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Abstract—Modern smart grid systems exploit a two-way in-
teraction paradigm between the utility and the electricity user
and promote the role of prosumer, as a new user type, able to
generate and sell energy, or consume energy.Within such a setting,
the prosumers and their interactions with the microgrid system
become of high significance for its efficient operation. In this
article, to model the corresponding interactions, we introduce a
labor economics-based framework by exploiting the principles of
contract theory, that jointly achieves the satisfaction of the various
interacting system entities, i.e., the microgrid operator (MGO)
and the prosumers. The MGO offers personalized rewards to the
sellers and buyers, to incentivize them to sell and purchase energy,
respectively. To provide a stable and efficient operation point, while
aiming at jointly satisfying the profit and requirements of the
involved competing parties, optimal personalized contracts, i.e.,
rewards and amount of sold/purchased energy, are determined,
by formulating and solving contract-theoretic optimization prob-
lems between the MGO and the sellers or buyers. The analysis is
provided for both cases of complete and incomplete information
availability regarding the prosumers’ types. Detailed numerical
results are presented to demonstrate the operation characteristics
of the proposed framework under diverse scenarios.

Index Terms—Contract theory, decision-making, prosumers,
smart grid systems, system modeling and optimization.

I. INTRODUCTION

SMART grid (SG) systems have been introduced as an alter-
native solution to traditional power systems which operate

in a centralizedmanner, generating power in large power stations
via the exploitation of fossil fuel resources, and distributing
the generated power to consumers [1]. SGs consist of multi-
ple microgrids, which are small-scale power supply networks,
accommodating conventional energy units, renewable energy
sources, and energy storage systems [2]. One key enabler of
SGs is the new type of users, named prosumers, who are able to
generate, store, sell, and buy energy by mainly exploiting solar
photovoltaic panels and storage devices [3], among others. The
prosumers are equippedwith smartmeters to exchange (sell/buy)
power with the microgrid operator (MGO), thus, creating a
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local energy trading system [4]. In this article, we capture the
prosumers’ interactions with the MGO in terms of selling and
buying energy based on a labor economics framework, while
guaranteeing the joint optimization of their profits and enabling
the overall microgrid system to converge to a stable point of
operation. The main novelty of the article lies in introducing a
unified economics-based framework that enables the prosumers
(either sellers or buyers) to determine the optimal amount of
exchanged energy with the MGO, while jointly the prosumers
and the MGO, who are characterized by competing interests,
optimize their benefits accounting for their own constraints.

A. Related Work

Several recent research works focus on the operation of mi-
crogrid systems aiming to satisfy the consumers’ or prosumers’
power demand via dealing with the demand response manage-
ment (DRM)problem [5]. In [6], the interactions amongmultiple
microgrid systems are studied based on the Nash bargaining
theory in order to incentivize each microgrid to participate
in the proactive energy trading and fair benefit sharing. The
authors formulate the corresponding joint optimization problem
and solve it by decomposing the problem into two sequential
problems, where the first minimizes the social cost and the
second one optimizes the trading benefit sharing. The prob-
lem of high-levels stochasticity in the energy production of
the renewable energy sources is studied in [7]. The authors
provide a systematic approach to deal with this problem and
provide the enhanced flexibility to the system to satisfy the
consumers’ power demand via exploiting the fast-ramping units,
the energy storage, and the hourly demand response. In [8], the
authors introduce a novel transactive energy control mechanism
and a pricing rule to capture the interactions among multiple
microgrids, aiming at jointly minimizing their operating cost
and optimizing the utilization of the renewable energy sources.
The authors have provided a detailed comparative evaluation to
other centralized and decentralized transactive energy control
mechanisms to show the benefits of the proposed approach in
terms of the microgrids’ effective operation and computational
efficiency in microgrids’ coordination.
The problem of reducing prosumers’ electricity bills, while

guaranteeing their minimum power demand constraints is stud-
ied in [9] via the introduction of an intelligent residential energy
management system. A predictive mechanism of the power
demand and supply in a microgrid is introduced in [10] by
designing a smart load estimator based on a neural networks’
approach. The designed mechanism considers the ambient tem-
perature, the time of day, the hourly price, and the peak demand.
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In [11], the authors study the stochastic risk in the demand re-
sponse by accounting for the uncertainties of islanding duration,
and the prediction errors of loads, renewable power generation,
and electricity price. The authors formulate a joint energy and
reserve scheduling problem aiming atmaximizing the operator’s
profit. Similar stochastic factors in the energy management
problem are considered in [12], where the authors introduce
a nodal price-based energy management framework in a mi-
crogrid to improve the scheduling accuracy. Toward addressing
the stochastic energy management, the authors formulate the
problem as a mixed integer nonlinear programming and a corre-
sponding heuristic algorithm is introduced in order to determine
the energy scheduling. It should be noted here that the above
research works follow a system-based approach emphasizing
on the operation of the microgrid, without, however, accounting
for the unique and personal characteristics of the prosumers.
Focusing on the prosumer-centric microgrid systems, a

prospect-theoretic energy trading approach is introduced in [13],
in which the prosumers’ risk-aware characteristics are con-
sidered based on the uncertainty that the selling/buying en-
ergy price introduces. The authors formulate a single-leader
multiple-follower Stackelberg game, where the microgrid op-
erator (leader) announces the optimal price and the prosumers
(followers) determine the amount of energy that they sell or buy,
with all the involved entities aiming to optimize their profit. A
similar Stackelberg-based approach is followed in [14] that also
introduces a reinforcement learning mechanism to enable the
consumers to select the utility company that they will purchase
energy from, in an autonomous manner. In [15], the prosumers
consider the energy as a heterogeneous product depending on
the generation technology, its location in the SG, and its owner’s
reputation. Accordingly, an optimization problem is formulated
to minimize the costs of energy losses and battery depreciation,
while accounting for the prosumers’ preferences regarding the
energy.
An incentive-based demand response management frame-

