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Critical infrastructure networks (CINs), such as power grids, water distribution systems, and telecommunication
networks, are essential for the functioning of society and the economy. As these infrastructure networks are
not isolated from each other, their functions are not independent and may be vulnerable to disruptive events
(e.g., component failures, terrorist attacks, natural disasters). For decision makers, how to restore the functions
of CINs while accounting for interdependencies and various uncertainties becomes a challenging task. In this
work, we study the post-disruption restoration problem for a system of interdependent CINs under uncertainty.
We propose a two-stage mean-risk stochastic restoration model using mixed-integer linear programming (MILP)
with the goal of minimizing the total cost associated with unsatisfied demands, repair tasks, and flow of
interdependent infrastructure networks. The restoration model considers the availability of limited time and
resources and provides a prioritized list of components to be restored along with assigning and scheduling them
to the available network-specific work crews. Additionally, the model features flexible restoration strategies
including multicrew assignment for a single component and a multimodal repair setting along with the
consideration of full and partial functioning and dependencies between the multi-network components. The
proposed model is illustrated using the power and water networks in Shelby County, Tennessee, United States,
under two hypothetical earthquake scenarios.

1. Introduction resilience (Barker et al., 2017; Almoghathawi et al., 2019; Humphreys,

2019).

1.1. Background

Modern societies rely on the proper functioning and sustainabil-
ity of critical infrastructure networks (CINs) such as electric power
systems, water supply systems, transportation, and telecommunica-
tions (Karakoc et al., 2019). Therefore, maintaining secure and re-
silient critical infrastructures (CIs) has become one of the most de-
manding challenges for governments around the globe, especially in
the last three decades (White House, 2013; Karagiannis et al., 2017;
Humphreys, 2019). For instance, the United States (U.S.) federal plan-
ning documents suggest the importance of addressing CI resilience
in such a way that reflects its “interconnectedness and interdepen-
dency” (White House, 2013). Planning for disruptions to CINs has
shifted recently from emphasizing prevention and protection to cap-
turing the CIs’ ability to withstand disruptions and quickly recover
their functions (Hosseini et al., 2016; Humphreys, 2019). This ability
to withstand, adapt to, and recover from disruptions is referred to as
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CINs are often vulnerable and subject to natural and/or man-made
disruption events (e.g., earthquakes, hurricanes, and malevolent at-
tacks), which could impact the CINs’ performance unpredictably and re-
sult in severe socioeconomic consequences (Almoghathawi et al., 2019;
Alkhaleel et al., 2022). Indeed, such disruptions become inevitable in
a modern world featuring growing dynamic and hazardous operating
environments (Helbing, 2013). Economically, they have caused huge
economic losses around the globe. In the past 50 years, more than
22,500 disasters occurred globally impacting about 8 million people
and costing approximately (in 2019 dollar-adjusted value) $3.7 tril-
lion (CRED, 2021). Annually, only weather-related outages (excluding
malevolent attacks and non-weather natural hazards) are estimated to
have cost the U.S. economy an inflation-adjusted annual average of
$18 billion up to $70 billion (Executive Office of the President, 2013;
Campbell and Lowry, 2012).

Interdependencies among infrastructure networks have become
more frequent and complex due to the increasing trend of globalization
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and technological developments (Rinaldi et al., 2001; Saidi et al.,
2018; Karakoc et al., 2019). However, although interdependencies
can improve the efficiency of networks functionality, this type of
complex coordination often causes them to become more vulnerable
to disruptions (e.g., random failures, malevolent attacks, and natural
disasters) (Almoghathawi et al., 2021). As a result, a disruption in some
components of one of the infrastructure networks could trigger a mal-
function in the undisrupted components of other dependent networks,
resulting in a series of cascading failures affecting the whole infrastruc-
ture network system (Karakoc et al., 2019; Little, 2002; Wallace et al.,
2003; Buldyrev et al., 2010; Eusgeld et al., 2011; Danziger et al., 2016;
Ouyang, 2014). Although this complex form of interconnectedness of
infrastructures was acknowledged two decades ago (Amin, 2002), the
related research on interdependent networks only started quite recently
as part of resilience engineering applications (Almoghathawi et al.,
2019; Buldyrev et al., 2010, 2011; Cavdaroglu et al., 2011; Danziger
et al., 2016).

The high vulnerability of infrastructure networks against disrup-
tions and the associated risks of such events have become a critical
concern for decision makers, especially with the need to account for
the interdependencies through recovery planning to obtain a realis-
tic analysis of their performance (Holden et al., 2013). Moreover,
scheduling the restoration processes separately for interdependent crit-
ical infrastructure networks (ICINs) without considering their interde-
pendencies could cause misutilization of resources, waste of time and
funds, and even might trigger additional inefficiency of distribution
systems (Baidya and Sun, 2017). However, functional connectivity
among these CIs is not the only dependency that should be taken into
account; spatial, cyber, social, and logical interdependencies are other
interdependency forms that could impact restoration and recovery
planning (Rinaldi et al., 2001; Min et al., 2007; Sharkey et al., 2015).

Recent events such as Hurricane Harvey (Force, 2013) and the
2016 Ecuador earthquake (Meltzer et al., 2019) suggest that not all
undesired events can be prevented. In these events and many others,
multiple networked systems including the transportation, power, and
water networks are impacted (Mendonca et al., 2004; Manuel, 2013;
Meltzer et al., 2019). Hence, improving recovery planning actions after
disruptions is an essential part of CIs resilience. That is, resilience can
be effectively improved by developing optimized plans for promptly
restoring the disrupted service after the occurrence of a disruptive
event. In planning ICINs restoration, prioritizing components is key in
improving the recovery process and system resilience. It is also neces-
sary to consider the practical significant challenges that face recovery
actions such as repair times uncertainty and poor access to damaged
facilities when developing restoration plans (Karagiannis et al., 2017).
To this end, the development of effective restoration strategies and
scheduling approaches for CIs post-disruption restoration is typically
accomplished through optimization approaches. In the literature, there
are numerous studies in the context of post-disruption CI restoration
under a mathematical programming framework (Alkhaleel et al., 2022;
Nurre and Sharkey, 2014; Vugrin et al., 2014; Fang and Sansavini,
2017; Zhang et al., 2018). Of course, the main goal of such studies is to
optimize the scheduling process of restoration tasks in order to accel-
erate the recovery process and improve the overall resilience (Vugrin
et al., 2014).

1.2. CIs interdependencies classification

Infrastructure networks are not isolated from each other, but rather
they rely on one another in different ways for their proper functioning.
Hence, they exhibit interdependency, where a pair of infrastructure
networks are said to be interdependent if there is a bidirectional rela-
tionship between them through which the state of each infrastructure
depends on the state of the other (Rinaldi et al., 2001; Peerenboom
et al., 2002). Interdependencies play a critical role in the resilience of
CIs by not only contributing to the widespread of failure propagation
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(e.g., cascading failures), but also by either facilitating or complicat-
ing the entire recovery process (Guidotti et al., 2016). The recovery
rate of ICIs components depends on several factors which are often
difficult to understand, model, and predict; hence, this uncertainty
is reflected on planning the recovery strategy and utilizing related
resources (Guidotti et al., 2016; Bruneau et al., 2003; Franchin and
Cavalieri, 2015; Sharma et al., 2017). The need to describe the relation-
ships among infrastructure systems, and the corresponding propagation
of system disruptions led to the definition of several classifications of
the nature of infrastructure interdependencies (e.g., Rinaldi et al., 2001;
Lee LL et al., 2007; Wallace et al., 2003; Zimmerman, 2001; Zhang and
Peeta, 2011). The classification of Rinaldi et al. (2001) is described as a
“self-contained classification” that is capable of capturing the different
nature of interdependencies (Ouyang, 2014).

The interdependencies between infrastructure networks were clas-
sified by Rinaldi et al. (2001) into four categories:

« Physical interdependency: an output from an infrastructure network
is an input to another one and vice versa.

* Cyber interdependency: if an infrastructure network depends on
information transmitted through an information infrastructure.

* Geographical interdependency: if two infrastructure networks are
affected by the same local disruptive event.

* Logical interdependency: all other types of interdependencies (e.g.,
the social or legal link between two ClIs).

Fig. 1 shows the interdependencies between electric power networks
and other infrastructure networks. Throughout this article, we focus
on the physical interdependencies among different CINs. Note that the
physical interdependency defined by Rinaldi et al. (2001) is equiv-
alent to the so-called functional or input interdependency in other
classifications (Lee L.I. et al., 2007).

1.3. Related literature

There are several modeling, optimization, and simulation tech-
niques proposed in the literature that consider interdependencies be-
tween infrastructure networks (see Ouyang, 2014 for a detailed re-
view). Such techniques can be classified into six categories (Rinaldi,
2004): (i) aggregate supply and demand tools, where infrastructures
are linked by their demand for commodities (or services) supplied by
other infrastructures (e.g., Enayaty Ahangar et al., 2020), (ii) dynamic
simulations, which examines infrastructures operations, the effects of
disruptions, and the associated consequences (e.g., Zhang et al., 2016
(iii) agent-based models, where physical components of infrastructures
can be modeled as agents allowing the analyses of the operational
characteristics, the physical states of infrastructures, and the decision-
making policies involved with infrastructure operations (e.g., Azucena
et al., 2021). (iv) physics-based models, where physical characteristics
of CIs can be analyzed with standard engineering techniques such
as power flow in electric power grids (e.g., Unsihuay et al., 2007)
(v) population mobility models, where this class of models examines
the movement of entities (e.g., people following their daily routines)
through urban regions (e.g., Casalicchio et al.,, 2009). (vi) Leontief
input-output models, where Leontief’s model of economic flows can
be applied to CIs studies (Haimes and Jiang, 2001). Throughout this
article, the focus will be on the first category with aggregated supply
and demand tools.

