
Avoiding VPN Bottlenecks: Exploring

Network-Level Client Identity Validation

Options

Yu Liu and Craig A. Shue
{yliu25, cshue}@cs.wpi.edu

Worcester Polytechnic Institute, Worcester, MA 10609

Abstract. Virtual private networks (VPNs) allow organizations to sup-
port their remote employees by creating tunnels that ensure confidential-
ity, integrity and authenticity of communicated packets. However, these
same services are often provided by the application, in protocols such
as TLS. As a result, the historical driving force for VPNs may be in
decline. Instead, VPNs are often used to determine whether a communi-
cating host is a legitimate member of the network to simplify filtering and
access control. However, this comes with a cost: VPN implementations
often introduce performance bottlenecks that affect the user experience.

To preserve straightforward filtering without the limitations of VPN de-
ployments, we explore a simple network-level identifier that allows re-
mote users to provide evidence that they have previously been vetted.
This approach uniquely identifies each user, even if they are behind
Carrier-Grade Network Address Translation, which causes widespread
IP address sharing. Such identifiers remove the redundant cryptography,
packet header overheads, and need for dedicated servers to implement
VPNs. This lightweight approach can achieve access control goals with
minimal performance overheads.

Keywords: Virtual private networks · Access control · Software-defined
networking · Residential networks · Carrier-grade NAT

1 Introduction

Virtual private network (VPN) protocols are often used by organizations to allow
remote users to access the organization’s network as if they were on-site. These
protocols have been used for decades [3] and were designed for an Internet that
needed cryptography to protect the confidentiality, integrity, and authenticity
of communication payload. In essence, VPNs allow organizations to treat the
traffic from a remote worker the same as that from a local worker.

In recent years, the deployment of end-to-end cryptography has grown sub-
stantially, with over 90% of web servers supporting the TLS/SSL application-
layer protocol [41]. When remote users access an HTTPS server through a VPN,
the traffic is encrypted and authenticated by TLS between the application-layer

2 Y. Liu et al.

endpoints and is again encrypted and authenticated between the VPN termina-
tion points. Since confidentiality, integrity, and authenticity can be reasonably
assured by either of the protocols, having both is redundant. Further, VPN
deployments often come with performance overheads since 1) VPN servers are
usually an aggregation point for network traffic and their limited resources can
cause network congestion [22,45], 2) redundant protocol headers use more space
in each packet, and 3) VPN licenses, which cost more than $2 million annually
for a large company, can be expensive [47].

The traditional motivations for deploying a VPN [36, 38, 39] are to 1) pro-
vide data with confidentiality and authenticity, 2) manage network activities
at the remote endpoint, and 3) simplify access control. Application-layer secu-
rity achieves the first goal. We address the second goal in Section 2.5, where
we discuss better management through endpoint filtering. We explore the third
goal, access control, throughout this work. Importantly, 67% of organizations are
exploring VPN alternatives for security, maintenance, and fiscal reasons [54].

Organizations often implicitly use a host’s position within a network perime-
ter as a factor in determining whether to trust the host or not. As examples,
the configuration instructions for web servers [37, 40], email servers [12, 33, 34],
and firewalls [9] often describe how administrators can configure the systems to
permit only traffic within an organization’s IP prefix. Organizations may also
use network address translation (NAT) to assign private, unroutable addresses
to hosts and devices so that the infrastructure cannot be reached by outsiders
without traversing NAT devices that could enforce policy [5].

While organizations can employ such address filtering within their networks,
it may be impractical to do so with remote users. Internet Service Providers
(ISPs) often use dynamic addresses for their customers, with lease times that
vary greatly [6]. Residential users often deploy NAT in their home networks
to share addresses, so authorizing a particular user’s IP address would allow
others at the same residence access to the organization’s resources. Even worse,
some ISPs have adopted a competing technology called carrier-grade network
address translation (“carrier-grade NAT” or CGN). CGN is used in 92% of
cellular networks [1]. Some of these carriers plan to use 5G cellular networks
to provide residential network connectivity, with some providers estimating 30
million home networks will be connected in this fashion [11]. In some cases,
hundreds of users share an IP address [2] and in others, a single customer’s
traffic may be simultaneously associated with multiple public IP addresses.

Organizations may use VPNs to mitigate the problems that accompany ad-
dress sharing. The VPN tunneling approach allows an organization to provide
remote access to systems that are highly sensitive or have weaker protections,
such as printers, Supervisory Control and Data Acquisition (SCADA) or In-
ternet of Things (IoT) infrastructure, or other embedded devices. However, a
heavyweight VPNs approach may not be necessary to achieve these goals.

Organizations need a quick and simple way for a network-level identifier
to validate a remote end user. This validation can be a quick, “first-factor”
authenticator that provides evidence that the connecting machine or network is

Avoiding VPN Bottlenecks: Network-Level Client Identity Options 3

likely legitimate. This factor can work with other authentication factors, such as
application-layer credentials, on the server endpoint. It must be cooperatively
used by both the end-user and the organization to avoid abuse by malicious
parties. While identifiers have been used by network providers to identify clients
in the past, such as “super cookie” deployments in cellular networks [13], the
use of the factor in authentication requires it to be cross-application, dynamic,
and under the associated user’s control.

With a “less may be more” perspective, we explore a practical and deployable
approach to allow end-users to create dynamic network-level factors for access
control. Our contributions include:

– Dynamic Identifier Insertion: Our software-defined networking (SDN)
approach leverages endpoint programs and modified residential routers to
insert application-agnostic identifiers into network flows. This approach al-
lows organizations to determine if a user is connecting from a known device
or network location while introducing minimal latency overheads that affect
only the first packet in each network flow.

– Gateway and Endpoint Validation: Using our implementation, built us-
ing the popular iptables tool, organizations can validate clients at either a
gateway or endpoint, providing functionality similar to a VPN without un-
necessary performance overhead. This method can verify each flow in around
90 milliseconds (of which only around 0.8ms is spent at the validator). Un-
like a VPN, it adds no overhead after the handshake. We eliminate the need
for a VPN server and its associated CPU bottleneck, resulting in a 2.5-2.9
times increase in throughput for clients.

2 Background and Related Work

This section discusses background and related work on CGN, software-defined
networking, user identity, and techniques to encode and transmit identifiers.

