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A B S T R A C T

Critical infrastructure networks (CINs), such as power grids, water distribution systems, and telecommunication

networks, are essential for the functioning of society and the economy. As these infrastructure networks are

not isolated from each other, their functions are not independent and may be vulnerable to disruptive events

(e.g., component failures, terrorist attacks, natural disasters). For decision makers, how to restore the functions

of CINs while accounting for interdependencies and various uncertainties becomes a challenging task. In this

work, we study the post-disruption restoration problem for a system of interdependent CINs under uncertainty.

We propose a two-stage mean-risk stochastic restoration model using mixed-integer linear programming (MILP)

with the goal of minimizing the total cost associated with unsatisfied demands, repair tasks, and flow of

interdependent infrastructure networks. The restoration model considers the availability of limited time and

resources and provides a prioritized list of components to be restored along with assigning and scheduling them

to the available network-specific work crews. Additionally, the model features flexible restoration strategies

including multicrew assignment for a single component and a multimodal repair setting along with the

consideration of full and partial functioning and dependencies between the multi-network components. The

proposed model is illustrated using the power and water networks in Shelby County, Tennessee, United States,

under two hypothetical earthquake scenarios.

1. Introduction

1.1. Background

Modern societies rely on the proper functioning and sustainabil-

ity of critical infrastructure networks (CINs) such as electric power

systems, water supply systems, transportation, and telecommunica-

tions (Karakoc et al., 2019). Therefore, maintaining secure and re-

silient critical infrastructures (CIs) has become one of the most de-

manding challenges for governments around the globe, especially in

the last three decades (White House, 2013; Karagiannis et al., 2017;

Humphreys, 2019). For instance, the United States (U.S.) federal plan-

ning documents suggest the importance of addressing CI resilience

in such a way that reflects its ‘‘interconnectedness and interdepen-

dency’’ (White House, 2013). Planning for disruptions to CINs has

shifted recently from emphasizing prevention and protection to cap-

turing the CIs’ ability to withstand disruptions and quickly recover

their functions (Hosseini et al., 2016; Humphreys, 2019). This ability

to withstand, adapt to, and recover from disruptions is referred to as
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resilience (Barker et al., 2017; Almoghathawi et al., 2019; Humphreys,

2019).

CINs are often vulnerable and subject to natural and/or man-made

disruption events (e.g., earthquakes, hurricanes, and malevolent at-

tacks), which could impact the CINs’ performance unpredictably and re-

sult in severe socioeconomic consequences (Almoghathawi et al., 2019;

Alkhaleel et al., 2022). Indeed, such disruptions become inevitable in

a modern world featuring growing dynamic and hazardous operating

environments (Helbing, 2013). Economically, they have caused huge

economic losses around the globe. In the past 50 years, more than

22,500 disasters occurred globally impacting about 8 million people

and costing approximately (in 2019 dollar-adjusted value) $3.7 tril-

lion (CRED, 2021). Annually, only weather-related outages (excluding

malevolent attacks and non-weather natural hazards) are estimated to

have cost the U.S. economy an inflation-adjusted annual average of

$18 billion up to $70 billion (Executive Office of the President, 2013;

Campbell and Lowry, 2012).

Interdependencies among infrastructure networks have become

more frequent and complex due to the increasing trend of globalization
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and technological developments (Rinaldi et al., 2001; Saidi et al.,
2018; Karakoc et al., 2019). However, although interdependencies
can improve the efficiency of networks functionality, this type of
complex coordination often causes them to become more vulnerable
to disruptions (e.g., random failures, malevolent attacks, and natural
disasters) (Almoghathawi et al., 2021). As a result, a disruption in some
components of one of the infrastructure networks could trigger a mal-
function in the undisrupted components of other dependent networks,
resulting in a series of cascading failures affecting the whole infrastruc-
ture network system (Karakoc et al., 2019; Little, 2002; Wallace et al.,
2003; Buldyrev et al., 2010; Eusgeld et al., 2011; Danziger et al., 2016;
Ouyang, 2014). Although this complex form of interconnectedness of
infrastructures was acknowledged two decades ago (Amin, 2002), the
related research on interdependent networks only started quite recently
as part of resilience engineering applications (Almoghathawi et al.,
2019; Buldyrev et al., 2010, 2011; Cavdaroglu et al., 2011; Danziger
et al., 2016).

The high vulnerability of infrastructure networks against disrup-
tions and the associated risks of such events have become a critical
concern for decision makers, especially with the need to account for
the interdependencies through recovery planning to obtain a realis-
tic analysis of their performance (Holden et al., 2013). Moreover,
scheduling the restoration processes separately for interdependent crit-
ical infrastructure networks (ICINs) without considering their interde-
pendencies could cause misutilization of resources, waste of time and
funds, and even might trigger additional inefficiency of distribution
systems (Baidya and Sun, 2017). However, functional connectivity
among these CIs is not the only dependency that should be taken into
account; spatial, cyber, social, and logical interdependencies are other
interdependency forms that could impact restoration and recovery
planning (Rinaldi et al., 2001; Min et al., 2007; Sharkey et al., 2015).

Recent events such as Hurricane Harvey (Force, 2013) and the
2016 Ecuador earthquake (Meltzer et al., 2019) suggest that not all
undesired events can be prevented. In these events and many others,
multiple networked systems including the transportation, power, and
water networks are impacted (Mendonca et al., 2004; Manuel, 2013;
Meltzer et al., 2019). Hence, improving recovery planning actions after
disruptions is an essential part of CIs resilience. That is, resilience can
be effectively improved by developing optimized plans for promptly
restoring the disrupted service after the occurrence of a disruptive
event. In planning ICINs restoration, prioritizing components is key in
improving the recovery process and system resilience. It is also neces-
sary to consider the practical significant challenges that face recovery
actions such as repair times uncertainty and poor access to damaged
facilities when developing restoration plans (Karagiannis et al., 2017).
To this end, the development of effective restoration strategies and
scheduling approaches for CIs post-disruption restoration is typically
accomplished through optimization approaches. In the literature, there
are numerous studies in the context of post-disruption CI restoration
under a mathematical programming framework (Alkhaleel et al., 2022;
Nurre and Sharkey, 2014; Vugrin et al., 2014; Fang and Sansavini,
2017; Zhang et al., 2018). Of course, the main goal of such studies is to
optimize the scheduling process of restoration tasks in order to accel-
erate the recovery process and improve the overall resilience (Vugrin
et al., 2014).

1.2. CIs interdependencies classification

Infrastructure networks are not isolated from each other, but rather
they rely on one another in different ways for their proper functioning.
Hence, they exhibit interdependency, where a pair of infrastructure
networks are said to be interdependent if there is a bidirectional rela-
tionship between them through which the state of each infrastructure
depends on the state of the other (Rinaldi et al., 2001; Peerenboom
et al., 2002). Interdependencies play a critical role in the resilience of
CIs by not only contributing to the widespread of failure propagation

(e.g., cascading failures), but also by either facilitating or complicat-
ing the entire recovery process (Guidotti et al., 2016). The recovery
rate of ICIs components depends on several factors which are often
difficult to understand, model, and predict; hence, this uncertainty
is reflected on planning the recovery strategy and utilizing related
resources (Guidotti et al., 2016; Bruneau et al., 2003; Franchin and
Cavalieri, 2015; Sharma et al., 2017). The need to describe the relation-
ships among infrastructure systems, and the corresponding propagation
of system disruptions led to the definition of several classifications of
the nature of infrastructure interdependencies (e.g., Rinaldi et al., 2001;
Lee I.I. et al., 2007; Wallace et al., 2003; Zimmerman, 2001; Zhang and
Peeta, 2011). The classification of Rinaldi et al. (2001) is described as a
‘‘self-contained classification’’ that is capable of capturing the different
nature of interdependencies (Ouyang, 2014).

The interdependencies between infrastructure networks were clas-
sified by Rinaldi et al. (2001) into four categories:

• Physical interdependency: an output from an infrastructure network
is an input to another one and vice versa.

• Cyber interdependency: if an infrastructure network depends on
information transmitted through an information infrastructure.

• Geographical interdependency: if two infrastructure networks are
affected by the same local disruptive event.

• Logical interdependency: all other types of interdependencies (e.g.,
the social or legal link between two CIs).

Fig. 1 shows the interdependencies between electric power networks
and other infrastructure networks. Throughout this article, we focus
on the physical interdependencies among different CINs. Note that the
physical interdependency defined by Rinaldi et al. (2001) is equiv-
alent to the so-called functional or input interdependency in other
classifications (Lee I.I. et al., 2007).

1.3. Related literature

There are several modeling, optimization, and simulation tech-
niques proposed in the literature that consider interdependencies be-
tween infrastructure networks (see Ouyang, 2014 for a detailed re-
view). Such techniques can be classified into six categories (Rinaldi,
2004): (i) aggregate supply and demand tools, where infrastructures
are linked by their demand for commodities (or services) supplied by
other infrastructures (e.g., Enayaty Ahangar et al., 2020), (ii) dynamic
simulations, which examines infrastructures operations, the effects of
disruptions, and the associated consequences (e.g., Zhang et al., 2016
(iii) agent-based models, where physical components of infrastructures
can be modeled as agents allowing the analyses of the operational
characteristics, the physical states of infrastructures, and the decision-
making policies involved with infrastructure operations (e.g., Azucena
et al., 2021). (iv) physics-based models, where physical characteristics
of CIs can be analyzed with standard engineering techniques such
as power flow in electric power grids (e.g., Unsihuay et al., 2007)
(v) population mobility models, where this class of models examines
the movement of entities (e.g., people following their daily routines)
through urban regions (e.g., Casalicchio et al., 2009). (vi) Leontief
input–output models, where Leontief’s model of economic flows can
be applied to CIs studies (Haimes and Jiang, 2001). Throughout this
article, the focus will be on the first category with aggregated supply
and demand tools.

Post-disruption restoration and recovery problems considering in-
terdependent critical infrastructures (ICIs) have been addressed in the
literature through different approaches. Almoghathawi et al. (2021)
classifies these approaches into two broad categories: (i) infrastructure-
specific approaches, which consider the physics of different infrastruc-
tures (e.g., DC power flow model) and hence could be applied on these
infrastructure networks only, and (ii) general approaches, which could
be applied to any system of interdependent infrastructure networks.
Both approaches often fall under the area of combining network design
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Fig. 1. Examples of electric power infrastructure dependencies.

Source: Adapted from Rinaldi et al. (2001).

and scheduling problems following the lead of Nurre et al. (2012)

who introduced the integrated network design and scheduling problem

(INDS) for restoring a single infrastructure network with the goal of

maximizing the cumulative maximum flow over time. Other goals

and problem types of post-disruption recovery can be found in the

survey article by Çelik (2016) who summarized the work on recover-

ing networks for humanitarian operations and the different problems

(decision-making processes) associated with this field of research.

Regarding the infrastructure-specific approaches for interdependent

networks restoration, Coffrin et al. (2012) proposed a randomized

adaptive decomposition approach to solve the problem of restoring

two physically interdependent infrastructure networks, namely power

and gas networks. They integrated two network-specific flow models

(i.e., a linearized DC flow model for the power network and a maximum

flow model for the gas network) using a mixed-integer programming

(MIP) approach with the objective of maximizing the weighted sum of

interdependent demand over the restoration time horizon. However,

their proposed model did not consider different restoration durations

for the disrupted components of both networks. Baidya and Sun (2017)

presented an optimized restoration strategy with the goal of prior-

itizing the restoration activities between two physically interdepen-

dent infrastructure networks – power and communication networks –

considering their physical properties. The proposed approach is for-

mulated using MIP with the objective of activating every node in

both networks with the minimum number of activation/energization

of branches. Tootaghaj et al. (2017) studied the impact of cascading

disruption on the physically interdependent power grid and communi-

cation network by considering only disruptions in power networks. As

a result, they proposed a two-step recovery approach. The first step is

to avoid further cascades, for which they formulated the minimum cost

flow assignment problem using linear programming with the objective

of finding a DC power flow setting that stops the cascading failure at

minimum cost. The second step is to provide a recovery schedule, for

which they formulated the recovery problem using MIP – with the goal

of maximizing the total amount of delivered power over the recovery

horizon – and solved the problem using heuristic approaches.

Regarding the general approaches for interdependent infrastructure

networks restoration, Lee I.I. et al. (2007) proposed an MIP model for

interdependent layer networks accounting for different interdependen-

cies between the infrastructure networks. The objective of the model

is to minimize the flow costs along with the costs of unmet demand.

Moreover, the model focuses only on determining the set of disrupted

components (i.e., edges) of the interdependent infrastructure networks

that need to be recovered to restore the performance of each of the

infrastructure networks to its pre-disruption functionality level. Hence,

the proposed model does not specify a threshold time at which edges

need to be restored nor the assignment of each work crew to restore

which disrupted component. On the other hand, Gong et al. (2009)

focused only on the scheduling problem of a predetermined set of

disrupted components for ICINs with predefined due dates for them.

They provided an MIP multi-objective restoration planning model to

find the optimal restoration schedule for disrupted components. They

proposed a logic-based benders decomposition approach to solve the

model, whose objective is to minimize the weighted sum of cost,

tardiness, and makespan associated with the restoration process. Cav-

daroglu et al. (2011) integrated the two approaches by Lee I.I. et al.

(2007) and Gong et al. (2009) by providing an MIP model that: (i)

determines the set of disrupted components (i.e., edges) to be restored,

(ii) assigns and schedules them to work crews. The model was solved

using a suggested heuristic solution method. The objective of the

model is to minimize the total cost of flow, unsatisfied demand, and

installation and assignment associated with the full restoration of a set

of infrastructure networks accounting for their interdependencies. In

addition, Holden et al. (2013) proposed an extended network flow ap-

proach to simulate the performance of infrastructure networks at a local

scale (i.e., community scale) considering the physical interdependency

among them. They provided a linear programming optimization model

with the goal of finding the optimal performance of the infrastructure

networks such that the total cost associated with production, storage,

commodity flow, discharge, and shortage (i.e., unsatisfied demand) is

minimized. However, the proposed approach by Holden et al. (2013)

does not explicitly discuss what is the set of disrupted networks com-

ponents, their restoration durations, their restoration priorities, and the

availability of work crews. Ouyang and Wang (2015) compared the

effectiveness of five strategies for joint restoration of interdependent

infrastructures and applied a Genetic Algorithm (GA) to generate recov-

ery sequences. Sharkey et al. (2015) studied the restoration of multiple

ICINs under a centralized decision-making framework and proposed an

MIP model to solve the problem. Additionally, González et al. (2016)

proposed an MIP model for optimizing infrastructure systems joint

restoration considering geographical and physical interdependencies

between multiple CI systems. Di Muro et al. (2016) studied the re-

covery problem of the system of ICINs in the presence of cascading

failures to mitigate its breakdown. They considered the restoration of
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disrupted network components (i.e., nodes) located at the boundary

of the largest connected component in the functional networks. In

their study, they tried to reconnect the boundary nodes to the largest

connected component considering the probability of recovery that halts

the cascade.

In recent years, Zhang et al. (2018) optimized the allocation of

restoration resources for a set of physically interdependent infras-

tructure networks to enhance their resilience. A genetic algorithm

was developed to allocate limited resources to interdependent infras-

tructure networks and to determine the optimal restoration budget

following a disruptive event. Mooney et al. (2019) proposed a multi-

objective MIP model that integrates a facilities location problem, that

determines where resources should be stationed following a disrup-

tion, and a recovery scheduling problem to optimize the restoration

process of a system of ICIs. Karakoc et al. (2019) proposed a com-

munity resilience-driven multi-objective MIP model to schedule the

restoration process of disrupted components of a system of ICIs with

emphasis on social vulnerability of communities. Almoghathawi et al.

(2019) proposed a multi-objective MIP restoration model for systems

of interdependent infrastructure networks. Their goal was to find the

minimum-cost restoration strategy of a system of interdependent net-

works that achieves a certain level of resilience. Ghorbani-Renani

et al. (2020) proposed a tri-level pre- and post-disruption optimiza-

tion problem integrating protection, interdiction, and restoration of

a system of interdependent networks to improve both vulnerability

and recoverability of the system. Garay-Sianca and Pinkley (2021)

optimized the restoration of ICIs considering the movement of work

crews (machines) through a damaged transportation network being

restored by formulating and solving an MIP model.

It is worth pointing out that most studies on post-disruption restora-

tion and recovery of ICINs are based on deterministic assumptions

such as complete information on restoration resources and duration of

activities (Alkhaleel et al., 2022). However, the restoration of ICINs is

complicated by numerous decisions that need to be made in a highly

uncertain environment (Fang and Sansavini, 2019). Such uncertainty

is linked to several factors including the availability of restoration

resources, the time duration for repairing failed components and the ac-

cessibility to failed components through the underlying transportation

network (Alkhaleel et al., 2022). Moreover, existing optimization ap-

proaches do not account for risk measures related to the uncertainty as-

sociated with the execution of the optimal plan. Just recently, Alkhaleel

et al. (2022) explored integrating risk to resilience-based restoration

models; this work showed that it is essential to consider risk-averse

decision-making, especially in one-shot applications, which are un-

repeatable, such as post-disruption restoration of ICINs. This paper

builds upon the previous work by the authors (Alkhaleel et al., 2022);

however, here, we extend the previous work to ICINs with an un-

derlying transportation network, explore flexible restoration strategies

(i.e., multimode repair and multicrew assignments), and integrate costs

of unsatisfied demand (resilience loss equivalent), repair, and flow into

the model; with such modifications, we address some of the limitations

of the previous work such as: (i) the need to choose between either

a risk-neutral approach, which considers the preference criterion in

terms of the expectation while comparing the random variables to

find the best decisions, or a risk-averse alternative, which incorporates

risk measures into the decision making process, to implement (cannot

be combined), (ii) assuming binary functional status of each compo-

nent (either fully functional or disrupted), (iii) preventing concurrent

restoration of a single component by multiple crews (a single com-

ponent can only be restored by one crew), (iv) lack of an economic

measure for a developed plan (e.g., using only a resilience measure can

cause extra hidden cost in the repair process), (v) unavailability levels

of different repair modes for failed components (failed components

need to be fully restored).