Post-disruption restoration and recovery problems considering in-
terdependent critical infrastructures (ICIs) have been addressed in the
literature through different approaches. Almoghathawi et al. (2021)
classifies these approaches into two broad categories: (i) infrastructure-
specific approaches, which consider the physics of different infrastruc-
tures (e.g., DC power flow model) and hence could be applied on these
infrastructure networks only, and (ii) general approaches, which could
be applied to any system of interdependent infrastructure networks.
Both approaches often fall under the area of combining network design
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Fig. 1. Examples of electric power infrastructure dependencies.
Source: Adapted from Rinaldi et al. (2001).

and scheduling problems following the lead of Nurre et al. (2012)
who introduced the integrated network design and scheduling problem
(INDS) for restoring a single infrastructure network with the goal of
maximizing the cumulative maximum flow over time. Other goals
and problem types of post-disruption recovery can be found in the
survey article by Celik (2016) who summarized the work on recover-
ing networks for humanitarian operations and the different problems
(decision-making processes) associated with this field of research.
Regarding the infrastructure-specific approaches for interdependent
networks restoration, Coffrin et al. (2012) proposed a randomized
adaptive decomposition approach to solve the problem of restoring
two physically interdependent infrastructure networks, namely power
and gas networks. They integrated two network-specific flow models
(i.e., a linearized DC flow model for the power network and a maximum
flow model for the gas network) using a mixed-integer programming
(MIP) approach with the objective of maximizing the weighted sum of
interdependent demand over the restoration time horizon. However,
their proposed model did not consider different restoration durations
for the disrupted components of both networks. Baidya and Sun (2017)
presented an optimized restoration strategy with the goal of prior-
itizing the restoration activities between two physically interdepen-
dent infrastructure networks — power and communication networks —
considering their physical properties. The proposed approach is for-
mulated using MIP with the objective of activating every node in
both networks with the minimum number of activation/energization
of branches. Tootaghaj et al. (2017) studied the impact of cascading
disruption on the physically interdependent power grid and communi-
cation network by considering only disruptions in power networks. As
a result, they proposed a two-step recovery approach. The first step is
to avoid further cascades, for which they formulated the minimum cost
flow assignment problem using linear programming with the objective
of finding a DC power flow setting that stops the cascading failure at
minimum cost. The second step is to provide a recovery schedule, for
which they formulated the recovery problem using MIP — with the goal
of maximizing the total amount of delivered power over the recovery
horizon - and solved the problem using heuristic approaches.
Regarding the general approaches for interdependent infrastructure
networks restoration, Lee L.I. et al. (2007) proposed an MIP model for
interdependent layer networks accounting for different interdependen-
cies between the infrastructure networks. The objective of the model
is to minimize the flow costs along with the costs of unmet demand.
Moreover, the model focuses only on determining the set of disrupted

components (i.e., edges) of the interdependent infrastructure networks
that need to be recovered to restore the performance of each of the
infrastructure networks to its pre-disruption functionality level. Hence,
the proposed model does not specify a threshold time at which edges
need to be restored nor the assignment of each work crew to restore
which disrupted component. On the other hand, Gong et al. (2009)
focused only on the scheduling problem of a predetermined set of
disrupted components for ICINs with predefined due dates for them.
They provided an MIP multi-objective restoration planning model to
find the optimal restoration schedule for disrupted components. They
proposed a logic-based benders decomposition approach to solve the
model, whose objective is to minimize the weighted sum of cost,
tardiness, and makespan associated with the restoration process. Cav-
daroglu et al. (2011) integrated the two approaches by Lee LI et al.
(2007) and Gong et al. (2009) by providing an MIP model that: (i)
determines the set of disrupted components (i.e., edges) to be restored,
(ii) assigns and schedules them to work crews. The model was solved
using a suggested heuristic solution method. The objective of the
model is to minimize the total cost of flow, unsatisfied demand, and
installation and assignment associated with the full restoration of a set
of infrastructure networks accounting for their interdependencies. In
addition, Holden et al. (2013) proposed an extended network flow ap-
proach to simulate the performance of infrastructure networks at a local
scale (i.e., community scale) considering the physical interdependency
among them. They provided a linear programming optimization model
with the goal of finding the optimal performance of the infrastructure
networks such that the total cost associated with production, storage,
commodity flow, discharge, and shortage (i.e., unsatisfied demand) is
minimized. However, the proposed approach by Holden et al. (2013)
does not explicitly discuss what is the set of disrupted networks com-
ponents, their restoration durations, their restoration priorities, and the
availability of work crews. Ouyang and Wang (2015) compared the
effectiveness of five strategies for joint restoration of interdependent
infrastructures and applied a Genetic Algorithm (GA) to generate recov-
ery sequences. Sharkey et al. (2015) studied the restoration of multiple
ICINs under a centralized decision-making framework and proposed an
MIP model to solve the problem. Additionally, Gonzélez et al. (2016)
proposed an MIP model for optimizing infrastructure systems joint
restoration considering geographical and physical interdependencies
between multiple CI systems. Di Muro et al. (2016) studied the re-
covery problem of the system of ICINs in the presence of cascading
failures to mitigate its breakdown. They considered the restoration of



B.A. Alkhaleel et al.

disrupted network components (i.e., nodes) located at the boundary
of the largest connected component in the functional networks. In
their study, they tried to reconnect the boundary nodes to the largest
connected component considering the probability of recovery that halts
the cascade.

In recent years, Zhang et al. (2018) optimized the allocation of
restoration resources for a set of physically interdependent infras-
tructure networks to enhance their resilience. A genetic algorithm
was developed to allocate limited resources to interdependent infras-
tructure networks and to determine the optimal restoration budget
following a disruptive event. Mooney et al. (2019) proposed a multi-
objective MIP model that integrates a facilities location problem, that
determines where resources should be stationed following a disrup-
tion, and a recovery scheduling problem to optimize the restoration
process of a system of ICIs. Karakoc et al. (2019) proposed a com-
munity resilience-driven multi-objective MIP model to schedule the
restoration process of disrupted components of a system of ICIs with
emphasis on social vulnerability of communities. Almoghathawi et al.
(2019) proposed a multi-objective MIP restoration model for systems
of interdependent infrastructure networks. Their goal was to find the
minimum-cost restoration strategy of a system of interdependent net-
works that achieves a certain level of resilience. Ghorbani-Renani
et al. (2020) proposed a tri-level pre- and post-disruption optimiza-
tion problem integrating protection, interdiction, and restoration of
a system of interdependent networks to improve both vulnerability
and recoverability of the system. Garay-Sianca and Pinkley (2021)
optimized the restoration of ICIs considering the movement of work
crews (machines) through a damaged transportation network being
restored by formulating and solving an MIP model.

It is worth pointing out that most studies on post-disruption restora-
tion and recovery of ICINs are based on deterministic assumptions
such as complete information on restoration resources and duration of
activities (Alkhaleel et al., 2022). However, the restoration of ICINs is
complicated by numerous decisions that need to be made in a highly
uncertain environment (Fang and Sansavini, 2019). Such uncertainty
is linked to several factors including the availability of restoration
resources, the time duration for repairing failed components and the ac-
cessibility to failed components through the underlying transportation
network (Alkhaleel et al., 2022). Moreover, existing optimization ap-
proaches do not account for risk measures related to the uncertainty as-
sociated with the execution of the optimal plan. Just recently, Alkhaleel
et al. (2022) explored integrating risk to resilience-based restoration
models; this work showed that it is essential to consider risk-averse
decision-making, especially in one-shot applications, which are un-
repeatable, such as post-disruption restoration of ICINs. This paper
builds upon the previous work by the authors (Alkhaleel et al., 2022);
however, here, we extend the previous work to ICINs with an un-
derlying transportation network, explore flexible restoration strategies
(i.e., multimode repair and multicrew assignments), and integrate costs
of unsatisfied demand (resilience loss equivalent), repair, and flow into
the model; with such modifications, we address some of the limitations
of the previous work such as: (i) the need to choose between either
a risk-neutral approach, which considers the preference criterion in
terms of the expectation while comparing the random variables to
find the best decisions, or a risk-averse alternative, which incorporates
risk measures into the decision making process, to implement (cannot
be combined), (ii) assuming binary functional status of each compo-
nent (either fully functional or disrupted), (iii) preventing concurrent
restoration of a single component by multiple crews (a single com-
ponent can only be restored by one crew), (iv) lack of an economic
measure for a developed plan (e.g., using only a resilience measure can
cause extra hidden cost in the repair process), (v) unavailability levels
of different repair modes for failed components (failed components
need to be fully restored).
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1.4. Overview and research contribution

In this article, we study the interdependent critical infrastructure
networks restoration problem (ICINRP), which seeks to minimize the
total cost associated with unsatisfied demand (resilience loss), repair
tasks, and network flow by improving the restoration strategy of a
system of interdependent networks following the occurrence of a dis-
ruptive event considering limited time and resources availability. The
goal of this paper is to help decision makers plan for ICIs recovery
following the occurrence of a disruptive event not only by improving
the speed of system recovery, but by also linking risk and its importance
level, assessed by the decision maker, to the restoration plan decisions.
Accordingly, a two-stage stochastic optimization model using mixed-
integer linear programming was proposed to solve the ICINRP under
a mean-risk measure, which combines the risk-neutral and risk-averse
approaches into one model. The primary objective of the proposed
model is to determine (i) the set of failed components to be restored,
(ii) the repair mode for each failed component, (iii) the set of failed
components for each crew to restore individually or concurrently, (iv)
the baseline restoration sequence across scenarios for each crew in
order to minimize the total cost associated with the restoration process
(i.e., disruption, repair, and flow costs).

The main contributions of this paper are four-fold. (1) This is
the first paper that incorporates a mean-risk approach into ICIs post-
disruption restoration models allowing decision makers to choose a
risk-averse optimal plan related to a risk importance factor; (2) it
explores flexible restoration strategies, and partial functioning and
dependencies under uncertainty; (3) it provides an efficient solution ap-
proach for solving mean-risk restoration models compared to standard
solvers; and (4) the proposed model, solution approach, and flexible
restoration strategies are tested using a realistic case study of a system
of ICINs in Shelby County, Tennessee (TN), U.S. under two hypothetical
earthquake scenarios.

The remainder of this paper is organized as follows. Section 2
presents the background and methodology pertinent to the developed
model and summarizes the proposed mathematical formulations. Sec-
tion 3 provides the solution approach used in this paper. Section 4
presents a case study on the system of ICINs in Shelby County, TN,
U.S. to illustrate the use and advantage of the suggested model. Finally,
concluding remarks and future research directions are provided in
Section 5.

2. Methodology and model development
2.1. Risk measure

Before introducing the risk measure approach used in developing
the mean-risk two-stage stochastic model, we first define the general
form of two-stage stochastic models.

Definition 2.1. Given a probability space denoted by (£2, F, P), where
Q is the sample space, F is a c-algebra on 2 and P is a probability
measure on £2; for a finite probability space, where Q2 = {a)], ING) N}
with corresponding probabilities x|, ..., 7y, the general form of the
two-stage stochastic linear programming problem is defined as (Birge
and Louveaux, 2011):

min B(f (x,w)) = min ¢’ x + E(Q(x, &(w))) 1
xeX xeX

where f(x,0) = ¢l x + QO(x, &(w)) is the cost function of the first-stage
problem and:

0 (x&)=min{(¢)"y : L'x+ Wiy = .y 20} @

is the second-stage problem corresponding to the realization of the
random data &(w) for event w;, denoted by & = (g', L', W', h') where x
and y are the vectors of first-stage and second-stage decision variables,
respectively.
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The general two-stage stochastic optimization model is risk-neutral
(i.e., there is no accounting for risk in the objective function). The main
goal of such models is to show the effect of incorporating uncertainty
compared to deterministic ones. However, although solutions to risk-
neutral models often perform better than deterministic solutions, both
solutions may be subject to poor performance for certain realizations
in practice. Such realizations are known as worst-case scenarios in
the stochastic optimization literature (Birge and Louveaux, 2011). It is
found that under these high-risk scenarios, risk-neutral solutions often
perform poorly, especially for CI restoration applications involving both
social and economic impacts (Alkhaleel et al., 2022). Given the one-
shot nature of CI restoration and its significant socioeconomic impact,
it is of interest to consider stochastic models that account for both
uncertainty and risk when planning restoration; such models are known
as mean-risk models (Noyan, 2012). Mean-risk models are defined as
in Definition 2.2:

Definition 2.2. For a specific risk measure p : Z — R, where p is
a functional and Z is a linear space of F-measurable functions on the
probability space (£2, F,P), a mean-risk function is defined as (Noyan,
2012):

min{E(f (x, ) + Ep(f (x, )} 3

where ¢ is a non-negative trade-off coefficient representing the ex-
change rate of mean cost for risk.