work is introduced in [16] to determine the reliable estimation
of demand response quantity and enhance the system reliability.
Toward achieving those two goals, the authors have introduced
a clustering with demand response levels decision-making al-
gorithm and a reliability constraint-based demand response
contingencymanagement scheme, respectively. The consumers’
behavioral characteristics for environment responsive demand
response potential estimation is studied in [17] based on data
analysis models. The authors estimate the consumers’ occu-
pancy behavior and renewable energy generation in order to
propose a demand response management approach that will
guarantee the consumers’ comfort constraints.
Placing further emphasis on exploiting the prosumers’ unique

power generation and demand characteristics, a pricing-based
DRM problem is introduced in [18], which jointly considers
the prosumers’ behavioral characteristics in terms of consuming
electricity and the electricity demand of their household devices,
which can be of various types. In [19], the authors introduce
a distributed system-wide framework aimed at minimizing the
prosumers’ payments, while guaranteeing their privacy and
comfort constraints, via dynamically adapting the system load

profile. In [20] and [21], the authors study the impact of the
communicationunreliability among theMGOand theprosumers
on theDRMperformance and the electricity price by formulating
a joint maximization problem of the DRM performance with
respect to the electricity consumption and price, and solve it by
leveraging the dual decomposition method. Labor economics
and contract theory have been also introduced in the litera-
ture in order to incentivize the prosumers to follow a desired
behavior within a microgrid [22]. In particular, in [23], the
authors introduce a labor economics framework to capture the
interactions of the prosumers and theMGO.A contract-theoretic
optimization problem is formulated and solved to determine
the optimal amount of purchased electricity and the optimal
rewards provided by the MGO to the prosumers for the sake
of both parties having optimized profit. It is highlighted that this
research work considers the prosumers only as buyers and not
sellers.

B. Contributions and Outline

Based on the above related work, it is highlighted that the
problem of incorporating the dual role of the prosumer, i.e.,
seller and buyer, within the operation of the microgrid system
still remains an open issue. Specifically, it is noted that the
research works that have focused on either the system-centric
or prosumer-centric operation of microgrids have not jointly
considered the optimization of the MGO’s and the prosumers’
benefits/profits in a unified framework. Additionally, the prob-
lem of converging to a stable, smooth, and seamless operation of
the microgrid system, while accounting for the unique personal
energy generation and demand characteristics of the prosumers
to appropriately incentivize them—and not force them—to ex-
change an optimal amount of energy with the MGO, has not
been thoroughly studied in the literature.
In this research work, we strive exactly to tackle these issues

by introducing a contract-theoretic framework to capture the
interactions of the prosumers, acting either as sellers or buyers,
with the MGO [22]. Specifically, the principles of contract
theory, which is a labor economics theoretical model mainly in-
troduced for business management, is adopted to jointly achieve
the satisfaction of the MGO and the prosumers, which often
present competing interests. Accordingly, the relations between
the MGO and the prosumers (sellers or buyers) are captured
following the labor economics model of employer-employee
relationship, while aiming to jointly satisfy the profit and re-
quirements of the involved competing parties. In contrast to
the existing research works in the field of transactive energy
that mainly exploit the Stackelberg games to implement a two-
stage optimization approach, i.e., maximize the profit of the
MGO and the prosumers, our proposed framework addresses
the problem of maximizing the MGO profit, while guaranteeing
that the prosumers will experience the best personalized rewards
alignedwith their energy generation and demand characteristics.
It is also noted that the proposed model and framework is an
application-oriented decision-making framework considering
the logical interactions among the prosumers and theMGO, and
it does not focus on the physical layer of the microgrid system.
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TABLE I
SUMMARY OF KEY NOTATIONS

The main contributions of this research work that differentiate
it from the rest of the existing literature are summarized below.
1) A microgrid system is considered consisting of the MGO

and the prosumers, who generate energy based on re-
newable energy sources (e.g., solar photovoltaic panels)
and are equipped with energy storage (e.g., Lithium-ion
batteries). Each prosumer can dynamically act as seller
or buyer based on its unique personal energy generation,
demand, and storage characteristics throughout the day.

2) A contract-theoretic optimization problem is formulated
to capture the interactions among the sellers and theMGO.
Following the principles of contract theory, the optimal
amount of energy that the sellers sell to the MGO at a
specific announced price, and the optimal rewards (e.g.,
price discount) offered by the MGO, are determined. The
ultimate goal of this novel approach is to jointly optimize
the profit of the MGO and the sellers via considering their
unique personal energy generation, demand, and storage
characteristics.

3) Toward introducing a unified framework that jointly han-
dles the energy exchange of the buyers with the MGO,
a different contract-theoretic optimization problem is for-
mulated to study their interactions. The MGO provides
personalized rewards to the buyers, e.g., fixed price, con-
sidering their energy demand, while the buyers invest their
“effort,” i.e., money, to purchase the amount of energy that
covers their demand. The optimal personalized contracts,
i.e., optimal personalized reward andpurchased energyper
buyer, are determined to bring the dynamic interaction of
the MGO and the buyers into a stable mode of operation.

4) A detailed series of experiments are performed to show the
drawbacks and benefits of the proposed prosumer-centric
self-sustained smart grid system’s operation approach.
This is realized under both a benchmarking scenario of
complete information and a realistic scenario of incom-
plete information regarding the prosumers’ energy gen-
eration, demand, and storage characteristics. A scalability
analysis is performed to show the efficiency and robustness
of the proposed framework. Also, a detailed study is
performed regarding the impact of the prosumers’ energy
generation and demand characteristics, as well as the
MGO’s pricing policies, on the interactions of the sellers
and buyers with the MGO.

The rest of this article is organized as follows. Section II
introduces the human-centric smart grid system model, while
Sections III and IV introduce and solve the contract-theoretic
optimization problems for the sellers and buyers, respectively.
Simulation and comparative results are presented in Section V.
Finally, Section VI concludes this article.