1.4. Overview and research contribution

In this article, we study the interdependent critical infrastructure
networks restoration problem (ICINRP), which seeks to minimize the
total cost associated with unsatisfied demand (resilience loss), repair
tasks, and network flow by improving the restoration strategy of a
system of interdependent networks following the occurrence of a dis-
ruptive event considering limited time and resources availability. The
goal of this paper is to help decision makers plan for ICIs recovery
following the occurrence of a disruptive event not only by improving
the speed of system recovery, but by also linking risk and its importance
level, assessed by the decision maker, to the restoration plan decisions.
Accordingly, a two-stage stochastic optimization model using mixed-
integer linear programming was proposed to solve the ICINRP under
a mean-risk measure, which combines the risk-neutral and risk-averse
approaches into one model. The primary objective of the proposed
model is to determine (i) the set of failed components to be restored,
(ii) the repair mode for each failed component, (iii) the set of failed
components for each crew to restore individually or concurrently, (iv)
the baseline restoration sequence across scenarios for each crew in
order to minimize the total cost associated with the restoration process
(i.e., disruption, repair, and flow costs).

The main contributions of this paper are four-fold. (1) This is
the first paper that incorporates a mean-risk approach into ICIs post-
disruption restoration models allowing decision makers to choose a
risk-averse optimal plan related to a risk importance factor; (2) it
explores flexible restoration strategies, and partial functioning and
dependencies under uncertainty; (3) it provides an efficient solution ap-
proach for solving mean-risk restoration models compared to standard
solvers; and (4) the proposed model, solution approach, and flexible
restoration strategies are tested using a realistic case study of a system
of ICINs in Shelby County, Tennessee (TN), U.S. under two hypothetical
earthquake scenarios.

The remainder of this paper is organized as follows. Section 2
presents the background and methodology pertinent to the developed
model and summarizes the proposed mathematical formulations. Sec-
tion 3 provides the solution approach used in this paper. Section 4
presents a case study on the system of ICINs in Shelby County, TN,
U.S. to illustrate the use and advantage of the suggested model. Finally,
concluding remarks and future research directions are provided in
Section 5.

2. Methodology and model development

2.1. Risk measure

Before introducing the risk measure approach used in developing
the mean-risk two-stage stochastic model, we first define the general
form of two-stage stochastic models.

Definition 2.1. Given a probability space denoted by (𝛺, ,), where
𝛺 is the sample space,  is a 𝜎-algebra on 𝛺 and  is a probability
measure on 𝛺; for a finite probability space, where 𝛺 =

{
𝜔1,… , 𝜔𝑁

}
with corresponding probabilities 𝜋1,… , 𝜋𝑁 , the general form of the
two-stage stochastic linear programming problem is defined as (Birge
and Louveaux, 2011):

min
𝒙∈𝑋

E(𝑓 (𝒙, 𝜔)) = min
𝒙∈𝑋

𝑐𝑇 𝒙 + E(𝑄(𝒙, 𝜉(𝜔))) (1)

where 𝑓 (𝒙, 𝜔) = 𝒄𝑇 𝒙 + 𝑄(𝒙, 𝜉(𝜔)) is the cost function of the first-stage
problem and:

𝑄
(
𝒙, 𝜉𝑖

)
= min

𝒚𝑖

{(
𝒒𝑖
)𝑇

𝒚𝑖 ∶ 𝑳𝑖𝒙 +𝑾 𝑖𝒚𝑖 = 𝒉𝑖, 𝒚𝑖 ≥ 0
}

(2)

is the second-stage problem corresponding to the realization of the
random data 𝜉(𝜔) for event 𝜔𝑖, denoted by 𝜉

𝑖 =
(
𝒒𝑖,𝑳𝑖,𝑾 𝑖,𝒉𝑖

)
where 𝒙

and 𝒚 are the vectors of first-stage and second-stage decision variables,
respectively.
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The general two-stage stochastic optimization model is risk-neutral
(i.e., there is no accounting for risk in the objective function). The main
goal of such models is to show the effect of incorporating uncertainty
compared to deterministic ones. However, although solutions to risk-
neutral models often perform better than deterministic solutions, both
solutions may be subject to poor performance for certain realizations
in practice. Such realizations are known as worst-case scenarios in
the stochastic optimization literature (Birge and Louveaux, 2011). It is
found that under these high-risk scenarios, risk-neutral solutions often
perform poorly, especially for CI restoration applications involving both
social and economic impacts (Alkhaleel et al., 2022). Given the one-
shot nature of CI restoration and its significant socioeconomic impact,
it is of interest to consider stochastic models that account for both
uncertainty and risk when planning restoration; such models are known
as mean-risk models (Noyan, 2012). Mean-risk models are defined as
in Definition 2.2:

Definition 2.2. For a specific risk measure 𝜌 ∶  → R, where 𝜌 is
a functional and  is a linear space of  -measurable functions on the
probability space (𝛺, ,), a mean-risk function is defined as (Noyan,
2012):

min
𝒙∈𝑋

{E(𝑓 (𝒙, 𝜔)) + 𝜁𝜌(𝑓 (𝒙, 𝜔))} (3)

where 𝜁 is a non-negative trade-off coefficient representing the ex-
change rate of mean cost for risk.

The change rate of risk 𝜁 , hereafter referred to as the risk coeffi-
cient, is specified by the decision maker according to the assessment
of the associated risk. Toward stating a mean-risk restoration opti-
mization model in Section 2.2, we now summarize the Conditional
Value at Risk (CVaR) as the risk measure (Rockafellar and Uryasev,
2000; Krokhmal et al., 2002) and recap some results pertinent to the
developed optimization model.

Definition 2.3. Let 𝑍 denote a loss random variable (the term ‘‘loss’’
is used here to indicate that larger values are undesirable) with cumu-
lative distribution function (CDF) 𝐹 (⋅). For a given risk level 𝛼 ∈ (0, 1],
the Value at Risk (VaR) of 𝑍 is defined as:

VaR𝛼(𝑍) = min{𝑡|𝐹 (𝑡) ≥ 𝛼} = min{𝑡|𝑃 (𝑍 ≤ 𝑡) ≥ 𝛼} (4)

Thus, for a continuous random variable 𝑍, VaR𝛼[𝑍] is the quantile
of 𝑍 that exceeds the loss with probability 𝛼. The CVaR for 𝑍 with
risk level 𝛼 ∈ [0, 1] is the expected loss given that the loss is at least
VaR𝛼(𝑍), i.e.:

CVaR𝛼(𝑍) = E
(
𝑍|𝑍 ≥ VaR𝛼(𝑍)

)
(5)

It is known that CVaR can also be expressed as the optimal solution to
the optimization problem:

CVaR𝛼[𝑍] = min
𝜂∈R

{
𝜂 + 1

1 − 𝛼
E
[
(𝑍 − 𝜂)+

]}
(6)

where (𝑎)+ ∶= max(𝑎, 0) (Rockafellar and Uryasev, 2000). Combining
Eqs. (3) and (5), the mean-risk model with a CVaR risk measure can be
formulated as:

min
𝒙∈𝑋

{
E(𝑓 (𝒙, 𝜔)) + 𝜁 CVaR𝛼(𝑓 (𝒙, 𝜔))

}
(7)

Using the result from Eq. (6), Eq. (7) can be rewritten as:

min
𝒙∈𝑋,𝜂∈R

{
E(𝑓 (𝒙, 𝜔)) + 𝜁

(
𝜂 + 1

1 − 𝛼
E
[
(𝑓 (𝒙, 𝜔)) − 𝜂+

])}
(8)

2.2. Mean-risk two-stage stochastic program formulation

This section formulates a mean-risk two-stage stochastic program
for the ICINRP in which the first-stage schedules the restoration of
failed components for each network using multiple network-specific
repair crews, chooses the repair mode for each failed component

(e.g., perfect or imperfect), and determines the fixed restoration cost
of failed components; and the second-stage determines the resulting
costs associated with unmet demand and flow for networks under a
given realization of the random variables (i.e., repair time for each
component and travel times between components). Rather than to
optimize explicitly over all random variables, it is common to sample
scenarios from their joint distribution. Let 𝛺 and 𝛹 denote the set of
scenarios and networks, respectively. For a given scenario 𝜔 ∈ 𝛺, let
𝑡𝑡𝑟

𝜓
𝑐𝜔 denote the time to repair component (either node or arc) 𝑐 ∈ 𝐶

′𝜓 .
Note that throughout this article we refer to directed (unidirectional)
edges as arcs and bidirectional ones as edges. For travel times, let 𝑡𝑡𝜓

𝑐𝑐′

denote the travel time from component 𝑐 ∈ 𝐶
′𝜓 to component 𝑐′ ∈ 𝐶

′𝜓

in the same network. It will also be convenient to define 𝜉(𝜔) as a vector
specifying the realized values of all random variables in scenario 𝜔.

An equivalent optimization problem to the mean-risk problem in
Eq. (8) can be proposed for a finite probability space 𝛺 =

{
𝜔1,… , 𝜔𝑁

}
with corresponding probabilities 𝜋1,… , 𝜋𝑁 as shown in Remark 2.1:

Remark 2.1. For a finite probability space 𝛺 =
{
𝜔1,… , 𝜔𝑁

}
with|𝛺| = 𝑁 and corresponding probabilities 𝜋1,… , 𝜋𝑁 , an equivalent

formulation of the mean-risk problem in Eq. (8):

min
𝒙∈𝑋,𝜂∈R

{
E(𝑓 (𝒙, 𝜔)) + 𝜁

(
𝜂 + 1

1 − 𝛼
E
[
(𝑓 (𝒙, 𝜔)) − 𝜂+

])}
is the following optimization problem:

min
𝒙∈𝑋,𝒚,𝜂∈R

(1 + 𝜁 )𝒄𝑇 𝒙 +
|𝛺|∑
𝜔=1

𝜋𝜔
(
𝒒𝜔

)𝑇
𝒚𝜔 + 𝜁

(
𝜂 + 1

1 − 𝛼

|𝛺|∑
𝜔=1

𝜋𝜔𝑣𝜔

)
(9)

s.t.

𝑾 𝜔𝒚𝜔 = 𝒉𝜔 −𝑳𝜔𝒙, 𝜔 = 1,… , |𝛺|, (10)

𝒙 ∈ 𝑋, (11)

𝒚𝜔 ≥ 0, 𝜔 = 1,… , |𝛺| (12)

𝑣𝜔 ≥
(
𝒒𝜔

)𝑇
𝒚𝜔 − 𝜂, 𝜔 = 1,… , |𝛺| (13)

𝜂 ∈ R, 𝑣𝜔 ≥ 0, 𝜔 = 1,… , |𝛺| (14)

The proof of Remark 2.1 can be found in Noyan (2012). This result
will be used to formulate the ICINs mean-risk two-stage stochastic
programming problem following the notation.

2.2.1. Assumptions

There are several assumptions and considerations for the proposed
mean-risk optimization model to solve the ICINRP:

• Each supply node, demand node, and arc in each infrastructure
network has a known supply capacity, demand, and flow capacity,
respectively.

• Each disrupted component in each infrastructure network can be
restored under different possible repair modes (e.g., perfect and
imperfect), where each repair mode is related proportionally to
the restored capacity of the failed component and the restoration
time.

• Imperfect node repair proportionally adjusts a restored node’s
ability to generate supply or consume demand but assumes nodes
are uncapacitated for incoming and outgoing flow (transshipment
nodes are only restored in perfect repair mode).

• Each disrupted component in each network can be restored with
a different restoration time under each scenario.

• The flow costs through each arc, unmet demand costs, and
restoration costs for disrupted components in each infrastructure
network are known and fixed.

• Repair times are measured in man-hour units allowing for shorter
repair times with a higher number of crews allocated.

• The number of available network-specific work crews for each
infrastructure network is known.
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2.2.2. Notation

A summary of notation follows. In addition to the notation already

defined, the summary defines (i) first-stage binary variables 𝑥𝜓
𝑐𝑐′𝑘

and

𝑜
𝜓
𝑐𝑦 in order to encode a restoration plan and choose repair modes for

different components (i.e., some disrupted critical components need

to be fully repaired to restore the performance of the system while

only imperfect repair is needed for other components), (ii) second-stage

binary variables 𝜅
𝜓

𝑐𝑘𝑦𝜔
(𝑡) and 𝑠

𝜓
𝑐𝜔(𝑡) in order to resolve the status of

each disrupted component and each crew restoration rate for each time

period and realized scenario, (iii) second-stage continuous variables

𝑝
𝜓

𝑐𝑘𝑦𝜔
and 𝜄

𝜓

𝑐𝑘𝑦𝜔
(𝑡) to mange the assigned restoration task proportion

of each component to crews and check the completion of these tasks

under each realized scenario, and (iv) flow variables 𝑓𝜓

𝑖𝑗𝜔
(𝑡) in order to

facilitate determining the maximum weighted flow for each time period

and realized scenario. The feasible region of the optimization problem

is denoted by 𝑋, and the set of decision variables is represented as

{𝑥, 𝑜, 𝑓 , 𝑢, 𝑠, 𝜅, 𝑠𝑡, 𝑝, 𝜄, 𝜂, 𝑣}.

Parameters & Sets

𝛹 Set of infrastructure networks
𝛶 Set of interdependent nodes 𝑖 and 𝑖′ between

networks 𝜓 and 𝜓 ′ (𝜓 ≠ 𝜓 ′) where node 𝑖 ∈ 𝑉 𝜓

requires node 𝑖′ ∈ 𝑉 𝜓 ′
to be operational

((𝑖, 𝜓) ≠ (𝑖′, 𝜓 ′))
𝐺𝜓 (𝑉 𝜓 , 𝐴𝜓 ) Directed graph consisting of nodes 𝑉 𝜓 and arcs

𝐴𝜓 for each network 𝜓 ∈ 𝛹

{𝑉 𝜓
+ , 𝑉

𝜓
∗ , 𝑉 𝜓

− } Set of {supply, transshipment, demand} nodes for
each network 𝜓 ∈ 𝛹

𝑇 The number of time periods in restoration
planning

𝐴
′𝜓 Set of failed arcs before restoration (𝐴

′𝜓 ⊂ 𝐴𝜓 )
for each network 𝜓 ∈ 𝛹

𝑉
′𝜓 Set of failed nodes before restoration (𝑉

′𝜓 ⊂ 𝑉 𝜓 )
for each network 𝜓 ∈ 𝛹

𝐶𝜓 Set of all components (𝐶𝜓 = 𝐴𝜓 ∪ 𝑉 𝜓 ) in network
𝜓 ∈ 𝛹

𝐶
′𝜓 Set of all failed components (𝐶

′𝜓 = 𝐴
′𝜓 ∪ 𝑉

′𝜓 ) in
network 𝜓 ∈ 𝛹

𝐾𝜓 Set of repair crews for each network 𝜓 ∈ 𝛹

𝑌 𝜓 Set of repair modes for each network 𝜓 ∈ 𝛹

𝑃
𝑖𝜓
+ Supply of node 𝑖 ∈ 𝑉

𝜓
+ per time period for each

network 𝜓 ∈ 𝛹

𝑃 𝑖𝜓
− Demand of node 𝑖 ∈ 𝑉 𝜓

− per time period for each
network 𝜓 ∈ 𝛹

𝑃
𝜓

𝑖𝑗
Flow capacity of arc (𝑖, 𝑗) ∈ 𝐴𝜓 per time period
for each network 𝜓 ∈ 𝛹

𝜒
𝜓
𝑦 Capacity proportion associated with each repair

mode 𝑦 ∈ 𝑌 𝜓

𝑡𝑡
𝜓

𝑐𝑐′𝜔
Travel time between component 𝑐 ∈ 𝐶

′𝜓 and
𝑐′ ∈ 𝐶

′𝜓 for each network 𝜓 in scenario 𝜔

𝑡𝑡𝑟
𝜓
𝑐𝜔 Time to repair component 𝑐 ∈ 𝐶

′𝜓 for each
network 𝜓 under each scenario 𝜔

𝑐
𝜓
𝑟 Fixed restoration cost for component 𝑐 ∈ 𝐶

′𝜓 for
each network 𝜓

𝑐
𝜓

𝑑
Penalty cost of unmet demand in node 𝑗 ∈ 𝑉 𝜓

− for
each network 𝜓

𝑐
𝜓

𝑓
Unitary flow cost through arc (𝑖, 𝑗) ∈ 𝐴𝜓 for each
network 𝜓

𝜁 Risk coefficient value representing the risk
weighted importance chosen by the modeler

