, Figs. S2 and S3, and Tables S2 and S3 in the Supporting Information. 146 

 147 

2.2 Sample pretreatment and DNA extraction 148 

Since quartz filter is not suitable for direct DNA extraction due to its hygroscopicity, each 149 

PM2.5 sample was cut into segments and repeatedly sonicated with sterilized 1× phosphate-150 

buffered saline (PBS) for three times (20 min each time) in an ice-water bath to get particles 151 
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off from quartz filters. PBS extracts from the same sample were combined and filtered through 152 

a 0.2-μm polyethersulfone (PES) membrane disc filter (47 mm, PALL). Blank filters were 153 

treated simultaneously using the same operation procedure. Influent, flocculation tank sewage, 154 

and sedimentation tank sludge collected from the sludge storage tank (~100 mL) were 155 

centrifuged at 9840 g and 4°C for 10 min upon arrival at the laboratory; the supernatant was 156 

carefully discarded, and the pellets were kept. With regard to the sedimentation tank effluent 157 

and de-chlorinated discharge, 250 mL solutions were filtered through 0.2-µm PES membranes 158 

(PALL). All samples were preserved at −80°C before DNA extraction. All the tools and 159 

consumables used were sterilized. 160 

 161 

DNA extraction was conducted using the FastDNA SPIN Kit for Soil (MP Biomedicals) 162 

according to the manufacturer’s instructions, except for a modified purification step involving 163 

the use of Agencourt AMPure XP beads (Beckman Coulter) for PM2.5 samples [17,35]. The 164 

0.2-µm membrane disc filters of effluent and PM2.5 were first cut into pieces, while the pellets 165 

from sewage and sludge (around 150 mg) were directly used as inputs for the DNA kit. DNA 166 

extraction efficiency of the current method for air samples has been estimated in our prior study 167 

[36] and listed in Table S4. For each sewage/sludge/effluent sample, DNA extracted in 168 

triplicate were pooled together to reduce heterogeneity and then purified using the DNeasy 169 

PowerClean CleanUp Kit (QIAGEN). DNA extracts of PM2.5 from every three or four 170 

consecutive days in each site were combined to ensure sufficient material for a downstream 171 

analysis; DNA extracts of other samples from the same sites were combined in a manner 172 

corresponding to the time divisions of the PM2.5 samples and based on the daily flow of influent 173 

(Table S2). Finally, 13 PM2.5 DNA samples covering the entire sampling period, 3 DNA 174 

samples of the field blanks, and 3 sewage, 2 effluent, and 2 sludge DNA samples covering 175 

around half of the sampling period were used for downstream experiments (Table S3). 176 
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 177 

2.3 qPCR quantification of 16S rRNA genes and shotgun metagenomic sequencing 178 

DNA extracts of PM2.5 and sewage/sludge/effluent samples were diluted 10 and 100 times, 179 

respectively, to minimize PCR inhibition before quantification of the 16S rRNA gene on a 180 

StepOnePlus Real-Time PCR System (Applied Biosystems). The dilution factor was 181 

determined by testing a number of randomly selected samples (for details of qPCR, please refer 182 

to Section S2 of the Supporting Information). Subsequently, around 25-100 ng undiluted DNA 183 

of each sample was used for low-input library construction and shotgun metagenomic 184 

sequencing on an Illumina Hiseq X Ten platform with the PE150 strategy. In total, 444 GB of 185 

clean data from 20 samples (excluding field blanks that failed in library construction) were 186 

obtained after trimming sequencing adaptors and filtering low-quality reads using fastp 187 

(v0.21.0 with default parameters) [37]. The sequencing data were uploaded to the NCBI 188 

BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) with the accession number of 189 

PRJNA693982. 190 

 191 

2.4 Bioinformatic and statistical analysis 192 

Taxonomy classification was conducted in Kraken 2 (v2.0.8-beta) [38] and Bracken (v2.5.0) 193 

[39] using the standard Kraken 2 database. ARGs were predicted using the DeepARG (v1.0.2) 194 

pipeline [40] (--deeparg_identity 70 --gene_coverage 5 --deeparg_probability 0.8) and doubled 195 

checked by manual inspection. Alpha diversity (Shannon index) was calculated (“vegan” 196 

package [41] in R) after a rarefaction of all sequencing data to 17,754,687 reads per sample, 197 

the minimum read number in all of the samples (Table S5), using the seqkit tool [42]. Venn 198 

diagrams and Upset plots revealing the intersections of bacterial communities and ARG 199 

profiles among different sample types were drawn using the “UpSetR” package [43] in R. 200 

Afterwards, a non-metric multidimensional scaling (NMDS) analysis was conducted to 201 
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differentiate the bacterial and ARG profiles among different samples based on Bray–Curtis 202 

dissimilarity, which was followed by a further identification of the determined biomarkers with 203 

a linear discriminant analysis (LDA) effect size (LEfSe) method [44]. Procrustes analysis was 204 

then used to check the similarity of bacterial and ARG distribution. Permutational Multivariate 205 