II. HUMAN-CENTRIC SMART GRID SYSTEM MODEL

Amicrogrid system is considered, consisting of theMGO and
the prosumers. The prosumers can generate energy via various
alternative options, such as solar photovoltaic panels and small
wind turbine power generation systems, and can also store the
energy in storage systems, such as Lithium-ion batteries [24].
Each prosumer’s residential infrastructure is equipped with a
smart meter to dynamically measure the energy generation,
demand, storage, and exchange (selling or buying) power with
the MGO. We examine the interactions of the MGO and the
prosumers at each time slot t, with the set of times slots
denoted as T = {1, . . . , t, . . . , |T |}. The sets of prosumers,
sellers, and buyers are denoted as N = {1, . . . , n, . . . , |N |},
S = {1, . . . , s, . . . , |S|}, andB = {1, . . . , β, . . . , |B|}, respec-
tively, with S ⊆ N , B ⊆ N , and |S|+ |B| = |N |. It is high-
lighted that this research work focuses on the operation and
self-sustainability of a single microgrid system, which can po-
tentially be connectedwith themaingrid.However, the exchange
of energywith themain grid orwith other neighboringmicrogrid
systems is not studied and considered in this article. Neverthe-
less, the latter issue is of high practical and business importance,
that introduces additional economic and operational challenges,
and is part of our future research.
Each prosumer has a set of home appliances, An =

{1, . . . , an, . . . , |An|}, which at the duration of one time slot t
(e.g., one hour) can be either on, i.e., δtan

= 1, or off, i.e., δtan
=

0. Thus, their total energy demand is dtn =
∑

∀an∈An
δtan

Ean

[kWh] in the duration of a time slot t, where Ean
[KWh] is the

energy consumption of the appliance an when it is operating
during time slot t [25]. It should be noted that a prosumer
can shift the operation of some appliances over time, thus,
dMin
n ≤ dtn ≤ dMax

n . Specifically, dMin
n [kWh] denotes the total

energy demand of the appliances of the prosumer n that are
nonshiftable over time, e.g., refrigerator or alarm system, while
dMax
n [kWh] captures the maximum possible energy demand if

all of the prosumer’s appliances are active. Thus, the prosumers’
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energy demand vector is defined asD = [dt1, . . . , d
t
n, . . . , d

t
|N |]

per time slot t. Also, the prosumers can generate energy by
exploiting their own renewable energy sources. Thus, the pro-
sumers’ renewable energy generation vector is defined accord-
ingly as G = [gt1, . . . , g

t
n, . . . , g

t
|N |] [kWh] per time slot t. The

prosumers can act either as sellers or buyers per time slot t based
on their personal energy generation and demand characteristics.
In the case that a prosumer acts as a seller, its corresponding
total energy demand is covered by its own generated energy. On
the opposite case, where the prosumer acts as a buyer, it defines
by itself the energy demand at each time slot by deciding to shift
(or not) part of the necessary energy for a future time slot based
on its own comfort level.
Sellers case: If gtn + bt−1

n ≥ dtn, where b
t−1
n denotes the pro-

sumer’s battery availability from the previous time slot, the pro-
sumer can cover their energy demandwithout purchasing energy
from the MGO, while also dynamically deciding to sell the
energy generation surplus to the MGO. The energy generation
surplus is calculated as bt+1

n = btn + (gtn − dtn) [kWh], where a
percentage ets ∈ [0, 1] of it can be sold to the MGO. The energy
generation surplus is assumed to be stored in the prosumer’s
energy storage system, e.g., Lithium-ion batteries. In this case,
the prosumer n acts as a seller. It is noted that in our research
work we have not explicitly considered the limitation imposed
by the maximum energy capacity of the prosumers’ batteries
and/or the charging/discharging ramp.However, it is highlighted
that the probability of exceeding the maximum energy capacity
of the prosumers’ batteries is very low in our proposed model
for the following reasons. Initially, the dynamics of the proposed
contract-theoretic model incentivize the sellers to sell part of
their energy at each time slot, thus, reducing the amount of
energy that they store in their batteries. Second, the prosumers
tend to have interchangeable roles of sellers and buyers dur-
ing the day, thus, the amount that remains stored in the bat-
teries throughout different parts of the day remains relatively
low.
Buyers case: If gtn + bt−1

n < dtn, the prosumer’s total gener-
ated and stored energy is not sufficient to cover their energy
demand dtn. Thus, the prosumer n acts as a buyer β, and aims
to purchase dtn − gtn − bt−1

n [kWh] amount of energy from the
MGO, in consideration of their personal energy needs which are
shaped by their respective shiftable and nonshiftable demands.
In the subsequent two sections, we study the overall inter-

actions of the sellers and the buyers with the MGO, in terms
of selling and purchasing energy, with consideration of their
unique personal energy generation and demand characteristics.
Toward achieving this goal, we adopt the principles of con-
tract theory [22]. Contract theory is a labor economics theory
that has originally been used for business management pur-
poses and mathematically models the behavior of actors with
competing interests, who aim to maximize their profit. In a
contract-theoretic model, there exist an “employer” and a set
of “employees.” The employer offers personalized contracts to
the employees, incentivizing them to demonstrate an optimal
behavior (in terms of resource usage) via providing rewards.
The contract has the form {reward, effort}, where the reward is
provided by the employer to the employee for the effort invested

by the latter one. In the specific category of contract-theoretic
models adopted here, named screening models, the employer
is unaware of the exact employees’ characteristics and screens
them to offer optimal contracts. In the rest of the analysis, the
theory of screeningmodels is adopted and appropriately adapted
in the microgrid system to capture the interactions of the MGO
(employer) with the sellers and buyers (employees). The key
notation is summarized in Table I.