𝛼 Risk level chosen by the modeler

Decision Variables

𝑓
𝜓

𝑖𝑗𝜔
(𝑡) Flow on arc (𝑖, 𝑗) ∈ 𝐴𝜓 in time 𝑡 ∈ {1… 𝑇 } for

each scenario 𝜔 for each network 𝜓

𝑓
𝜓

𝑗𝜔
(𝑡) Total flow reaching demand node 𝑗 ∈ 𝑉 𝜓

− in time
𝑡 ∈ {1… 𝑇 } for each scenario 𝜔

𝑢
𝜓

𝑖𝜔
(𝑡) Amount of unmet demand at node 𝑖 ∈ 𝑉 𝜓

− in time
𝑡 ∈ {1… 𝑇 } for each scenario 𝜔

𝑜
𝜓
𝑐𝑦 Binary variable indicating whether (𝑜𝜓𝑐𝑦 = 1) or

not (𝑜𝜓𝑐𝑦 = 0) component 𝑐 ∈ 𝐶
′𝜓 will be repaired

under mode 𝑦 ∈ 𝑌 𝜓

𝑠
𝜓
𝑐𝜔(𝑡) Binary variable indicating whether (𝑠𝜓𝑐𝜔 = 1) or

not (𝑠𝜓𝑐𝜔 = 0) component 𝑐 ∈ 𝐶𝜓 is functioning at
time 𝑡 ∈ {0… 𝑇 }

𝑠𝑡
𝜓

𝑐𝑘𝜔
Time at which crew 𝑘 ∈ 𝐾𝜓 begins repairing
component 𝑐 ∈ 𝐶

′𝜓 in scenario 𝜔

𝑝
𝜓

𝑐𝑘𝑦𝜔
Continuous variable ∈ [0, 1] indicating the
proportional repair task for each crew 𝑘 ∈ 𝐾𝜓 in
restoring component 𝑐 ∈ 𝐶

′𝜓 under repair mode
𝑦 ∈ 𝑌 𝜓 ; 0 for no contribution and 1 for full
restoration by a single crew 𝑘 ∈ 𝐾𝜓

𝜅
𝜓

𝑐𝑘𝑦𝜔
(𝑡) Binary variable that equals 1 if component

𝑐 ∈ 𝐶
′𝜓 is assigned to crew 𝑘 ∈ 𝐾𝜓 under repair

mode 𝑦 ∈ 𝑌 𝜓 and crew 𝑘 ∈ 𝐾𝜓 restored the
assigned 𝑝

𝜓

𝑐𝑘𝑦𝜔
by time 𝑡 ∈ {0… 𝑇 }; 0 otherwise

𝑥
𝜓

𝑐𝑐′𝑘
Binary variable that equals 1 if crew 𝑘 ∈ 𝐾𝜓

repairs component 𝑐 ∈ 𝐶
′𝜓 before component

𝑐′ ∈ 𝐶
′𝜓 ⧵ {𝑐}

𝜄
𝜓

𝑐𝑘𝑦𝜔
(𝑡) Continuous variable ∈ [0, 1] indicating whether

the proportional restoration task assigned to each
crew 𝑘 ∈ 𝐾𝜓 for component 𝑐 ∈ 𝐶

′𝜓 under repair
mode 𝑦 ∈ 𝑌 𝜓 is accomplished by time 𝑡 ∈ {1… 𝑇 }

𝜂 Auxiliary variable representing the VaR𝛼

𝑣𝜔 Continuous variable representing the second-stage
costs in scenario 𝜔

The two-stage mean-risk stochastic optimization model for minimiz-
ing the expected total cost of the ICINRP follows:

min
{𝑥,𝑜,𝑓 ,𝑢,𝑠,𝜅,𝑠𝑡,𝑝,𝜄,𝜂,𝑣}∈𝑋

(1 + 𝜁 )
(∑
𝜓∈𝛹

∑
𝑦∈𝑌 𝜓

𝑐𝜓
𝑟
𝑜𝜓
𝑐𝑦
𝜒𝜓
𝑦

)

+
|𝛺|∑
𝜔=1

𝜋𝜔

∑
𝜓∈𝛹

∑
𝑡∈{1…𝑇 }

( ∑
𝑖𝑗∈𝐴𝜓

𝑐
𝜓

𝑓
𝑓
𝜓

𝑖𝑗𝜔
(𝑡) +

∑
𝑗∈𝑉 𝜓

−

𝑐
𝜓

𝑑
𝑢
𝜓

𝑗𝜔
(𝑡)
)

+ 𝜁

(
𝜂 + 1

1 − 𝛼

|𝛺|∑
𝜔=1

𝜋𝜔𝑣𝜔

)
(15)

s.t.∑
𝑖𝑗∈𝐴𝜓

𝑓
𝜓

𝑖𝑗𝜔
(𝑡) −

∑
𝑗𝑖∈𝐴𝜓

𝑓
𝜓

𝑗𝑖𝜔
(𝑡) ≤ 𝑃

𝑖𝜓
+ ,

∀𝑖 ∈ 𝑉
𝜓
+ , ∀𝑡 ∈ {1… 𝑇 }, ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (16)∑

𝑖𝑗∈𝐴𝜓

𝑓
𝜓

𝑖𝑗𝜔
(𝑡) −

∑
𝑗𝑖∈𝐴𝜓

𝑓
𝜓

𝑗𝑖𝜔
(𝑡) = 0, ∀𝑖 ∈ 𝑉

𝜓
∗ ,

∀𝑡 ∈ {1… 𝑇 }, ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (17)∑
𝑖𝑗∈𝐴𝜓

𝑓
𝜓

𝑖𝑗𝜔
(𝑡) −

∑
𝑗𝑖∈𝐴𝜓

𝑓
𝜓

𝑗𝑖𝜔
(𝑡) − 𝑢

𝜓

𝑖𝜔
(𝑡) = −𝑃 𝑖𝜓

− ,

∀𝑖 ∈ 𝑉 𝜓
− , ∀𝑡 ∈ {1… 𝑇 }, ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (18)

0 ≤ 𝑢
𝜓

𝑖𝜔
(𝑡) ≤ 𝑃 𝑖𝜓

− , ∀𝑖 ∈ 𝑉 𝜓
− , ∀𝑡 ∈ {1… 𝑇 }, ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (19)

0 ≤ 𝑓
𝜓

𝑖𝑗𝜔
(𝑡) ≤ 𝑠

𝜓

𝑖𝑗𝜔
(𝑡)𝑃𝜓

𝑖𝑗
,

∀𝑖𝑗 ∈ 𝐴𝜓 , ∀𝑡 ∈ {1… 𝑇 }, ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (20)

0 ≤ 𝑓
𝜓

𝑖𝑗𝜔
(𝑡) ≤ 𝑠

𝜓

𝑖𝜔
(𝑡)𝑃𝜓

𝑖𝑗
, ∀𝑖𝑗 ∈ 𝐴𝜓 ,∀𝑖 ∈ 𝑉 𝜓 ,

∀𝑡 ∈ {1… 𝑇 },∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (21)
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0 ≤ 𝑓
𝜓

𝑖𝑗𝜔
(𝑡) ≤ 𝑠

𝜓

𝑗𝜔
(𝑡)𝑃𝜓

𝑖𝑗
,

∀𝑖𝑗 ∈ 𝐴𝜓 ,∀𝑗 ∈ 𝑉 𝜓 ,∀𝑡 ∈ {1… 𝑇 },∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (22)

0 ≤ 𝑓
𝜓

𝑖𝑗𝜔
(𝑡) ≤

∑
𝑦∈𝑌 𝜓

𝑜
𝜓

𝑖𝑗𝑦
𝜒𝜓
𝑦
𝑃
𝜓

𝑖𝑗
,

∀𝑖𝑗 ∈ 𝐴′𝜓 , ∀𝑡 ∈ {1… 𝑇 }, ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (23)∑
𝑖𝑗∈𝐴𝜓

𝑓
𝜓

𝑖𝑗𝜔
(𝑡) −

∑
𝑗𝑖∈𝐴𝜓

𝑓
𝜓

𝑗𝑖𝜔
(𝑡) ≤

∑
𝑦∈𝑌 𝜓

𝑜
𝜓

𝑖𝑦
𝜒𝜓
𝑦
𝑃
𝑖𝜓
+ ,

∀𝑖 ∈ 𝑉
𝜓
+ ∩ 𝑉

′𝜓 ,∀𝑡 ∈ {1… 𝑇 },∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (24)∑
𝑖𝑗∈𝐴𝜓

𝑓
𝜓

𝑖𝑗𝜔
(𝑡) −

∑
𝑗𝑖∈𝐴𝜓

𝑓
𝜓

𝑗𝑖𝜔
(𝑡) ≥ −

∑
𝑦∈𝑌 𝜓

𝑜
𝜓

𝑖𝑦
𝜒𝜓
𝑦
𝑃 𝑖𝜓
− ,

∀𝑖 ∈ 𝑉 𝜓
− ∩ 𝑉

′𝜓 ,∀𝑡 ∈ {1… 𝑇 },∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (25)

𝑠𝜓
𝑐𝜔
(0) = 0,∀𝑐 ∈ 𝐶

′𝜓 , ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (26)

𝑠𝜓
𝑐𝜔
(0) = 1,∀𝑐 ∈ 𝐶𝜓∖𝐶 ′𝜓 , ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (27)

𝜅
𝜓

𝑐𝑘𝑦𝜔
(0) = 0, ∀𝑐 ∈ 𝐶

′𝜓 ,∀𝑘 ∈ 𝐾𝜓,∀𝑦 ∈ 𝑌 𝜓 , ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (28)∑
𝑦∈𝑌 𝜓

𝑜𝜓
𝑐𝑦

≤ 1,∀𝑐 ∈ 𝐶
′𝜓 ,∀𝜓 ∈ 𝛹 (29)

𝑜𝜓
𝑐𝑦
𝑡 ≥ 𝑠𝑡

𝜓

𝑐𝑘𝜔
+ 𝑝

𝜓

𝑐𝑘𝑦𝜔
𝜒𝜓
𝑦
𝑡𝑡𝑟𝜓

𝑐𝜔
−𝑀(1 − 𝜅

𝜓

𝑐𝑘𝑦𝜔
(𝑡)),

∀𝑐 ∈ 𝐶
′𝜓 ,∀𝑡 ∈ {1… 𝑇 },∀𝑘 ∈ 𝐾𝜓,

∀𝑦 ∈ 𝑌 𝜓 ,∀𝜓 ∈ 𝛹 (30)∑
𝑘∈𝐾𝜓

𝑝
𝜓

𝑐𝑘𝑦𝜔
= 𝑜𝜓

𝑐𝑦
,∀𝑐 ∈ 𝐶

′𝜓 ,∀𝑦 ∈ 𝑌 𝜓 ,∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (31)

𝑠𝜓
𝑐𝜔
(𝑡) ≤ 𝑠𝜓

𝑐𝜔
(𝑡 + 1) , ∀𝑐 ∈ 𝐶𝜓 , ∀𝑡 ∈ {0… 𝑇 − 1}, ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (32)

𝜅
𝜓

𝑐𝑘𝑦𝜔
(𝑡) ≤ 𝜅

𝜓

𝑐𝑘𝑦𝜔
(𝑡 + 1) , ∀𝑐 ∈ 𝐶

′𝜓 ,∀𝑡 ∈ {0… 𝑇 − 1},

∀𝑘 ∈ 𝐾𝜓,∀𝑦 ∈ 𝑌 𝜓 , ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (33)

𝑠𝑡
𝜓

𝑐𝑘𝜔
+

∑
𝑦∈𝑌 𝜓

𝑝
𝜓

𝑐𝑘𝑦𝜔
𝜒𝜓
𝑦
𝑡𝑡𝑟𝜓

𝑐𝜔
+ 𝑡𝑡

𝜓

𝑐𝑐′𝜔
≤ 𝑠𝑡

𝜓

𝑐′𝑘𝜔
+𝑀𝑥

𝜓

𝑐𝑐′𝑘
,

∀𝑐, 𝑐′ ∈ 𝐶
′𝜓 ∶ 𝑐 ≠ 𝑐′,

∀𝑘 ∈ 𝐾𝜓, ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (34)

𝑠𝑡
𝜓

𝑐′𝑘𝜔
+

∑
𝑦∈𝑌 𝜓

𝑝
𝜓

𝑐′𝑘𝑦𝜔
𝜒𝜓
𝑦
𝑡𝑡𝑟

𝜓

𝑐′𝜔
+ 𝑡𝑡

𝜓

𝑐′𝑐𝜔
≤ 𝑠𝑡

𝜓

𝑐𝑘𝜔
+𝑀(1 − 𝑥

𝜓

𝑐𝑐′𝑘
),

∀𝑐, 𝑐′ ∈ 𝐶
′𝜓 ∶ 𝑐 ≠ 𝑐′,

∀𝑘 ∈ 𝐾𝜓,∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (35)

𝑠𝑡
𝜓

𝑐𝑘𝜔
≥ (1 −

∑
𝑦∈𝑌 𝜓

𝑜𝜓
𝑐𝑦
)𝑇 ,∀𝑐 ∈ 𝐶

′𝜓 ,∀𝑘 ∈ 𝐾𝜓,∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (36)

𝑠𝜓
𝑐𝜔
(𝑡) ≤

∑
𝑘∈𝐾𝜓

∑
𝑦∈𝑌 𝜓

𝜄
𝜓

𝑐𝑘𝑦𝜔
(𝑡),∀𝑐 ∈ 𝐶

′𝜓 , ∀𝑡 ∈ {1… 𝑇 }, ∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹

(37)

𝜄
𝜓

𝑐𝑘𝑦𝜔
(𝑡) ≤ 𝜅

𝜓

𝑐𝑘𝑦𝜔
(𝑡),

∀𝑐 ∈ 𝐶
′𝜓 ,∀𝑡 ∈ {1… 𝑇 },∀𝑘 ∈ 𝐾𝜓,∀𝑦 ∈ 𝑌 𝜓 ,∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (38)

𝜄
𝜓

𝑐𝑘𝑦𝜔
(𝑡) ≤ 𝑝

𝜓

𝑐𝑘𝑦𝜔
,∀𝑐 ∈ 𝐶

′𝜓 ,

∀𝑡 ∈ {1… 𝑇 },∀𝑘 ∈ 𝐾𝜓,∀𝑦 ∈ 𝑌 𝜓 ,∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (39)

𝜄
𝜓

𝑐𝑘𝑦𝜔
(𝑡) ≥ 𝑝

𝜓

𝑐𝑘𝑦𝜔
− (1 − 𝜅

𝜓

𝑐𝑘𝑦𝜔
(𝑡)),

∀𝑐 ∈ 𝐶
′𝜓 ,∀𝑡 ∈ {1… 𝑇 },∀𝑘 ∈ 𝐾𝜓,∀𝑦 ∈ 𝑌 𝜓 ,∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (40)

𝑠
𝜓

𝑖𝜔
(𝑡) − 𝑠

𝜓 ′

𝑖′𝜔
(𝑡) ≤ 0 ,

∀(𝑖, 𝑖′) ∈ 𝛶 ∶ (𝑖, 𝜓) ≠ (𝑖′, 𝜓 ′),∀𝑡 ∈ {1… 𝑇 } (41)∑
𝑖𝑗∈𝐴𝜓

𝑓
𝜓

𝑖𝑗𝜔
(𝑡) −

∑
𝑗𝑖∈𝐴𝜓

𝑓
𝜓

𝑗𝑖𝜔
(𝑡) ≤

∑
𝑦∈𝑌 𝜓

𝑜
𝜓

𝑖′𝑦
𝜒𝜓
𝑦
𝑃
𝑖𝜓
+ ,

∀(𝑖, 𝑖′) ∈ 𝛶 ∶ (𝑖, 𝜓) ≠ (𝑖′, 𝜓 ′), 𝑖 ∈ 𝑉
𝜓
+ ,

∀𝑡 ∈ {1… 𝑇 },∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (42)∑
𝑖𝑗∈𝐴𝜓

𝑓
𝜓

𝑖𝑗𝜔
(𝑡) −

∑
𝑗𝑖∈𝐴𝜓

𝑓
𝜓

𝑗𝑖𝜔
(𝑡) ≥ −

∑
𝑦∈𝑌 𝜓

𝑜
𝜓

𝑖′𝑦
𝜒𝜓
𝑦
𝑃 𝑖𝜓
− ,

∀(𝑖, 𝑖′) ∈ 𝛶 ∶ (𝑖, 𝜓) ≠ (𝑖′, 𝜓 ′),∀𝑖 ∈ 𝑉 𝜓
− ,

∀𝑡 ∈ {1… 𝑇 },∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (43)

𝑣𝜔 ≥
∑
𝜓∈𝛹

∑
𝑡∈{1…𝑇 }

( ∑
𝑖𝑗∈𝐴𝜓

𝑐
𝜓

𝑓
𝑓
𝜓

𝑖𝑗𝜔
(𝑡) +

∑
𝑗∈𝑉 𝜓

−

𝑐
𝜓

𝑑
𝑢
𝜓

𝑗𝜔
(𝑡)
)
− 𝜂 (44)

𝑥
𝜓

𝑐𝑐′𝑘
∈ {0, 1}, ∀𝑐 ∈ 𝐶

′𝜓 ,∀𝑐′ ∈ 𝐶
′𝜓 ⧵ {𝑐}, ∀𝑘 ∈ 𝐾𝜓,∀𝜓 ∈ 𝛹 (45)

𝑜𝜓
𝑐𝑦

∈ {0, 1},∀𝑐 ∈ 𝐶
′𝜓 ,∀𝑦 ∈ 𝑌 𝜓 ,∀𝜓 ∈ 𝛹 (46)

𝜅
𝜓

𝑐𝑘𝑦𝜔
(𝑡) ∈ {0, 1},

∀𝑐 ∈ 𝐶
′𝜓 , ∀𝑡 ∈ {0… 𝑇 },∀𝑘 ∈ 𝐾𝜓,∀𝑦 ∈ 𝑌 𝜓 ,∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (47)

𝑠𝜓
𝑐𝜔
(𝑡) ∈ {0, 1},∀𝑐 ∈ 𝐶𝜓 , ∀𝑡 ∈ {1… 𝑇 },∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (48)

𝑝
𝜓

𝑐𝑘𝑦𝜔
∈ [0, 1],∀𝑐 ∈ 𝐶

′𝜓 ,∀𝑘 ∈ 𝐾𝜓,∀𝑦 ∈ 𝑌 𝜓 ,∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (49)

𝜄
𝜓

𝑐𝑘𝑦𝜔
(𝑡) ∈ [0, 1],

∀𝑐 ∈ 𝐶
′𝜓 , ∀𝑡 ∈ {1… 𝑇 },∀𝑘 ∈ 𝐾𝜓,∀𝑦 ∈ 𝑌 𝜓 ,∀𝜔 ∈ 𝛺,∀𝜓 ∈ 𝛹 (50)

𝜂 ∈ R (51)

𝑣𝜔 ≥ 0,∀𝜔 ∈ 𝛺 (52)

The goal of model (15)–(52) is to determine (i) the set of failed com-
ponents to be restored, (ii) the repair mode for each failed component,
(iv) the set of failed components for each crew to restore individually or
concurrently, and (v) the baseline restoration sequence across scenarios
for each crew in order to minimize the total cost associated with
unsatisfied demand (loss of resilience):

∑
𝑗∈𝑉 𝜓

− 𝑐
𝜓

𝑑
𝑢
𝜓

𝑗𝜔
(𝑡), restoration:∑

𝑦∈𝑌 𝜓 𝑐
𝜓
𝑟 𝑜

𝜓
𝑐𝑦𝜒

𝜓
𝑦 , and flow:

∑
𝑖𝑗∈𝐴𝜓 𝑐

𝜓

𝑓
𝑓
𝜓

𝑖𝑗𝜔
(𝑡) for each network 𝜓 ∈ 𝛹 .