2.1 Carrier-Grade NAT (CGN) and Address Sharing

As IPv4 addresses availability became scarce, Internet Service Providers (ISPs)
started deploying CGN to share IPv4 addresses among subscribers and to min-
imize disruption during the transition from IPv4 to IPv6. CGN utilizes both
network-level addresses and transport-layer port numbers to map traffic to the
appropriate end-user. The number of public addresses needed for a given number
of end-users can be estimated with formulas. Some guides suggest sharing 30,517
public IP address among 1,000,000 subscribers [2]. In measuring CGN behavior,
Richter et al. [1] observed that some CGNs used the same public IP address
and varying transport layer ports for subsequent TCP sessions from the same
subscriber. In Netalyzr [6], the authors found that more than 60% of the TCP
sessions for a given subscriber used different public IP addresses. These guides
and measurements show that providers use highly dynamic, and widely shared,
public IP addresses for their subscribers.

4 Y. Liu et al.

With their Revelio tool, Mandalari et al. [7] performed Internet measurements
and found around 10% of ISPs deployed CGN. With web server logs and multiple
measurement points, Livadariu et al. [8] estimated that around 4.1k of the 17.4k
ASes they measured deployed CGNs. Richter et al. [1] found that while only
13.3% of non-cellular ASes use CGNs, 92% of cellular networks use them [1]. In
their plans to deploy 5G cellular connectivity, some providers estimate they will
serve 30 million residential networks through 5G [11].

2.2 Software-Defined Networking (SDN)

The software-defined networking approach separates the data plane and con-
trol plane for network traffic, often using a centralized network controller. The
OpenFlow protocol [30] allows a network controller to alter data structures in
switches and routers to enable inspection and arbitrary forwarding of packets.
The Open vSwitch [19] tool can be used to enable the OpenFlow protocol on a
router. In OpenFlow, a controller can intercept packets from a network device
via a PACKET IN message. To authorize a packet, with possible alteration, the
controller replies with a PACKET OUT message. A controller can also command
switches to cache certain rules through FLOW MOD messages, allowing switches to
process subsequent packets without controller involvement. This avoids causing
performance overheads in subsequent packets in a flow.

2.3 Host Identity and Reputation Systems

Address sharing introduces challenges for a wide range of applications relying
on public IP addresses. For example, enterprise-grade firewalls often utilize pub-
lic IP addresses in policies [20]. Efforts to mitigate DNS amplification attacks
use IP addresses in response rate limiting [29]. IP reputation systems, which
are used by major email providers, are often used to determine the threat as-
sociated with incoming email messages [12], such as Microsoft’s SmartScreen
technology in Outlook [33] or Gmail’s delivery rate throttling [34]. For websites,
Cloudflare identifies users with a bad IP reputation and challenges them with
CAPTCHAs [35]. Such tools may mistakenly assume that IP addresses change
infrequently and are unlikely to be shared. This leads to false negatives when
attackers move across IP addresses and false positives when innocent people
happen to use an IP address previously involved in an attack [10].

Komu et al. [31] investigated methods to separate the functionalities of “lo-
cator” and “identifier” from network addresses. The locator can be used to find
a host while a separate long-term identifier is associated with the system. This
separation is important for mobile hosts or for times when addresses change. HIP
is a protocol to maintain persistent identity even with dynamic IP addresses [27].
HIP uses a public key to identify end-hosts and uses IPSec for packet tunnel-
ing. Since HIP requires HIP-aware gateways to forward packets to the correct
destination, the deployment of HIP requires infrastructure changes.

DeCusatis et al. [56] introduce a TCP-based access control mechanism using
first packet authentication. That work uses an ephemeral four-byte value in the
TCP protocol that is used for access control and must be established for each
interaction. That work only evaluates token evaluation. In contrast to our work,

Avoiding VPN Bottlenecks: Network-Level Client Identity Options 5

it does not explore token creation, insertion, storage, or protocols for conveying
these values in a way that allows longer-term, cross-protocol use. Other work
has proposed persistent identifier, but provided only an abbreviated analysis of
performance impacts in limited deployment scenarios [46]. Our work provides
the necessary information and analysis for a practical implementation.

At the application layer, web applications can track user identities with cook-
ies, supported by browsers. Unfortunately, cookies are application-specific and
only work with web traffic. In some cases, network providers create persistent
identifiers, called “super cookies,” to identify systems at the device-level [28].
These super cookies are outside the end-user’s control. They enable tracking
that could violate end-user privacy. These deployments resulted in fines for some
ISPs [13]. Our approach is mindful of these potential privacy concerns. A key
design goal is to allow end-users to have control over persistent identifiers while
supporting multiple applications, which we discuss in Section 3.4.

Organizations often use virtual private network (VPN) protocols, such as
IPSec [3], to authenticate remote users and then leverage the VPN server’s po-
sition inside a local area network (LAN) to provide access to LAN resources. As
aggregation points, VPN servers can become throughput bottlenecks since they
must be involved in the entire network flow and use cryptography to encrypt
and authenticate traffic, even if the application-layer already offers that support
(e.g., in HTTPS or SSH). Application-layer software typically lacks options to
configure IPSec tunnels for specific flows or destinations. Instead, current VPN
software works across all applications on a device-wide basis. Often, all network
traffic from a host in a VPN is forwarded to the VPN server, which increases
overhead and decreases throughput. Hauser et al. [57] propose an SDN extension
to IPSec for programmable data planes. In practice, VPNs can increase orga-
nization costs [47], reduce performance [22], create single points of failure [21],
and add complexity [44]. In our approach, we avoid these limitations.

2.4 Mechanisms to Encode Application-Agnostic Identifiers

Protocols such as TCP and IP support options for communicating information,
such as identifiers and authenticators. Options in the IP header can be used
for all transport layer protocols, rather than just TCP. However, intermediary
routers may drop packets with IP options they do not support [17, 18].

Prior work has examined using “shim” layers between the IP header and
transport layer headers to encode data [26]. IPSec does so using the ESP or
AH headers to encapsulate protected traffic [24,25]. Special-purpose shims have
the downside of requiring support from endpoints and the risk that they will be
discarded by firewalls or routers that do not understand the shim layer head-
ers. However, the IP-in-IP tunneling technique, standardized in RFC 1853 [15],
essentially provides a second IP header as a shim layer. The use of an IP-in-IP
shim gives us a straightforward way to add options in a backwards-compatible
manner. We can insert a second IP header in front of the original transport layer
header using the standardized approach. Mobile IP [14] uses this same technique.

6 Y. Liu et al.

2.5 Motivations and Perspectives with VPN Deployments

Commonly cited reasons for organizations to use VPNs with their employees in-
clude [38,39]: 1) to build a communication tunnel with confidentiality, integrity,
and authenticity via cryptography, 2) to control communication to remote sys-
tems, and 3) to provide authentication to achieve simplified access control. In
this section, we explore these techniques and describe how they may be affected
by changing Internet trends. We also note recent changes in VPN planning.