III. SELLERS’ AND ELECTRICITY MARKET’S INTERACTIONS

In this section, we capture the interactions of the sellers
with the MGO in terms of determining the optimal amount
of energy that they sell based on the appropriate incentives,
i.e., rewards, provided by the MGO. Each seller s,∀s ∈ S ⊆ N

is characterized by their type τ ts = bt+1
s∑

∀sεS bt+1
s

∈ [0, 1], which

represents their normalized energy surplus among the sellers,
thus, showing their potential to sell energy to the MGO. For
notation convenience in the presentation, we consider τ t1 <
· · · < τ ts < · · · < τ t|S|.
Based on the principles of contract theory [22], each seller

acts as an “employee” investing their personal effort to the
“employer,” i.e., MGO, while the MGO incentivizes the sellers
by providing personalized rewards, e.g., fixed energy price, in
order for the MGO and the sellers to jointly optimize their
achieved utility. The sellers’ and the MGO’s utility functions, as
defined below in (1) and (2), respectively, represent their actual
profit (i.e., satisfaction). The seller’s effort is defined as ets =

bt+1
s

max∀sεS{bt+1
s } ∈ [0, 1], showing the relative capability of each

seller to sell energy to the MGO. Given that τ t1 < · · · < τ ts <
· · · τ t|S|, we have et1 < · · · < ets < · · · et|S|. The MGO provides
personalized rewards rts = τ tse

t
s to the sellers to incentivize them

to sell their available energy surplus. Therefore, a seller with a
higher potential to sell energy, who indeed sells a large amount
of energy, will receive a high reward. The interaction among the
MGO and the sellers, aiming at the joint optimization of their
profit by participating in the energy market, concludes to an
optimal contract (et∗s , r

t∗
s ) consisting of the optimal seller’s effort

et∗s and the MGO’s optimal provided personalized reward rt∗s .
Based on the above discussion, the utility functions of the

sellers and the MGO are designed as the actual profit of the
participants, while interacting among each other in the micro-
grid. The seller’s utility is captured by the received revenue
from selling energy to the MGO [first term of (1)] while also
considering their personal cost to locally produce the energy
via the exploitation of their personal renewable energy source
infrastructure [second term of (1)].

U t
s(e

t
s) = τ tsε(r

t
s(e

t
s))− pSets (1)

The seller’s personal cost to produce their energy locally,
including the degradation cost of the seller’s battery, is denoted
as pS ∈ R+ and, in the current analysis, is assumed to be a
unitless number. This parameter can be mapped to monetary
units, i.e., [$/kWh], when transferring this model in a real-life
implementation and business case. Also, the function ε(rts(e

t
s))

represents the evaluation function, i.e., the way a seller inter-
prets the received reward as personal satisfaction based on the
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enjoyed revenue. The evaluation function is a strictly increasing,
concave, and continuous function with respect to the received
reward, as a seller satisfaction increases monotonically with
respect to the received reward, while at some point, the seller’s
satisfaction becomes saturated. For demonstration purposes, and
without loss of generality, we consider ε(ets) =

√
rts(e

t
s). It is

highlighted that the sellers are not forced by the MGO to sell
their overall available energy surplus at each time slot. To the
contrary the sellers are incentivized in a personalized manner to
sell an optimal amount of energy that will ultimately optimize
their utility, following the principles and dynamics of contract
theory.
The MGO’s utility from interacting with the sellers is defined

as follows [22], [23]:

U t
MGO,buy(e) =

|S|∑
s=1

Prts · [ets − rts(e
t
s)] (2)

where e = [et1, . . . , e
t
s, . . . , e

t
|S|] is the sellers’ effort vector.

The MGO is unaware of the detailed sellers’ energy gener-
ation demand and storage characteristics, which in principle
could be considered as private information of each prosumer
and define the sellers’ types. Therefore, it is noted that the
MGO is not aware of the prosumers’ energy demand vector
D = [dt1, . . . , d

t
n, . . . , d

t
|N |] and renewable energy generation

vector G = [gt1, . . . , g
t
n, . . . , g

t
|N |] [kWh] per time slot t, which

is private information of each prosumer. Instead, theMGObuilds
the probability of each prosumer’s type (in this case seller’s
type) by exploiting historical data that are collected via the
interaction of the MGO with each prosumer. Thus, the MGO
estimates each seller’s type τ ts with probabilility Prts, where∑|S|

s=1 Prts = 1. Several types of probability distributions, such
as Gaussian, Poisson, and others, can be adopted based on the
nature of the examined energymarket. The specific distributions
of the seller’s types, and the correspondingprobabilitiesPrts, can
be determined in a real-life scenario according to the prosumers’
energy characteristics that can be collected from their monthly
electricity bills, based on a statistical or machine learning analy-
sis. TheMGO can generate profit by selling the energy collected
from the sellers to the buyers. Thus, (2) represents the MGO’s
unitless profit from buying energy from the sellers via their
invested effort ets [first termof (2)],while considering theMGO’s
cost to provide rewards rts to the sellers [second term of (2)].

A. Complete Information Scenario

Initially, we consider the benchmarking scenario, where the
MGO has complete information about the sellers’ types. The
MGO aims to maximize its own profit from each seller of
known type τ ts [ see (3a)], while providing sufficient rewards
to the sellers to maintain their business interactions and energy
surplus sales [see (3b)]. Thus, under the complete information
scenario regarding the sellers’ types, the interactions between
the MGO and the sellers can be captured by the following
contract-theoretic optimization problem:

max
{ets}∀s∈S

[ets − rts(e
t
s)] (3a)

s.t. τ tsε(e
t
s)− pSets � 0 ∀s ∈ S. (3b)

In this case, given that theMGOwill provide just the sufficient
rewards to incentivize the sellers to sell their energy surplus, (3b)
can be considered as an equality.
Theorem 1: The optimal personalized contract between the

MGO and each seller under the complete information scenario

is (et∗s , r
t∗
s ) = ( τ

t2
s

2p
2
S
, τt2

s

4p
2
S
).