Constraints (16)–(18) are flow balance constraints for each network
𝜓 . Constraint (19) ensures that the unsatisfied demand 𝑢

𝜓

𝑖𝜔
(𝑡) for each

demand node 𝑗 ∈ 𝑉 𝜓
− does not exceed demand 𝑃 𝑖𝜓

− in every time period.
Constraints (20)–(22) ensure that the flow on each arc (𝑖, 𝑗) ∈ 𝐴𝜓 in
each time period does not exceed its capacity if the arc and both of its
end nodes 𝑖, 𝑗 are functioning (flow is 0 if the arc or one of its nodes
is failed). Constraint (23) ensures that the flow on each arc (𝑖, 𝑗) ∈ 𝐴

′𝜓

in each time period does not exceed its capacity associated with the
chosen repair mode 𝜒

𝜓
𝑦 𝑃

𝜓

𝑖𝑗
, where 𝜒

𝜓
𝑦 is the percentage of capacity

restored for each component under repair mode 𝑦 ∈ 𝑌 𝜓 . Similarly,
Constraints (24)–(25) limit the outgoing flow from each failed supply
node 𝑖 ∈ 𝑉

𝜓
+ ∩ 𝑉

′𝜓 and the incoming flow to each failed demand
node 𝑖 ∈ 𝑉 𝜓

− ∩ 𝑉
′𝜓 to the capacities of the nodes associated with the

chosen repair modes. Constraints (26) and (27) set the initial state of
components to be 0 for failed components and 1 for other components.
Similarly, Constraint (28) prevents the completion of failed components
restoration by time 0. Constraint (29) prevents assigning more than
one repair mode for each failed component. Constraint (30) ensures
that crew 𝑘 ∈ 𝐾𝜓 has completed its task of restoring failed component
𝑐 ∈ 𝐶

′𝜓 under repair mode 𝑦 ∈ 𝑌 𝜓 the assigned proportion 𝑝
𝜓

𝑐𝑘𝑦𝜔
by

time 𝑡 ∈ {1… 𝑇 } if and only if the restoration start time added to the
task repair time is no more than 𝑡. Note that the restoration time of a
component as well as its restored capacity depends on the repair mode
𝑦 ∈ 𝑌 𝜓 ; that is, for a repair mode 𝑦 ∈ 𝑌 𝜓 with percentage 𝜒

𝜓
𝑦 = %𝑞,

both capacity and repair time are reduced by %(1 − 𝑞). Constraint (31)
ensures that restoration assignments for each failed component 𝑐 ∈ 𝐶

′𝜓

to all crews do not exceed the restoration task for that component
under repair mode 𝑦 ∈ 𝑌 𝜓 . Constraint (32) ensures that components
for each network 𝜓 in 𝐶

′𝜓 remain functioning after being restored,
and components in 𝐶𝜓∖𝐶 ′𝜓 are functioning for the entire restoration
period. Constraint (33) imposes a similar restriction on the 𝜅

𝜓

𝑐𝑘𝑦𝜔
(𝑡)-

variables; that is, if crew 𝑘 ∈ 𝐾𝜓 completed the task of repairing
component 𝑐 ∈ 𝐶

′𝜓 by time period 𝑡 ∈ {1… 𝑇 − 1}, where 𝜅
𝜓

𝑐𝑘𝑦𝜔
(0) =

𝑠
𝜓
𝑐𝜔(0) at 𝑡 = 0 by Constraint (28), then this task remains completed
by time period 𝑡 + 1. Constraints (34)–(35) manage the restoration
scheduling process by ensuring that each crew 𝑘 ∈ 𝐾𝜓 can work on
repairing at most one component at a time, according to the sched-
ule specified by the 𝑥

𝜓

𝑐𝑐′𝑘
-variables. Relative to Constraints (34)–(35),

Constraint (36) prevents scheduling non-selected failed components for
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repair throughout the restoration total time 𝑇 . Defining 𝑡𝑡𝑟
𝜓 max
𝑖𝑗𝜔

and

𝑡𝑡
𝜓 max
𝑖𝑗𝑖′𝑗′𝜔

as the maximum repair time parameter of any failed component
in each network under all scenarios and the maximum travel time
parameter between any two failed components in each network under
all scenarios, 𝑀 = |𝐴′𝜓 |(𝑡𝑡𝑟𝜓 max

𝑖𝑗𝜔
+ 𝑡𝑡

𝜓 max
𝑖𝑗𝑖′𝑗′𝜔

) is sufficiently large in Con-
straint (30) and Constraints (34)–(35). Constraints (37)–(40) ensure the
completion of the restoration process for each selected component 𝑐 ∈
𝐶

′𝜓 under repair mode 𝑦 ∈ 𝑌 𝜓 by checking the functional status of each
failed component at time 𝑡 ∈ {1… 𝑇 } in Constraint (37) based on the
completion of each crew 𝑘 ∈ 𝐾𝜓 its assigned task in restoring the failed
component in Constraints (38)–(40). Specifically, Constraints (38)–(40)
impose that 𝜄𝜓

𝑐𝑘𝑦𝜔
(𝑡) = 𝑝

𝜓

𝑐𝑘𝑦𝜔
𝜅
𝜓

𝑐𝑘𝑦𝜔
(𝑡) and Constraint (37) imposes that

component 𝑐 ∈ 𝐶
′𝜓 is only functioning at time 𝑡 ∈ {1… 𝑇 } if the

cumulative restoration proportion (across all crews) under the selected
repair mode 𝑦 ∈ 𝑌 𝜓 is 1. Note how Constraint (37) represents the sum
of the products of 𝑝𝜓

𝑐𝑘𝑦𝜔
and 𝜅

𝜓

𝑐𝑘𝑦𝜔
(𝑡) decision variables via 𝜄

𝜓

𝑐𝑘𝑦𝜔
(𝑡), and

that Constraints (38)–(40) are introduced to linearize the bilinear terms
of the sum. Constraints (41)–(43) are the interdependence constraints
across networks 𝛶 ; such constraints ensure that interdependencies be-
tween networks given by a set of interdependent nodes across networks
𝛶 are respected. In particular, Constraint (41) ensures that a node
𝑖 in network 𝜓 that is dependent on node 𝑖′ in network 𝜓 ′, where
𝜓 ≠ 𝜓 ′, cannot function before the functioning of node 𝑖′. Similarly,
Constraints (42)–(43) restrict the capacity of node 𝑖 in network 𝜓 that
depends on failed node 𝑖′ in network 𝜓 ′, where 𝜓 ≠ 𝜓 ′, which is
restored under repair mode 𝑦 ∈ 𝑌 𝜓 to the proportional capacity 𝜒

𝜓
𝑦

associated with the chosen repair mode of node 𝑖′. Constraint (44)
sets 𝜂 = VaR𝛼 based on the second-stage costs associated with unmet
demand and flow costs. Constraints (45)–(48) require the 𝑥

𝜓

𝑐𝑐′𝑘
-, 𝑜𝜓𝑐𝑦-,

𝜅
𝜓

𝑐𝑘𝑦𝜔
(𝑡)-, and 𝑠𝜓𝑐𝜔(𝑡) variables to be binary. Constraints (49)–(47) require

the 𝑝𝜓
𝑐𝑘𝑦𝜔

- and 𝜄𝜓
𝑐𝑘𝑦𝜔

(𝑡) variables to be bounded between 0 and 1. Finally,
Constraints (51)–(52) require 𝜂 to be a real number and 𝑣𝜔 variables to
be positive real numbers.

2.2.3. Model variants

Flexible restoration strategies. Compared to a previous work (Alkhaleel
et al., 2022), the proposed optimization model (15)–(52), referred to as
the standard model hereafter, addresses some limitations (i.e., restricting
the restoration of each component to a single crew and allowing only a
single maximal repair mode) by considering different flexible recovery
strategies including multicrew (MC) and multimode (MM) restoration
options. In the former, multiple work crews are allowed to restore a
single component of the network 𝜓 ∈ 𝛹 in time 𝑡 ∈ {1… 𝑇 }. Compared
to a single crew (SC) setting where only one crew is allowed to work
on a single component (i.e., each component is restored by at most
one crew), it is expected that the MC approach would improve the
resilience of the system via minimizing the unsatisfied demand cost,
especially when critical components are disrupted. Indeed, changing
between an MC setting and an SC setting in the standard model is
fairly an easy task. We only need to change the nature of the 𝑝

𝜓

𝑐𝑘𝑦𝜔

decision variables from a continuous space ∈ [0, 1] for the MC setting
to a binary space ∈ {0, 1} for the SC setting. In the latter strategy, each
failed component is restored to a certain level of capacity associated
with a repair mode (i.e., for a repair mode with percentage %𝑞, both
capacity and repair time are reduced by %(1−𝑞)). Compared to a single
mode (SM) repair setting, this strategy can help reduce the repair time
of components, especially the ones which do not operate at full capacity
before disruption. In Section 4, we compare these restoration strategies
and show the added benefit of incorporating such flexible strategies in
restoration planning of ICINs under uncertainty.

Partial functioning and interdependency. In addition to the flexible
restoration strategies adapted in the standard model, partial func-
tioning and interdependency (PFI) can be implemented by changing
the nature of the 𝑠

𝜓
𝑐𝜔(𝑡) decision variables from binary to continuous

variables bounded between 0 and 1. When partial functioning is imple-
mented, components can operate at any capacity in time 𝑡 ∈ {1… 𝑇 }

below either the full capacity (for a perfect repair mode) or the propor-

tional capacity (for an imperfect repair mode). That is, the binary status

assumption of components of the interdependent networks (i.e., either

fully functional or failed) is relaxed. Similarly, partial dependence

between nodes allows a dependent node to be partially functioning

if the node or nodes it depends on are partially functioning as well.

However, if the operational nature of the component prevents it from

being functional at any partial capacity but instead at only a few

possible steps (e.g., a power supply station has four generators and can

only function partially depending on the number of working generators

at 25%, 50%, 75%, and 100%), then the model can accommodate

this change by slight modifications. First, define 𝑚
𝜓
𝑐 and 𝑚′𝜓

𝑐𝜔
(𝑡) as an

integer parameter representing the number of units per component and

an integer decision variable representing the number of operational

units per component at time 𝑡 ∈ {1… 𝑇 } under scenario 𝜔 ∈ 𝛺,

respectively. Then, by adding a set of constraints of the form:

𝑚𝜓
𝑐
𝑠𝜓
𝑐𝜔
(𝑡) ≥ 𝑚′𝜓

𝑐𝜔
(𝑡) (53)

for each component composed of several units and replacing associated

𝑠
𝜓
𝑐𝜔(𝑡) decision variables in Constraints (20)–(22) with

𝑚′𝜓
𝑐𝜔
(𝑡)

𝑚
𝜓
𝑐

, we allow

stepwise partial functioning linked to the number of operational units.

For a system of ICINs that features PFI, it is expected for the system

to be more resilient than a counterpart the does not feature PFI due

to the reduction in time between the failed state and the first time the

disrupted component starts functioning. We compare the PFI setting

against the binary status of components in Section 4 to show how PFI

affects restoration planning of ICINs under uncertainty.

2.3. ICIs resilience metric

The resilience of a single CI is commonly characterized with re-

spect to a measure of performance (e.g., flow, connectivity, amount

of demand satisfied) 𝜑(𝑡) that evolves over time (Henry and Ramirez-
Marquez, 2012; Hosseini et al., 2016). In this study, the focus is on the

recovery period after disruption, for which a model that optimizes a

restoration plan over a finite planning horizon is proposed. Here, we

consider the resilience metric proposed by Fang et al. (2016) as the

resilience measure of the restoration plans resulting from the standard

model. Fang et al. (2016) defines system performance as the maximum

amount of weighted flow consumed by the demand nodes. Let weights

𝑤
𝜓

𝑗
∈ Z

+ be assigned to each demand node 𝑗 ∈ 𝑉 𝜓
− for network 𝜓 ∈ 𝛹 .

These weights are incorporated to enable prioritizing certain types of

demand nodes (e.g., it is more important to deliver power to a hospital

than to a residential household). Formally, the performance for network

𝜓 ∈ 𝛹 is defined as:

𝜑𝜓 (𝑡) =
∑
𝑗∈𝑉 𝜓

−

𝑤
𝜓

𝑗
𝑓
𝜓

𝑗
(𝑡) (54)

where 𝑓
𝜓

𝑗
(𝑡) is the total flow reaching demand node 𝑗 in time period

𝑡 ∈ {1… 𝑇 }.
Based on that, the resilience 𝑅𝜓 (𝑇 ) for network 𝜓 ∈ 𝛹 is defined

as the cumulative performance restored during the restoration horizon

normalized by dividing by the cumulative performance that would be

restored over the same horizon if the system could be restored to pre-

disruption performance instantaneously. That is, network resilience is

given by Fang et al. (2016):

𝑅𝜓 (𝑇 ) =
∑𝑡=𝑇

𝑡=1 [
∑

𝑗∈𝑉 𝜓
− 𝑤𝑗𝑓

𝜓

𝑗
(𝑡) − 𝜑𝜓 (0)]

𝑇 (
∑

𝑗∈𝑉 𝜓
− 𝑤𝑗𝑃

𝑗𝜓
− − 𝜑𝜓 (0))

, 𝑇 ≥ 1 (55)

where
∑

𝑗∈𝑉 𝜓
− 𝑤𝑗𝑃

𝑗𝜓
− = 𝜑𝜓 (𝑡0) denotes the network performance if not

affected by the disruption. For one realization 𝜔 ∈ 𝛺, 𝑓𝜓

𝑗𝜔
denotes the

flow into demand node 𝑗 ∈ 𝑉 𝜓
− in network 𝜓 under scenario 𝜔 ∈ 𝛺;
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hence, we can define the resilience 𝑅𝜓 (𝑇 , 𝜉(𝜔)) of network 𝜓 under

scenario 𝜔 ∈ 𝛺 as:

𝑅𝜓 (𝑇 , 𝜉(𝜔)) =
∑𝑡=𝑇

𝑡=1 [
∑

𝑗∈𝑉 𝜓
− 𝑤

𝜓

𝑗
𝑓
𝜓

𝑗𝜔
(𝑡) − 𝜑𝜓 (0)]

𝑇 (
∑

𝑗∈𝑉 𝜓
− 𝑤

𝜓

𝑗
𝑃
𝑗𝜓
− − 𝜑𝜓 (0))

, 𝑇 ≥ 1 (56)

Hence, ICIs system resilience is defined by combining each network

resilience in a total resilience term 𝑅(𝑇 , 𝜉(𝜔)) as follows:

𝑅(𝑇 , 𝜉(𝜔)) =
∑
𝜓∈𝛹

𝛾𝜓𝑅𝜓 (𝑇 , 𝜉(𝜔)) (57)

where 𝛾𝜓 is the weight of importance for each network 𝜓 such that∑
𝜓∈𝛹 𝛾𝜓 = 1.

3. Solution approach

3.1. Scenario generation and reduction

To ensure a representative set of scenarios for the developed op-

timization model, a maxi-min Latin hypercube sampling (LHS) tech-

nique (Wyss and Jorgensen, 1998) is adapted to generate a large

set of scenarios 𝛺. Using LHS ensures a fair amount of coverage of

each random variable’s range, and it has been shown to be advan-

tageous when incorporated within a sample average approximation

approach (Alkhaleel et al., 2022; Kleywegt et al., 2002; Chen et al.,

2014). However, stochastic optimization models tend to be intractable

when the number of generated scenarios is large (Morales et al., 2009).