Confidentiality, Integrity, and Authenticity Web traffic comprises a ma-
jority of Internet communication. Currently, 90% of HTTP traffic is protected
by TLS [4, 41]. TLS supports common business applications, such as remote
desktop, file transfer, and remote terminals. Further, studies show that over
98% of printers support Internet Printing Protocol (which supports encryption
and authentication) [42]. Most network traffic is protected by application-layer
cryptography, which achieves confidentiality, integrity and authenticity.

Some legacy protocols or devices may not support cryptography. However,
organizations may use the reverse proxy model [43] to protect such devices by
creating application-specific security tunnels without requiring VPNs.

Organizations Pursuing VPN Alternatives In a recent report [54], Zscaler
indicates that 67% of companies are seeking alternatives to VPNs. In addition to
performance issues, companies expressed concerned about 1) the changing role
of VPNs with pandemic-related work-from-home patterns, 2) increased VPN
infrastructure’s impact on organizational architecture, which makes maintenance
more complex and expensive, and 3) attackers who are increasingly using VPNs
to gain access to corporate networks via social engineering and malware. Given
this context, 77% of companies have indicated an interest in using a zero-trust
model to manage remote access for their employees instead. Our approach aligns
with these corporate goals.

3 Approach: Indicating Authenticity Validation

Inspired by Kerberos and HTTP cookies, we explore a token-based identity
approach. A remote authenticator distinguishes legitimate and unauthenticated
users via a token provided by the user and device. We describe the goals of such a
system and how they differ from the robust authentication present in end-to-end
applications. We then describe our threat model and the techniques we use.

3.1 Design Goal: Evidence Supporting Legitimacy

VPN servers can robustly authenticate their remote VPN gateways. For gateway-
to-gateway VPNs that interconnect two LANs, this approach may not uniquely
identify the connecting end-user. The VPN server may be able to uniquely iden-
tify the connecting end-user if the remote VPN gateway runs on the remote user’s

Avoiding VPN Bottlenecks: Network-Level Client Identity Options 7

endpoint. However, the VPN server does not share that identification with the
endpoints that the user then connects to through the VPN server. The VPN
server often performs NAT to proxy the connection between the remote user
and server, but the IP addresses may be randomly selected from the available
IPs. The server endpoint may be able to infer that the end-user authenticated
with the VPN server by determining if the remote IP belongs to an IP address
associated with the VPN server’s pool. This is a useful, but relatively weak au-
thenticator because it lacks a unique identifier or strong authenticity guarantees.

Our approach aims to re-build the authentication between a remote user and
an organization network and the weak authenticator available to a remote server.

3.2 Threat Model

Our approach enables clients to provide an application-agnostic device-level au-
thenticator. This authenticator is not designed to be authoritative about the
identity of a client. Instead, it is a quick “first-pass” authenticator that can be
used to separate out “likely legitimate” traffic from completely unknown traffic.
It can be used in combination with application-layer authentication (e.g., as a
mechanism to address brute-force guessing on SSH servers). Enterprises can also
calculate reputation based upon these identifiers, with better reputation leading
to better services, as incentives.

Our approach is designed to effectively defend against “on-the-side” attack-
ers, such as a user who is not on the network path, but who might share IP
address with a client (e.g., behind the same CGN). We deploy identifiers that
protect against any brute-force guessing. However, “on-path” adversaries can
inspect the inner IP header, observe the identifiers, and misuse the identifier
information. We rely on the application layer to provide robust authentication
to defeat such powerful on-path adversaries.

3.3 Leveraging Authentication Servers

In our approach, we create a mechanism that allows an organization to authenti-
cate its remote users using a lightweight device-level authentication factor. The
end user can authenticate to the organization using a pre-existing authentication
system, such as a web-based authentication page. This authentication system can
use multi-factor authentication to robustly verify the end-user. Upon successful
verification, the authentication system provides a token that can be used by the
user’s device as an authentication factor. If verification is unsuccessful, the server
simply does not provide a token.

Our approach requires both the device and authentication server to automat-
ically determine each others’ support for the protocol, as well as for the other
systems that are able to support the device-level authenticator. We enable auto-
mated deployment discovery using specially-crafted DNS records. When a client
requests certain DNS records associated with the organization’s domain (e.g., A
records for www.example.com), the DNS server provides a TXT record in the Ad-
ditional Records section of the response indicating the authentication server that

8 Y. Liu et al.

is authorized to create authentication tokens for the domain. The TXT record also
indicates which servers at the organization support the authentication scheme
by listing public-facing IP address or CIDR prefixes.

3.4 Using OpenFlow to Manage Tokens

To avoid requiring support for the authentication mechanism in each application,
we use an SDN technique to engage in the protocol on the client’s behalf. An
OpenFlow agent in the client’s network, which could be on the client endpoint
device itself (e.g., via Open vSwitch) or on a network gateway (e.g., a residential
router), intercepts new flow requests and directs them to a SDN controller. The
controller examines the related DNS responses for any TXT records that indicate
support for the protocol. It also manages the authentication factors on behalf of
the end-user on the device or on multiple devices in the network.

Our approach is designed to grant users full control over their identifiers.
Unlike the “super cookies” approach [28], our system allows users to configure
their identifies and choose when to use tokens with a remote party. The Open-
Flow controller can allow users to manage the entries (e.g., via a web page).
Based on the user’s configuration and the destination of each flow, the controller
determines whether to insert identifiers.

We use the standardized IP-in-IP tunneling approach [15] to create a “shim”
layer. This creates two IP headers, allowing the outer IP header to be processed
normally by routers while the inner IP header contains options that might other-
wise result in the packet being dropped. We use those IP options to communicate
the token that provides evidence of authentication.

When a client first interacts with an authorized authentication server, the
OpenFlow agent intercepts the initial packet in the flow and sends it to the
OpenFlow controller. The controller modifies the packet to signal that the client
supports the scheme and sends it back to the OpenFlow agent, which then trans-
mits it to the authentication server. Since the DNS records signal the server’s
support for the approach, we can construct packets that require the server to
engage in custom parsing. The controller alters the packet to insert the IP shim
layer, resulting in an IP-in-IP packet. In the inner IP header, the controller in-
cludes an option indicating that the client supports the protocol. Upon successful
login, the authentication server replies with its own IP-in-IP packet, with the
authentication data contained in an option field in the inner IP header. The
OpenFlow agent elevates this response to the OpenFlow controller, which ex-
tracts the authentication factor, removes the IP shim header, and orders the
OpenFlow agent to send the decapsulated packet to the client application.