Proof: By solving (3b) as an equality with respect to the

reward,wehave rts = (pSets
τt
s
)
2
. By substituting the latter outcome

in (3a), taking the first-order derivative with respect to the effort
ets, and setting the outcome equal to zero, we conclude that ets =
τt2
s

2p
2
S
. Thus, the optimal contract is (et∗s , r

t∗
s ) = ( τ

t2
s

2p
2
S
, τt2

s

4p
2
S
). �

The above outcome can be used mainly for benchmarking
purposes, as sellers will not reveal their private information
regarding their types, i.e., energy surplus, to the MGO, in a
real-life scenario.

B. Incomplete Information Scenario

In the remaining analysis of this section, we examine the
incomplete information scenario regarding the sellers’ types.
In pursuit of capturing the interactions between the sellers and
theMGO, five fundamental conditions are examined: individual
rationality (IR), incentive compatibility (IC), fairness, mono-
tonicity, and rationality. Those conditions are necessary and
sufficient in order to guarantee the feasibility and existence of an
optimal contract among theMGOand the sellers. Each condition
is analyzed and proved below, while its physical meaning is
provided within the context of the MGO’s and the sellers’
interaction.
Definition 1 [Individual Rationality (IR)]: Each seller should

receive a nonnegative utility, i.e., U t
s(e

t
s) = τ tsε(e

t
s)− pSets ≥

0 ∀s ∈ S, from the optimal contract (et∗s , r
t∗
s ).

Definition 2 [Incentive Compatibility (IC)]: Each seller
achieves the maximum possible utility when they receive a
contract aligned with their personal energy generation, demand,
and storage characteristics, i.e., τ tsε(e

t
s)− pSets ≥ τ tsε(e

t
s′)−

pSets′ ∀s, s′ ∈ S.
The physical meaning of the IR and IC conditions is that each

seller should be appropriately incentivized by the MGO by en-
joying a positive profit alignedwith their personal characteristics
in order to sell their energy in the microgrid.
Proposition 1 (Fairness): An optimal contract is fair, i.e., a

seller of higher (or equal) type should enjoy a higher (or equal)
reward: rts > rts′ ⇔ τ ts > τ ts′(r

t
s = rts′ ⇔ τ ts = τ ts′).

Proof: We prove the sufficiency and necessity of the fairness
condition. Assuming that τ ts > τ ts′ , we can write the following
IC constraints for the sellers s, s′ ∀s, s′εS, s 
= s′:

τ tsε(e
t
s)− pSets � τ tsε(e

t
s′)− pSets′ (4)

τ ts′ε(e
t
s′)− pSets′ � τ ts′ε(e

t
s)− pSets. (5)

By adding (4) and (5), we have

(τ ts − τ ts′)ε(e
t
s) � (τ ts − τ ts′)ε(e

t
s′). (6)

We know that τ ts > τ ts′ , and ε(rts(e
t
s)) is a strictly increasing

function with respect to rts, thus, we conclude that r
t
s > rts′ .
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On the other hand, assuming that rts > rts′ , we derive that
ε(rts(e

t
s)) > ε(rts′(e

t
s′)), thus, we rewrite (6) as: τ

t
s [ε(r

t
s(e

t
s))−

ε(rts′(e
t
s′))] ≥ τ ts′ [ε(r

t
s(e

t
s))− ε(rts′(e

t
s′))] and we conclude that

τ ts > τ ts′ . Similarly, we can prove rts = rts′ ⇔ τ ts = τ ts′ .
Proposition 2 (Monotonicity): An optimal contract should

have monotonic behavior, i.e., a seller of a higher type will sell
more energy and receive a higher reward.
Proof: A seller of higher type receives a higher reward

basedonProposition1, i.e., rt1 < · · · < rts < · · · < rt|S| ⇔ τ t1 <

· · · < τ ts < · · · < τ t|S|. Then, based on the monotonic relation-
ship among the reward rts and the effort ets, i.e., r

t
s = τ tse

t
s, we

conclude that et1 < · · · < ets < · · · < et|S|. �
Proposition 3 (Rationality): An optimal contract should be

rational, i.e., a seller of higher type should enjoy a higher utility.
Proof: We write the IC condition for two indicative sellers

s 
= s′ ∀s, s′ ∈ S: τ tsε(e
t
s)− pSets ≥ τ tsε(e

t
s′)− pSets′

τt
s>τt

s′⇐===⇒
τ tsε(e

t
s)− pSets ≥ τ ts′ε(e

t
s′)− pSets′ ⇔ U t

s(e
t
s) ≥ U t

s′(e
t
s′). We

generalize this outcome for any seller s ∀s ∈ S: τ t1 < · · · <
τ ts < · · · < τ t|S| ⇔ U t

1 < · · · < U t
s < · · · < U t

|S|. �
The physical meaning of the latter three conditions, i.e.,

fairness,monotonicity, and rationality, is that an optimal contract
(et∗s , r

t∗
s ) should guarantee all of them in order to incentivize the

sellers to sell part or all of their energy surplus during each time
slot t, instead of locally storing it for future use. Based on the
above analysis, the interactions among the MGO and the sellers
can be captured as a contract-theoretic optimization problem
aimed at determining the optimal personalized contracts. The
optimization problem aims at jointly maximizing the MGO’s
profit (7a), while guaranteeing the IR (7b), IC (7c), and fairness,
monotonicity, and rationality conditions (7d), and is defined as
follows:

max
{ets,rts}∀s∈S

|S|∑
s=1

[Pr(t)s (ets − rs(e
t
s))] (7a)

s.t. τ tsε(e
t
s)− pSets ≥ 0 ∀s ∈ S (IR) (7b)

τ tsε(e
t
s)− pSets ≥ τ tsε(e

t
s′)− pSets′ ∀s 
= s,′ s, s′ ∈ S (IC)

(7c)

0 ≤ rt1 < rt2 < · · · < rts < · · · < rt|S|. (7d)