The change rate of risk ¢, hereafter referred to as the risk coeffi-
cient, is specified by the decision maker according to the assessment
of the associated risk. Toward stating a mean-risk restoration opti-
mization model in Section 2.2, we now summarize the Conditional
Value at Risk (CVaR) as the risk measure (Rockafellar and Uryasev,
2000; Krokhmal et al., 2002) and recap some results pertinent to the
developed optimization model.

Definition 2.3. Let Z denote a loss random variable (the term “loss”
is used here to indicate that larger values are undesirable) with cumu-
lative distribution function (CDF) F(-). For a given risk level a € (0, 1],
the Value at Risk (VaR) of Z is defined as:

VaR,(Z) = min{t|F(t) > a} = min{t|P(Z < 1) > a} (€))

Thus, for a continuous random variable Z, VaR [Z] is the quantile
of Z that exceeds the loss with probability a. The CVaR for Z with
risk level @ € [0, 1] is the expected loss given that the loss is at least
VaR,(Z), i.e.:

CVaR,(Z) =E (Z|Z > VaR,(2)) (5)

It is known that CVaR can also be expressed as the optimal solution to
the optimization problem:

e 1
CVaR,[Z] = min {n + B2 =my } @]

where (a), := max(a,0) (Rockafellar and Uryasev, 2000). Combining
Egs. (3) and (5), the mean-risk model with a CVaR risk measure can be
formulated as:

min {E(f(x,)) + £ CVaR,,(f (x,w)) } @
Using the result from Eq. (6), Eq. (7) can be rewritten as:

. 1
ain B o+ (n+ T E[ o) -n,]) | ®)

2.2. Mean-risk two-stage stochastic program formulation

This section formulates a mean-risk two-stage stochastic program
for the ICINRP in which the first-stage schedules the restoration of
failed components for each network using multiple network-specific
repair crews, chooses the repair mode for each failed component
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(e.g., perfect or imperfect), and determines the fixed restoration cost
of failed components; and the second-stage determines the resulting
costs associated with unmet demand and flow for networks under a
given realization of the random variables (i.e., repair time for each
component and travel times between components). Rather than to
optimize explicitly over all random variables, it is common to sample
scenarios from their joint distribution. Let 2 and ¥ denote the set of
scenarios and networks, respectively. For a given scenario w € , let
1tr?, denote the time to repair component (either node or arc) ¢ € c'v.
Note that throughout this article we refer to directed (unidirectional)
edges as arcs and bidirectional ones as edges. For travel times, let ttZ’C,
denote the travel time from component ¢ € C'¥ to component ¢/ € C'¥
in the same network. It will also be convenient to define &(w) as a vector
specifying the realized values of all random variables in scenario w.
An equivalent optimization problem to the mean-risk problem in
Eq. (8) can be proposed for a finite probability space 2 = {a)], . a)N}
with corresponding probabilities r|, ..., 7y as shown in Remark 2.1:

Remark 2.1. For a finite probability space Q = {co,, ,wN} with
|2| = N and corresponding probabilities z,,...,zy, an equivalent
formulation of the mean-risk problem in Eq. (8):

min {]E(f(x,a))) +¢ (n + ﬁlE [(f(x, ) = n,] ) }

x€X,neR
is the following optimization problem:
12|

12|
. 1
min A+’ x+ z;:m(qm)T yw+§<n+ m;”‘”v‘”) 9

X.y,
xEX,y.ne Py}

s.t.

W,y¥,=h,—L,x, o=1,...,]2|, (10)
x € X, (1D
Yo 20, o=1,...,|Q| (12)
Vo 2 (4,) Yo—1. @=1,..,10| (13)
neRv,>0, w=1,...,|Q| a4

The proof of Remark 2.1 can be found in Noyan (2012). This result
will be used to formulate the ICINs mean-risk two-stage stochastic
programming problem following the notation.

2.2.1. Assumptions
There are several assumptions and considerations for the proposed
mean-risk optimization model to solve the ICINRP:

Each supply node, demand node, and arc in each infrastructure
network has a known supply capacity, demand, and flow capacity,
respectively.

Each disrupted component in each infrastructure network can be
restored under different possible repair modes (e.g., perfect and
imperfect), where each repair mode is related proportionally to
the restored capacity of the failed component and the restoration
time.

Imperfect node repair proportionally adjusts a restored node’s
ability to generate supply or consume demand but assumes nodes
are uncapacitated for incoming and outgoing flow (transshipment
nodes are only restored in perfect repair mode).

Each disrupted component in each network can be restored with
a different restoration time under each scenario.

The flow costs through each arc, unmet demand costs, and
restoration costs for disrupted components in each infrastructure
network are known and fixed.

Repair times are measured in man-hour units allowing for shorter
repair times with a higher number of crews allocated.

The number of available network-specific work crews for each
infrastructure network is known.
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2.2.2. Notation

A summary of notation follows. In addition to the notation already

defined, the summary defines (i) first-stage binary variables xZ’c, .

o, in order to encode a restoration plan and choose repair modes for

and

different components (i.e., some disrupted critical components need
to be fully repaired to restore the performance of the system while
only imperfect repair is needed for other components), (ii) second-stage

binary variables x” (¢) and s',(¢) in order to resolve the status of

ckyw
each disrupted component and each crew restoration rate for each time

period and realized scenario, (iii) second-stage continuous variables

v v
pckym and Ickym

of each component to crews and check the completion of these tasks

under each realized scenario, and (iv) flow variables f,.‘;fm

facilitate determining the maximum weighted flow for each time period

(r) to mange the assigned restoration task proportion
(1) in order to

and realized scenario. The feasible region of the optimization problem
is denoted by X, and the set of decision variables is represented as

{x,0, f,u,s,K,st,p,1,n,0}.

Parameters & Sets

L4 Set of infrastructure networks

Y Set of interdependent nodes i and i’ between
networks y and ' (v # y') where node i € V¥
requires node i’ € V¥’ to be operational

(A GRTS))

Directed graph consisting of nodes V¥ and arcs
AY for each network y € ¥

Set of {supply, transshipment, demand} nodes for
each network y € ¥

GY(VY,AY)

wyvyvey

T The number of time periods in restoration
/ planning /

AV Set of failed arcs before restoration (A ¥ C AY)
for each network y € ¥

Vv'v Set of failed nodes before restoration (V'¥ c V'¥)
for each network v € ¥

cv Set of all components (C¥ = A¥ U V") in network
yvey

c'v Set of all failed components (v =Avuv'v)in
network y € ¥

KY Set of repair crews for each network y € ¥

Yv Set of repair modes for each network y € ¥

Pf” Supply of node i € V' per time period for each
network y € ¥

PV Demand of node i € V¥ per time period for each
network y € ¥

PI‘;’ Flow capacity of arc (i, j) € A per time period
for each network y € ¥

)(;" Capacity proportion associated with each repair
mode y € YV

ttZ’c,w Travel time between component ¢ € C'¥ and

! . .
¢/ € C'V¥ for each network y in scenario o

tr? Time to repair component ¢ € C'¥ for each
network y under each scenario w

¢/ Fixed restoration cost for component ¢ € C'¥ for
each network y

Y Penalty cost of unmet demand in node j € V¥ for
each network y

c}’ Unitary flow cost through arc (i, j) € A¥ for each
network y

¢ Risk coefficient value representing the risk
weighted importance chosen by the modeler

a Risk level chosen by the modeler
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Decision Variables

fi‘j.’w(t) Flow on arc (i, j) € AY in time ¢t € {1...T} for
each scenario o for each network y
f;’;(r) Total flow reaching demand node j € V¥ in time

t € {1...T} for each scenario w
u:.’;(t) Amount of unmet demand at node i € V¥ in time
t € {1...T} for each scenario w

' Binary variable indicating whether (oZ’y =1)or

Ocy
not (oZ’y = () component ¢ € C'v will be repaired
under mode y € YV

sh (@) Binary variable indicating whether (s, = 1) or
not (s&, = 0) component ¢ € C¥ is functioning at
timer € {0...T}

st? Time at which crew k € K¥ begins repairing

e component ¢ € C'v in scenario o

pz'kyw Continuous variable € [0, 1] indicating the
proportional repair task for each crew k € K¥ in
restoring component ¢ € C'v under repair mode
y € YY¥; 0 for no contribution and 1 for full
restoration by a single crew k € KV

chyw(l) Binary variable that equals 1 if component
c e CV is assigned to crew k € K¥ under repair
mode y € Y¥ and crew k € K¥ restored the
assigned pZ’kyw by time 7 € {0... T'}; 0 otherwise

xZ’C, . Binary variable that equa/lls 1 if crew k € K¥
repairs component ¢ € C ¥ before component
decv \ {c}

z‘é’kym(t) Continuous variable € [0, 1] indicating whether

the proportional restoration task assigned to each

crew k € K¥ for component ¢ € C'V under repair

mode y € YV is accomplished by time 7 € {1...T}
n Auxiliary variable representing the VaR,
Continuous variable representing the second-stage
costs in scenario w

The two-stage mean-risk stochastic optimization model for minimiz-
ing the expected total cost of the ICINRP follows:

min 1+ Vo ¥
(X,O,f,u,S,K,Slf,p,l,n,U)EX( é’)< 2 z r ocy){y >

weY yeyv
12|
+ Z T, Z Z ( Z c}'fi‘jw(t) + Z czluj'w(t)>
w=1 weY 1e(l...T} NijeAV jev¥
1 12|
+ C<'7+ l—a Z”mva)> 1s)
w=1
s.t.
> o= Y fhm<PY,
ijEAV JjieAY
vieV! vie(l..T},VoeQVye¥ (16)
Z fil;/w(t) - Z f/l'IL{w(I) =0, Vie V*W’
ijEAV JieAY
Vie{l... T}, Vo e QVy eV a7
Z fil;'/m(t) - Z fjl'lt{m(t) - u:'l:u(t) = _Piw >
ijeAv Ji€AV
VieVY, Vie{l..T}, Vo€ QVy e¥ (18)
0<u! <PV, VieV¥ Vie(l..T}, Vo€ Q,Vy €V 19

0< 1, <sf, (OPY,

ijo ijo
Vije AY, Vie {1...T}, Vo € Q,Vy € ¥ (20)

0<f¥ (1) < s;’;(z)P;j.’, Vij € AV Vie VY,

ijo

Vie{l..T},Vo € QVy €V 2n
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0<rh,@0 <5t P,