Analysis of Variance (PERMANOVA) and Dunn’s test for a post-hoc Kruskal-Wallis 206 

comparison were conducted using a “vegan” package [41] in R. 207 

 208 

To evaluate the co-occurrence patterns of ARGs, MGEs, and bacteria, clean sequencing data 209 

were assembled on the MetaStorm platform [45] using the built-in iterative de Bruijn graph de 210 

novo assembler for short reads sequencing data with highly uneven sequencing depth (IDBA-211 

UD) [46]. The output contigs (summary statistics in Table S5) were then deposited in the 212 

NanoARG platform [47] for annotation of ARGs, MGEs, and putative bacterial hosts. Briefly, 213 

ARGs were predicted against DeepARG database using DeepARG-LS model (--iden 70 --prob 214 

0.5 --cov 40) [40]; MGEs were aligned to a combined NCBI non-redundant database and 215 

integron-integrase (I-VIP) database using DIAMOND (--id 70 --evalue 1e-5 --query-cover 40) 216 

[48]. Taxonomy annotation was conducted using Centrifuge with default parameters [49]. 217 

Samples with less than 10 ARG-carrying contigs assembled were excluded from downstream 218 

contig-based analyses. Human pathogens, including those known to commonly manifest in 219 

resistant infections, such as ESKAPE (Enterococcus faecium, Staphylococcus aureus, 220 

Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 221 

Enterobacter spp.) and other WHO priority pathogens in urgent need of novel antibiotics for 222 

treatment (Table S6), were identified according to the pathogen list (species level) summarized 223 

in a previous study [50] with minor updates (Table S7). The genetic location (chromosome or 224 

plasmid) of the identified ARGs was analyzed using PlasFlow (v1.1 with default parameters) 225 

[51]. ARGs co-localized with integrase/transposase/recombinase-encoding genes were 226 
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considered potentially mobile. Assembled data were uploaded to the online MetaCompare 227 

platform to evaluate the potential horizontal dissemination risks of ARGs [34], which was 228 

based on the co-occurrence patterns of ARGs, MGEs, and pathogen-like sequences on 229 

assembled contigs. In addition, although constrained by the total sequencing depth, 230 

metagenome-assembled genomes (MAGs) were constructed using metaWRAP (v1.2.1) [52] 231 

and annotated for ARGs, MGEs, and bacterial hosts (detailed information in Section S3 in the 232 

Supporting Information). 233 

 234 

2.5 Source tracking and estimation of bacterial and ARG emissions from WWTPs 235 

SourceTracker (v1.0.1) [24] was adopted in R with default parameters to explore the 236 

contributions of diverse putative sources (e.g., soil, freshwater, seawater, sediment, landfill 237 

leachate, human skin, oral cavity, human airway, and WWTP sewage/sludge/effluent) to the 238 

airborne bacteria and ARGs. About 345 shotgun metagenomic sequencing data in total, 239 

including 338 downloaded from the NCBI and MG-RAST databases (listed in Table S8) and 240 

7 from this study (sewage/effluent/primary sludge), were used as source samples in source 241 

tracking, while the remaining 13 PM2.5 samples were treated as sink samples. To focus on the 242 

local situation, most of the downloaded samples were from Hong Kong and South China, 243 

except those without suitable metagenomic data from Hong Kong. Considering that WWTPs 244 

with secondary treatment systems could also be an important source, sequencing data of 245 

activated sludge from the largest secondary WWTP in Hong Kong, namely the Sha Tin Sewage 246 

Treatment Work, were also retrieved from the NCBI database and included in source tracking. 247 

All data were subjected to the same bioinformatic analysis pipeline in fastp, Kraken 2, Bracken, 248 

and DeepARG. Bacterial profiles at the species level and ARG profiles at the ARG subtype 249 

level, after removing those presented in less than half of the samples in each source, were used 250 

as the input for SourceTracker. The prediction performance of SourceTracker based on the 251 
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current source data was evaluated using leave-on-out cross-validation strategy as proposed by 252 

Li et al. [25] 253 

 254 

To further estimate the emission of bacteria and ARGs from different WWTP media to the 255 

ambient air (PM2.5-based), a simple one-box model was applied for calculation (Fig. 1C) with 256 

the following assumptions: 1) the flux of PM2.5-associated bacteria and ARGs in and out of the 257 

box was from top to bottom; 2) there was no deposition inside the box; and 3) PM2.5-associated 258 

bacteria and ARGs were well mixed within the box and under a steady state during the 259 

sampling period. In sum, SCISTW was regarded as a cubical box of length L, width W, and 260 

height H. The emission potential of bacteria (using the 16S rRNA gene as an indicator) and 261 