When a client subsequently creates a new network flow to a server that sup-
ports the scheme, the OpenFlow agent intercepts the request and elevates it to
the controller (Figure 1). The controller again performs the necessary alteration
of the packet to create the IP-in-IP shim that contains the pre-determined au-
thentication data. The controller then returns the modified packet to the Open-
Flow agent for transmission to the server. The server, or a gateway or middlebox
on the path to the server, processes any packets containing the IP-in-IP shim to

Avoiding VPN Bottlenecks: Network-Level Client Identity Options 9

Laptop OVS Switch Internet

Authentication
Server

Application
Server

1. Send request

Controller

2. Elevate
packet

3. Examine destination, find
 stored keys, craft IP-in-IP
packet and insert the token

4. Send modified
packet

6. Verify the token in iptables
module, allow if it is valid

7. Send response
8. Receive response

5. Send
packet

Fig. 1: The process for the client to authenticate to the application server.

verify and strip the authentication data. In doing so, the server or middlebox can
record that the flow is verified and, depending on policy, allow the flow where
unverified flows may be denied.

Importantly, the inner IP header addresses can be used by a gateway or
middlebox validator to implement NAT translations that allow a remote user to
have local IP addresses in the same manner as VPN servers. However, unlike
VPN servers, the inner IP header only needs to appear in the initial exchange to
create the appropriate NAT mapping to translate the remote machine’s address.

4 Implementation

We implement our system in a home network to allow us to evaluate its security
and performance. As shown in Figure 2, we explore the modifications that would
be needed to include a regular client, an authentication server (e.g., a single sign-
on identity provider), an application server (e.g., a relying party), and an SDN
controller to coordinate it all.

TP-Link Archer C7 Router
OpenWrt + Open vSwitch

Internet

Thinkpad S3 Laptop

External Network

Home Network

Controller
Floodlight and our Modules

Mac OSX Laptop
Authentication

Server
Application

Server
Client

Machine

Fig. 2: Our experiment architecture.

We run our client in a virtual machine (VM) hosted on a Thinkpad S3 laptop
with four cores and 8 GBytes RAM. We create two other VMs on a Macbook Pro
laptop, with four cores and 16 GBytes RAM, for applications and authentication
servers respectively. Each VM has one core and 4 GBytes memory. We configure

10 Y. Liu et al.

a physical TP-Link Archer C7 router with OpenWrt and the Open vSwitch
module as our SDN switch. The VMs are bridged through laptop interfaces and
get DHCP services from the router. All the physical devices are located in the
same home network. However, we configure our Floodlight SDN controller on a
remote network machine with two cores and 4 GBytes memory.

4.1 Identity Provider Interactions

In Section 3.4, we described how the OpenFlow switch and controller cooperate
to detect that the application and authentication servers support the approach.
The Kerberos approach provides a shared-key architecture for identity providers
to construct keys for relying parties [16].

The SDN controller learns about the authentication server through DNS
records and signals the client’s support via an IP-in-IP shim. When the au-
thentication server replies, it includes a shared secret that the client can use to
authenticate itself.

As with Kerberos, each application server pre-shares a unique key
with the authentication server [55]. The authentication server uses that
applicationServerSecretKey, along with a unique identifier for the user and
a nonce value it generates, to produce a shared secret that is a one-way
hash of these values (i.e., clientKey=SHA224(uniqueIdentifier || nonce1

|| applicationServerSecretKey)). The authentication server then sends both
the clientKey value and the concatenation of the uniqueIdentifier and
nonce1 value to the client.

The authentication server communicates the key and identifier by crafting
an IP-in-IP packet. The inner IP header includes an option field in which both
the clientKey and uniqueIdentifier are encoded. The protocol field differs
between the two IP headers (the outer header indicates the protocol is another
IP header, while the inner header indicates the transport protocol used), but
otherwise the two headers contain identical values.

The OpenFlow switch elevates packets with IP-in-IP shims to the controller,
allowing the controller to obtain the clientKey and the uniqueIdentifier.

4.2 Application Server Interactions

In our implementation, when the client initiates a connection to the application
server, the OpenFlow switch elevates the request to the OpenFlow controller.
The controller consults its database, determines that a token is needed, and
creates an IP-in-IP shim. In the inner header, it creates an IP option that con-
tains the user identity, the authentication server’s nonce (nonce1), the client’s
own nonce value (nonce2), and a SHA224 value constructed from the concate-
nation of the identity, nonce2, and clientKey (i.e., SHA224(uniqueIdentifier
|| nonce2 || clientKey)). The token we construct is 37 bytes total (5 bytes
for the user ID, 2 bytes for the nonce1, 2 bytes for nonce2, and 28 bytes for the
SHA224 output). The controller sends this modified packet back to the switch
for transmission using an OpenFlow PACKET OUT message.

Avoiding VPN Bottlenecks: Network-Level Client Identity Options 11

The application server must parse the IP-in-IP message, validate the token,
and then remove it before delivering it to the actual destination application. To
do this, we develop an open source iptables module using the Xtables-Addons
framework [32]. This module efficiently performs the interception and validation
before the packet reaches the destination application.

Our functionality is divided into an iptables match module that specifies
user-defined conditions. It passes any matching packets on to a target module
for processing. We configure our match module to examine any IP-in-IP packets.
For all such packets, it searches for our specific IP option type inside the inner IP
header. If found, it parses the option to obtain the unique identifier and nonces.
The match module then uses the client-supplied information and the key shared
by the application server with the authentication server to calculate the cor-
responding clientKey (i.e., clientKey=SHA224(uniqueIdentifier || nonce1

|| applicationServerSecretKey)). The application server then constructs a
SHA224 digest using this clientKey, the uniqueIdentifier, and the client’s
nonce (i.e., SHA224(uniqueIdentifier || nonce2 || clientKey)) and com-
pares it with the SHA224 value that is contained within the IP option. If the
digests match, it knows the client interacted with the authentication server to
obtain the clientKey. The match module only returns true if a match is found.

We next implement a target module that is used if the match module suc-
cessfully validates a packet. Our target module modifies the skb buffer, which is
the data structure used in Linux for packet processing. The target module must
decapsulate the packet to remove the shim. It does so by removing the inner
IP header and IP options, updating the protocol field in the outer IP header
and recalculating the checksum. It then sends the packet to the application for
processing. This allows the destination to validate the communication across ap-
plications. Importantly, the iptables tool can be run on a middlebox or on the
application server itself to avoid bottlenecks.