Jjo

Vije AY.VjeV¥Y Vie{l..T},Vo € Q. Vy €V (22)
o< < Y ol xVPY
yEYV
Vije AV, Vie {1...T},Vo € QVy €¥ (23)

PR HHOEEDINHORID W PR AR

ijeAv jieAV yeyv
VievynV'V vie(l..T),Yo € QVy e¥ @24
X o fho= Y ==Y oV PV,

ijEAV Ji€AY YEYV

VievynV'V vie{l..T} Vo€ QVy ey (25)
¥ (0)=0,YeeCV, Yo e QVy e¥ (26)
s¥ (0)=1,Ye € CY\C'¥, Yo € Q,Vy € ¥ @7)
K@ =0, Vee C'V Yk e K¥ Yy e YV, Vo € Q,Vy € ¥ (28)
Y o <L¥ceCV.vyew (29)
yeEYV
o‘;’yt > st“/ +pckyw)("’ttr';’w -M( - chyw(t))
VeeCV Vie(l..T),Vke KY,
VyeYV Vy e ¥ (30)
> Pl = 00 Ve € CV.¥yeY¥ Voe QVyel (31)
keKv

st ) sV (t+1),VeeC”, Vie{0..T-1},VoeQVye¥ (32)

Ko® SKY (+ 1), Vee cv.¥ef{0..T -1},
VkeK"’,Ver"’, Vo € Q,Vy €V (33)
sth, D Pttt 1, <t MY,
yeyv
Ve, ¢ ecVv : ¢ £c,
Vk e KY, Vo € Q,Vy € ¥ (34)

v v 'I/ 4 74 _
st 4 Z Pl Y 1Y < st ML= ),

cka o

Ve, EC"’ c#Cd,

Vk € KY.Vo € QVy € ¥ (35)
st = (1= Y o¥)T.Ve € CV,Vk € K¥, Yo € Q,Vy € ¥ (36)
yeyv
L Y Y ONeeCY, Vie(l..T), Vo€ QVy e¥
kekv yeyv
37)
v
lckyw(t) = chyw(t)’

VceC"’,Vte{1...T},VkeK"’,Ver"’,VweQ,Vq/elP (38)

74 4 "y
lckyw(t) < pckyw,‘v’c ecCcV,

Vie{l..T},Vke KY.VyeY¥ Vo€ QVy €¥ (39)

= p”

ckyw ckyw(t))

T}, Vk € KY Vye YV Vo € Q,Vy € ¥ (40)

lzlkyw -a
veeCV Ve (l..
st = st 0 <0,
V@i, €Y (hw) # (@ ), vte({l...T} (41)
I IRCERD W RO WRAPLE AR

ijEAV JiEAV YEYV
VG, eY Gy # 0y ieV,
Vie(l..T},YVo € Q,Vy €V (42)
v W 74 i
2 0= X 0z Y ol VP,
ijeAV JieAv yeEYV

Vi, i eY (w) £y VieVY,
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Vie{l..T},Vo € QVy ¥ (43)
w23 3 (T emer 3 i) @
weY te{l...T} \ijeAV jevy

cc,ke{Ol} VceC"’Vc eC"’\{c} Vk € K¥Y Yy eV (45)
o"’ e{Ol}VceC"’,Ver"’,Vwe‘l’ (46)
C,(yw(l) € {0,1},

veecCV, Vie{0...T},Vke KY VyeY¥ Vo € Q. Vy €V 47)
st ) €{0,1},VeeC¥, Ve {l..T},Vo € Q. Vy €V (48)
pzlkyw €10,1],Ve € C'V,Vk € K¥ ¥y € YV.YVw € Q,Vy € ¥ (49)
lc"'kyw(t) €[0,1],

VeeCV, Vie (1. T},Yke KY,VyeYY Vo € QVy e ¥ (50)
neR (51)
Uy > 0,Vo € 2 (52)

The goal of model (15)-(52) is to determine (i) the set of failed com-
ponents to be restored, (ii) the repair mode for each failed component,
(iv) the set of failed components for each crew to restore individually or
concurrently, and (v) the baseline restoration sequence across scenarios
for each crew in order to minimize the total cost associated with
unsatisfied demand (loss of resilience): ZjeV_V’ c; ujw(t), restoration:
Yyevv ¢/ oty xy» and flow: ¥y cf /Y () for each network y € V.
Constraints (16)-(18) are flow balance constraints for each network
y. Constraint (19) ensures that the unsatisfied demand u;.‘;(t) for each
demand node j € V¥ does not exceed demand P in every time period.
Constraints (20)-(22) ensure that the flow on each arc (i, j) € AY in
each time period does not exceed its capacity if the arc and both of its
end nodes i, j are functioning (flow is 0 if the arc or one of its nodes
is failed). Constraint (23) ensures that the flow on each arc (i, j) € Av
in each time period does not exceed its capacity associated with the
chosen repair mode y; P“’, where y} is the percentage of capacity
restored for each component under repair mode y € YV¥. Similarly,
Constraints (24)-(25) limit the outgoing flow from each failed supply
node i € V' n V'v and the incoming flow to each failed demand
node i € V¥ n V'V to the capacities of the nodes associated with the
chosen repair modes. Constraints (26) and (27) set the initial state of
components to be 0 for failed components and 1 for other components.
Similarly, Constraint (28) prevents the completion of failed components
restoration by time 0. Constraint (29) prevents assigning more than
one repair mode for each failed component. Constraint (30) ensures
that crew k € K¥ has completed its task of restoring failed component
¢ € C'v under repair mode y € YV the assigned proportion p‘ o by
time r € {1...T} if and only if the restoration start time added to the
task repair time is no more than ¢. Note that the restoration time of a
component as well as its restored capacity depends on the repair mode
y € Y¥; that is, for a repair mode y € YV with percentage ;(g’ = %q,
both capacity and repair time are reduced by %(1 — ¢). Constraint (31)
ensures that restoration assignments for each failed component ¢ € C'¥
to all crews do not exceed the restoration task for that component
under repair mode y € YY. Constraint (32) ensures that components
for each network y in C'¥ remain functioning after being restored,
and components in C¥\C'¥ are functioning for the entire restoration
period. Constraint (33) imposes a similar restriction on the x kyw(t)
variables; that is, if crew k € KY completed the task of repalrmg
component ¢ € c'v by time period 7 € {1...T — 1}, where ch »0) =
s¥ (0) at t = 0 by Constraint (28), then this task remains completed
by time period 7 + 1. Constraints (34)-(35) manage the restoration
scheduling process by ensuring that each crew k € K¥ can work on
repairing at most one component at a time, according to the sched-
ule specified by the xZ’B, k—variables. Relative to Constraints (34)—(35),
Constraint (36) prevents scheduling non-selected failed components for
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repair throughout the restoration total time 7. Defining ttr?;:ax and
tt;’;fj")’; as the maximum repair time parameter of any failed component
in each network under all scenarios and the maximum travel time
parameter between any two failed components in each network under
all scenarios, M = |A/'V|(ttr:.”.a'j‘“x + tt:_"_i',‘;‘?’;) is sufficiently large in Con-
straint (30) and Constraints (34)-(35). Constraints (37)-(40) ensure the
completion of the restoration process for each selected component ¢ €
C'v under repair mode y € Y by checking the functional status of each
failed component at time 7 € {1...T} in Constraint (37) based on the
completion of each crew k € KV its assigned task in restoring the failed
component in Constraints (38)-(40). Specifically, Constraints (38)-(40)
impose that z‘c"kym(t)/ = p‘;’kywxzcyw(t) and Constraint (37) imposes that
component ¢ € CV is only functioning at time 1 € {1...T} if the
cumulative restoration proportion (across all crews) under the selected
repair mode y € Y¥ is 1. Note how Constraint (37) represents the sum
of the products of p:’,’kyw and KZ’kyw(t) decision variables via z:’fkyw(t), and
that Constraints (38)—(40) are introduced to linearize the bilinear terms
of the sum. Constraints (41)-(43) are the interdependence constraints
across networks Y’; such constraints ensure that interdependencies be-
tween networks given by a set of interdependent nodes across networks
Y are respected. In particular, Constraint (41) ensures that a node
i in network y that is dependent on node i’ in network y’, where
w # ', cannot function before the functioning of node i’. Similarly,
Constraints (42)—(43) restrict the capacity of node i in network y that
depends on failed node i’ in network yw’, where v # y’, which is
restored under repair mode y € YV to the proportional capacity y)
associated with the chosen repair mode of node i’. Constraint (44)
sets n = VaR, based on the second-stage costs associated with unmet
demand and flow costs. Constraints (45)—(48) require the xZ’c, o og’y-,
KZ;cyw(t)-’ and s¥, (¢) variables to be binary. Constraints (49)—(47) require
the p¥ -and ¥, (1) variables to be bounded between 0 and 1. Finally,
Constraints (51)-(52) require 5 to be a real number and v, variables to
be positive real numbers.

2.2.3. Model variants

Flexible restoration strategies. Compared to a previous work (Alkhaleel
et al., 2022), the proposed optimization model (15)-(52), referred to as
the standard model hereafter, addresses some limitations (i.e., restricting
the restoration of each component to a single crew and allowing only a
single maximal repair mode) by considering different flexible recovery
strategies including multicrew (MC) and multimode (MM) restoration
options. In the former, multiple work crews are allowed to restore a
single component of the network y € ¥ in time ¢ € {1... T'}. Compared
to a single crew (SC) setting where only one crew is allowed to work
on a single component (i.e., each component is restored by at most
one crew), it is expected that the MC approach would improve the
resilience of the system via minimizing the unsatisfied demand cost,
especially when critical components are disrupted. Indeed, changing
between an MC setting and an SC setting in the standard model is
fairly an easy task. We only need to change the nature of the p'c"kyw
decision variables from a continuous space € [0, 1] for the MC setting
to a binary space € {0, 1} for the SC setting. In the latter strategy, each
failed component is restored to a certain level of capacity associated
with a repair mode (i.e., for a repair mode with percentage %g, both
capacity and repair time are reduced by %(1 —¢)). Compared to a single
mode (SM) repair setting, this strategy can help reduce the repair time
of components, especially the ones which do not operate at full capacity
before disruption. In Section 4, we compare these restoration strategies
and show the added benefit of incorporating such flexible strategies in
restoration planning of ICINs under uncertainty.