ARGs from different WWTP matrices within the box was calculated based on the law of 262 

conservation of mass following Equations 1–4. 263 

𝑑𝑑(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)
𝑑𝑑𝑑𝑑

= 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + (𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐶𝐶)𝑣𝑣𝐿𝐿𝑊𝑊𝑊𝑊 + (𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐶𝐶)𝑣𝑣𝑤𝑤𝐿𝐿𝐿𝐿; for a steady state, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 264 

Equation 1 265 

𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑖𝑖, ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1 and 𝑖𝑖 = sewage, sludge, and effluent 266 

Equation 2 267 

𝐸𝐸𝑖𝑖 = 𝑄𝑄𝑖𝑖𝛼𝛼𝑖𝑖, 𝑖𝑖 = sewage, sludge, and effluent 268 

Equation 3 269 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = 𝛼𝛼𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

, 𝑖𝑖 = sewage, sludge, and effluent 270 

Equation 4 271 

In Equation 1–4, 𝐶𝐶𝑖𝑖𝑖𝑖 and 𝐶𝐶 represent the concentration of target genes (PM2.5-associated 16S 272 

rRNA gene or ARGs [copy m-3]) in the inflow air and air within the box, respectively. 𝑡𝑡 refers 273 

to time (s). 𝑣𝑣𝐿𝐿 and 𝑣𝑣𝑤𝑤 are the decomposed wind speeds (m s-1) parallel to the length and width 274 

direction of the box, respectively, while 𝐸𝐸 is the emission of target genes per unit of time (copy 275 

s-1) from the whole SCISTW (total) or different matrices (𝑖𝑖) inside. 𝑝𝑝𝑖𝑖 refers to the contribution 276 
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of the individual matrix (𝑖𝑖) to PM2.5-associated bacteria or ARGs within SCISTW, which can 277 

be converted from the result of SourceTracker. 𝑄𝑄𝑖𝑖 is the daily flow of sewage/effluent (m3 d-1) 278 

or CEPT sludge (kg d-1). 𝛼𝛼𝑖𝑖 is the emission of target genes (respirable size) per unit volume of 279 

sewage/effluent (copy m-3) or per unit weight of sludge cake (copy kg-1) to the atmosphere. 280 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 refers to the concentration of target genes in sewage/effluent (copy m-3) or sludge (copy 281 

kg-1). In this study, 350 m in length, 285 m in width, and 12 m in height were adopted according 282 

to the occupied area of SCISTW and the height of flocculation/sedimentation tanks plus the 283 

height of the air sampler. The concentration of PM2.5-associated 16S rRNA genes (or ARGs) 284 

in HT with the contribution from WWTP deducted, and that in SCISTW were used as 𝐶𝐶𝑖𝑖𝑖𝑖 and 285 

𝐶𝐶, respectively. The amount of 16S rRNA genes (PM2.5, sewage, sludge, and effluent) was 286 

quantified by qPCR, while the total amount of ARGs was the product of the amount of 16S 287 

rRNA genes and the relative abundance of ARGs (normalized to the 16S rRNA genes) 288 

predicted by DeepARG. 𝑣𝑣𝐿𝐿 and 𝑣𝑣𝑤𝑤 were calculated from the wind speed and wind direction 289 

during the sampling period recorded by our weather station (Fig. S2). The daily inflow of 290 

influent (Table S2) was used as 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , while 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  was estimated to be 291 

600,000 kg d-1 during the sampling period. 292 

 293 

3. Results and discussion 294 

3.1 Differences in bacterial community composition in PM2.5 compared with aqueous and 295 

solid WWTP samples 296 

Overall, more than 99% of the annotated bacterial reads could be assigned to the species level 297 

(rarefaction curves presented in Fig S4).  A high number of shared bacterial species between 298 

sewage/primary sludge/effluent and PM2.5 (97% of all bacterial species identified) was 299 

observed (Fig. S5A). This suggests that PM2.5 could be substantially influenced by WWTPs as 300 

a source, even significantly downwind. However, the PM2.5 bacterial community structure at 301 
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the species level was significantly different from that in sewage/primary sludge/effluent 302 

samples in SCISTW (p < 0.001) (Figs. 2A and S6), even though the bacterial species they 303 

contained were similar. As revealed by a LefSe analysis, Actinobacteria, which play an 304 

important role in decomposing organic materials [53], could be indicative taxa in the 305 

atmosphere, in contrast to sewage, primary sludge, and effluent in SCISTW rich in 306 

Pseudomonas (LDA score > 4.5, p < 0.05) (Fig. 2B). When making comparisons along the 307 

land-use transect, the bacterial community structure in urban and SCISTW PM2.5 was more 308 

stable than the coastal background PM2.5, as reflected by the higher Shannon index scores (Fig. 309 