The above optimization is clearly nonconvex. Thus, we will
reduce its constraints and rewrite it as a convex optimization
problem to allow for a tractable and feasible solution. Starting
with the IR constraint (7b) and based on the IC andmonotonicity
conditions, we have: τ tsε(e

t
s)− pSets ≥ τ tsε(e

t
1)− pSet1 ∀s ∈

S. Also, we know that τ ts > τ t1 ∀s ∈ S, thus, τ tsε(e
t
s)− pSets ≥

τ t1ε(e
t
1)− pSet1 ≥ 0. Also, given that the MGO provides just-

sufficient rewards to incentivize the sellers to participate in the
microgrid, we can equivalently replace the constraint in (7b)
with τ t1ε(e

t
1)− pSet1 = 0. Focusing on the reduction of the IC

constraints (7c),we introduce the following terminology: 1) s, s′,
s′ ∈ {1, . . . , s− 1}: downward IC constraints; 2) s, s− 1 ∀s ∈
S: local downward ICconstraints; 3) s, s′, s′ ∈ {s+ 1, . . . , |S|}:
upward IC constraints; 4) s, s+ 1 ∀s ∈ S: local upwards IC
constraints.

Lemma 1: All the downward IC constraints are captured by
the local downward IC constraints. �
Proof: We write the IC conditions for three sellers, s− 1, s,

s+ 1, as follows: τ ts+1ε(e
t
s+1)− pSets+1 ≥ τ ts+1ε(e

t
s)− pSets

and τ tsε(e
t
s)− pSets ≥ τ tsε(e

t
s−1)− pSets−1. We know that ets >

ets−1
ε↗⇐⇒ ε(ets) > ε(ets−1)

τt
s+1>τt

s⇐====⇒ τ ts+1[ε(e
t
s)− ε(ets−1)] >

τ ts [ε(e
t
s)− ε(ets−1)] ≥ pS(ets − ets−1). We apply recursively

the latter outcome for all the sellers: τ ts+1ε(e
t
s+1)− pSets+1 ≥

τ ts+1ε(e
t
s−1)− pSets−1 ≥ · · · ≥ τ ts+1ε(e

t
1)− pSet1. Thus, we

conclude that τ tsε(e
t
s)− pSets ≥ τ tsε(e

t
s−1)− pSets−1, i.e.,

all the downward IC constraints are captured by the local
downward IC constraints.
Lemma 2: All the upward IC constraints are captured by the

local downward IC constraint.
Proof: We write again the IC conditions for three indicative

sellers, s− 1, s, s+ 1, as follows:

τ ts−1ε(e
t
s−1)− pSets−1 ≥ τ ts−1ε(e

t
s)− pSets (8)

τ tsε(e
t
s)− pSets ≥ τ tsε(e

t
s+1)− pSets+1. (9)

Based on (9) and the fairness condition, we have the following
expression:

pts(e
t
s+1 − ets) ≥ τ ts [ε(e

t
s+1)− ε(ets)]

≥τt
s≥τt

s−1 τ ts−1[ε(e
t
s+1)− ε(ets)]. (10)

Based on (8) and (10), we have: τ ts−1ε(e
t
s−1)−

pSets−1 ≥ τ ts−1ε(e
t
s)− pSets ≥ τ ts−1ε(e

t
s+1)− pSets+1. Thus,

τ ts−1ε(e
t
s−1)− pSets−1 ≥ τ ts−1ε(e

t
s+1)− pSets+1, showing that

all the upward IC constraints hold true, if the IC condition is
satisfied for the seller with type τ ts−1. We apply recursively this
outcome: τ ts−1ε(e

t
s−1)− pSets−1 ≥ τ ts−1ε(e

t
s+1)− pSets+1 ≥

· · · ≥ τ ts−1ε(e
t
|S|)− pSet|S|. Thus, all the upward IC constraints

are captured by the local downward IC constraints. �
Based on the above analysis of the reduction of the IR and IC

constraints, we can rewrite the contract-theoretic optimization
problem (7a)–(7d) as follows:

max
{ets,rts}∀s∈S

|S|∑
s=1

[Pr(t)s (ets − rs(e
t
s))] (11a)

s.t. τ t1ε(e
t
1)− pSet1 ≥ 0 (11b)

τ tsε(e
t
s)− pSets = τ tsε(e

t
s−1)− pSets−1 (11c)

0 ≤ rt1 < rt2 < · · · < rts < · · · < rt|S|. (11d)

The optimization problem (11a)–(11d) is a convex optimiza-
tion problem and the optimal contract (et∗s , r

t∗
s ) can be deter-

mined based on standard convex optimizationmethods. Detailed
numerical results are presented in Section V.

IV. BUYERS’ AND ELECTRICITY MARKET’S INTERACTIONS

In this section, we focus on capturing the interactions of the
buyers with theMGO. The goal of each buyer β ∀β ∈ B ⊆ N
is to purchase the remaining amount of energy (dtβ − gtβ − bt−1

β )
[kWh], that cannot be supported by her local energy generation.
TheMGO aims to incentivize the buyers to buy the total amount
of energy that they need, by providing personalized rewards rtβ .