One method often used to overcome this obstacle is to reduce the

number of scenarios such that the resulting problem’s optimal solution

remains close to the solution of the original optimization problem (Fang

and Sansavini, 2019; Heitsch and Römisch, 2003; Horejšová et al.,

2020). To apply a reduction of scenarios, it is common to select

scenarios based upon a probability distance between the original and

reduced set of scenarios (Dupačová et al., 2003). The most common

probability distance used in stochastic optimization is the Kantorovich

distance, 𝐷𝐾 (⋅), defined between two probability distributions 𝑄 and 𝑄′

on 𝛺 by the following problem (Rachev, 1991; Dupačová et al., 2003):

𝐷𝐾

(
𝑄,𝑄′) = inf

𝜃

{
∫
𝛺×𝛺 𝑐

(
𝜔,𝜔′) 𝜃 (𝑑𝜔, 𝑑𝜔′) ∶ ∫

𝛺
𝜃
(
⋅, 𝑑𝜔′) = 𝑄

∫
𝛺
𝜃(𝑑𝜔, ⋅) = 𝑄′} (58)

Problem (58) is known as the Monge–Kantorovich mass transportation

problem (Rachev, 1991), where 𝑐
(
𝜔,𝜔′) is a nonnegative, continuous,

and symmetric function, often referred to as cost function. The infimum

is taken over all joint probability distributions defined on 𝛺 × 𝛺

represented by 𝜃
(
𝜔,𝜔′) in (58). Note that 𝐷𝐾 (⋅) can only be properly

called Kantorovich distance if function 𝑐(⋅) is given by a norm. When
𝑄 and 𝑄′ are finite distributions corresponding to the initial set of

scenarios 𝛺 and the reduced set of scenarios 𝛺𝑠 ⊆ 𝛺, the Kantorovich

distance can be determined (see Dupačová et al., 2003 for details) by:

𝐷𝐾

(
𝑄,𝑄′) = ∑

𝜔∈𝛺∖𝛺𝑠

𝜋𝜔 min
𝜔′∈𝛺𝑠

𝑐
(
𝜔,𝜔′) (59)

where 𝜋𝜔 represents the probability of scenario 𝜔 in 𝛺 (Dupačová et al.,

2003). Expression (59) can be used to derive several heuristics for gen-

erating reduced scenario sets that are close to an original set (Morales

et al., 2009; Dupačová et al., 2003). One well-known algorithm is the

fast forward selection algorithm (Heitsch and Römisch, 2003). This

algorithm is an iterative greedy process that starts with an empty

set; and in each step of the algorithm, a scenario that minimizes the

Kantorovich distance between the reduced and original sets is selected

from the set of non-selected scenarios
(
𝛺∖𝛺𝑠

)
, where 𝛺𝑠 represents the

set of selected scenarios. Then, this scenario is included in the reduced

set 𝛺𝑠. The algorithm terminates either when a pre-specified number

of scenarios is found or by reaching a pre-defined Kantorovich distance

threshold (Morales et al., 2009).

In the fast forward selection algorithm, as described by Heitsch

and Römisch (2003), the distance between two scenarios 𝜔 and 𝜔′ is

expressed by the function 𝑐
(
𝜔,𝜔′) representing the difference between

pairs of random vectors. The function 𝑐
(
𝜔,𝜔′) can be defined based

upon probability metrics (Dupačová et al., 2003), optimal objective

function values where first-stage decision variables are fixed (Morales

et al., 2009), or the wait-and-see objective value for each scenario,

which has been shown to practically outperform the other two methods

in restoration modeling (Alkhaleel et al., 2022) and other applica-

tions (Bruninx, 2014). Here, we use the objective function value 𝑧𝑊 𝑆
𝜔

of the wait-and-see solution (WS) for each scenario 𝜔 ∈ 𝛺 (i.e., the

objective function resulting from solving model (15)–(52) when it is

populated with 𝜔 as its only scenario) to define 𝑐(⋅, ⋅) as follows:

𝑐(𝜔,𝜔′) = |||𝑧𝑊 𝑆
𝜔

− 𝑧𝑊 𝑆
𝜔′

||| (60)

The resulting fast forward selection algorithm can be found in Alkhaleel

et al. (2022).

3.2. Decomposition algorithm

Decomposition algorithms are often used for solving continuous

and mixed-integer large-scale two-stage and multi-stage optimization

problems (Escudero et al., 2017; Rahmaniani et al., 2017). One of those

types of algorithms is the well-known Benders decomposition (Benders,

1962), which is commonly used in the stochastic optimization literature

to solve the scenario-based resulting mixed-integer linear programs

(MILPs). Benders decomposition is a variable partitioning technique

in which a restricted master problem is solved considering only the

complicating variables of the problem. Such variables are temporarily

fixed, and the resulting individual or multiple subproblems are solved

to identify cuts to be added to the restricted master problem. In this

context, the mean-risk model separates into one linear program per

scenario 𝜔—forming the subproblem (SP)—in the reduced scenario set

𝛺𝑠 after fixing the binary 𝑜
𝜓
𝑐𝑦- and 𝑠

𝜓
𝑐𝜔(𝑡)-variables.

Formally, for each scenario 𝜔 ∈ 𝛺𝑠, let 𝒛𝜔 denote a fixed assignment

of values to all 𝑜- and 𝑠-variables corresponding to the index 𝜔. The

resulting SP for scenario 𝜔 ∈ 𝛺𝑠 is the linear program:

SP(𝒛𝜔) ∶ min
∑
𝜓∈𝛹

∑
𝑡∈{1…𝑇 }

( ∑
𝑖𝑗∈𝐴𝜓

𝑐
𝜓

𝑓
𝑓
𝜓

𝑖𝑗𝜔
(𝑡) +

∑
𝑗∈𝑉 𝜓

−

𝑐
𝜓

𝑑
𝑢
𝜓

𝑗𝜔
(𝑡)
)

(61)

s.t. (16)–(25) and (42)–(43) for scenario 𝜔 (62)

Because SP(𝒛𝜔) is a linear program in which 𝒛𝜔 appears only in the

constraints, the dual of SP(𝒛𝜔) can be formulated as a linear program

of the form:

DSP(𝒛𝜔) ∶ max
(
𝒃𝜔 − 𝑩𝜔𝒛𝜔

)
𝒅𝜔 (63)

s.t. 𝒅𝜔 ∈  (64)

where 𝒃𝜔 is the right-hand side vector of (62), 𝑩𝜔 is the left-hand side

coefficient matrix of (62), 𝒅𝜔 is the dual variable vector corresponding

to constraint (62), and  represents the dual feasible region. Let 𝑝

and 𝑟 respectively denote the extreme points and extreme rays of

, and let 𝜔𝑛
𝑝

⊆ 𝑝 and 𝜔𝑛
𝑟

⊆ 𝑟 respectively denote a subset of

the extreme points and extreme rays produced prior to iteration 𝑛 of

Benders decomposition. Using the optimal solutions of DSP
(
𝒛̄𝑛
𝜔

)
from

previous iterations {0… 𝑛 − 1}, the restricted master problem (RMP)

for iteration 𝑛 can be formulated as:

min (1 + 𝜁 )
(∑
𝜓∈𝛹

∑
𝑦∈𝑌 𝜓

𝑐𝜓
𝑟
𝑜𝜓
𝑐𝑦
𝜒𝜓
𝑦

)
+ 𝜆1 + 𝜁𝜆2 (65)

s.t. 𝜆1 ≥
|𝛺𝑠|∑
𝜔=1

𝜋𝜔
(
𝒃𝜔 − 𝑩𝜔𝒛𝜔

)
𝒅
𝑖

𝜔
, 𝑖 = 0… 𝑛 − 1 (66)

𝜆2 ≥ 𝜂𝑖 + 1
1 − 𝛼

|𝛺𝑠|∑
𝜔=1

𝜋𝜔𝑣
𝑖
𝜔
, 𝑖 = 0… 𝑛 − 1 (67)
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𝑣𝑖
𝜔
≥
(
𝒃𝜔 − 𝑩𝜔𝒛𝜔

)
𝒅
𝑖

𝜔
− 𝜂𝑖,∀𝜔 ∈ 𝛺𝑠, 𝑖 = 0… 𝑛 − 1 (68)

0 ≥
(
𝒃𝜔 − 𝑩𝜔𝒛𝜔

)
𝒅
𝑖

𝜔
,∀𝜔 ∈ 𝛺𝑠, 𝑖 = 0… 𝑛 − 1 (69)

constraints (26)–(41) and (45)–(52)

where 𝑖 denotes the 𝑖th iteration cut generated prior to the current
iteration related to 𝜔𝑛

𝑝
for Constraints (66)–(67) and 𝜔𝑛

𝑟
for Con-

straint (69). Note that Constraint (68) is equivalent to Constraint (44)
in the standard model. Constraints (66)–(67) and (69) are respectively
known as optimality cuts and feasibility cuts.

In the proposed Benders algorithm (Algorithm 1), the first step is
to set the upper bound, lower bound, and iteration counter at ∞, 0
and 0, respectively. In iteration 𝑛, RMP is solved first to obtain an
optimal solution 𝒛̄𝑛. Letting 𝒛̄𝑛

𝜔
denote the partial solution associated

with the 𝑜- and 𝑠-variables corresponding to the index 𝜔, DSP
(
𝒛̄𝑛
𝜔

)
is

solved (note that since the linear program in (61)–(62) and so its dual
(63)–(64) are scenario indexed, they can be solved in parallel providing
multicuts), yielding either an extreme point 𝒅𝜔 ∈ 𝑝 (if the model

is solved to optimality) or an extreme ray 𝒅𝜔 ∈ 𝑝 (if the model is

concluded to be unbounded). In the former case, 𝒅𝜔 is added to 𝜔𝑛
𝑝

(i.e., 𝜔,𝑛+1
𝑝 ← 𝜔𝑛

𝑝
∪ {𝒅𝜔} and 𝜔,𝑛+1

𝑟 ← 𝜔𝑛
𝑟
), resulting in a new

optimality cut; otherwise, 𝒅𝜔 is added to 𝜔𝑛
𝑟

(i.e., 𝜔,𝑛+1
𝑝 ← 𝜔𝑛

𝑝

and 𝜔,𝑛+1
𝑟 ← 𝜔𝑛

𝑟
∪ {𝒅𝜔}), yielding a new feasibility cut. The RMP

objective provides a lower bound to the optimal solution of the original
problem (15)–(52); furthermore, the dual subproblem DSP

(
𝒛𝜔

)
always

has an optimal solution due to the feasibility and boundedness of the
SP

(
𝒛𝜔

)
, which can be easily proven by showing that the restricting the

flow under each scenario to 0 provides a feasible solution and that the
flow is bounded by the capacities of the demand nodes (see Alkhaleel
et al., 2022 for details). This remark shows that feasibility cuts are
not needed in the decomposition procedure; therefore, only optimality
cuts are generated and added to the RMP in each iteration (as shown
in Algorithm 1) and the convergence of the algorithm is accelerated.
The optimality gap for this algorithm can be estimated using the upper
and lower bounds found at each step. That is, the optimality gap is

calculated as Gap(%) = 𝑈𝐵 − 𝐿𝐵

𝑈𝐵
= 𝜇̂ + 𝜆∗ − (𝜇̂ + 𝜆)

𝜇̂ + 𝜆∗
= 𝜆∗ − 𝜆

𝜇̂ + 𝜆∗
.

4. Case study

In this section, we test the proposed mean-risk optimization model
and solution algorithm, and explore the introduced flexible restoration
strategies and PFI using a realistic, well-known case in the literature on
the system of ICINs in Shelby County, TN, U.S. This county, containing
the city of Memphis, is continually under earthquake hazard due to its
proximity to the New Madrid Seismic Zone (NMSZ) (González et al.,
2016; Almoghathawi et al., 2021). Here, we consider two cases similar
to the hypothetical earthquake scenarios with magnitudes 𝑀𝑤 ∈ {6, 7}
presented by González et al. (2016).

4.1. System description

The system of interdependent networks considered in this study
consists of two ICINs located in Shelby County, TN: power and water
as depicted in Fig. 2 (González et al., 2016). The system of networks
contains 256 network components divided into 109 nodes and 147
edges. The power network is composed of 60 nodes and 76 edges,
and the water network is composed of 49 nodes and 71 edges. For
the water system, storage tanks and large pumps are modeled as
generation (supply) nodes and pipe intersections are modeled as water
distribution (demand) nodes (Kim et al., 2007). Moreover, gate stations
are modeled as power generation (supply) nodes and substations are
modeled as power distribution (demand) nodes for the power network.
The actual system, managed by the Memphis Light, Gas, and Water
(MLGW), is a heterogeneous mix of unidirectional arcs and bidirec-
tional edges (Kim et al., 2007). However, it can be modeled either as

Algorithm 1: Benders decomposition algorithm

Step 0: 𝑈𝐵 ← ∞, 𝐿𝐵 ← 0, iteration counter 𝑛 = 0
Step 1: Solve the RMP (65)–(69) to obtain its optimal solution(

𝒛, 𝜆1, 𝜆2

)
and let 𝜇̂ be the optimal first-stage cost and

𝜆 = 𝜆1 + 𝜁𝜆2, 𝐿𝐵 ← max{𝐿𝐵, 𝜇̂ + 𝜆}
Step 2: For each 𝜔 ∈ 𝛺𝑠:

Solve the DSP(𝒛𝜔) to obtain its optimal solution 𝒅
𝑛

𝜔
and

objective value
(
𝒃𝜔 − 𝑩𝜔𝒛𝜔

)
𝒅
𝑛

𝜔

End For

Step 3: Find the 𝛼-quantile 𝜂 across all DSP(𝒛𝜔) and associated
CVaR𝛼 function, denoted as 𝜆̂2:

𝜆̂2 = 𝜂 + 1
1−𝛼

(∑|𝛺𝑠|
𝜔=1 𝜋𝜔[

(
𝒃𝜔 − 𝑩𝜔𝒛𝜔

)
𝒅
𝑛

𝜔
− 𝜂]+

)
Step 4: Let (𝜂𝑛, 𝑣𝑛

𝜔
) = (𝜂, [

(
𝒃𝜔 − 𝑩𝜔𝒛𝜔

)
𝒅
𝑛

𝜔
− 𝜂]+)

Step 5: Find the mean-risk function value, denoted as 𝜆∗, of the
current recourse cost solution:
𝜆∗ =

∑|𝛺𝑠|
𝜔=1 𝜋𝜔

(
𝒃𝜔 − 𝑩𝜔𝒛𝜔

)
𝒅
𝑛

𝜔
+ 𝜁 𝜆̂2

𝑈𝐵 ← min{𝑈𝐵, 𝜇̂ + 𝜆∗}
Step 6: If 𝑈𝐵 − 𝐿𝐵 ≤ 𝜖 ∶ ⊳ 𝜖 is a predefined tolerance

Stop and report solution
Else:

(a) Add optimality cuts of the form:
𝜆1 ≥

∑
𝜔∈𝛺𝑠

𝜋𝜔
(
𝒃𝜔 − 𝑩𝜔𝒛𝜔

)
𝒅
𝑛

𝜔

𝜆2 ≥ 𝜂𝑛 + 1
1−𝛼

∑|𝛺𝑠|
𝜔=1 𝜋𝜔𝑣

𝑛
𝜔
to the RMP

(b) Add a total number of |𝛺𝑠| Benders optimality cuts
of the form:
𝑣𝑛
𝜔
≥
(
𝒃𝜔 − 𝑩𝜔𝒛𝜔

)
𝒅
𝑛

𝜔
− 𝜂𝑛,∀𝜔 ∈ 𝛺𝑠 to the RMP

(c) 𝑛 ← 𝑛 + 1 and go to Step 1
End If

a system of directed networks or undirected networks using network

flow approaches (Ahuja et al., 1993). In this study, we model the

utility networks as directed networks where directed arcs are modeled

to send flow in one direction and bidirectional edges are modeled as

two directed arcs. Note that the flow in power networks is governed by

physics-based power flow constraints that can be added to the model

with slight modifications (Alkhaleel et al., 2022). However, since the

relevant information on power reactance values here is not available,

such constraints have been omitted in this work (Almoghathawi et al.,

2021; Morshedlou et al., 2018). Additionally, the functional depen-

dency considered in this study is unidirectional (i.e., only the water

network depends on the power network) where each water generation

node is dependent on at least one power distribution node. Flow units

per hour are in MWh for the power network and million gallons hourly

(MGh)×102 or 10kGh for the water network.

4.2. Uncertainty representation

The proposed model assumes that the time to repair each compo-

nent and the travel time between failed components are uncertain,

but the remaining parameters are deterministic. The remainder of

this section summarizes the assumed probability distributions for the

uncertain parameters.

Let 𝐶 ′ ⊆ 𝐶 denote the set of disrupted components, and 𝑡𝑡𝑟𝑐 denote

the time to repair of component 𝑐 ∈ 𝐶
′𝜓 . We assume 𝑡𝑡𝑟𝑐 has a

Weibull distribution – commonly used to model activity times (Ab-

delkader, 2004) – with scale parameter 𝜈𝑐 and shape parameter 𝛽𝑐 . The

probability density function of 𝑡𝑡𝑟𝑐 is given by:

ℎ(𝑡, 𝛽𝑐 , 𝜈𝑐 ) =
𝛽𝑐

𝜈𝑐

(
𝑡

𝜈𝑐

)𝛽𝑐−1
𝑒
−
(

𝑡

𝜈𝑐

)𝛽𝑐
, 𝑡 ≥ 0 (70)

As for travel times, for 𝑐 ∈ 𝐶
′𝜓 and 𝑐′ ∈ 𝐶

′𝜓 , let 𝑡𝑡𝜓
𝑐𝑐′

denote the

travel time between components 𝑐 and 𝑐′ in network 𝜓 . We derive a
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Fig. 2. Graphical representations of the (a) power, (b) water, and (c) combined water

and power networks in Shelby County, TN.