2C) and was well-separated from them (Fig. 2A). This pattern is consistent with different 310 

dominant sources of airborne bacteria across local geographical locations under different levels 311 

of disturbance from human activities. Compared with coastal areas, an increase of over one 312 

order of magnitude in the concentration of PM2.5-associated 16S rRNA gene (indicating 313 

bacterial loads) was noted in urban/SCISTW sites (Fig. 2D), which also suggests higher 314 

absolute contributions of potential sources and a more bacteria-favorable atmospheric 315 

condition in human-impacted areas. 316 

 317 

3.2 Broad spectrum of ARGs found in WWTP and urban PM2.5 318 

More than eight dominant types of ARGs (their relative abundance normalized to the 16S 319 

rRNA gene > 0.05) were identified in most of the samples (Fig. S7). The total relative 320 

abundance (Fig. 3A) and richness (subtype number) (Fig. S5B) of ARGs in PM2.5 were elevated 321 

across the coastal–urban–SCISTW transect, finally becoming comparable to the 322 

sewage/primary sludge/effluent samples in SCISTW. This remarkable pattern highlights a 323 

highly diverse airborne resistome under potential impacts by human activities, especially from 324 

WWTPs. This pattern also mirrors the ranking of major ARG types by relative abundance 325 

across the different samples. In general, the descending order of relative abundance was: 326 
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multidrug resistance (0.62–1.66 copies/16S rRNA gene) > peptide, macrolide-lincosamide-327 

streptogramin (MLS), and aminoglycoside resistance (0.08–0.48 copies/16S rRNA gene) > 328 

tetracycline and beta-lactam resistance (0.04–0.26 copy/16S rRNA gene) > rifamycin and 329 

glycopeptide resistance (0.01–0.14 copy/16S rRNA gene) (Fig. S7). This pattern is 330 

qualitatively consistent with the view that WWTPs are an important source of ARGs in urban 331 

air environments, although we may not confirm the extent to which the proportion of the 332 

observed similarity between PM2.5 and WWTP matrices was attributed to the inherent baseline 333 

of ARGs across environment. 334 

 335 

Even though the dominant drug resistance categories appeared to be those shared between 336 

PM2.5 and other samples, as aforementioned (Fig. S7), PM2.5 ARG profiles with a broad 337 

composition at the subtype level were clearly separated from those of sewage/primary 338 

sludge/effluent samples (Fig. S8). Since the ARG richness in human impacted PM2.5 is 339 

comparable to that in sewage/primary sludge/effluent (Fig. S5B), the lower Shannon Index 340 

scores of the ARG profiles in PM2.5 samples (Fig. 3B) indicated a markedly lower evenness of 341 

airborne ARGs in urban/WWTP sites compared to the aqueous and solid WWTP samples, 342 

especially for sewage (p < 0.01). The LEfSe analysis further served to identify a series of 343 

indicator ARGs that effectively discriminated between the ARG profiles of airborne particles 344 

versus other sample types. These discriminatory ARGs were distributed across various drug 345 

resistance types and included: tetA (48), conferring resistance to tetracycline; bacA and rosB, 346 

conferring resistance to peptide antibiotics; and mtrA, mexF, and cpxR, conferring resistance 347 

to multiple antibiotics (LDA score > 3.5, p < 0.05) (Figs. 3C and S9).  348 

 349 

Yang et al. [20] observed similar airborne ARG patterns: resistances to multiple drugs and 350 

bacitracin (a kind of polypeptide) were dominant in nearby WWTPs and urban areas. 351 
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Remarkably, some multidrug resistance genes, such as mexF, were prevalent and enriched in 352 

airborne particles in poultry farms and WWTPs at a higher relative abundance than that 353 

observed in animal feces and activated sludge, respectively [20]. Observations in the present 354 

study and Yang et al. [20]’s suggest the possibility to identify ARGs that are indicative of 355 

contaminants from different sources. Interestingly, there was a lack of correlation between the 356 

airborne antibiotic resistome and the taxonomic composition of the bacterial community (Fig. 357 

3D); thus, such indicators would likely be associated with a limited number of bacterial hosts 358 

[16]. In addition, it was of concern to discover a number of clinically-relevant ARGs, which 359 

encode resistance to certain kinds of antibiotics in the “watch” and “reserve” groups proposed 360 

by the WHO [54]. Such ARGs are prominent airborne biomarkers in human-impacted areas. 361 