5 Evaluation: Security and Performance

We evaluate our approach from both a security and performance perspective
using the configuration depicted in Figure 2. We focus on the performance of
the token validation and shim layer operations between the client and application
server, since these same operations are used in the interaction between the client
and authentication server.

5.1 Security Evaluation

To assess our approach, we simulate the authentication process by issuing new
network requests to the organization network, where our iptables modules are
deployed on the servers. The application servers deny packets without validation
by default. Only the packets approved by our match module can pass through
iptables rules and be received by the services that run on the server.

12 Y. Liu et al.

Table 1: Result of effectiveness evaluation. We performed experiments 20 times
for three scenarios: 1) network request without a token, 2) network request with
an invalid token, and 3) network request with a valid token.

Result No Token Invalid Token Valid Token

Access Allowed 0 0 20

Access Denied 20 20 0

The first experiment setup simulates network queries without providing a
token. As shown in Table 1, all 20 requests were successfully blocked by the de-
fault deny rule set up on the application server. In our second scenario, we enable
the OpenFlow and iptables modules we implemented. We craft client request
packets that contain invalid tokens. As shown in Table 1, all 20 requests failed
to reach the applications. In our third scenario, we also enable our OpenFlow
and iptables modules on both client and server side. We craft proper packet
headers and the first packets of these flows contain valid tokens. As shown in
Table 1, all such requests were approved by our iptables module.

5.2 Network Delay Overhead Evaluation

Our approach affects only the first exchange in each flow. The controller ele-
vation to insert the shim, and the iptables processing to validate and remove
the shim, are only needed on the initial message from the client to the server.
Subsequent packets in the flow are not modified and or inspected by our custom
iptables module. Those packets will proceed through standard packet process-
ing. Therefore, the only significant overhead in our approach is incurred in the
initial round-trip, so we focus our measurements accordingly.

During key transfer, the client initiates a TCP connection to the authentica-
tion server. Since the authentication server program is essentially unchanged, we
use a simple echo reply to omit its overhead. For our measurements, we transmit
a TCP SYN packet to a port without an associated application server, resulting
in a TCP RST packet that refuses the connection. This simple exchange allows
us to monitor any overheads at the OpenFlow controller and iptables modules
to signal support for the protocol, encode keys into packets, and extract those
keys. The client sends 1,000 TCP requests and measures the round-trip time
(RTT) that includes all the overheads.

Our evaluation examines two deployment scenarios: 1) where the OpenFlow
agent runs on a separate, physical router for a local network deployment and
2) where the OpenFlow agent runs on the client machine itself, in which the
endpoint natively supports the use of a controller for persistent identity. Our
router-based experiment uses a TP-Link Archer C7 router (see Figure 2).

During the key transfer between the authentication server and client SDN
controller, two elevations to the OpenFlow controller are required. Since this
includes significant propagation delay to and from the controller, we measure

Avoiding VPN Bottlenecks: Network-Level Client Identity Options 13

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100 110 120

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

ls

RTT of Key Transfer, OpenFlow Agent on Physical Router (ms)

Baseline (2 RTTs to Controller)
Pro Forma OpenFlow Elevations

Full Implementation

(a) Key Transfer via SDN Router Agent

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100 110 120

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

ls

RTT of Key Transfer, OpenFlow Agent on Client Host (ms)

Baseline (2 RTTs to Controller)
Pro Forma OpenFlow Elevations

Full Implementation

(b) Key Transfer via SDN Client Agent

Fig. 3: Round trip time for key transfer (1,000 trials)

that RTT and refer to it as the baseline in our method. In Figure 3a, we ex-
plore the scenario where the OpenFlow agent runs on a physical router. In the
diagram, the leftmost (green) line indicates the baseline case of two RTTs with
the controller. The 90th percentile is 83ms. The middle (blue) line shows a con-
trol experiment measuring end-to-end RTT for the client to the server using pro

forma OpenFlow elevations, where the OpenFlow agent is configured to elevate
each packet for approval, but the controller simply approves each packet without
changes (i.e., the controller simply approves packets using PACKET OUT messages
without using FLOW MOD rules). In the pro forma exchanges, no packet encapsu-
lation or iptables verification occurs. In this scenario, the 90th percentile of the
RTT is 86ms. In our full key transfer implementation (the rightmost, red line),
the 90th percentile is 87ms. The similarity of the results of the pro forma and
full implementations indicate that the overheads for encapsulation, iptables,
and the OpenFlow controller are not significant.

We show the results where the OpenFlow agent runs on the client host in Fig-
ure 3b. The baseline remains same. In the pro forma scenario, the 90th percentile
is 82ms. When we enable the full key transfer functions, the 90th percentile is
83ms. The OpenFlow overheads are lower when the client runs the OpenFlow
agent rather than a router. However, the overheads of encapsulation, iptables,
and controller processing remain similar.

Next, we evaluate the overhead introduced by the key validation functionality
between the client and the application server. In this experiment, our client
sends 1,000 UDP packets to the server. We measure the end-to-end delay from
transmission to response, so each trial contains two packet elevations: 1) the
elevation to the SDN controller for IP-in-IP encapsulation and 2) for the SDN
controller to processes the UDP response.

In Figure 4a, the green line (leftmost) again shows the baseline of two RTTs
where the 90th percentile RTT is 82 ms. The blue line (middle) shows the over-
head of the pro forma scenario in which 90 percent of the results have less than
90ms delay. The red line (rightmost) shows our full implementation, which in-

14 Y. Liu et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100 110 120

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

ls

RTT with Application Server, OpenFlow Agent on Physical Router (ms)

Baseline (2 RTTs to Controller)
Pro Forma OpenFlow Elevations

Full Implementation

(a) Verification via SDN Router Agent

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100 110 120

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

ls

RTT with Application Server, OpenFlow Agent on Client Host (ms)

Baseline (2 RTTs to Controller)
Pro Forma OpenFlow Elevations

Full Implementation

(b) Verification via SDN Client Agent

Fig. 4: RTT for application server validation (1,000 trials)

troduces 93ms of delay or less for 90 percent of the trials. When we move the
OpenFlow agent to the client machine, the pro forma 90th percentile drops to
84ms and the full implementation drops to 86ms, as shown in Figure 4b. We
again see that the full implementation has only modest overheads over a ba-
sic OpenFlow elevation approach. Further, the time spent at the validator in
the full implementation was around 0.8 milliseconds, indicating the verification
overheads are low.