Source: Adapted from González et al. (2016).

deterministic estimate of the travel time from 𝑐 to 𝑐′ using a separate

transportation network.

In the transportation network, each edge has an associated length

and speed limit, and its traversal time 𝑑𝑙 is estimated assuming it will

always be possible to travel at the speed limit. The deterministic esti-

mate of 𝑡𝑡𝜓
𝑐𝑐′
, hereafter denoted as 𝑑𝑡𝑡𝜓

𝑐𝑐′
, is obtained by determining the

shortest path length between two nodes in the transportation network,

namely those that are the closest to the midpoint of failed arcs and

to failed nodes in the utility networks. To represent the uncertainty

of 𝑡𝑡𝜓
𝑐𝑐′
, we populate a distribution for traversal time of edges in the

transportation network; given 𝑑𝑙, the random traversal time 𝑑𝑟𝑙 is

distributed according to the probability mass function:

𝑃 (𝑑𝑟𝑙 = 𝑡) =
⎧⎪⎨⎪⎩

0.3, 𝑡 = 𝑑𝑙
0.3, 𝑡 = 1.5 𝑑𝑙
0.4, 𝑡 = 2 𝑑𝑙

(71)

and each scenario-indexed 𝑡𝑡
𝜓

𝑐𝑐′𝜔
is found by solving the shortest path

problem as explained. This approach follows other disaster relief and
emergency response studies with the assumption that random traversal
times are based on a coefficient multiplication of the transportation
network constant traversal times (Mete and Zabinsky, 2010; de la Torre
et al., 2012; Alkhaleel et al., 2022).

4.3. Parameters and computational information

Among the hypothetical earthquake scenarios in Shelby County,
TN presented by González et al. (2016) with different magnitudes,
assuming different failure probabilities of system components with each
hypothetical earthquake scenario, we consider two possible scenarios
with magnitudes 𝑀𝑤 ∈ {6, 7} and a similar number of disrupted
components chosen randomly. Additionally, we consider four different
risk coefficients (i.e., 𝜁 ∈ {0, 0.5, 1, 2}) associated with each scenario.
The number of disrupted components for each network, the percentage
of the total number of components for each network, and the asso-
ciated performance drop for each network in the system under each
hypothetical earthquake scenario are summarized in Table 1.

Regarding repair activities, the shape and scale parameters of the
Weibull distributed repair time are assumed to be 2 and 5, respectively,
for all the components. Such assumptions are made following other
studies in the literature in terms of probability distribution chosen
and parameters (Fang and Sansavini, 2019). Hence, the mean-time-
to-repair (MTTR) used in the deterministic model is about 4.43 h. In
addition, the restoration planning horizon 𝑇 is chosen as 20 h, which
is sufficient to restore the network performance to its original state
under both cases with the chosen number of work crews for each case
(total of 4 for case 1 and 5 for case 2 as illustrated in Table 3). For
possible repair modes for each network, it is assumed that there are
two repair modes for each network (𝑌 𝜓 = {1, 2}): (1) perfect repair
mode (i.e., the component is restored to its full capacity), and (2)
imperfect repair mode (i.e., the component is restored to 50% of its
full capacity). Regarding cost parameters, it is assumed that unitary
flow cost, unitary unsatisfied demand cost, and fixed repair cost per
component are the same for both networks. For unitary flow cost, we
use an estimated flow cost of $30 per flow unit, which is equivalent
to the approximate cost of transmission and distribution of 1 MWh of
electricity (Fares and King, 2017). For the unsatisfied demand cost, re-
ferred to as disruption cost hereafter, the average residential cost of one
MWh of electricity in Shelby County, TN is approximately $97.2; and
for the water network, the cost per 10k gallon is about $30 (Memphis
Light, Gas and Water Division (MLGW), 2021). However, the economic
impact of unsatisfied demand is significantly higher than the cost of
services. That is, estimates of service interruption vary significantly
with estimated numbers ranging from $100 up to $100,000 per demand
unit (Wolfram, 2021). Here, it is estimated to be about $10,000 per
demand unit based on the Interruption Cost Estimate (ICE) tool funded
by the Energy Resilience Division of the U.S. Department of Energy’s
Office of Electricity (OE) for the examined case study area (Laboratory
and Nexant, 2021). Regarding restoration costs, we assume a fixed
repair cost per component. However, repair cost per CI component
can vary significantly from thousand dollars to hundreds of million
dollars (HDR, 2012; Assad et al., 2020). Nonetheless, a fixed repair cost
of $500,000 per component was estimated to keep both the flow and
restoration costs combined lower than the disruption costs to prioritize
resilience improvement as the main objective. Table 2 summarizes the
parameters of cost, risk, and repair for each case.

For the scenario generation process of random variables (i.e., repair
and travel times), 1000 scenarios are generated for each case. After
that, the scenario reduction algorithm was used to reduce the number
of scenarios into a smaller set. The total number of scenarios is reduced
to 10 scenarios. Solutions to the MILPs used in the scenario reduc-
tion procedure and the stochastic optimization models were computed
using CPLEX 12.10 (CPLEX, 2021) and programmed using Python
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Table 1

Disruption size and performance drop considering the two magnitudes of hypothetical earthquake scenarios.

Case No. of disrupted components Disruption percentage Performance drop

Power Water System Power Water System Power Water System

Case 1 (𝑀𝑤 = 6) 10 6 16 7.35% 5.00% 6.25% 18.64% 20.00% 19.27%

Case 2 (𝑀𝑤 = 7) 19 10 29 13.97% 8.33% 11.33% 22.13% 85.64% 50.87%

Table 2

Parameters of cost, risk, and repair for each case of the hypothetical earthquake scenarios.

Case Cost parameters Risk parameters Repair parameters

Disruption cost

(per demand unit)

Repair cost

(per component)

Flow cost

(per flow unit)

𝛼 𝜁 𝜒
𝜓
𝑦 𝜈𝑐 , 𝛽𝑐

Case 1 (𝑀𝑤 = 6)
$10,000 $500,000 $30

0.9 0, 0.5, 1, 2 𝜒
𝜓

1 = 0.5, 𝜒
𝜓

2 = 1 5, 2
Case 2 (𝑀𝑤 = 7) 0.8

Table 3

Problem size of different study instances.

Instance No. of

continuous

variables

No. of binary

variables

No. of

constraints

No. of

Scenarios

No. of

work crews

(power, water)

Number of

repair modes

(power, water)

Max

computational

time (s)

Case 1 (𝑀𝑤 = 6) 336,971 359,372 503,670 10 2,2 2,2 21,000

Case 2 (𝑀𝑤 = 7) 406,511 428,572 608,850 10 2,3 2,2 21,000

Deterministic (Case 1) 33,696 36,182 51,002 1 2,2 2,2 1,800

Deterministic (Case 2) 40,647 43,686 61,043 1 2,3 2,2 3,600

3.7 (Python, 2021) on a 3.2 GHz Intel Core i5 iMac machine with 24 GB
of RAM.

Regarding solution times and optimality gaps, we would like to
emphasize that solving ICIs deterministic restoration problems using
commercial MILP solvers such as CPLEX is hard, especially for large
problem instances involving travel time and vehicle routing considera-
tions (Garay-Sianca and Pinkley, 2021; Moreno et al., 2019; Morshed-
lou et al., 2018). In such deterministic problems, optimality gaps can
go up to 50% or even higher (Morshedlou et al., 2018; Garay-Sianca
and Pinkley, 2021). Hence, the stochastic problem instances considered
here for both cases cannot be solved for optimality within a prescribed
time limit. However, based on our preliminary analysis, a time limit
of 6 h (21600 s) is the approximate time after which the optimality
gap tends to level off with the implementation of Benders algorithm
to solve all instances. Algorithm 1 was implemented using callbacks
with Benders cuts added as lazy constraints. Table 3 summarizes the
dimensions of problem instances.

4.4. Results

The first part of this section summarizes the results related to the
various features of the developed mean-risk model including a com-
parison of the proposed solution approach to standard MILP solvers,
and the second part shows the added benefit of implementing flexible
restoration strategies and PFI in total cost reduction and resilience
improvement.

4.4.1. Mean-risk model

The developed ICINRP using a mean-risk measure is solved using
Algorithm 1. Table 4 compares the proposed Benders decomposition
algorithm with CPLEX showing the added value of the proposed so-
lution algorithm. The solutions found by the decomposition algorithm
outperformed the ones found by CPLEX in all instances. Additionally,
the decomposition algorithm was capable of solving all instances with
a maximum optimality gap of about 24%. In contrast, CPLEX was not
able to find any feasible solution for one of the instances (i.e., 𝑀𝑤 =
6 (𝜁 = 0.5)). The maximum optimality gap of solved instances for CPLEX
was approximately 57%. It is worth pointing out that the lower bounds
found by CPLEX and the decomposition algorithm for the instances
were similar, which are higher (tighter) than the WSs lower bounds
by about 10% for all instances. For the first case (𝑀𝑤 = 6), the

highest optimality gap found using Benders decomposition algorithm

was 14.637% compared to more than triple that value at 50%.456 for

CPLEX. Furthermore, in the second case (𝑀𝑤 = 7), the highest opti-
mality gap found using Benders decomposition algorithm was 23.319%

compared to 56.88% for the commercial solver. Using the proposed

Benders algorithm, the average optimality gaps for cases 1 and 2 were

about 13% and 20%, respectively. In contrast, the average optimality

gaps using CPLEX solver for cases 1 and 2 were about 32% and 46%,

respectively. These average values are about double the average gaps of

the decomposition algorithm. Overall, these findings favor the proposed

solution approach and show the added benefit of adapting it over

commercial solvers.

Regarding the mean-risk model, the choice of the risk coefficient

𝜁 in the proposed framework can alter the optimal plan; that is,

increasing the value of 𝜁 increases the relative importance of the risk

term resulting in more conservative (risk-averse) plans. For instance,

the CVaR values for case 1 showed a significant decrease with the

increase of the risk coefficient value from 0 to 2 as shown in Fig. 3.

This decrease in CVaR values is associated with a gradual increase in

the expected total cost across scenarios for the different risk coefficients

as illustrated in Fig. 3. The same findings are true for case 2 with a

steeper trend in CVaR values as shown in Fig. 4.

In ICINs restoration problems, disruption costs are expected to be

higher than other costs combined, otherwise the optimal solutions can

be found by prioritizing a reduction in the repair and flow costs over

the disruption costs (Almoghathawi et al., 2021). Here, the detailed

costs are presented for both cases in Figs. 3 and 4 showing that

disruption cost constitutes the major portion of the total cost under all

risk coefficients. Note that the total cost term here represents only the

total of disruption cost, repair cost and flow cost and is different than

the objective value term, which includes the total cost and CVaR terms

inflated by the risk importance factor. In addition, trends of objective

values, total and disruption costs, and CVaR values under both cases

across the different risk coefficients are shown in Figs. 5 and 6; this

shows that in mean-risk models, the objective value increases linearly

with the increase of the risk coefficient. Moreover, both the expected

total cost and disrupted cost exhibit similar raising trends as the risk

coefficient changes. This similarity can be explained by knowing that

the disruption cost represents the major portion of the total cost as

explained earlier.
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Table 4

Comparison of Benders decomposition and CPLEX solver solutions for the different instances with 10 reduced scenarios.

Case CPLEX standard solver Benders decomposition

Computational

time (s)

Gap(%) Objective value Computational

time (s)

Gap(%) Objective value

𝑀𝑤 = 6 (𝜁 = 0) 21648.783 17.279 18.142 21617.794 12.849 17.514

𝑀𝑤 = 6 (𝜁 = 0.5) 21600.000 – – 21618.569 14.477 30.599

𝑀𝑤 = 6 (𝜁 = 1) 21605.193 50.456 58.771 21616.394 14.637 42.986

𝑀𝑤 = 6 (𝜁 = 2) 21609.664 29.233 81.635 21661.764 12.791 66.632

𝑀𝑤 = 7 (𝜁 = 0) 21612.699 56.880 90.808 21664.057 23.319 47.302

𝑀𝑤 = 7 (𝜁 = 0.5) 21606.937 38.043 96.661 21615.361 21.666 75.205

𝑀𝑤 = 7 (𝜁 = 1) 21612.841 41.277 143.474 21614.859 20.328 102.743

𝑀𝑤 = 7 (𝜁 = 2) 21607.326 50.304 271.706 21620.736 17.480 154.189

Fig. 3. Case 1 (𝑀𝑤 = 6): Detailed expected cost values of demand, repair, flow, and
the overall expected total cost, as well as the CVaR information for different values of

𝜁 .

Fig. 4. Case 2 (𝑀𝑤 = 7): Detailed cost values of demand, repair, flow, and the overall
expected total cost, as well as the CVaR information for different values of 𝜁 .

Tables 5 and 6 summarize the detailed outputs of the model for

both cases – considering different choices of risk coefficient – including

cost values, system and individual network resilience values, objective

values, and other outputs for both cases. For case 1, the total resilience

(or system resilience) decreases whereas the total disruption cost in-

creases as the risk coefficient increases. The repair cost, however, looks

constant across all risk coefficients indicating that the number of chosen

disrupted components to be restored and their associated repair modes

are almost the same for case 1. For case 2, the repair cost shows a

similar behavior across all the values of 𝜁 . Additionally, the flow cost

could be described as a constant across the values of 𝜁 for both cases.

The resilience curves of the power network, water network, and system

under the different risk coefficients can be found in Appendix.

To assess the added value of stochastic models compared to a

deterministic approach, the value of stochastic solution (VSS) is a well-

known measure in the literature, which is designed to indicate whether

the added benefit of modeling randomness using a risk-neutral stochas-

tic optimization approach (Birge and Louveaux, 2011). However, the

VSS cannot be implemented directly on risk-averse problems (Noyan,

2012). Accordingly, we adopt the risk-averse version of the VSS known

as the mean-risk value of stochastic solution (MRVSS) (see Noyan, 2012

for details), which measures the possible gain from solving stochastic

models incorporating a mean-risk function. In particular, this mea-

sure represents the difference between the mean-risk expected value

(MREV) problem (which results from solving the standard model with

fixed first-stage decision variables whose values are obtained by solving

a deterministic version of the standard model that replaces all random

parameters with their expected values) and the mean-risk standard

model solution. Higher values of MRVSS indicate a more added value in

adapting a mean-risk approach over an expected value approach. Note

that the MRVSS is equivalent to VSS when the risk coefficient 𝜁 = 0.
For case 1 (𝑀𝑤 = 6), it can be seen that the MRVSS values are

positive numbers ranging between 2.285M and 10.295M and increase

with the increase of the risk coefficient 𝜁 ; this indicates the significance

of solving mean-risk models over the expected value (deterministic)

approaches. However, the increase of MRVSS with 𝜁 is not reflected

on the ratio between the MRVSS and the associated objective value,

which does not show a clear trend with approximate values of 13%,

11%, 12%, and 15% for 𝜁 = 0, 0.5, 1, and 2, respectively. For 𝜁 = 0,
the added value of a stochastic solution is $2.285M (i.e., the overall

cost of the deterministic solution is $2.285M higher than the stochastic

solution). For other values of 𝜁 , the MRVSS varies between a 𝜁 -weighted

value of 3M up to 10M. For case 2 (𝑀𝑤 = 7), the values of MRVSS are
even higher given the larger disruption scenario for this case despite

the higher overall optimality gaps in this case compared to case 1.

In fact, implementing the deterministic approach for this case can

cause a 10%–20% increase in the expected economic losses compared

to a mean-risk plan with a specific risk level 𝛼 and risk weighted

importance 𝜁 . Hence, this shows that applying deterministic plans for

larger disruptions involves high risk and could result in more economic

losses. Overall, these results indicate that it is significant to solve mean-

risk models to obtain preferred solutions for a specified set of risk

parameters.
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Fig. 5. Case 1 (𝑀𝑤 = 6): Trends of objective value, expected total cost, expected disruption cost, and CVaR with the increase of 𝜁 .

Fig. 6. Case 2 (𝑀𝑤 = 7): Trends of objective value, expected total cost, expected disruption cost, and CVaR with the increase of 𝜁 .

4.4.2. Flexible restoration strategies and PFI

As illustrated in Section 2, the proposed optimization model for
solving the ICINRP considers flexible restoration strategies that are ex-
pected to enhance the resulting optimal plans. In addition, the proposed
model allows for partial functioning and interdependency, with a slight
modification to the standard model formulation, supporting non-binary
state ICIs restoration. Here, we compare the applied flexible restoration
strategies to restricted ones and study the impact of PFI on restoration
plans.

Regarding the restoration strategies, Tables 7 and 8 summarize
the detailed outputs (i.e., cost values, system and individual network
resilience values, and CVaR values) of the model with risk coefficient
𝜁 = 1 under flexible (i.e., multicrew and multimode repair settings) and
restricted (i.e., single crew and single mode settings) plans for cases 1
and 2, respectively. In Tables 7 and 8, the first column represents the

standard model with 𝜁 = 1, the second column represents the standard
model with 𝜁 = 1 except that each failed component is restored by at
most one crew (single crew setting), the third column represents the
standard model with 𝜁 = 1 except that each failed component can only
be fully restored (single repair mode), and the PFI column represents
the standard model with 𝜁 = 1 except that partial functioning and
interdependencies are allowed. Overall, both the objective value and
CVaR value are lower under flexible restoration strategies for cases 1
and 2. This indicates that flexible restoration planning can significantly
reduce the main costs associated with restoration, namely disruption
and repair costs, as well as the associated risk measure. Comparing the
multicrew setting to the single crew setting, the reduction in the objec-
tive value is about 25% and 36% for cases 1 and 2, respectively. For
multimode repair vs. single mode repair, the reduction in the objective
value is approximately 12% and 20% for cases 1 and 2, respectively.
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Table 5

Case 1 (𝑀𝑤 = 6): Detailed expected costs, MRVSS, expected flow, and expected resilience information considering different risk coefficients.