Partial functioning and interdependency. In addition to the flexible
restoration strategies adapted in the standard model, partial func-
tioning and interdependency (PFI) can be implemented by changing
the nature of the s, (f) decision variables from binary to continuous
variables bounded between 0 and 1. When partial functioning is imple-
mented, components can operate at any capacity in time r € {1...T}
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below either the full capacity (for a perfect repair mode) or the propor-
tional capacity (for an imperfect repair mode). That is, the binary status
assumption of components of the interdependent networks (i.e., either
fully functional or failed) is relaxed. Similarly, partial dependence
between nodes allows a dependent node to be partially functioning
if the node or nodes it depends on are partially functioning as well.
However, if the operational nature of the component prevents it from
being functional at any partial capacity but instead at only a few
possible steps (e.g., a power supply station has four generators and can
only function partially depending on the number of working generators
at 25%, 50%, 75%, and 100%), then the model can accommodate
this change by slight modifications. First, define m{ and m'” (1) as an
integer parameter representing the number of units per component and
an integer decision variable representing the number of operational
units per component at time r € {1...T} under scenario w € £,
respectively. Then, by adding a set of constraints of the form:

m? st (1) 2 m'}, (1) (53)

for each component composed of several units and replacing associated
)

s¥ () decision variables in Constraints (20)—(22) with “5/ , we allow

stepwise partial functioning linked to the number of opercational units.
For a system of ICINs that features PFI, it is expected for the system
to be more resilient than a counterpart the does not feature PFI due
to the reduction in time between the failed state and the first time the
disrupted component starts functioning. We compare the PFI setting
against the binary status of components in Section 4 to show how PFI
affects restoration planning of ICINs under uncertainty.

2.3. ICIs resilience metric

The resilience of a single CI is commonly characterized with re-
spect to a measure of performance (e.g., flow, connectivity, amount
of demand satisfied) ¢(7) that evolves over time (Henry and Ramirez-
Marquez, 2012; Hosseini et al., 2016). In this study, the focus is on the
recovery period after disruption, for which a model that optimizes a
restoration plan over a finite planning horizon is proposed. Here, we
consider the resilience metric proposed by Fang et al. (2016) as the
resilience measure of the restoration plans resulting from the standard
model. Fang et al. (2016) defines system performance as the maximum
amount of weighted flow consumed by the demand nodes. Let weights
w;’ € 7" be assigned to each demand node j € V¥ for network w € V.
These weights are incorporated to enable prioritizing certain types of
demand nodes (e.g., it is more important to deliver power to a hospital
than to a residential household). Formally, the performance for network
v € ¥ is defined as:

Q=Y wlfl (54)
jev¥

where f}"(t) is the total flow reaching demand node ; in time period

tef{l..T}.

Based on that, the resilience RY(T) for network v € ¥ is defined
as the cumulative performance restored during the restoration horizon
normalized by dividing by the cumulative performance that would be
restored over the same horizon if the system could be restored to pre-
disruption performance instantaneously. That is, network resilience is
given by Fang et al. (2016):

=T w
R¥(T) = oot e wjf.j ©- ww(o)], T>1 (55)
T(Yery w; P — v (0))
where ¥ cpv w; PV = @¥(t;) denotes the network performance if not
affected by the disruption. For one realization w € €, fj‘.‘; denotes the
flow into demand node j € V¥ in network y under scenario w € ;
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hence, we can define the resilience RY (T, é&(w)) of network yw under

scenario w € Q as:

T e w! 40— 0¥ 0]
T(X ey w} P — ¥ (0)

Hence, ICIs system resilience is defined by combining each network
resilience in a total resilience term R(T, é(w)) as follows:

RY(T, &(w)) =

~
\%

(56)

R(T,E&@) = Y, v"RY(T, &) (57)

yey

where y¥ is the weight of importance for each network y such that
Zwelp =1L

3. Solution approach
3.1. Scenario generation and reduction

To ensure a representative set of scenarios for the developed op-
timization model, a maxi-min Latin hypercube sampling (LHS) tech-
nique (Wyss and Jorgensen, 1998) is adapted to generate a large
set of scenarios . Using LHS ensures a fair amount of coverage of
each random variable’s range, and it has been shown to be advan-
tageous when incorporated within a sample average approximation
approach (Alkhaleel et al., 2022; Kleywegt et al., 2002; Chen et al.,
2014). However, stochastic optimization models tend to be intractable
when the number of generated scenarios is large (Morales et al., 2009).
One method often used to overcome this obstacle is to reduce the
number of scenarios such that the resulting problem’s optimal solution
remains close to the solution of the original optimization problem (Fang
and Sansavini, 2019; Heitsch and Romisch, 2003; HorejSové et al.,
2020). To apply a reduction of scenarios, it is common to select
scenarios based upon a probability distance between the original and
reduced set of scenarios (Dupacova et al., 2003). The most common
probability distance used in stochastic optimization is the Kantorovich
distance, Dg(+), defined between two probability distributions Q and Q'
on 2 by the following problem (Rachev, 1991; Dupacova et al., 2003):

x (0.0) = inf {foxa ¢ (@.0") 0 (dw,do’) : [,0(-.do') =0

Jobdo,)=0'}

Problem (58) is known as the Monge-Kantorovich mass transportation
problem (Rachev, 1991), where ¢ (a), 04 ) is a nonnegative, continuous,
and symmetric function, often referred to as cost function. The infimum
is taken over all joint probability distributions defined on Q x Q
represented by 0 (», ') in (58). Note that Dy(-) can only be properly
called Kantorovich distance if function c¢(-) is given by a norm. When
O and Q' are finite distributions corresponding to the initial set of
scenarios £ and the reduced set of scenarios £, C £, the Kantorovich
distance can be determined (see Dupacova et al., 2003 for details) by:

Dy (0.0') = Z z, mlgc(coa)) (59)

we\ Q2

(58)

where r,, represents the probability of scenario w in £ (Dupacova et al.,
2003). Expression (59) can be used to derive several heuristics for gen-
erating reduced scenario sets that are close to an original set (Morales
et al., 2009; Dupacova et al., 2003). One well-known algorithm is the
fast forward selection algorithm (Heitsch and Romisch, 2003). This
algorithm is an iterative greedy process that starts with an empty
set; and in each step of the algorithm, a scenario that minimizes the
Kantorovich distance between the reduced and original sets is selected
from the set of non-selected scenarios (2\£2;), where € represents the
set of selected scenarios. Then, this scenario is included in the reduced
set 2. The algorithm terminates either when a pre-specified number
of scenarios is found or by reaching a pre-defined Kantorovich distance
threshold (Morales et al., 2009).
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In the fast forward selection algorithm, as described by Heitsch
and Romisch (2003), the distance between two scenarios w and o' is
expressed by the function ¢ (w, ') representing the difference between
pairs of random vectors. The function ¢ (a), m’) can be defined based
upon probability metrics (Dupacovéa et al., 2003), optimal objective
function values where first-stage decision variables are fixed (Morales
et al.,, 2009), or the wait-and-see objective value for each scenario,
which has been shown to practically outperform the other two methods
in restoration modeling (Alkhaleel et al., 2022) and other applica-
tions (Bruninx, 2014). Here, we use the objective function value z/V'$
of the wait-and-see solution (WS) for each scenario w € Q (i.e., the
objective function resulting from solving model (15)-(52) when it is
populated with w as its only scenario) to define c(-,-) as follows:

c(w,0') = |ZZ/S - z:)‘fs| (60)
The resulting fast forward selection algorithm can be found in Alkhaleel
et al. (2022).

3.2. Decomposition algorithm

Decomposition algorithms are often used for solving continuous
and mixed-integer large-scale two-stage and multi-stage optimization
problems (Escudero et al., 2017; Rahmaniani et al., 2017). One of those
types of algorithms is the well-known Benders decomposition (Benders,
1962), which is commonly used in the stochastic optimization literature
to solve the scenario-based resulting mixed-integer linear programs
(MILPs). Benders decomposition is a variable partitioning technique
in which a restricted master problem is solved considering only the
complicating variables of the problem. Such variables are temporarily
fixed, and the resulting individual or multiple subproblems are solved
to identify cuts to be added to the restricted master problem. In this
context, the mean-risk model separates into one linear program per
scenario w—forming the subproblem (SP)—in the reduced scenario set
Q, after fixing the binary o - and s, (t)-variables.

Formally, for each scenario w € Q,, let z,, denote a fixed assignment
of values to all o- and s-variables corresponding to the index . The
resulting SP for scenario @ € £, is the linear program:

SPz,): min Y Y (Z Sfl, 0+ Y clu m(z)) (61)
weY te(1...T} \ijeAV jev¥
s.t. (16)-(25) and (42)-(43) for scenario w (62)

Because SP(z,) is a linear program in which z, appears only in the
constraints, the dual of SP(z,) can be formulated as a linear program
of the form:

DSP(z,) : max (b, — B,Z,)d, (63)
st.d, €D (64)

where b, is the right-hand side vector of (62), B,, is the left-hand side
coefficient matrix of (62), d,, is the dual variable vector corresponding
to constraint (62), and D represents the dual feasible region. Let D,
and D, respectively denote the extreme points and extreme rays of
D, and let D" € D, and D" C D, respectively denote a subset of
the extreme points and extreme rays produced prior to iteration n of
Benders decomposition. Using the optimal solutions of DSP(z! ) from
previous iterations {0...n — 1}, the restricted master problem (RMP)
for iteration n can be formulated as:

®

min (1+¢)(Z > ol xt >+,11+¢/12 (65)
weY yeYv
12| .
s.t. Alzznw o= Byz,)d,, i=0..n—1 (66)
w=
|rz|
Az>r] +—Zn’ Uw,l— .n—1 67)
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(68)
(69)

v > (b, - Byz,)d, —n',No €@, i=0..n—1
0> (b, - B,z,)d, Vo€ Q,, i=0...

constraints (26)-(41) and (45)-(52)

n—1

where i denotes the ith iteration cut generated prior to the current
iteration related to D;”' for Constraints (66)-(67) and D?" for Con-
straint (69). Note that Constraint (68) is equivalent to Constraint (44)
in the standard model. Constraints (66)—(67) and (69) are respectively
known as optimality cuts and feasibility cuts.

In the proposed Benders algorithm (Algorithm 1), the first step is
to set the upper bound, lower bound, and iteration counter at oo, 0
and 0, respectively. In iteration n, RMP is solved first to obtain an
optimal solution z". Letting z denote the partial solution associated
with the o- and s-variables corresponding to the index w, DSP(zZ)) is
solved (note that since the linear program in (61)-(62) and so its dual
(63)-(64) are scenario indexed, they can be solved in parallel providing
multicuts), yielding either an extreme point Ew € D, (if the model
is solved to optimality) or an extreme ray d, € D, (>if the model is
concluded to be unbounded). In the former case, d,, is added to DY
(e, DY ol DYy {d,} and D" D), resultlng in a new
optimality cut; otherwise, Em is added to D" (i.e., DZ””“ - Df;”
and D"« DYy {d,}), yielding a new feasibility cut. The RMP
objective provides a lower bound to the optimal solution of the original
problem (15)-(52); furthermore, the dual subproblem DSP (Em) always
has an optimal solution due to the feasibility and boundedness of the
SP(Z, ), which can be easily proven by showing that the restricting the
flow under each scenario to 0 provides a feasible solution and that the
flow is bounded by the capacities of the demand nodes (see Alkhaleel
et al.,, 2022 for details). This remark shows that feasibility cuts are
not needed in the decomposition procedure; therefore, only optimality
cuts are generated and added to the RMP in each iteration (as shown
in Algorithm 1) and the convergence of the algorithm is accelerated.
The optimality gap for this algorithm can be estimated using the upper
and lower bounds found at each step. That is, the optlmahty gap is
UB- LB /4+/1*—(/4+/1) =2

calculated as Gap(%) =
UB L i+ A

4. Case study

In this section, we test the proposed mean-risk optimization model
and solution algorithm, and explore the introduced flexible restoration
strategies and PFI using a realistic, well-known case in the literature on
the system of ICINs in Shelby County, TN, U.S. This county, containing
the city of Memphis, is continually under earthquake hazard due to its
proximity to the New Madrid Seismic Zone (NMSZ) (Gonzalez et al.,
2016; Almoghathawi et al., 2021). Here, we consider two cases similar
to the hypothetical earthquake scenarios with magnitudes M,, € {6,7}
presented by Gonzélez et al. (2016).