For example, blaSHV, which confers resistance to beta-lactam, and vanR and vanA, which 362 

encode resistance to vancomycin, were enriched in urban PM2.5. Additionally, mcr-5, which 363 

encodes resistance to colistin (peptide), was more abundant in SCISTW air in comparison with 364 

urban and coastal air (Fig. 3C and Table S10; LDA score > 2.5, p < 0.05). 365 

 366 

3.3 Co-occurrence patterns of ARGs, MGEs, and potential hosts to indicate the 367 

environmental resistome risks 368 

3.3.1 Potential mobility of airborne ARGs across sampling sites 369 

An analysis of the assembled contigs generally indicated that ARGs were widely distributed 370 

on both chromosomes and plasmids in bacterial genomes. Notably, plasmids were found to be 371 

the dominant genetic location for ARGs detected in PM2.5 samples, in contrast to the 372 

comparable roles between plasmid and chromosome in other more compact media in SCISTW 373 

(Fig. 4A). However, when considering the potential mobility of ARGs, only a small minority 374 

of the identified ARGs (at the subtype level) co-occurred with MGEs (i.e., 375 

integrons/transposons) on the same contig: <2% in sewage/primary sludge/effluent, around 3% 376 
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in urban PM2.5, and none in coastal and SCISTW PM2.5 (Table S11 and Fig. S10A). The 377 

potentially mobile ARGs (PM-ARGs) in urban PM2.5 were less associated with humans, such 378 

as sul1 (sulfonamide-resistant) and aadA (aminoglycoside-resistant), which are commonly 379 

found in the environment [32]. A low proportion of ARGs co-occurred with MGEs at 380 

contig/genome level have also been observed previously: in the metagenomic investigation 381 

only a small portion of ARGs were found to have been carried physically on MGEs (<20% 382 

ARGs on plasmid or integron), despite the fact that ARGs and MGEs were widely detected 383 

and frequently found to be correlated in varying kinds of environmental samples, including 384 

human and animal feces, influent/effluent and activated/digested sludge from WWTPs, soil, 385 

sediment, permafrost, and natural water [55,56]. Moreover, in stark contrast to the diverse 386 

range of ARGs encountered across the samples (Fig. S7), the potentially mobile ARGs (PM-387 

ARGs) identified in urban PM2.5 mainly appeared to only confer resistance to aminoglycoside 388 

and sulfonamide (Figs. S10B and S12). The differences between the total ARG and PM-ARG 389 

profiles suggest that dissemination rates will vary across drug resistance types. 390 

 391 

3.3.2 Conserved bacterial hosts of airborne antibiotic resistance, including human 392 

pathogens 393 

Proteobacteria and Firmicutes were found to be the phyla most highly associated with airborne 394 

ARGs encountered in this study, regardless of sampling location, carrying 30%–83% and 13%–395 

46% of the total identified ARGs in the airborne bacterial community, respectively. In 396 

SCISTW and urban sites, a substantial portion of airborne ARGs were associated with 397 

Actinobacteria (24% and 17%, respectively) (Fig. S10A). This observation also corresponded 398 

to the MAG-based result on ARB profile (Fig. S11). At the species level, ARGs in PM2.5 near 399 

aqueous sources (in coastal areas and sites near flocculation/sedimentation tanks in SCISTW) 400 

tended to be associated with potential pathogens, including Ralstonia picketti and Ralstonia 401 
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insidiosa, which prefer moist environments. In contrast, in the urban sampling location and 402 

near SCISTW sludge sites, ARGs were associated with a broader distribution of both 403 

pathogenic and ostensibly benign species (Fig. 4B and Table S12).  404 

 405 

DNA markers pertaining to putative ESKAPE and priority pathogens identified by the WHO 406 

(Table S6) were found to be associated with ARGs on assembled contigs from WWTP and 407 

urban PM2.5 samples. A lower total relative abundance of these putative antibiotic-resistant 408 

pathogens (normalized to the total contig number) was estimated in PM2.5 (14.4 ± 18.6 ppm in 409 

the urban site and 7.3 ± 3.3 ppm in SCISTW) compared with other potential source matrices 410 

in SCISTW (98.0 ± 26.3 ppm); however, different species were dominant in airborne 411 

communities (Fig. S13). In contrast to K. pneumoniae as the predominant species in 412 

sewage/primary sludge/effluent, A. baumannii and S. aureus were found to be the predominant 413 

antibiotic-resistant priority pathogens in SCISTW and urban PM2.5, respectively. Antibiotic-414 

resistant A. baumannii existed in considerable abundance both in SCISTW air and in sewage, 415 

primary sludge, and effluent, but was not detected in urban air in the present study. This 416 

observation suggests that antibiotic-resistant A. baumannii might possibly be disseminated 417 

from aqueous and solid matrices in SCISTW to the nearby air, but that it might not be easy for 418 

this species to survive airborne transport to downwind areas. It was also worth noting that there 419 

has been a remarkable increase in hospital-associated cases of methicillin-resistant S. aureus 420 

in Hong Kong over the past few years, as well as a noticeable rate of detection of carbapenem- 421 

and multidrug-resistant Acinetobacter, extended-spectrum β-lactamase (ESBL)-producing and 422 