Risk coefficient parameter

𝜁 = 0 𝜁 = 0.5 𝜁 = 1 𝜁 = 2

Objective value (M) 17.514 30.599 42.986 66.632

CVaR ($M) 25.016 21.904 21.843 21.352

MRVSS (M) 2.285 3.417 4.962 10.295

Total disruption cost ($M) 12.962 13.347 13.846 13.880

Total repair cost ($M) 2.750 3.000 2.750 2.750

Total flow cost ($M) 1.803 1.801 1.798 1.798

Total cost ($M) 17.515 18.148 18.394 18.428

Total resilience 0.816 0.810 0.805 0.804

Power network disruption cost ($M) 6.707 6.729 7.945 7.879

Power network repair cost ($M) 1.750 2.250 2.000 2.000

Power network flow cost ($M) 0.989 0.989 0.983 0.983

Power network resilience 0.821 0.820 0.788 0.789

Power network aggregated received flow (MWh) 19389.300 19387.118 19265.504 19272.070

Water network disruption cost ($M) 6.255 6.618 5.901 6.001

Water network repair cost ($M) 1.000 0.750 0.750 0.750

Water network flow cost ($M) 0.814 0.812 0.815 0.815

Water network resilience 0.812 0.801 0.822 0.819

Water network aggregated received flow (MG) 159.545 159.182 159.899 159.799

Table 6

Case 2 (𝑀𝑤 = 7): Detailed expected cost values, MRVSS, expected flow, and expected resilience information under different risk coefficients.

Risk coefficient parameter

𝜁 = 0 𝜁 = 0.5 𝜁 = 1 𝜁 = 2

Objective value(M) 47.302 75.205 102.743 154.189

CVaR ($M) 52.293 50.606 49.313 46.646

MRVSS (M) 9.678 10.415 16.287 16.772

Total disruption cost ($M) 40.892 41.495 42.277 45.007

Total repair cost ($M) 4.750 4.500 4.750 4.750

Total flow cost ($M) 1.660 1.657 1.653 1.639

Total cost ($M) 47.302 47.652 48.680 51.396

Total resilience 0.757 0.726 0.752 0.725

Power network disruption cost ($M) 16.402 16.474 12.786 14.996

Power network repair cost ($M) 2.500 2.500 2.500 2.500

Power network flow cost ($M) 0.939 0.939 0.958 0.947

Power network resilience 0.686 0.629 0.712 0.662

Power network aggregated received flow (MWh) 18419.820 18412.648 18781.405 18560.355

Water network disruption cost ($M) 24.490 25.022 29.491 30.011

Water network repair cost ($M) 2.250 2.000 2.250 2.250

Water network flow cost ($M) 0.721 0.718 0.695 0.693

Water network resilience 0.828 0.824 0.792 0.789

Water network aggregated received flow (MG) 141.310 140.778 136.309 135.789

Table 7

Case 1 (𝑀𝑤 = 6): Detailed cost values, flow, and resilience information under SC, SM, and PFI for 𝜁 = 1.

Standard Model (𝜁 = 1) Single Crew Single Repair Mode PFI

Objective value (M) 42.986 57.604 48.968 29.463

CVaR ($M) 21.843 29.642 25.773 14.381

Total disruption cost ($M) 13.846 20.699 15.405 7.753

Total repair cost ($M) 2.750 2.750 3.000 2.750

Total flow cost ($M) 1.798 1.763 1.790 1.829

Total resilience 0.805 0.712 0.781 0.893

Power network disruption cost ($M) 7.945 14.127 7.946 5.506

Power network repair cost ($M) 2.000 2.000 2.000 2.250

Power network flow cost ($M) 0.983 0.951 0.983 0.995

Power network resilience 0.788 0.622 0.788 0.853

Power network aggregated received flow (MWh) 19265.504 18647.284 19265.372 19509.405

Water network disruption cost ($M) 5.901 6.571 7.459 2.247

Water network repair cost ($M) 0.750 0.750 1.000 0.500

Water network flow cost ($M) 0.815 0.812 0.808 0.834

Water network resilience 0.822 0.802 0.775 0.932

Water network aggregated received flow (MG) 159.899 159.229 158.341 163.553
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Table 8

Case 2 (𝑀𝑤 = 7): Detailed cost values, flow, and resilience information under SC, SM, and PFI for 𝜁 = 1.

Standard Model (𝜁 = 1) Single Crew Single Repair Mode PFI

Objective value (M) 102.743 161.303 128.854 83.569

CVaR ($M) 49.313 83.061 61.543 39.845

Total disruption cost ($M) 42.277 67.719 52.712 32.521

Total repair cost ($M) 4.750 4.500 6.500 4.750

Total flow cost ($M) 1.653 1.523 1.600 1.703

Total resilience 0.752 0.613 0.684 0.788

Power network disruption cost ($M) 12.786 19.160 16.831 12.551

Power network repair cost ($M) 2.500 2.250 3.500 2.500

Power network flow cost ($M) 0.958 0.925 0.937 0.959

Power network resilience 0.712 0.568 0.621 0.717

Power network aggregated received flow (MWh) 18781.405 18144.010 18376.940 18804.894

Water network disruption cost ($M) 29.491 48.559 35.881 19.970

Water network repair cost ($M) 2.250 2.250 3.000 2.250

Water network flow cost ($M) 0.695 0.598 0.663 0.744

Water network resilience 0.792 0.658 0.747 0.859

Water network aggregated received flow (MG) 136.309 117.241 129.919 145.830

Fig. 7. Case 1 (𝑀𝑤 = 6): Comparison of the resilience of the overall system and individual networks under SC vs. MC, and SM vs. MM settings.

Fig. 8. Case 2 (𝑀𝑤 = 7): Comparison of the resilience of the overall system and individual networks under SC vs. MC, and SM vs. MM settings.
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Fig. A.1. Case 1 (𝑀𝑤 = 6): Comparison of system resilience curves under different risk coefficient solution plans for a sample of reduced scenarios.

Note that the gain from adapting flexible restoration strategies is more

significant for the second case with a higher number of disrupted

components. Disruption costs behave similarly to the objective value

for both cases and under both restoration strategies (i.e., multicrew

and multimode repair). In contrast, repair costs are similar between the

multicrew and single crew settings; however, they are higher in the

single repair mode setting, significantly higher for case 2, indicating

that the imperfect repair mode for multiple components is optimal.

Surprisingly, multimode repair did not only reduce the repair costs

by %8 and 27% for cases 1 and 2, respectively, but also reduced the

disruption costs (improved resilience) for both cases by 10% for case 1

and 20% for case 2.

For a resilience-based benchmarking of the different restoration

strategies, a comparison of the resilience of power network, water

network, and system under flexible and restricted restoration plans for

cases 1 and 2 is shown in Figs. 7 and 8, respectively. From the first

glance, one can see that the resilience of both networks and the system

is higher with multicrew and multimode restoration strategies. For in-

stance, in case 1, the power network resilience under multicrew setting

is significantly higher than under a single crew setting. This indicates

the existence of critical components in the power network whose rapid

restoration can significantly improve the resilience of the network. In

contrast, the effect of multicrew setting on the water network resilience

is minor. Conversely, multimode repair improved only the resilience

of the water network under the same case. For case 2, with a higher
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Fig. A.2. Case 1 (𝑀𝑤 = 6): Comparison of power network resilience curves under different risk coefficient solution plans for a sample of reduced scenarios.

number of disrupted components, the resilience of both power and

water networks showed a substantial improvement under multicrew

and multimode settings. All these improvements in the resilience of

both individual networks are clearly reflected on the system resilience

for both case studies and under both flexible restoration strategies.

Regarding PFI, Tables 7 and 8 summarize the detailed outputs

(i.e., cost values, system and individual network resilience values, and

CVaR values) of the standard model, under risk coefficient 𝜁 = 1, with
and without PFI for both cases. It can be seen that partial functioning

and interdependency significantly reduced the disruption costs for both

cases. That is, resilience is improved by PFI since allowing a disrupted

component to partially function – before full restoration – can help

deliver more flow to demand nodes, especially in the first time periods

after disruption. This situation is the opposite of a binary status setting

of components where disrupted components continue to be disrupted

until fully restored. In addition, the reduction in disruption costs de-

creases the risk gradually compared to a non-PFI setting. The results

from applying PFI can link resilience to reliability and maintainability

engineering through systems with multiple states or state-dependent

systems. It might be of interest to study the relation between resilience,
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Fig. A.3. Case 1 (𝑀𝑤 = 6): Comparison of water network resilience curves under different risk coefficient solution plans for a sample of reduced scenarios.

reliability, and maintainability for a network having state-dependent

critical components and how a tri-level framework can be developed

to improve all three aspects. To sum up, ICINs systems featuring PFI

are expected to be more resilient than non-PFI due to the flexibility of

their post-disruption restoration plans.

5. Conclusion and future work

In this paper, a two-stage stochastic restoration optimization model

using mixed-integer linear programming is proposed to solve the ICINRP

under a mean-risk cost-based objective function. Moreover, the mean-

risk model features flexible restoration planning strategies including

multicrew repair of a single component and multimode repair, and

also considers partial functioning and interdependencies of compo-
nents across networks. The proposed model: (i) determines the set of
failed components to be restored, (ii) selects the repair mode for each
failed component, (iii) assigns each crew the set of failed components
to be restored individually or concurrently, (iv) and schedules the
baseline restoration sequence across scenarios for each crew such that
the associated costs of disruption, repair, and flow of the system of
ICIs are minimized. Additionally, as post-disruption restoration tasks
occur in a highly dynamic environment, which is subject to a fair
amount of uncertainty, the mean-risk model considers two important
sources of uncertainty associated with restoration panning: (i)repair
task durations, and (ii)travel times of crews between failed components.

The proposed approach was demonstrated using a real-life case
study based on the system of power and water networks in Shelby
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Fig. A.4. Case 2 (𝑀𝑤 = 7): Comparison of system resilience curves under different risk coefficient solution plans for a sample of reduced scenarios.

County, TN, U.S. under two hypothetical earthquakes. The mean-risk

model was solved using the developed Benders decomposition algo-

rithm, which outperformed the CPLEX standard solver as demonstrated.

Our first finding was the significance of adapting mean-risk stochas-

tic models over deterministic counterparts. This was demonstrated

through the positive values of MRVSS under all cases. It is also found

that the restoration plan can be altered based on the associated risk

weighted importance. In particular, smaller values of the risk weighted

importance factor can result in plans with low expected total costs but

with high costs under worst-case scenarios. In contrast, higher values

of the risk weighted importance factor can result in plans with slightly

higher expected total costs but with less costs associated with worst-

case scenarios. Regarding the flexible restoration strategies and PFI,

both implementations demonstrated the added value in reducing the
overall costs and mitigating risks.

As for future work, the proposed model could be extended to con-
sider the transportation network as a direct interdependent network.
That is, the current approach assumes that CI networks, other than the
underlying transportation network, are the ones being restored. Hence,
the problem becomes not only focused on the restoration of CIs, but also
on coordinating the process of finding the best routes and schedules for
crews to repair damaged components in the transportation network.
In addition, it is possible to extend the current model to introduce a
facility location problem where work crews are dispatched to disrupted
component locations rather than a direct travel between components.
In such problems, the goal is to find the optimal location of these
facilities from a set of candidate sites considering the fixed cost of
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Fig. A.5. Case 2 (𝑀𝑤 = 7): Comparison of power network resilience curves under different risk coefficient solution plans for a sample of reduced scenarios.

establishing such facilities as well as other crew-related variable costs.
Moreover, considering economic measures of the resilience of commu-
nities interacting with these ICINs, as well as the associated risks can
be one of the future directions of this work. This future direction can
also be associated with studying other types of interdependencies that
affect both CIs and communities such as geographic interdependency
to mitigate the related socioeconomic risks.
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Appendix

A.1. Resilience of the system and individual infrastructure networks under

different risk coefficient solution plans

See Figs. A.1–A.6.
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Fig. A.6. Case 2 (𝑀𝑤 = 7): Comparison of water network resilience curves under different risk coefficient solution plans for a sample of reduced scenarios.

References

Abdelkader, Y.H., 2004. Evaluating project completion times when activity times are

Weibull distributed. European J. Oper. Res. 157 (3), 704–715.

Ahuja, R.K., Magnanti, T.L., Orlin, J.B., 1993. Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Alkhaleel, B.A., Liao, H., Sullivan, K.M., 2022. Risk and resilience-based optimal post-

disruption restoration for critical infrastructures under uncertainty. European J.

Oper. Res. 296 (1), 174–202. http://dx.doi.org/10.1016/j.ejor.2021.04.025.

Almoghathawi, Y., Barker, K., Albert, L.A., 2019. Resilience-driven restoration model

for interdependent infrastructure networks. Reliab. Eng. Syst. Saf. 185, 12–23.

Almoghathawi, Y., González, A.D., Barker, K., 2021. Exploring recovery strategies for

optimal interdependent infrastructure network resilience. Netw. Spat. Econ. 21 (1),

229–260. http://dx.doi.org/10.1007/s11067-020-09515-4.

Amin, M., 2002. Toward secure and resilient interdependent infrastructures. J. Infras-

tructure Syst. 8 (3), 67–75. http://dx.doi.org/10.1061/(ASCE)1076-0342(2002)8:

3(67).

Assad, A., Moselhi, O., Zayed, T., 2020. Resilience-driven multiobjective restoration

planning for water distribution networks. J. Perform. Constr. Facil. 34 (4),

04020072. http://dx.doi.org/10.1061/(asce)cf.1943-5509.0001478.
Azucena, J., Alkhaleel, B., Liao, H., Nachtmann, H., 2021. Hybrid simulation to support

interdependence modeling of a multimodal transportation network. Simul. Model.

Pract. Theory 107, 102237. http://dx.doi.org/10.1016/j.simpat.2020.102237.
Baidya, P.M., Sun, W., 2017. Effective restoration strategies of interdependent power

system and communication network. J. Eng. 2017 (13), 1760–1764. http://dx.doi.

org/10.1049/joe.2017.0634.
Barker, K., Lambert, J.H., Zobel, C.W., Tapia, A.H., Ramirez-Marquez, J.E., Albert, L.,

Nicholson, C.D., Caragea, C., 2017. Defining resilience analytics for interdependent

cyber-physical-social networks. Sustain. Resilient Infrastructure 2 (2), 59–67. http:

//dx.doi.org/10.1080/23789689.2017.1294859.
Benders, J.F., 1962. Partitioning procedures for solving mixed-variables programming

problems. Numer. Math. 4, 238–252.
Birge, J.R., Louveaux, F., 2011. Introduction to Stochastic Programming. Springer, New

York, NY.
Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O’Rourke, T.D., Reinhorn, A.M.,

Shinozuka, M., Tierney, K., Wallace, W.A., von Winterfeldt, D., 2003. A framework



B.A. Alkhaleel et al.

to quantitatively assess and enhance the seismic resilience of communities. Earthq.

Spectra 19, 733–752. http://dx.doi.org/10.1193/1.1623497.

Bruninx, K., 2014. A practical approach on scenario generation and & reduction

algorithms for wind power forecast error scenarios.

Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S., 2010. Catastrophic

cascade of failures in interdependent networks. Nature 464 (7291), 1025–1028.

http://dx.doi.org/10.1038/nature08932.

Buldyrev, S.V., Shere, N.W., Cwilich, G.A., 2011. Interdependent networks with

identical degrees of mutually dependent nodes. Phys. Rev. E 83 (1), 016112.

http://dx.doi.org/10.1103/physreve.83.016112.

Campbell, R.J., Lowry, S., 2012. Weather-Related Power Outages and Electric System

Resiliency. Library of Congress, Washington, DC.

Casalicchio, E., Galli, E., Ottaviani, V., 2009. MobileOnRealEnvironment-GIS: A feder-

ated mobile network simulator of mobile nodes on real geographic data. In: 2009

13th IEEE/ACM International Symposium on Distributed Simulation and Real Time

Applications. IEEE, http://dx.doi.org/10.1109/ds-rt.2009.25.

Cavdaroglu, B., Hammel, E., Mitchell, J.E., Sharkey, T.C., Wallace, W.A., 2011. Integrat-

ing restoration and scheduling decisions for disrupted interdependent infrastructure

systems. Ann. Oper. Res. 203 (1), 279–294. http://dx.doi.org/10.1007/s10479-011-

0959-3.

Çelik, M., 2016. Network restoration and recovery in humanitarian operations: Frame-

work, literature review, and research directions. Surv. Oper. Res. Manag. Sci. 21

(2), 47–61. http://dx.doi.org/10.1016/j.sorms.2016.12.001.

Center for Research on the Epidemiology of Disasters (CRED), 2021. EM-DAT: The

emergency events database. Number of natural disaster. Available at: https://public.

emdat.be/.

Chen, J., Lim, C.H., Qian, P.Z., Linderoth, J., Wright, S.J., 2014. Validating sample

average approximation solutions with negatively dependent batches. arXiv:1404.