Importantly, the latency overheads incurred here occur only on the first
round-trip between the client and the application server for each flow. Since
they do not affect ongoing flows, they are unlikely to have a major impact on
the end-user’s experience. A subsequent optimization, to insert a FLOW MOD dur-
ing the first encapsulation, would cut the propagation time in half, reducing
the RTT by roughly 40ms in these experiments. End-users could further reduce
their delay by hosting the controller closer to the client, such as in the LAN or
in nearby ISP-hosted data centers.

5.3 VPN Server Throughput Comparison

As we will discuss in Section 6.2, our approach aims to improve bandwidth
performance when an enterprise deploys its VPN server on a general-purpose
machine. In this section, we simulate real environments and design experiments
to create that bottleneck. We demonstrate the extent to which our approach can
remove the bandwidth bottleneck associated with many VPN deployments. We
explore five scenarios with some employing TLS, VPNs, and our approach.

In these experiments, we use Strongswan as our VPN software and apache2

to host a large file for download via HTTPS. For each case, we run a varying
number of clients concurrently to determine the per client throughput in each
scenario. We measure the time used for downloading for each client, as well as
CPU usage on the servers. In the experiments, we explore up to five clients since
this degree of parallelism is sufficient to expose bottlenecks and demonstrate

Avoiding VPN Bottlenecks: Network-Level Client Identity Options 15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 3 4 5

T
h
ro

u
g
h
p
u
t
(M

B
p
s
)

Number of Concurrent Clients

Plain TLS
Proxy (no IPSec)

IPSec VPN Server
Our Approach (Router)
Our Approach (Client)

Fig. 5: Median client throughput in different security tool deployment scenarios.

trends. Except as noted, we transfer a 1 GByte file in our trials. Each data point
is the result of 30 trials.

In Figure 5, we show the results of these scenarios. The first scenario, Plain
TLS, represents a baseline in which the enterprise network has a TLS server that
clients directly access for file transfer. This essentially represents an upper-bound
on performance capabilities of the system. The traffic is constrained by the web
server’s ability to send traffic. In the second scenario, Proxy (no IPSec), we
forward the network traffic through an Ubuntu server VM that simply proxies
traffic (i.e., forwards it using IP addresses) without any additional services (like
IPSec). The throughput decreases in this scenario since the gateway host starts
to constrain throughput and the CPU on the gateway vary from 35.41% to
95.83% utilization as we increase number of concurrent clients. In the IPSec VPN

Server scenario, we enable IPSec on the Ubuntu proxy server and clients use
the IPSec tunnel to reach the web server. This scenario represents an enterprise
configuration in which organizations host their VPN services on a generic server.
The CPU use climbs on the VPN server to around 100% usage and the result
is a decrease in bandwidth from the baseline by around 65%. Compared to the
21.6 MBps in the baseline, the VPN server is only able to provide 7.4 MBps
throughput per client during a five concurrent client scenario.

Next, we explore our approach using SDN support in either a consumer-grade
router or in the endpoint itself. We first enable our approach in a consumer-grade
router in the Our Approach (Router) scenario. This scenario does not require
the gateway server from the second or third scenarios and reflects the archi-
tecture as described in Section 3. The residential router scenario results show
the challenges of repurposing hardware with limited computational capabilities.
While it can deliver 12.8 MBps for a single client our tests of a 100 MByte file, it
exhausts the router’s computational resources (since it uses the general purpose
CPU for OpenFlow forwarding lookups). While we explore up to five concurrent
clients for a consistent presentation of results, these client-side routers would

16 Y. Liu et al.

likely only service a single user at a time and do not act as an aggregation point,
unlike the VPN server. With more capable residential routers, the computational
limits would be less likely to constrain performance.

In our final scenario, Our Approach (Client), we explore the approach
where the SDN agent runs in software on the client, allowing us to characterize
the performance implications of running the SDN agent on the residential router.
When running on the client, the SDN functions no longer serve as a performance
bottleneck (CPU usage at the client does not exceed 31%). This approach yields
a performance improvement of roughly 2.5 to 2.9 times the throughput of an
IPSec VPN. The performance decrease of the SDN approach verses the baseline
ranges from 1% to 8%. Accordingly, with endpoint software, clients can attain
far better throughput than VPNs and approximate the baseline.

5.4 Packet Header Overhead

VPNs may have to combine multiple protocols together to support some clients.
A standardized implementation for this combines IPSec with L2TP [23]. When
used with ESP and preshared secrets, the combined packet headers and trailers
for the two protocols amounts to around 92 bytes (40 bytes for L2TP with UDP,
20 bytes for an encapsulated IP header, 16 bytes for the ESP header, 2 bytes for
padding, and 14 bytes for the ESP trailer and authentication data). This can
reduce the maximum transmission unit (MTU) for payload in many networks
from 1500 to 1408, which is around a 6.1% reduction in payload per packet. This
overhead occurs in each packet in the flow.

In our approach, we use packet encapsulation on the first packet sent from
a client to an application server. Our IP-in-IP shim uses 20 bytes for the inner
IP header, with an additional 40 bytes for our IP option, for a total of 60 bytes
of overhead. Unlike VPN traffic, this overhead only applies to the first packet
in a flow. For applications using TCP, this overhead would apply to the TCP
SYN packet. Since those packets do not carry payload, our approach would often
avoid the MTU complications present in VPN protocols.

6 Discussion

Our approach focuses on mechanisms that eliminate the need for VPN software
by providing application servers with evidence that a client has been successfully
authenticated. We now explore how a similar concept could be used with other
kinds of services. We also explore scenarios in which we compare our system with
VPN deployments and the role it can play in addressing bandwidth bottlenecks.

6.1 A Second-Factor Service for Public Infrastructure

For sensitive transactions, organizations with public-facing services can minimize
risk by using multiple sources of evidence. For example, financial institutions may
authenticate an end-user in multiple ways to minimize the risk in financial trans-
actions. These forms of validation can include username and password, browser
cookies, the use of one-time passcodes via SMS messaging or applications, or
answers to secret questions.

Avoiding VPN Bottlenecks: Network-Level Client Identity Options 17

Some organizations try to reduce risk by identifying a user’s location. They
may leverage databases that map IP addresses to geographical location and
thereby prevent authentication attempts, or require more robust verification,
when a user’s location changes by a configured distance. Unfortunately, such
mechanisms may be less effective when CGN is widely deployed.

Our approach can offer a lightweight, secondary factor that simply indicates
if a client is located within a given source network (e.g., inside the LAN serviced
by a given residential router) or if it is the same physical device (e.g., for a
laptop or mobile device that changes networks). In such circumstances, the SDN
controller can effectively act like a password manager by tracking secondary
factors for a user across infrastructure.