cephalosporin-resistant E. coli and Klebsiella, and erythromycin- and penicillin-resistant S. 423 

pneumoniae [57]. While certain kinds of the abovementioned resistant species were identified 424 

in SCISTW air, including multidrug-resistant A. baumannii, vancomycin-resistant E. faecium, 425 

and macrolide-resistant S. pneumoniae, the ARGs co-occurring with these putative priority 426 
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pathogens in urban PM2.5 in this study were different from the drug resistance types associated 427 

with the clinical cases in Hong Kong (Table S13). This suggests that these particular ARGs 428 

with clinical relevance are less likely to directly migrate from a clinical environment to urban 429 

areas via airborne communication or fail to persist long in air after transmission. However, this 430 

result could have been too limited by the current sequencing depth to have allowed for a 431 

comprehensive screening of antibiotic-resistant pathogens, and there was a lack of verification 432 

of resistance by culture-based methods. 433 

 434 

Compared to the host profile of total ARGs in PM2.5, PM-ARGs that were only detected in 435 

urban sites were observed to be harbored by fewer taxa, i.e., only Proteobacteria (dominant) 436 

and Firmicutes (Fig. S10). PM-ARGs appeared to be similarly constrained taxonomically in 437 

sewage/primary sludge/effluent samples as well. Such findings correspond to a previous study 438 

on intI1, showing that ARG-carrying integrons were highly conserved in Proteobacteria [55]. 439 

In general, across this study, the associated range of bacterial taxa appeared to diminish from 440 

the whole microbial community to ARG hosts, and then to PM-ARG hosts. Given the 441 

uncertainty in the accuracy of the assembly of metagenomic data [58], future studies with 442 

culture-based approaches to more closely examine the postulated relationships identified here 443 

would be beneficial. 444 

 445 

3.3.3 Comparable resistome risk score of PM2.5 among coastal, urban, and WWTP sites 446 

Based on the association of ARGs, MGEs, and putative pathogens annotated on assembled 447 

contigs, MetaCompare was employed to rank the resistome risk among samples, with a 448 

particular focus on critical human pathogens (Table S6). Compared with sewage/primary 449 

sludge/effluent, PM2.5 generally exhibited a lower resistome risk score (p < 0.05; Figs. 4C and 450 

S14). However, there were no significant differences in score among the PM2.5 samples 451 
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collected in the different sites (p > 0.05). This finding is consistent with the aforementioned 452 

observation that ARGs were rarely associated with MGEs in the air examined in this study. 453 

Putative ESKAPE pathogens carrying ARGs were more abundant in potential emission sources, 454 

such as sewage and sludge in WWTPs. Still, it is important to consider that any pathogenic 455 

bacteria harboring ARGs dwelling in the atmosphere could pose exposure and infection risks, 456 

particularly in the PM2.5 fraction, since it is amenable to inhalation. Thus, there is a need for 457 

human health risk assessments of environmental sources to consider the potential for exposure 458 

to airborne ARGs. 459 

 460 

3.4 Estimating the contributions of WWTPs to the ambient airborne bacteria and ARGs  461 

About 345 metagenomes representing different sample types collectively formed a database of 462 

putative sources of airborne bacteria and ARGs. These samples tended to be clustered by 463 

source category, regardless of the composition of the bacterial community or ARG profile (p 464 

< 0.01, Fig. S16). It should be noted that activated sludge was also included as a potential 465 

source since it was found different from CEPT sludge in both ARG relative abundance and 466 

composition (Figs. S15 and S16). The prediction performance of the model using the current 467 

datasets is described in Supporting Information (Section S4 and Figure S17). 468 

 469 

Echoing the comparable bacterial community structure in PM2.5 between the urban and 470 

SCISTW sites (Fig. 2), their corresponding source profiles of bacteria were relatively 471 

consistent (Fig. 5A). Notably, there appeared to be a dominant contribution of bacteria from 472 

agricultural soil and plants (26%–29%) among the identified sources. Others have also 473 

suggested that terrestrial sources play an important role in shaping the composition of the 474 

airborne bacterial community in human-impacted areas [17,59], along with WWTP matrices 475 

(11%–13%), including primary sludge (4.5−5.4%), secondary sludge (3.6−4.9%), sewage 476 
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(1.9−2.0%), and effluent (0.8%–1.1%) in descending order, and human skin (8%–10%). 477 

Although the leading sources of bacteria in coastal areas turned out to be of human origin 478 

(55%), the absolute contributions from human airways, human skin, and human oral cavities 479 

appeared to be comparable across the three sites (p > 0.05) (Fig. 5B). This finding is reasonable 480 

since the coastal site was situated downwind of major urban areas (receiving human-related 481 

impacts) and ~60 m above sea level (few apparent marine-indicative signals detected). 482 