4.1. System description

The system of interdependent networks considered in this study
consists of two ICINs located in Shelby County, TN: power and water
as depicted in Fig. 2 (Gonzalez et al., 2016). The system of networks
contains 256 network components divided into 109 nodes and 147
edges. The power network is composed of 60 nodes and 76 edges,
and the water network is composed of 49 nodes and 71 edges. For
the water system, storage tanks and large pumps are modeled as
generation (supply) nodes and pipe intersections are modeled as water
distribution (demand) nodes (Kim et al., 2007). Moreover, gate stations
are modeled as power generation (supply) nodes and substations are
modeled as power distribution (demand) nodes for the power network.
The actual system, managed by the Memphis Light, Gas, and Water
(MLGW), is a heterogeneous mix of unidirectional arcs and bidirec-
tional edges (Kim et al., 2007). However, it can be modeled either as
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Algorithm 1: Benders decomposition algorithm

Step 0: UB « oo, LB « 0, iteration counter n =0
Step 1: Solve the RMP (65)—(69) to obtain its optimal solution

(2,21,12) and let g be the optimal first-stage cost and

A=7,+CAy, LB < max{LB, i + 1}

For each w € Q;:

Solve the DSP(z,) to obtain its optimal solution E:} and
—_ —n

w B wzw) dw

Step 2:

objective value (b
End For
Find the a-quantile # across all DSP(z,) and associated
CVaR, function, denoted as 4,:
’12='I+_(Z|Q| (bw_BwEw)d;;_m+)
Let (7",0!") = (7, [(b, - B,Z,) d,, —7l,)
Find the mean-risk function value, denoted as A*, of the
current recourse cost solution:
= Y (b, — BZ,) )+ ¢
UB < min{UB, i + A*}
IfUB-LB<e¢:
Stop and report solution
Else:
(a) Add optimality cuts of the form:
}‘l 2 Zmeﬂ (b B »Z )dn
A 2"+ = ¥l 0 to the RMP
(b) Add a total number of |Q | Benders optimality cuts
of the form:
0" > (b, — Byz,) d, —n",Yo € 2, to the RMP

Step 3:

Step 4:
Step 5:

Step 6: > ¢ is a predefined tolerance

(c) n< n+1and go to Step 1
End If

a system of directed networks or undirected networks using network
flow approaches (Ahuja et al.,, 1993). In this study, we model the
utility networks as directed networks where directed arcs are modeled
to send flow in one direction and bidirectional edges are modeled as
two directed arcs. Note that the flow in power networks is governed by
physics-based power flow constraints that can be added to the model
with slight modifications (Alkhaleel et al., 2022). However, since the
relevant information on power reactance values here is not available,
such constraints have been omitted in this work (Almoghathawi et al.,
2021; Morshedlou et al., 2018). Additionally, the functional depen-
dency considered in this study is unidirectional (i.e., only the water
network depends on the power network) where each water generation
node is dependent on at least one power distribution node. Flow units
per hour are in MWh for the power network and million gallons hourly
(MGh)x10? or 10kGh for the water network.

4.2. Uncertainty representation

The proposed model assumes that the time to repair each compo-
nent and the travel time between failed components are uncertain,
but the remaining parameters are deterministic. The remainder of
this section summarizes the assumed probability distributions for the
uncertain parameters.

Let C’ C C denote the set of disrupted components, and #¢r, denote
the time to repair of component ¢ € C'¥. We assume 1r, has a
Weibull distribution — commonly used to model activity times (Ab-
delkader, 2004) — with scale parameter v, and shape parameter f.. The
probability density function of rtr, is given by:

1 fe
&(L)ﬂ e_(é) ,t>0
V

c Ve

h(t, B, v.) = (70)

As for travel times, for ¢ € C'¥ and ¢’ € C'¥, let tt‘c”c, denote the
travel time between components ¢ and ¢’ in network y. We derive a
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Fig. 2. Graphical representations of the (a) power, (b) water, and (c) combined water
and power networks in Shelby County, TN.
Source: Adapted from Gonzdlez et al. (2016).

deterministic estimate of the travel time from ¢ to ¢’ using a separate
transportation network.

In the transportation network, each edge has an associated length
and speed limit, and its traversal time d, is estimated assuming it will
always be possible to travel at the speed limit. The deterministic esti-
mate of ttZ’c,, hereafter denoted as dtti’fc,, is obtained by determining the
shortest path length between two nodes in the transportation network,
namely those that are the closest to the midpoint of failed arcs and
to failed nodes in the utility networks. To represent the uncertainty
of tt';’c,, we populate a distribution for traversal time of edges in the
transportation network; given d,;, the random traversal time dr, is
distributed according to the probability mass function:

03, 1=d,
Pdr,=0)=1{ 03, t=154d, (71)
04, 1=24,
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and each scenario-indexed tt:’c,w is found by solving the shortest path
problem as explained. This approach follows other disaster relief and
emergency response studies with the assumption that random traversal
times are based on a coefficient multiplication of the transportation
network constant traversal times (Mete and Zabinsky, 2010; de la Torre
et al., 2012; Alkhaleel et al., 2022).

4.3. Parameters and computational information

Among the hypothetical earthquake scenarios in Shelby County,
TN presented by Gonzalez et al. (2016) with different magnitudes,
assuming different failure probabilities of system components with each
hypothetical earthquake scenario, we consider two possible scenarios
with magnitudes M,, € {6,7} and a similar number of disrupted
components chosen randomly. Additionally, we consider four different
risk coefficients (i.e., { € {0,0.5,1,2}) associated with each scenario.
The number of disrupted components for each network, the percentage
of the total number of components for each network, and the asso-
ciated performance drop for each network in the system under each
hypothetical earthquake scenario are summarized in Table 1.

Regarding repair activities, the shape and scale parameters of the
Weibull distributed repair time are assumed to be 2 and 5, respectively,
for all the components. Such assumptions are made following other
studies in the literature in terms of probability distribution chosen
and parameters (Fang and Sansavini, 2019). Hence, the mean-time-
to-repair (MTTR) used in the deterministic model is about 4.43 h. In
addition, the restoration planning horizon T is chosen as 20 h, which
is sufficient to restore the network performance to its original state
under both cases with the chosen number of work crews for each case
(total of 4 for case 1 and 5 for case 2 as illustrated in Table 3). For
possible repair modes for each network, it is assumed that there are
two repair modes for each network (Y¥ = {1,2}): (1) perfect repair
mode (i.e., the component is restored to its full capacity), and (2)
imperfect repair mode (i.e., the component is restored to 50% of its
full capacity). Regarding cost parameters, it is assumed that unitary
flow cost, unitary unsatisfied demand cost, and fixed repair cost per
component are the same for both networks. For unitary flow cost, we
use an estimated flow cost of $30 per flow unit, which is equivalent
to the approximate cost of transmission and distribution of 1 MWh of
electricity (Fares and King, 2017). For the unsatisfied demand cost, re-
ferred to as disruption cost hereafter, the average residential cost of one
MWh of electricity in Shelby County, TN is approximately $97.2; and
for the water network, the cost per 10k gallon is about $30 (Memphis
Light, Gas and Water Division (MLGW), 2021). However, the economic
impact of unsatisfied demand is significantly higher than the cost of
services. That is, estimates of service interruption vary significantly
with estimated numbers ranging from $100 up to $100,000 per demand
unit (Wolfram, 2021). Here, it is estimated to be about $10,000 per
demand unit based on the Interruption Cost Estimate (ICE) tool funded
by the Energy Resilience Division of the U.S. Department of Energy’s
Office of Electricity (OE) for the examined case study area (Laboratory
and Nexant, 2021). Regarding restoration costs, we assume a fixed
repair cost per component. However, repair cost per CI component
can vary significantly from thousand dollars to hundreds of million
dollars (HDR, 2012; Assad et al., 2020). Nonetheless, a fixed repair cost
of $500,000 per component was estimated to keep both the flow and
restoration costs combined lower than the disruption costs to prioritize
resilience improvement as the main objective. Table 2 summarizes the
parameters of cost, risk, and repair for each case.

For the scenario generation process of random variables (i.e., repair
and travel times), 1000 scenarios are generated for each case. After
that, the scenario reduction algorithm was used to reduce the number
of scenarios into a smaller set. The total number of scenarios is reduced
to 10 scenarios. Solutions to the MILPs used in the scenario reduc-
tion procedure and the stochastic optimization models were computed
using CPLEX 12.10 (CPLEX, 2021) and programmed using Python
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Disruption size and performance drop considering the two magnitudes of hypothetical earthquake scenarios.

Case No. of disrupted components Disruption percentage Performance drop
Power Water System Power Water System Power Water System
Case 1 (M, =6) 10 6 16 7.35% 5.00% 6.25% 18.64% 20.00% 19.27%
Case 2 (M, =T7) 19 10 29 13.97% 8.33% 11.33% 22.13% 85.64% 50.87%
Table 2
Parameters of cost, risk, and repair for each case of the hypothetical earthquake scenarios.
Case Cost parameters Risk parameters Repair parameters
Disruption cost Repair cost Flow cost a ¢ yed Ve, Pe
(per demand unit) (per component) (per flow unit)
Case 1 (M, =6) 0.9
’ 10,000 500,000 30 0,0.5,1,2 V=05, V=1 5,2
Case 2 (M, =7) ° $ $ 0.8 i %
Table 3
Problem size of different study instances.
Instance No. of No. of binary No. of No. of No. of Number of Max
continuous variables constraints Scenarios work crews repair modes computational
variables (power, water) (power, water) time (s)
Case 1 (M, =6) 336,971 359,372 503,670 10 2,2 2,2 21,000
Case 2 (M, =T7) 406,511 428,572 608,850 10 2,3 2,2 21,000
Deterministic (Case 1) 33,696 36,182 51,002 1 2,2 2,2 1,800
Deterministic (Case 2) 40,647 43,686 61,043 1 2,3 2,2 3,600

3.7 (Python, 2021) on a 3.2 GHz Intel Core i5 iMac machine with 24 GB
of RAM.