6.2 Impact of VPN Server Provisioning

Enterprise networks may apply different architectures to deploy their VPN ser-
vices. Enterprise networks may deploy their VPN services on their network
gateways or devices that handle all the network’s traffic. These devices can be
purpose-built for VPNs. For example, the Cisco AST 1000 Series Embedded
Processors achieves IPSec throughput up to 78 Gbit/s [48, 49]. The downside
associated with in-line hardware is that the service subscription for VPNs and
the system’s capital costs can be considerable [47].

Enterprises can also host VPN servers inside their networks using existing
server infrastructure or other physical machines. Most commodity servers lack
the hardware designed for VPN services. Pudelko et al. [53] indicate open source
VPN servers on commodity servers have poor throughput compared to dedicated
hardware. A Windows 2008 server can achieve gigabit throughput [50]. Other
servers can achieve higher throughput [51] and a multi-core Linux machine can
achieve 6.1 Gbps [52].

Our in-lab environment experiments in Section 5.3 show the potential bottle-
necks associated with VPN gateways on general purpose systems. These results
demonstrate the ability of our approach to remove such bottlenecks.

7 Conclusion

This work explores the roles that VPNs play in organizational security. With
the rise of application-layer encryption and authentication, the secure tunneling
features of VPNs are increasingly redundant. However, VPN tunnels are still
useful in simplifying perimeter-based access control by allowing authenticated
remote users to bypass perimeter policies and interact with insider infrastructure.

We analyze the access control capabilities of VPNs and propose a new
lightweight method. It requires no additional network infrastructure and removes
the performance bottleneck on a VPN server, as well as eliminating redundant
encryption and unnecessary packet header overheads. Our method is based on
the SDN paradigm and gives clients the choice to implement a persistent identity
on a per-application basis. We create iptables modules, which are required on
the server side, to support our protocol. Our evaluation results show the method
to be effective and lightweight.

18 Y. Liu et al.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. 1651540.

References

1. Richter, P., Wohlfart, F., Vallina-Rodriguez, N., Allman, M., Bush, R., Feldmann,
A., Kreibich, C., Weaver, N., Paxson, V.: A Multi-Perspective Analysis of Carrier-
Grade NAT Deployment. ACM Internet Measurement Conference, pp. 215–29
(2016). https://doi.org/10.1145/2987443.2987474

2. Carrier-Grade-NAT (CGN) Deployment Considerations, https://tools.ietf.

org/id/draft-nishizuka-cgn-deployment-considerations-00.html. 2021
3. Atkinson, R.: Security Architecture for the Internet Protocol. RFC 1825, Internet

Engineering Task Force (1995)
4. Sandvine Releases 2019 Global Internet Phenomena Report. https:

//www.sandvine.com/press-releases/sandvine-releases-2019-global-

internet-phenomena-report. 2019
5. Rekhter, Y., Moskowitz, B., De Groot, G.: Address Allocation for Private Internets.

RFC 1597, Internet Engineering Task Force (1994)
6. Kreibich, C., Weaver, N., Nechaev, B.: Netalyzr: Illuminating the

Edge Network. ACM Internet Measurement Conference, p. 246 (2010).
https://doi.org/10.1145/1879141.1879173

7. Mandalari, A., Lutu, A., Dhamdhere, A., Bagnulo, M., Claffy K.: Tracking the
Big NAT across Europe and the U.S. ArXiv:1704.01296 [Cs] (2017). arXiv.org,
http://arxiv.org/abs/1704.01296

8. Livadariu, I., Benson, K., Elmokashfi, A., Dhamdhere, A., Dainotti, A.: Inferring
Carrier-Grade NAT Deployment in the Wild. IEEE Conference on Computer Com-
munications, pp. 2249–57 (2018). https://doi.org/10.1109/INFOCOM.2018.8486223

9. Global Security Appliance Market Share 2012-2020. https://www.statista.com/
statistics/235347/global-security-appliance-revenue-market-share-by-

vendors/. 2021
10. Cloudflare Blocking My IP? https://community.cloudflare.com/t/cloudflare-

blocking-my-ip/65453. 2021
11. Verizon to Launch 5G Residential Broadband Services in up to 5 Markets in

2018. https://www.verizon.com/about/news/verizon-launch-5g-residential-

broadband-services-5-markets-2018. 2021
12. Amazon Simple Email Service Classic.https://docs.aws.amazon.com/ses/

latest/DeveloperGuide/. 2021
13. FCC Fines Verizon $1.35 Million over ‘Supercookie’ Tracking. https:

//www.theverge.com/2016/3/7/11173010/verizon-supercookie-fine-1-3-

million-fcc

14. Perkins, C. E.: Mobile IP. IEEE Communications Magazine, vol. 35, no. 5, pp.
84–99 (1997). https://doi.org/10.1109/35.592101

15. Simpson, W.:IP in IP Tunneling. Request for Comments, RFC 1853, Internet En-
gineering Task Force (1995)

16. Neuman, C., Ts’o, T.: The Kerberos Network Authentication Service (V5). RFC
1510, Internet Engineering Task Force (1993)

17. Craven, R., Beverly, R., Allman, M.: A Middlebox-Cooperative TCP for a
Non End-to-End Internet. ACM SIGCOMM Conference, pp. 151–62 (2014).
https://doi.org/10.1145/2619239.2626321

Avoiding VPN Bottlenecks: Network-Level Client Identity Options 19

18. Gont, F., Atkinson, R., Pignataro, C.: Recommendations on Filtering of IPv4 Pack-
ets Containing IPv4 Options. Request for Comments, RFC 7126, Internet Engineer-
ing Task Force (2014)

19. Open VSwitch. https://www.openvswitch.org/. 2021
20. Cisco-Security-Manager-4-1. https://www.cisco.com/c/en/us/obsolete/

security/cisco-security-manager-4-1.html. 2021
21. Bommareddy, S., Kale, M., Chaganty, S.: VPN Device Clustering Using a Network

Flow Switch and a Different Mac Address for Each VPN Device in the Cluster.
US6772226B1 (2004). https://patents.google.com/patent/US6772226B1/en

22. Coronavirus Challenges Remote Networking. https://www.networkworld.com/

article/3532440/coronavirus-challenges-remote-networking.html. 2021
23. Booth, S., Zorn, G., Patel, B., Aboba, B., Dixon, W.: Securing L2TP Using IPsec.