However, it should be noted that nearly 21% of the PM2.5-associated bacteria in the coastal site 483 

and around half in the other two sites could not be apportioned to the current listed sources. 484 

This is probably because potential sources are still missing in the current model due to their 485 

lack of representation in public databases. 486 

 487 

In contrast to the source tracking results of bacteria, the ARG source profile was more 488 

comparable among the three sampling sites (Fig. 5A), with less than 12% undetermined. 57%–489 

60% of the PM2.5-associated ARGs were ascribed to WWTPs (26%–27% from primary sludge, 490 

15%–18% from sewage, 6%–10% from secondary sludge, and 6%–9% from effluent), 491 

followed by agricultural vegetation (10%–14%) and the remaining sources with comparable 492 

contributions (2%–4%). The disparities between the source profiles of PM2.5-associated 493 

bacteria and ARGs could be due to the different enrichment levels of ARGs in bacterial 494 

communities from different sources. Specifically, WWTP-originated matrices in this study 495 

were responsible for up to 13% of the PM2.5-associated bacteria, but for much higher 496 

proportions of ARGs at the three sites, as mentioned above. This finding corroborates the view 497 

that WWTPs, as an important ARG hotspot in urban areas, could be a major anthropogenic 498 

source of ARGs in the atmospheric environment. In addition, the contrasting source profiles 499 

could also suggest the dissimilar adaptability to the atmospheric environment among different 500 

ARB or between ARB and other general bacteria after their aerosolization from source 501 
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environments, e.g., many ARG-carrying bacteria have more similar patterns of survival, 502 

growth, and decay than the general bacterial community. Based on the current resolved sources, 503 

the PM2.5-associated ARGs in Hong Kong are more likely attributable to anthropogenic 504 

activities in agricultural and engineering systems. Moreover, additional comparisons were 505 

made with PM2.5 collected during a similar period (unpublished data) in urban Guangzhou, a 506 

megacity located 120 km northwest of Hong Kong. Not surprisingly, Hong Kong-style 507 

WWTPs, characterized by mixed sewage (fresh and saline) and application of either CEPT or 508 

secondary treatment, contributed much less to airborne ARGs of urban Guangzhou than its 509 

contribution in Hong Kong (Fig. S18). Despite the low proportion in source profile, CEPT-510 

related ARG signals in Guangzhou still highlight the potential impact of Hong Kong’s sewage 511 

treatment activities on the airborne resistome in nearby cities. These prediction results accord 512 

with the regional pollution pattern via air transportation and reflect the feasibility of using ARG 513 

signature in source tracking. However, the current results could be biased by the limited sample 514 

size in this study and a certain portion of non-local metagenomic data with potentially 515 

geographically dependent microbial features. In consideration of this eventuality, it is 516 

important to conduct a metagenomics-based survey in various local putative sources, including 517 

those not involved in the current study, such as hospitals and waste transfer stations, to further 518 

improve the completeness and accuracy of the results. 519 

 520 

Finally, the emission rates of bacteria and ARGs in WWTP, expressed as the proportion of 521 

bacteria and ARGs in a certain source to be released to the atmosphere, were estimated. In 522 

general, the emission rates of both bacteria and ARGs was significantly higher (by two orders 523 

of magnitude) from primary sludge (1E-7 and 6E-8 on average for bacteria and ARG, 524 

respectively) than from sewage and effluent (p < 0.01) under the current configuration of 525 

SCISTW. The comparable levels of the estimated emission rates between bacteria and ARGs 526 
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from each WWTP matrix would seem to indicate a similar aerosolization potential of general 527 

bacteria and ARB. However, whether the antibiotic resistance property benefits the survival of 528 

these aerosolized ARB in the harsh atmospheric environment with distinct selective pressures 529 

(e.g., UV light, desiccation) still requires investigations. Lastly, as another important source,  530 

WWTPs incorporating a range of secondary biological treatments should be incorporated into 531 

future studies to fully estimate the emission of bacteria and ARGs from WWTPs to the urban 532 

environment. 533 

 534 

3.5 Environmental Implications 535 

This study highlights the dissemination of ARGs and their bacterial hosts from typical urban 536 

sources like WWTPs to the ambient atmosphere based on investigations into PM2.5, which can 537 

be inhaled into the human respiratory tract and thus has potential health implications. 538 

Nevertheless, there is still a lack of emission standards of airborne bacteria and ARGs from 539 

such sources. The high contribution of anthropogenic sources (e.g., WWTPs) to airborne ARGs 540 

emphasize the need to regulate and manage relevant urban settings to mitigate the 541 

dissemination of ARGs to the atmospheric environment. However, the complex interactions 542 

between bacterial taxa and how environmental stress alters the bacterial communities after their 543 

aerosolization from putative sources does not seem to have been considered extensively in the 544 

algorithm. The current simple box model used to estimate the emission rates of bacteria in 545 