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 08,2022 at 15:38:51 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PATRIZI et al.: PROSUMER-CENTRIC SELF-SUSTAINED SMART GRID SYSTEMS 7

In our proposed approach, the interactions between the MGO
and the buyers are captured via a contract-theoretic model.
In particular, the buyers invest an “effort” etβ ∈ [0, 1], which

represents the percentage of energy that they buy with respect
to their total energy need, i.e., dtβ − gtβ − bt−1

β . Each buyer

is characterized by a type τ tβ =
dt
β−gt

β−bt−1
β

maxβ∈B{dt
β−gt

β−bt−1
β } , showing

its relative potential compared to the rest of the buyers in
terms of buying energy. The MGO offers personalized rewards
rtβ = τ tβe

t
β to each buyer, e.g., fixed energy price, in order to

incentivize them tobuy energy andnot postponeor decrease their
energy needs. The buyers’ utility is defined as the gained profit
from buying energy from the MGO and is defined as follows:

U t
β(e

t
β) = τ tβf(e

t
β)− pMetβ . (12)

The first term of (12) captures the buyer’s personalized sat-
isfaction from purchasing energy, where f(etβ) is the buyer’s

satisfaction function, e.g., f(etβ) =
√
rtβ(e

t
β). The latter one

captures the buyer’s satisfaction from the consumption of the
energy that they buy from the MGO. The buyer’s satisfaction
is a strictly increasing, continuous, and concave function with
respect to the received reward rtβ , as the buyer becomes more
satisfied by covering more of their appliances’ energy needs
while such satisfaction becomes saturated at a specific upper
limit of energy need. Also, pM ∈ [0, 1] here is considered as
a normalized dimensionless parameter representing the energy
price, however, in a real-life implementation it can be mapped
to realistic values and units [$/kWh] [26]. The MGO generates
profit by selling energy to the buyers at the normalized price
pM ∈ [0, 1]. TheMGO’s utility from selling energy to the buyers
is obtained as its total profit, and is defined as follows:

U t
MGO,sell(ebuy) =

|B|∑
β=1

Prtβ [pMetβ − rtβ(e
t
β)]. (13)

Asmentioned before, in the general case, theMGOhas partial
available information about the potential of each buyer to buy
energy, thus, it probabilistically estimates each buyer’s type τ tβ
with probability Prtβ , where

∑|B|
β=1 Prtβ = 1. Similarly to the

sellers’ case, several types of probability distributions can be
adopted based on the nature of the examined energy market
to realistically capture the buyers’ characteristics. The goal of
the MGO is to maximize its profit, while guaranteeing that the
buyers will buy energy from the microgrid market. Consider-
ing the benchmarking scenario of complete information of the
buyers’ types, the interactions between theMGO and the buyers
are formulated as a maximization problem of the MGO’s profit
(14a), while considering the optimization of the buyers’ utilities
(14b)

max
{etβ}∀β∈B

[pMetβ − rtβ(e
t
β)] (14a)

s.t. τ tβf(e
t
β)− pMetβ ≥ 0 ∀β ∈ B. (14b)

Theorem 2: The optimal contract among the MGO and each
buyer β under the complete information scenario is (et∗β , r

t∗
β ) =

(
τt2

β

2pM
,
τt2

β

4 ).

Proof: It follows the same philosophy, reasoning and steps of
Theorem 1.
Under the realistic scenario of incomplete information regard-

ing the buyers’ types, the conditions of IR (15b), IC (15c), and
fairness, monotonicity, and rationality (15d) should hold true.
Also, the optimal contract jointly maximizes the MGO’s utility,
i.e., profit, as follows:

max
{etβ ,rtβ}∀β∈B

|B|∑
β=1

Pr
(t)
β [pMetβ − rtβ(e

t
β)] (15a)

s.t. τ tβf(e
t
β)− pMetβ ≥ 0 ∀β ∈ B (IR) (15b)

τ tβf(e
t
β)− pMetβ ≥ τ tβf(e

t
β′)− pMetβ′ ∀β 
= β′ (IC)

(15c)

0 ≤ rt1 < rt2 < · · · < rtβ < · · · < rt|B|. (15d)

The optimization problem (15a)–(15d) is nonconvex. Toward
solving this problem, we follow similar reasoning as in Sec-
tion III, and we conclude to the following convex optimization
problem,which can be solvedwith standard convex optimization
methods:

max
{etβ ,rtβ}∀β∈B

|B|∑
β=1

Pr
(t)
β [pMetβ − rtβ(e

t
β)] (16a)

s.t. τ t1f(e
t
1)− pMet1 = 0 (16b)

τ tβf(e
t
β)− pMetβ ≥ τ tβf(e

t
β−1)− pMetβ−1 (16c)

0 ≤ rt1 < rt2 < · · · < rtβ < · · · < rt|B|. (16d)

The solution of the above problem concludes to the optimal
contracts (et∗β , r

t∗
β ) ∀β ∈ B, determining the amount of pur-

chased energy of the buyers and theMGO’s offered personalized
rewards to the buyers.

V. NUMERICAL RESULTS

In this section, a detailed evaluation analysis of the proposed
contract-theoretic approaches is presented, via modeling and
simulation, in order to demonstrate and assess the sellers and
buyers interactions with the microgrid operator. Specifically, the
pure operation characteristics and performance of the proposed
framework for both the sellers and the buyers are presented in
Section V-A. The behavior of the prosumers, in terms of acting
either as sellers or buyers, is studied inmore detail in SectionV-B
with respect to the energy price, the energy generation cost,
and the prosumers’ energy generation characteristics during
a day. Finally, the joint behavior of the prosumers and the
MGO throughout the day for different energy generation use
case scenarios is studied in Section V-C, toward demonstrating
and gaining more insights about their tight interconnection and
interactions.
In the rest of the simulation results, we consider the following

parameters: dtn ∈ [0.50, 1.50] kWh, gtn ∈ [0, 2] kWh, pM = 2,
pS = 2. In the rest of the evaluation the key parameters have
been set based on actual data for the year of 2020, derived
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Fig. 1. Pure operation performance under the complete and incomplete information scenarios. (a) Sellers’ and buyers’ types. (b) Sellers’ and buyers’ efforts.
(c) Sellers’ and buyers’ rewards. (d) Sellers’ and buyers’ utilities.

from the U.S. Energy Information Administration [27]. Fur-
thermore, for demonstration purposes and unless otherwise ex-
plicitly stated, we examine the system operation for |T | = 24
hours and |N | = 100 prosumers. The probabilities Prts and
Prtβ are obtained assuming that the sellers’ and buyers’ types
follow uniform distributions. For all the presented numerical
results, a Monte Carlo analysis has been performed of 10 000
executions to receive more representative outcomes. We have
used MATLAB to perform the simulations, and the convex
optimization problems (11a)–(11d) and (16a)–(16d)were solved
based on the FMINCON optimization tool of MATLAB, where
the objective function and the corresponding constraints are
provided as inputs. The proposed framework’s evaluation was
conducted on a desktop computer, 3.8 GHz Intel Core i9, with
32 GB of DDR4 RAM.