Regarding solution times and optimality gaps, we would like to
emphasize that solving ICIs deterministic restoration problems using
commercial MILP solvers such as CPLEX is hard, especially for large
problem instances involving travel time and vehicle routing considera-
tions (Garay-Sianca and Pinkley, 2021; Moreno et al., 2019; Morshed-
lou et al., 2018). In such deterministic problems, optimality gaps can
go up to 50% or even higher (Morshedlou et al., 2018; Garay-Sianca
and Pinkley, 2021). Hence, the stochastic problem instances considered
here for both cases cannot be solved for optimality within a prescribed
time limit. However, based on our preliminary analysis, a time limit
of 6 h (21600 s) is the approximate time after which the optimality
gap tends to level off with the implementation of Benders algorithm
to solve all instances. Algorithm 1 was implemented using callbacks
with Benders cuts added as lazy constraints. Table 3 summarizes the
dimensions of problem instances.

4.4. Results

The first part of this section summarizes the results related to the
various features of the developed mean-risk model including a com-
parison of the proposed solution approach to standard MILP solvers,
and the second part shows the added benefit of implementing flexible
restoration strategies and PFI in total cost reduction and resilience
improvement.

4.4.1. Mean-risk model

The developed ICINRP using a mean-risk measure is solved using
Algorithm 1. Table 4 compares the proposed Benders decomposition
algorithm with CPLEX showing the added value of the proposed so-
lution algorithm. The solutions found by the decomposition algorithm
outperformed the ones found by CPLEX in all instances. Additionally,
the decomposition algorithm was capable of solving all instances with
a maximum optimality gap of about 24%. In contrast, CPLEX was not
able to find any feasible solution for one of the instances (i.e., M,, =
6 (¢ = 0.5)). The maximum optimality gap of solved instances for CPLEX
was approximately 57%. It is worth pointing out that the lower bounds
found by CPLEX and the decomposition algorithm for the instances
were similar, which are higher (tighter) than the WSs lower bounds
by about 10% for all instances. For the first case (M,, = 6), the
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highest optimality gap found using Benders decomposition algorithm
was 14.637% compared to more than triple that value at 50%.456 for
CPLEX. Furthermore, in the second case (M,, = 7), the highest opti-
mality gap found using Benders decomposition algorithm was 23.319%
compared to 56.88% for the commercial solver. Using the proposed
Benders algorithm, the average optimality gaps for cases 1 and 2 were
about 13% and 20%, respectively. In contrast, the average optimality
gaps using CPLEX solver for cases 1 and 2 were about 32% and 46%,
respectively. These average values are about double the average gaps of
the decomposition algorithm. Overall, these findings favor the proposed
solution approach and show the added benefit of adapting it over
commercial solvers.

Regarding the mean-risk model, the choice of the risk coefficient
¢ in the proposed framework can alter the optimal plan; that is,
increasing the value of ¢ increases the relative importance of the risk
term resulting in more conservative (risk-averse) plans. For instance,
the CVaR values for case 1 showed a significant decrease with the
increase of the risk coefficient value from 0 to 2 as shown in Fig. 3.
This decrease in CVaR values is associated with a gradual increase in
the expected total cost across scenarios for the different risk coefficients
as illustrated in Fig. 3. The same findings are true for case 2 with a
steeper trend in CVaR values as shown in Fig. 4.

In ICINs restoration problems, disruption costs are expected to be
higher than other costs combined, otherwise the optimal solutions can
be found by prioritizing a reduction in the repair and flow costs over
the disruption costs (Almoghathawi et al., 2021). Here, the detailed
costs are presented for both cases in Figs. 3 and 4 showing that
disruption cost constitutes the major portion of the total cost under all
risk coefficients. Note that the total cost term here represents only the
total of disruption cost, repair cost and flow cost and is different than
the objective value term, which includes the total cost and CVaR terms
inflated by the risk importance factor. In addition, trends of objective
values, total and disruption costs, and CVaR values under both cases
across the different risk coefficients are shown in Figs. 5 and 6; this
shows that in mean-risk models, the objective value increases linearly
with the increase of the risk coefficient. Moreover, both the expected
total cost and disrupted cost exhibit similar raising trends as the risk
coefficient changes. This similarity can be explained by knowing that
the disruption cost represents the major portion of the total cost as
explained earlier.
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Comparison of Benders decomposition and CPLEX solver solutions for the different instances with 10 reduced scenarios.

Case CPLEX standard solver Benders decomposition
Computational Gap(%) Objective value Computational Gap(%) Objective value
time (s) time (s)
M, =6 (=0 21648.783 17.279 18.142 21617.794 12.849 17.514
M, =6 (=05) 21600.000 - - 21618.569 14.477 30.599
M,=6 (=1 21605.193 50.456 58.771 21616.394 14.637 42.986
M, =6 (=2 21609.664 29.233 81.635 21661.764 12.791 66.632
M, =7 (=0 21612.699 56.880 90.808 21664.057 23.319 47.302
M, =7 ((=05) 21606.937 38.043 96.661 21615.361 21.666 75.205
M,=T7((=1) 21612.841 41.277 143.474 21614.859 20.328 102.743
M,=7(=2) 21607.326 50.304 271.706 21620.736 17.480 154.189
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Fig. 3. Case 1 (M,, = 6): Detailed expected cost values of demand, repair, flow, and
the overall expected total cost, as well as the CVaR information for different values of
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Fig. 4. Case 2 (M,, = 7): Detailed cost values of demand, repair, flow, and the overall
expected total cost, as well as the CVaR information for different values of ¢.

Tables 5 and 6 summarize the detailed outputs of the model for
both cases — considering different choices of risk coefficient — including
cost values, system and individual network resilience values, objective
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values, and other outputs for both cases. For case 1, the total resilience
(or system resilience) decreases whereas the total disruption cost in-
creases as the risk coefficient increases. The repair cost, however, looks
constant across all risk coefficients indicating that the number of chosen
disrupted components to be restored and their associated repair modes
are almost the same for case 1. For case 2, the repair cost shows a
similar behavior across all the values of {. Additionally, the flow cost
could be described as a constant across the values of ¢ for both cases.
The resilience curves of the power network, water network, and system
under the different risk coefficients can be found in Appendix.

To assess the added value of stochastic models compared to a
deterministic approach, the value of stochastic solution (VSS) is a well-
known measure in the literature, which is designed to indicate whether
the added benefit of modeling randomness using a risk-neutral stochas-
tic optimization approach (Birge and Louveaux, 2011). However, the
VSS cannot be implemented directly on risk-averse problems (Noyan,
2012). Accordingly, we adopt the risk-averse version of the VSS known
as the mean-risk value of stochastic solution (MRVSS) (see Noyan, 2012
for details), which measures the possible gain from solving stochastic
models incorporating a mean-risk function. In particular, this mea-
sure represents the difference between the mean-risk expected value
(MREV) problem (which results from solving the standard model with
fixed first-stage decision variables whose values are obtained by solving
a deterministic version of the standard model that replaces all random
parameters with their expected values) and the mean-risk standard
model solution. Higher values of MRVSS indicate a more added value in
adapting a mean-risk approach over an expected value approach. Note
that the MRVSS is equivalent to VSS when the risk coefficient ¢ = 0.

For case 1 (M,, = 6), it can be seen that the MRVSS values are
positive numbers ranging between 2.285M and 10.295M and increase
with the increase of the risk coefficient ¢; this indicates the significance
of solving mean-risk models over the expected value (deterministic)
approaches. However, the increase of MRVSS with ¢ is not reflected
on the ratio between the MRVSS and the associated objective value,
which does not show a clear trend with approximate values of 13%,
11%, 12%, and 15% for ¢{ = 0, 0.5, 1, and 2, respectively. For ¢ = 0,
the added value of a stochastic solution is $2.285M (i.e., the overall
cost of the deterministic solution is $2.285M higher than the stochastic
solution). For other values of ¢, the MRVSS varies between a {-weighted
value of 3M up to 10M. For case 2 (M,, = 7), the values of MRVSS are
even higher given the larger disruption scenario for this case despite
the higher overall optimality gaps in this case compared to case 1.
In fact, implementing the deterministic approach for this case can
cause a 10%—-20% increase in the expected economic losses compared
to a mean-risk plan with a specific risk level « and risk weighted
importance ¢. Hence, this shows that applying deterministic plans for
larger disruptions involves high risk and could result in more economic
losses. Overall, these results indicate that it is significant to solve mean-
risk models to obtain preferred solutions for a specified set of risk
parameters.
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4.4.2. Flexible restoration strategies and PFI

As illustrated in Section 2, the proposed optimization model for
solving the ICINRP considers flexible restoration strategies that are ex-
pected to enhance the resulting optimal plans. In addition, the proposed
model allows for partial functioning and interdependency, with a slight
modification to the standard model formulation, supporting non-binary
state ICIs restoration. Here, we compare the applied flexible restoration
strategies to restricted ones and study the impact of PFI on restoration
plans.

Regarding the restoration strategies, Tables 7 and 8 summarize
the detailed outputs (i.e., cost values, system and individual network
resilience values, and CVaR values) of the model with risk coefficient
¢ = 1 under flexible (i.e., multicrew and multimode repair settings) and
restricted (i.e., single crew and single mode settings) plans for cases 1
and 2, respectively. In Tables 7 and 8, the first column represents the
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standard model with ¢ = 1, the second column represents the standard
model with ¢ = 1 except that each failed component is restored by at
most one crew (single crew setting), the third column represents the
standard model with { = 1 except that each failed component can only
be fully restored (single repair mode), and the PFI column represents
the standard model with ¢ = 1 except that partial functioning and
interdependencies are allowed. Overall, both the objective value and
CVaR value are lower under flexible restoration strategies for cases 1
and 2. This indicates that flexible restoration planning can significantly
reduce the main costs associated with restoration, namely disruption
and repair costs, as well as the associated risk measure. Comparing the
multicrew setting to the single crew setting, the reduction in the objec-
tive value is about 25% and 36% for cases 1 and 2, respectively. For
multimode repair vs. single mode repair, the reduction in the objective
value is approximately 12% and 20% for cases 1 and 2, respectively.
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Case 1 (M, = 6): Detailed expected costs, MRVSS, expected flow, and expected resilience information considering different risk coefficients.

Risk coefficient parameter

(=0 =05 =1 c=2
Objective value (M) 17.514 30.599 42.986 66.632
CVaR ($M) 25.016 21.904 21.843 21.352
MRVSS (M) 2.285 3.417 4.962 10.295
Total disruption cost ($M) 12.962 13.347 13.846 13.880
Total repair cost ($M) 2.750 3.000 2.750 2.750
Total flow cost ($M) 1.803 1.801 1.798 1.798
Total cost ($M) 17.515 18.148 18.394 18.428
Total resilience 0.816 0.810 0.805 0.804
Power network disruption cost ($M) 6.707 6.729 7.945 7.879
Power network repair cost ($M) 1.750 2.250 2.000 2.000
Power network flow cost ($M) 0.989 0.989 0.983 0.983
Power network resilience 0.821 0.820 0.788 0.789
Power network aggregated received flow (MWh) 19389.300 19387.118 19265.504 19272.070
Water network disruption cost ($M) 6.255 6.618 5.901 6.001
Water network repair cost ($M) 1.000 0.750 0.750 0.750
Water network flow cost ($M) 0.814 0.812 0.815 0.815
Water network resilience 0.812 0.801 0.822 0.819
Water network aggregated received flow (MG) 159.545 159.182 159.899 159.799

Table 6

Case 2 (M, =7): Detailed expected cost values, MRVSS, expected flow, and expected resilience information under different risk coefficients.