WWTP-originated matrices is an initial attempt to address this issue from a macro perspective. 546 

Future studies should also address the bacterial aerosolization within microenvironments, such 547 

as considering the partitioning of bacteria in at the air-liquid/air-solid interface. Further, a 548 

combination of the use of aerodynamic transport models and efforts to monitor the dynamic 549 

process of aerosolization (coupled with chamber tests) may help to produce a more accurate 550 

picture of the dissemination flux of bacteria and ARGs from various sources to the ambient 551 
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atmosphere. In this study, although only a small portion of bacterially associated ARGs was 552 

linked with MGEs in PM2.5, the HGT potential of ARGs in the atmosphere should not be 553 

overlooked. This evaluation should also consider the extracellular fraction of airborne ARGs 554 

[36] and the phage-mediated process, an important HGT pathway in highly turbulent 555 

environments [60], such as the atmosphere. In addition, culture-dependent techniques are 556 

required to confirm the existence and viability of ARB identified in this study and their 557 

expression of antibiotic resistance, as well as to verify the de facto transmission of ARGs via 558 

HGT. Such efforts will help to provide solid evidence beyond inferences derived from 559 

metagenomic data and further facilitate understanding of ARG dissemination mechanisms, 560 

including the linkage to specific host species. 561 
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 779 

Figure 1. Map of three sampling locations in Hong Kong (A) and the general sewage treatment 780 

process in SCISTW, with the specific sampling positions and corresponding sample types 781 

marked (B). Panel (C) presents the conceptual simple box model used in the calculation of the 782 

emission potential of bacteria and ARGs from different SCISTW matrices to the ambient 783 

atmosphere. 784 

 785 
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 786 

Figure 2. Comparison of bacterial abundance and community composition among sample 787 

types and sampling locations. Panel (A) visualizes the NMDS results (Bray–Curtis 788 

dissimilarity) of the bacterial community at the species level (PERMANOVA R2 = 0.5152, p 789 

< 0.001, permutations = 999), which corresponds to the differentiation of key taxon indicators 790 

among different sample types revealed by a LEfSe analysis (LDA score > 4.5, p < 0.05) in 791 

Panel (B). Panels (C) and (D) show the alpha diversity (bacterial species-based Shannon index) 792 

among different sample types and the absolute abundance of PM2.5-associated bacteria 793 

(indicated by the 16S rRNA gene) across the coastal–urban–SCISTW transect, respectively.  794 

 795 
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 796 

Figure 3. Antibiotic resistome across sample types and sampling locations. Panels (A) and (B) 797 

show the relative abundance of total identified ARGs (normalized to the 16S rRNA gene, log 798 

scale) and the alpha diversity of ARGs (Shannon index based on ARG subtype), respectively. 799 

Panel (C) is the relative abundance profile of indicator ARG subtypes (normalized to the 16S 800 

rRNA gene, log10 transformed) in PM2.5 across sampling locations determined by a LEfSe 801 

analysis (p < 0.05). Panel (D) tests the correlation of community structure between bacteria 802 

and ARGs via a Procrustes analysis (NMDS-based).803 
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 804 

Figure 4. Co-occurrence patterns of ARGs, MGEs, and potential bacterial hosts based on 805 

assembled contigs. Panel (A) shows the genetic locations of ARGs in bacterial genomes 806 

(unclassified fraction not shown), as well as the proportions of ARGs that are co-localized with 807 

integrase/transposase/recombinase-encoding genes. Panel (B) presents the percentage of the 808 

identified ARGs in various bacterial species in each PM2.5 sample (using package “pheatmap” 809 

in R). Here only the antibiotic-resistant species presented in no less than two PM2.5 samples 810 

are shown. The red stars indicate the (emerging) human pathogens. Panel (C) shows the co-811 

occurrence probability of the targeted components – ARGs, ARGs–MGEs, and ARGs–MGEs–812 

putative pathogens (PAT), respectively – identified in the samples. This information is 813 

expressed as the contig number with critical components divided by the total assembled contig 814 

number. 815 
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 816 

Figure 5. Contributions of various potential sources to PM2.5-associated bacteria and ARGs in 817 

coastal, urban, and SCISTW sites. Panel (A) is the source profiles of bacteria and ARGs 818 

predicted by SourceTracker. Panel (B) shows the estimated absolute abundance of PM2.5-819 

associated 16S rRNA genes and ARGs contributed by different sources. The absolute 820 

abundance of ARGs was assumed to be the product of the absolute abundance of the 16S rRNA 821 

genes and the relative abundance of ARGs normalized to the 16S rRNA gene (predicted by 822 

DeepARG). The estimated emission rates of bacteria and ARGs in different SCISTW matrices 823 

are displayed in Panel (C), and are expressed as the proportion of bacteria or ARGs emitted to 824 

the ambient atmosphere. 825 
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