Request for Comments, RFC 3193, Internet Engineering Task Force (2001)
24. Atkinson, R., and Kent S.: IP Authentication Header. RFC 2402, Internet Engi-

neering Task Force (1998)
25. Kent, S., Atkinson R.: IP Encapsulating Security Payload (ESP). RFC 2406, In-

ternet Engineering Task Force (1998)
26. Nordmark, E, Bagnulo, M.: Shim6: Level 3 Multihoming Shim Protocol for IPv6.

RFC 5533, Internet Engineering Task Force (2009)
27. Moskowitz, R., Nikander P.: Host Identity Protocol (HIP) Architecture. RFC 4423,

Internet Engineering Task Force (2006)
28. Estes, A.: The Dangers of Supercookies. https://www.theatlantic.com/

technology/archive/2011/08/dangers-supercookies/354297/. 2011
29. MacFarland, D., Shue, C, Kalafut, A.: Characterizing Optimal DNS Amplification

Attacks and Effective Mitigation. Passive and Active Measurement Conference, pp.
15–27 (2015). https://doi.org/10.1007/978-3-319-15509-8_2

30. McKeown, N, Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rex-
ford, J., Shenker, S., Turner, J.: OpenFlow: Enabling Innovation in Campus Net-
works. ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp.
69–74 (2008). https://doi.org/10.1145/1355734.1355746

31. Komu, M., Sethi, M., Beijar, N.: A Survey of Identifier–Locator Split Ad-
dressing Architectures. Computer Science Review, vol. 17, pp. 25–42 (2015).
https://doi.org/10.1016/j.cosrev.2015.04.002

32. Netfilter/Iptables Project Homepage - The “Xtables-Addons” Project. https://
www.netfilter.org/projects/xtables-addons/index.html. 2021

33. Troubleshooting. https://sendersupport.olc.protection.outlook.com/pm/

troubleshooting.aspx. 2021
34. Prevent Mail to Gmail Users from Being Blocked or Sent to Spam - Gmail Help.

https://support.google.com/mail/answer/81126. 2021
35. Understanding the Cloudflare Security Level. https://support.cloudflare.

com/hc/en-us/articles/200170056-Understanding-the-Cloudflare-Security-

Level. 2021
36. Malis, A., Lin, A., Heinanen, J., Gleeson, B., Armitage, G.: A Framework for IP

Based Virtual Private Networks. RFC 2764, Internet Engineering Task Force (2000)
37. Access Control - Apache HTTP Server Version 2.4. https://httpd.apache.org/

docs/2.4/howto/access.html. 2021
38. Benefits Of A VPN. https://www.forbes.com/sites/tjmccue/2019/06/20/

benefits-of-a-vpn/. 2021
39. 10 Benefits of a VPN You Might Not Know About. https://us.norton.com/

internetsecurity-privacy-benefits-of-vpn.html. 2021

20 Y. Liu et al.

40. Dynamic IP Denylisting with NGINX Plus and Fail2ban. https://www.nginx.
com/blog/dynamic-ip-denylisting-with-nginx-plus-and-fail2ban/. 2021

41. Google Transparency Report. https://transparencyreport.google.com/https/
overview?hl=en. 2021

42. CUPS Plenary. https://ftp.pwg.org/pub/pwg/liaison/openprinting/

presentations/cups-plenary-may-18.pdf. 2021
43. What Is a Reverse Proxy Server? https://www.nginx.com/resources/glossary/

reverse-proxy-server/. 2021
44. Francisco, Shaun Nichols in San. Corporate VPN Huffing and Puffing While Ev-

eryone Works from Home over COVID-19? You’re Not Alone, Admins. https://
www.theregister.com/2020/03/11/corporate_vpn_coronavirus_crunch/. 2021

45. Comparing TCP performance of tunneled and non-tunneled traffic using Open-
VPN. https://www.os3.nl/_media/2010-2011/courses/rp2/p09_report.pdf.
2021

46. Liu, Y., Shue, C.: Beyond the VPN: Practical Client Identity in an Internet with
Widespread IP Address Sharing. IEEE Conference on Local Computer Networks,
pp. 425–28 (2020). https://doi.org/10.1109/LCN48667.2020.9314846

47. Savings Calculator, Pulse Secure. https://www.pulsesecure.net/savings-

calculator/. 2021
48. Raumer, D., Gallenmuller S., Emmerich, P., Mardian L., Carle, G.: Ef-

ficient Serving of VPN Endpoints on COTS Server Hardware. IEEE In-
ternational Conference on Cloud Networking (Cloudnet), pp. 164–69 (2016).
https://doi.org/10.1109/CloudNet.2016.25

49. Cisco ASR 1000 Series Embedded Services Processors Data Sheet.
https://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-

series-aggregation-services-routers/asr-1000-series-embedded-services-

ds.html. 2021
50. IP Security Features. Intel Ethernet Server Adapters. https://docplayer.net/

20618334-Ip-security-features-intel-ethernet-server-adapters.html. 2021
51. Han, S., Jang, K., Park, K, Moon, S.: PacketShader: A GPU-

Accelerated Software Router. ACM SIGCOMM Conference, p. 195 (2010).
https://doi.org/10.1145/1851182.1851207

52. Dobrescu, M., Egi, N., Argyraki, K., Chun, B., Fall, K., Lannaccone, G., Knies,
A., Manesh, M., Ratnasamy, S.: RouteBricks: Exploiting Parallelism to Scale Soft-
ware Routers. ACM Symposium on Operating Systems Principles, p. 15 (2009).
https://doi.org/10.1145/1629575.1629578

53. Pudelko M., Emmerich, P.: Performance Analysis of VPN Gateways. IFIP Net-
working Conference (Networking), pp. 325–33 (2020)

54. 2021 VPN Risk Report - Cybersecurity Insiders — Industry Report.
https://info.zscaler.com/resources-industry-reports-vpn-risk-report-

cybersecurity-insiders. 2021
55. Initial Credentials — MIT Kerberos Documentation. https://web.mit.edu/

kerberos/krb5-latest/doc/appdev/init_creds.html. 2021
56. DeCusatis, C., Liengtiraphan, P., Sager, A., Pinelli, M.: Implementing Zero Trust

Cloud Networks with Transport Access Control and First Packet Authentication.
IEEE International Conference on Smart Cloud (SmartCloud), pp. 5–10 (2016).
https://doi.org/10.1109/SmartCloud.2016.22

57. Hauser, F., Haberle, M., Schmidt, M., Menth, M.: P4-IPsec: Site-to-Site and Host-
to-Site VPN With IPsec in P4-Based SDN. IEEE Access, vol. 8, pp. 139567–86
(2020). https://doi.org/10.1109/ACCESS.2020.3012738