Risk coefficient parameter

=0 =05 =1 c=2
Objective value(M) 47.302 75.205 102.743 154.189
CVaR ($M) 52.293 50.606 49.313 46.646
MRVSS (M) 9.678 10.415 16.287 16.772
Total disruption cost ($M) 40.892 41.495 42.277 45.007
Total repair cost ($M) 4.750 4.500 4.750 4.750
Total flow cost ($M) 1.660 1.657 1.653 1.639
Total cost ($M) 47.302 47.652 48.680 51.396
Total resilience 0.757 0.726 0.752 0.725
Power network disruption cost ($M) 16.402 16.474 12.786 14.996
Power network repair cost ($M) 2.500 2.500 2.500 2.500
Power network flow cost ($M) 0.939 0.939 0.958 0.947
Power network resilience 0.686 0.629 0.712 0.662
Power network aggregated received flow (MWh) 18419.820 18412.648 18781.405 18560.355
Water network disruption cost ($M) 24.490 25.022 29.491 30.011
Water network repair cost ($M) 2.250 2.000 2.250 2.250
Water network flow cost ($M) 0.721 0.718 0.695 0.693
Water network resilience 0.828 0.824 0.792 0.789
Water network aggregated received flow (MG) 141.310 140.778 136.309 135.789

Table 7
Case 1 (M, = 6): Detailed cost values, flow, and resilience information under SC, SM, and PFI for { = 1.
Standard Model (¢ = 1) Single Crew Single Repair Mode PFI
Objective value (M) 42.986 57.604 48.968 29.463
CVaR ($M) 21.843 29.642 25.773 14.381
Total disruption cost ($M) 13.846 20.699 15.405 7.753
Total repair cost ($M) 2.750 2.750 3.000 2.750
Total flow cost ($M) 1.798 1.763 1.790 1.829
Total resilience 0.805 0.712 0.781 0.893
Power network disruption cost ($M) 7.945 14.127 7.946 5.506
Power network repair cost ($M) 2.000 2.000 2.000 2.250
Power network flow cost ($M) 0.983 0.951 0.983 0.995
Power network resilience 0.788 0.622 0.788 0.853
Power network aggregated received flow (MWh) 19265.504 18647.284 19265.372 19509.405
Water network disruption cost ($M) 5.901 6.571 7.459 2.247
Water network repair cost ($M) 0.750 0.750 1.000 0.500
Water network flow cost ($M) 0.815 0.812 0.808 0.834
Water network resilience 0.822 0.802 0.775 0.932
Water network aggregated received flow (MG) 159.899 159.229 158.341 163.553
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Table 8
Case 2 (M, =7): Detailed cost values, flow, and resilience information under SC, SM, and PFI for { = 1.
Standard Model (¢ = 1) Single Crew Single Repair Mode PFI
Objective value (M) 102.743 161.303 128.854 83.569
CVaR ($M) 49.313 83.061 61.543 39.845
Total disruption cost ($M) 42.277 67.719 52.712 32.521
Total repair cost ($M) 4.750 4.500 6.500 4.750
Total flow cost ($M) 1.653 1.523 1.600 1.703
Total resilience 0.752 0.613 0.684 0.788
Power network disruption cost ($M) 12.786 19.160 16.831 12.551
Power network repair cost ($M) 2.500 2.250 3.500 2.500
Power network flow cost ($M) 0.958 0.925 0.937 0.959
Power network resilience 0.712 0.568 0.621 0.717
Power network aggregated received flow (MWh) 18781.405 18144.010 18376.940 18804.894
Water network disruption cost ($M) 29.491 48.559 35.881 19.970
Water network repair cost ($M) 2.250 2.250 3.000 2.250
Water network flow cost ($M) 0.695 0.598 0.663 0.744
Water network resilience 0.792 0.658 0.747 0.859
Water network aggregated received flow (MG) 136.309 117.241 129.919 145.830
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Fig. 7. Case 1 (M, = 6): Comparison of the resilience of the overall system and individual networks under SC vs. MC, and SM vs. MM settings.
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Fig. 8. Case 2 (M, =7): Comparison of the resilience of the overall system and individual networks under SC vs. MC, and SM vs. MM settings.
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Fig. A.1. Case 1 (M, = 6): Comparison of system resilience curves under different risk coefficient solution plans for a sample of reduced scenarios.

Note that the gain from adapting flexible restoration strategies is more
significant for the second case with a higher number of disrupted
components. Disruption costs behave similarly to the objective value
for both cases and under both restoration strategies (i.e., multicrew
and multimode repair). In contrast, repair costs are similar between the
multicrew and single crew settings; however, they are higher in the
single repair mode setting, significantly higher for case 2, indicating
that the imperfect repair mode for multiple components is optimal.
Surprisingly, multimode repair did not only reduce the repair costs
by %8 and 27% for cases 1 and 2, respectively, but also reduced the
disruption costs (improved resilience) for both cases by 10% for case 1
and 20% for case 2.
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For a resilience-based benchmarking of the different restoration
strategies, a comparison of the resilience of power network, water
network, and system under flexible and restricted restoration plans for
cases 1 and 2 is shown in Figs. 7 and 8, respectively. From the first
glance, one can see that the resilience of both networks and the system
is higher with multicrew and multimode restoration strategies. For in-
stance, in case 1, the power network resilience under multicrew setting
is significantly higher than under a single crew setting. This indicates
the existence of critical components in the power network whose rapid
restoration can significantly improve the resilience of the network. In
contrast, the effect of multicrew setting on the water network resilience
is minor. Conversely, multimode repair improved only the resilience
of the water network under the same case. For case 2, with a higher



B.A. Alkhaleel et al. Computers and Operations Research 144 (2022) 105812

0.8 - 0.8 -

o 0.6- o 0.6-
o o
=] =]
z 3

.g 0.4- 'g 0.4 -
~ ~

0.2 - 0.2 -

0.0 -

0.8 -

© o 0.6-
o o
=] =]
z 5

g Z04-
~ ~

0.2 -

0.0 -
o ©
o o
=] =]
z E
= :
5] O
~ ~

0 5 10 15 20 0 5 10 15 20
Time (h) Time (h)

Fig. A.2. Case 1 (M,, = 6): Comparison of power network resilience curves under different risk coefficient solution plans for a sample of reduced scenarios.

number of disrupted components, the resilience of both power and cases. That is, resilience is improved by PFI since allowing a disrupted
water networks showed a substantial improvement under multicrew component to partially function — before full restoration — can help
and multimode settings. All these improvements in the resilience of deliver more flow to demand nodes, especially in the first time periods
both individual networks are clearly reflected on the system resilience after disruption. This situation is the opposite of a binary status setting
for both case studies and under both flexible restoration strategies. of components where disrupted components continue to be disrupted

Regarding PFI, Tables 7 and 8 summarize the detailed outputs until fully restored. In addition, the reduction in disruption costs de-
(i.e., cost values, system and individual network resilience values, and creases the risk gradually compared to a non-PFI setting. The results
CVaR values) of the standard model, under risk coefficient ¢ = 1, with from applying PFI can link resilience to reliability and maintainability
and without PFI for both cases. It can be seen that partial functioning engineering through systems with multiple states or state-dependent
and interdependency significantly reduced the disruption costs for both systems. It might be of interest to study the relation between resilience,
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Fig. A.3. Case 1 (M, = 6): Comparison of water network resilience curves under different risk coefficient solution plans for a sample of reduced scenarios.

reliability, and maintainability for a network having state-dependent
critical components and how a tri-level framework can be developed
to improve all three aspects. To sum up, ICINs systems featuring PFI
are expected to be more resilient than non-PFI due to the flexibility of
their post-disruption restoration plans.

5. Conclusion and future work

In this paper, a two-stage stochastic restoration optimization model
using mixed-integer linear programming is proposed to solve the ICINRP
under a mean-risk cost-based objective function. Moreover, the mean-
risk model features flexible restoration planning strategies including
multicrew repair of a single component and multimode repair, and
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also considers partial functioning and interdependencies of compo-
nents across networks. The proposed model: (i) determines the set of
failed components to be restored, (ii) selects the repair mode for each
failed component, (iii) assigns each crew the set of failed components
to be restored individually or concurrently, (iv) and schedules the
baseline restoration sequence across scenarios for each crew such that
the associated costs of disruption, repair, and flow of the system of
ICIs are minimized. Additionally, as post-disruption restoration tasks
occur in a highly dynamic environment, which is subject to a fair
amount of uncertainty, the mean-risk model considers two important
sources of uncertainty associated with restoration panning: (i)repair
task durations, and (ii)travel times of crews between failed components.

The proposed approach was demonstrated using a real-life case
study based on the system of power and water networks in Shelby
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Fig. A.4. Case 2 (M, =7): Comparison of system resilience curves under different risk coefficient solution plans for a sample of reduced scenarios.

County, TN, U.S. under two hypothetical earthquakes. The mean-risk
model was solved using the developed Benders decomposition algo-
rithm, which outperformed the CPLEX standard solver as demonstrated.
Our first finding was the significance of adapting mean-risk stochas-
tic models over deterministic counterparts. This was demonstrated
through the positive values of MRVSS under all cases. It is also found
that the restoration plan can be altered based on the associated risk
weighted importance. In particular, smaller values of the risk weighted
importance factor can result in plans with low expected total costs but
with high costs under worst-case scenarios. In contrast, higher values
of the risk weighted importance factor can result in plans with slightly
higher expected total costs but with less costs associated with worst-
case scenarios. Regarding the flexible restoration strategies and PFI,
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both implementations demonstrated the added value in reducing the
overall costs and mitigating risks.

As for future work, the proposed model could be extended to con-
sider the transportation network as a direct interdependent network.
That is, the current approach assumes that CI networks, other than the
underlying transportation network, are the ones being restored. Hence,
the problem becomes not only focused on the restoration of Cls, but also
on coordinating the process of finding the best routes and schedules for
crews to repair damaged components in the transportation network.
In addition, it is possible to extend the current model to introduce a
facility location problem where work crews are dispatched to disrupted
component locations rather than a direct travel between components.
In such problems, the goal is to find the optimal location of these
facilities from a set of candidate sites considering the fixed cost of
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Fig. A.5. Case 2 (M, =7): Comparison of power network resilience curves under different risk coefficient solution plans for a sample of reduced scenarios.

establishing such facilities as well as other crew-related variable costs.
Moreover, considering economic measures of the resilience of commu-
nities interacting with these ICINs, as well as the associated risks can
be one of the future directions of this work. This future direction can
also be associated with studying other types of interdependencies that
affect both CIs and communities such as geographic interdependency
to mitigate the related socioeconomic risks.
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Appendix

A.1. Resilience of the system and individual infrastructure networks under
different risk coefficient solution plans

See Figs. A.1-A.6.
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