7208v2.

Coffrin, C., Van Hentenryck, P., Bent, R., 2012. Last-mile restoration for multiple

interdependent infrastructures. Proc. Natl. Conf. Artif. Intell. 26 (1), 455–463.

CPLEX, IBM., 2021. CPLEX Optimizer | IBM. https://www.ibm.com/analytics/cplex-

optimizer.

Danziger, M.M., Shekhtman, L.M., Bashan, A., Berezin, Y., Havlin, S., 2016. Vulner-

ability of interdependent networks and networks of networks. In: Understanding

Complex Systems. Springer International Publishing, Switzerland, pp. 79–99. http:

//dx.doi.org/10.1007/978-3-319-23947-7_5.

de la Torre, L.E., Dolinskaya, I.S., Smilowitz, K.R., 2012. Disaster relief routing:

Integrating research and practice. Socio-Econ. Plan. Sci. 46 (1), 88–97, Special

Issue: Disaster Planning and Logistics: Part 1.

Di Muro, M.A., La Rocca, C.E., Stanley, H.E., Havlin, S., Braunstein, L.A., 2016.

Recovery of interdependent networks. Sci. Rep. 6 (22834), 1–11. http://dx.doi.

org/10.1038/srep22834.

Dupačová, J., Gröwe-Kuska, N., Römisch, W., 2003. Scenario reduction in stochastic

programming. Math. Program. 95 (3), 493–511.

Enayaty Ahangar, N., Sullivan, K.M., Nurre, S.G., 2020. Modeling interdependencies in

infrastructure systems using multi-layered network flows. Comput. Oper. Res. 117,

104883. http://dx.doi.org/10.1016/j.cor.2019.104883.

Escudero, L.F., Garín, M.A., Unzueta, A., 2017. Scenario cluster Lagrangean de-

composition for risk averse in multistage stochastic optimization. Comput.

Oper. Res. 85, 154–171, URL http://www.sciencedirect.com/science/article/pii/

S0305054817300989.

Eusgeld, I., Nan, C., Dietz, S., 2011. ‘‘System-of-system’’ approach for interdependent

critical infrastructures. Reliab. Eng. Syst. Saf. 96 (6), 679–686. http://dx.doi.org/

10.1016/j.ress.2010.12.010.

Fang, Y., Pedroni, N., Zio, E., 2016. Resilience-based component importance measures

for critical infrastructure network systems. IEEE Trans. Reliab. 65 (2), 502–512.

http://dx.doi.org/10.1109/tr.2016.2521761.

Fang, Y., Sansavini, G., 2017. Emergence of antifragility by optimum postdisruption

restoration planning of infrastructure networks. J. Infrastructure Syst. 23 (4),

04017024.

Fang, Y., Sansavini, G., 2019. Optimum post-disruption restoration under uncertainty

for enhancing critical infrastructure resilience. Reliab. Eng. Syst. Saf. 185 (January

2019), 1–11.

Fares, R.L., King, C.W., 2017. Trends in transmission, distribution, and administration

costs for U.S. investor-owned electric utilities. Energy Policy 105, 354–362. http:

//dx.doi.org/10.1016/j.enpol.2017.02.036.

Force, HurricaneSandyRebuildingTaskForce., 2013. Hurricane sandy rebuilding strat-

egy. In: US Department of Housing and Urban Development., Washington, DC.

Department of Housing and Urban Development,, Washington, DC.

Franchin, P., Cavalieri, F., 2015. Probabilistic assessment of civil infrastructure re-

silience to earthquakes. Comput.-Aided Civ. Infrastruct. Eng. 30 (7), 583–600.

http://dx.doi.org/10.1111/mice.12092.

Garay-Sianca, A., Pinkley, S.G.N., 2021. Interdependent integrated network design and

scheduling problems with movement of machines. European J. Oper. Res. 289 (1),

297–327.

Ghorbani-Renani, N., González, A.D., Barker, K., Morshedlou, N., 2020. Protection-

interdiction-restoration: Tri-level optimization for enhancing interdependent net-

work resilience. Reliab. Eng. Syst. Saf. 199, 106907. http://dx.doi.org/10.1016/j.

ress.2020.106907.

Gong, J., Lee, E.E., Mitchell, J.E., Wallace, W.A., 2009. Logic-based MultiObjective

optimization for restoration planning. In: Chaovalitwongse, E.W. (Ed.), Springer

Optimization and Its Applications, Vol. 30. Springer US, Boston, MA, pp. 305–324.

http://dx.doi.org/10.1007/978-0-387-88617-6_11.
González, A.D., nas Osorio, L.D., Sánchez-Silva, M., Medaglia, A.L., 2016. The inter-

dependent network design problem for optimal infrastructure system restoration.

Comput.-Aided Civ. Infrastruct. Eng. 31 (5), 334–350. http://dx.doi.org/10.1111/

mice.12171.
Guidotti, R., Chmielewski, H., Unnikrishnan, V., Gardoni, P., McAllister, T., van de

Lindt, J., 2016. Modeling the resilience of critical infrastructure: the role of

network dependencies. Sustain. Resilient Infrastructure 1 (3–4), 153–168. http:

//dx.doi.org/10.1080/23789689.2016.1254999.
Haimes, Y.Y., Jiang, P., 2001. Leontief-based model of risk in complex interconnected

infrastructures. J. Infrastructure Syst. 7 (1), 1–12. http://dx.doi.org/10.1061/(asce)

1076-0342(2001)7:1(1).
HDR, 2012. City of Raymore - water storage and water supply study. Available at:

https://www.raymore.com/home/showpublisheddocument?id=1176.
Heitsch, H., Römisch, W., 2003. Scenario reduction algorithms in stochastic

programming. Comput. Optim. Appl. 24 (2/3), 187–206.
Helbing, D., 2013. Globally networked risks and how to respond. Nature 497 (7447),

51–59. http://dx.doi.org/10.1038/nature12047.
Henry, D., Ramirez-Marquez, J.E., 2012. Generic metrics and quantitative approaches

for system resilience as a function of time. Reliab. Eng. Syst. Saf. 99, 114–122.
Holden, R., Val, D.V., Burkhard, R., Nodwell, S., 2013. A network flow model for

interdependent infrastructures at the local scale. Saf. Sci. 53, 51–60. http://dx.doi.

org/10.1016/j.ssci.2012.08.013.
Horejšová, M., Vitali, S., Kopa, M., Moriggia, V., 2020. Evaluation of scenario reduction

algorithms with nested distance. Comput. Manag. Sci. 17 (2), 241–275.
Hosseini, S., Barker, K., Ramirez-Marquez, J.E., 2016. A review of definitions and

measures of system resilience. Reliab. Eng. Syst. Saf. 145, 47–61.
Humphreys, B.E., 2019. Critical Infrastructure: Emerging Trends and Policy Consid-

erations for Congress. CRS Report No. R45809, Congressional Research Service,

Washington, DC.
Karagiannis, G.M., Chondrogiannis, S., Krausmann, E., Turksezer, Z.I., 2017. Power

Grid Recovery After Natural Hazard Impact. Technical Report EUR 28844 EN,

Publications Office of the European Union, Luxembourg, http://dx.doi.org/10.

2760/87402.
Karakoc, D.B., Almoghathawi, Y., Barker, K., González, A.D., Mohebbi, S., 2019.

Community resilience-driven restoration model for interdependent infrastructure

networks. Int. J. Disaster Risk Reduct. 38, 101228. http://dx.doi.org/10.1016/j.

ijdrr.2019.101228.
Kim, Y., Spencer, B.F.J., Song, J., Elnashai, A.S., Stokes, T., 2007. Seismic performance

assessment of interdependent lifeline systems. MAE Center Rep. CD Release 07-16.
Kleywegt, A.J., Shapiro, A., Homem-de-Mello, T., 2002. The sample average approx-

imation method for stochastic discrete optimization. SIAM J. Optim. 12 (2),

479–502.
Krokhmal, P., Palmquist, J., Uryasev, S., 2002. Portfolio optimization with conditional

value-at-risk objective and constraints. J. Risk 4, 43–68.
Laboratory, L.B.N., Nexant, I., 2021. The interruption cost estimate (ICE) calculator

- lawrence berkeley national laboratory and nexant, inc. Available at: https://

icecalculator.com/home.
Lee I.I., E.E., Mitchell, J.E., Wallace, W.A., 2007. Restoration of services in interde-

pendent infrastructure systems: A network flows approach. IEEE Trans. Syst. Man

Cybern. C (Appl. Rev.) 37 (6), 1303–1317. http://dx.doi.org/10.1109/TSMCC.2007.

905859.
Little, R.G., 2002. Controlling cascading failure: Understanding the vulnerabilities of

interconnected infrastructures. J. Urban Technol. 9 (1), 109–123. http://dx.doi.

org/10.1080/106307302317379855.
Manuel, J., 2013. The long road to recovery: Environmental health impacts of hurricane

sandy. Environ. Health Perspect. 121 (5).
Meltzer, A., Beck, S., Ruiz, M., Hoskins, M., Soto-Cordero, L., Stachnik, J.C., Lynner, C.,

Porritt, R., Portner, D., Alvarado, A., Hernandez, S., Yepes, H., Charvis, P., Font, Y.,

Regnier, M., Agurto-Detzel, H., Rietbrock, A., Leon-Rios, S., Mercerat, E.D., 2019.

The 2016 Mw 7.8 pedernales, ecuador, earthquake: Rapid response deployment.

Seismol. Res. Lett. 90 (3), 1346–1354. http://dx.doi.org/10.1785/0220180364.
Memphis Light, Gas, Water Division (MLGW), 2021. Facts & figures - 2017. Available

at: http://www.mlgw.com/images/content/files/pdf/FactsFigures2018.pdf.
Mendonca, D., Lee, E., Wallace, W., 2004. Impact of the 2001 world trade center attack

on critical interdependent infrastructures. In: 2004 IEEE International Conference

on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), Vol. 5. IEEE, http:

//dx.doi.org/10.1109/icsmc.2004.1401165.
Mete, H.O., Zabinsky, Z.B., 2010. Stochastic optimization of medical supply location and

distribution in disaster management. Int. J. Prod. Econ. 126 (1), 76–84. http://dx.

doi.org/10.1016/j.ijpe.2009.10.004, Improving Disaster Supply Chain Management

– Key supply chain factors for humanitarian relief.
Min, H.-S.J., Beyeler, W., Brown, T., Son, Y.J., Jones, A.T., 2007. Toward modeling

and simulation of critical national infrastructure interdependencies. IIE Trans. 39

(1), 57–71. http://dx.doi.org/10.1080/07408170600940005.
Mooney, E.L., Almoghathawi, Y., Barker, K., 2019. Facility location for recovering

systems of interdependent networks. IEEE Syst. J. 13 (1), 489–499. http://dx.doi.

org/10.1109/jsyst.2018.2869391.



B.A. Alkhaleel et al.

Morales, J.M., Pineda, S., Conejo, A.J., Carrión, M., 2009. Scenario reduction for futures

market trading in electricity markets. IEEE Trans. Power Syst. 24 (2), 878–888.

Moreno, A., Munari, P., Alem, D., 2019. A branch-and-benders-cut algorithm for the

crew scheduling and routing problem in road restoration. European J. Oper. Res.

275 (1), 16–34. http://dx.doi.org/10.1016/j.ejor.2018.11.004.

Morshedlou, N., González, A.D., Barker, K., 2018. Work crew routing problem for

infrastructure network restoration. Transp. Res. B 118, 66–89. http://dx.doi.org/

10.1016/j.trb.2018.10.001.

Noyan, N., 2012. Risk-averse two-stage stochastic programming with an application to

disaster management. Comput. Oper. Res. 39 (3), 541–559. http://dx.doi.org/10.

1016/j.cor.2011.03.017.

Nurre, S.G., Cavdaroglu, B., Mitchell, J.E., Sharkey, T.C., Wallace, W.A., 2012. Restor-

ing infrastructure systems: An integrated network design and scheduling (INDS)

problem. European J. Oper. Res. 223 (3), 794–806.

Nurre, S.G., Sharkey, T.C., 2014. Integrated network design and scheduling prob-

lems with parallel identical machines: Complexity results and dispatching rules.

Networks 63 (4), 306–326.

Ouyang, M., 2014. Review on modeling and simulation of interdependent critical

infrastructure systems. Reliab. Eng. Syst. Saf. 121, 43–60. http://dx.doi.org/10.

1016/j.ress.2013.06.040.

Ouyang, M., Wang, Z., 2015. Resilience assessment of interdependent infrastructure

systems: With a focus on joint restoration modeling and analysis. Reliab. Eng. Syst.

Saf. 141, 74–82. http://dx.doi.org/10.1016/j.ress.2015.03.011.

Peerenboom, J., Fisher, R., Rinaldi, S., Kelly, T., 2002. Studying the chain reaction.

Electr. Perspect. 27 (1), 22–35.

Executive Office of the President, CouncilofEconomicAdvisers., 2013. Economic Benefits

of Increasing Electric Grid Resilience to Weather Outages. The Council, Washington,

D.C..

Python, 2021. Python.org. https://www.python.org/.

Rachev, S.T., 1991. Probability Metrics and the Stability of Stochastic Models, Scenario.

Wiley, Chichester New York.

Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W., 2017. The benders decomposition

algorithm: A literature review. European J. Oper. Res. 259 (3), 801–817. http:

//dx.doi.org/10.1016/j.ejor.2016.12.005.

Rinaldi, S.M., 2004. Modeling and simulating critical infrastructures and their interde-

pendencies. In: 37th Annual Hawaii International Conference on System Sciences,

2004. Proceedings of the. IEEE, pp. 5–8. http://dx.doi.org/10.1109/hicss.2004.

1265180.

Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K., 2001. Identifying, understanding, and

analyzing critical infrastructure interdependencies. IEEE Control Syst. 21 (6),

11–25. http://dx.doi.org/10.1109/37.969131.

Rockafellar, R.T., Uryasev, S., 2000. Optimization of conditional value-at-risk. J. Risk

2 (3), 21–41.

Saidi, S., Kattan, L., Jayasinghe, P., Hettiaratchi, P., Taron, J., 2018. Integrated

infrastructure systems–A review. Sustainable Cities Soc. 36, 1–11. http://dx.doi.

org/10.1016/j.scs.2017.09.022.

Sharkey, T.C., Cavdaroglu, B., Nguyen, H., Holman, J., Mitchell, J.E., Wallace, W.A.,

2015. Interdependent network restoration: On the value of information-sharing.

European J. Oper. Res. 244 (1), 309–321.

Sharma, N., Tabandeh, A., Gardoni, P., 2017. Resilience analysis: A mathemati-

cal formulation to model resilience of engineering systems. Sustain. Resilient

Infrastructure 3 (2), 49–67. http://dx.doi.org/10.1080/23789689.2017.1345257.

Tootaghaj, D.Z., Bartolini, N., Khamfroush, H., Porta, T.L., 2017. Controlling cascading

failures in interdependent networks under incomplete knowledge. In: 2017 IEEE

36th Symposium on Reliable Distributed Systems (SRDS). IEEE, Hong Kong, http:

//dx.doi.org/10.1109/srds.2017.14.

Unsihuay, C., Lima, J.W.M., de Souza, A.Z., 2007. Modeling the integrated natural

gas and electricity optimal power flow. In: 2007 IEEE Power Engineering Society

General Meeting. IEEE, Tampa, FL, pp. 24–28. http://dx.doi.org/10.1109/pes.2007.

386124.

Vugrin, E.D., Turnquist, M.A., Brown, N.J., 2014. Optimal recovery sequencing for

enhanced resilience and service restoration in transportation networks. Int. J. Crit.

Infrastruct. 10 (3/4), 218–246.

Wallace, W., Mendonca, D., Lee, E., Mitchell, J., Wallace, J., Monday, J., 2003.

Managing disruptions to critical interdependent infrastructures in the context of

the 2001 world trade center attack. In beyond september 11th: An account of.

Post-Disaster Res., Special Publ. 39, 165–198.

White House, 2013. Presidential Policy Directive/PPD-21 : Critical Infrastructure

Security and Resilience. Office of the Press Secretary: Washington, DC.. Office of

the Press Secretary, Washington, DC..

Wolfram, C., 2021. Measuring the economic costs of the PG&E outages. Available at:

https://energyathaas.wordpress.com/2019/10/14/measuring-the-economic-costs-

of-the-pge-outages/.

Wyss, G.D., Jorgensen, K.H., 1998. A user ’ s guide to LHS : Sandia’s latin hypercube

sampling software acknowledgments. Distribution (February), 88.

Zhang, C., Kong, J.-j., Simonovic, S.P., 2018. Restoration resource allocation model

for enhancing resilience of interdependent infrastructure systems. Saf. Sci. 102,

169–177. http://dx.doi.org/10.1016/j.ssci.2017.10.014.

Zhang, P., Peeta, S., 2011. A generalized modeling framework to analyze interde-

pendencies among infrastructure systems. Transp. Res. B 45 (3), 553–579. http:

//dx.doi.org/10.1016/j.trb.2010.10.001.

Zhang, Y., Yang, N., Lall, U., 2016. Modeling and simulation of the vulnerability of

interdependent power-water infrastructure networks to cascading failures. J. Syst.

Sci. Syst. Eng. 25 (1), 102–118. http://dx.doi.org/10.1007/s11518-016-5295-3.

Zimmerman, R., 2001. Social implications of infrastructure network interactions. J.

Urban Technol. 8 (3), 97–119. http://dx.doi.org/10.1080/106307301753430764.