A. Pure Operation Performance

Initially, the pure operation performance of the proposed
prosumer-centric self-sustained smart grid system model based
on the contract-theoretic approach is presented to capture the
interactions of both the sellers (Section III) and the buyers (Sec-
tion IV) with the MGO. One indicative time slot t is considered,
where both types of interactions are analyzed.
In particular, Fig. 1(a)–(d) presents the sellers’ and buyers’

types (τ ts , τ
t
β), efforts (ets, e

t
β), rewards (rts, r

t
β), and utilities

(U t
s , U

t
β), respectively, under the scenarios of complete and

incomplete information of the prosumers’ types from theMGO’s
perspective. For demonstrationpurposes, the sellers’ andbuyers’
IDs have been sorted with respect to their increasing types. The
results show that the higher the seller’s type is [see Fig. 1(a)],
the more energy surplus it has, thus, it is incentivized more by
the MGO to sell its available energy by being offered a higher
reward [Fig. 1(c)—left vertical axis]. Consequently, it appears
that indeed it sells more energy by investing a greater effort
[Fig. 1(b)—left vertical axis]. Thus, the seller of greater energy
surplus ultimately achieves a higher utility [Fig. 1(d)—left ver-
tical axis]. With reference to the sellers, and by comparing the
complete (i.e., benchmarking) and the incomplete (i.e., realistic)
information scenarios, we observe that under the former, the
MGO can fully exploit the sellers’ energy surplus. This in turn
means that the MGO provides to the sellers higher rewards
to incentivize them to sell the vast majority of their available
energy [Fig. 1(c)—left vertical axis], which indeed translates
to having the sellers actually selling a higher amount of energy

Fig. 2. Incentive compatibility condition (a) Seller’s utility. (b) Buyer’s utility.

[Fig. 1(b)—left vertical axis], as compared to the incomplete
information scenario.
Focusing our analysis on the buyers perspective and inter-

actions with the MGO, we observe that a buyer with higher
need to purchase energy, i.e., of higher type [see Fig. 1(a)], is
incentivizedmore by theMGO to do so [Fig. 1(c)—right vertical
axis]. Thus, a buyer of higher type byultimately purchasingmore
energy [Fig. 1(b)—right vertical axis], it covers the majority
of its energy needs and accordingly achieves a higher utility
[Fig. 1(d)—right vertical axis]. Comparing the complete and
incomplete information scenarios with reference to the buyers,
the results confirm our theoretical analysis and observation, by
clearly demonstrating that higher rewards are provided to the
buyers [Fig. 1(c)—right vertical axis] in the complete infor-
mation scenario, who purchase more energy [Fig. 1(b)—right
vertical axis] compared to the incomplete information scenario.
It should be highlighted that under the complete information
scenario, both the sellers and the buyers achieve zero utility
[Fig. 1(d)—right vertical axis], as the MGO provides just the
sufficient rewards tomarginally incentivize them to contribute to
themicrogrid’s smooth and seamless operation. Also, the results
confirm that the individual rationality, incentive compatibility,
fairness, monotonicity, and rationality conditions hold true for
both the sellers and the buyers under all the scenarios.
Specifically, Fig. 2(a) and (b) presents the sellers’ and buy-

ers’ utility for the corresponding optimal contracts derived for
each type for three indicative sellers and buyers with IDs s =
{30, 40, 50}, and β = {30, 40, 50}, respectively. The results
reveal that both the sellers and the buyers achieve the highest pos-
sible utility, when receiving the optimal personalized contract
that is designed accounting for their unique energy generation,
demand, and storage characteristics. This observation confirms
the validity of the incentive compatibility condition. Also, the
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Fig. 3. MGO’s utility and social welfare under the complete and incomplete
information scenarios. (a) Microgrid operator’s utility. (b) Social welfare.

results show that a seller or buyer of a higher type achieves a
higher utility, confirming the validity of the rationality condition.
Moreover, Fig. 3(a) and (b) illustrates the MGO’s utility and

overall microgrid system’s social welfare as a function of the
number of prosumers residing in the microgrid system under
the complete and incomplete information scenarios. The results
show that better MGO’s utility and social welfare is achieved
under the complete information scenario, as the MGO can
provide more targeted rewards by knowing the sellers’ and buy-
ers’ exact types. However, it is highlighted that the incomplete
information scenario, which is a realistic implementation of the
microgrid system, achieves acceptable socialwelfare, especially,
for increasing number of prosumers, with only 7% worse social
welfare compared to the complete information scenario, for the
case of 100 prosumers.

B. Prosumer’s Behavior Throughout the Day

In this section, we study the impact of various system and
prosumer characteristics, such as energy price pM , energy gen-
eration cost pS , and prosumer’s energy generation gtn ∀n ∈
N, ∀t ∈ T , on the behavior of the prosumers in terms of acting
as sellers or buyers, throughout the operation of a day.
In particular, Fig. 4(a) and (b) presents the percentage of

prosumers that act as sellers in order to maximize the average
prosumers’ utility, the MGO’s utility, and the social welfare,
respectively, as a function of the number of prosumers in the
microgrid. Three different scenarios of energy price pM and
energy generation costs pS are considered: 1) even cost with
pM = pS = 2; 2) high buyer cost with pM = 6, pS = 2; 3) high
seller cost with pM = 2, pS = 6. The results reveal that when
the energy generation cost is high (high seller cost scenario), a
smaller percentage of sellers is incentivized to sell energy, as
their energy production cost is high, and the sellers prefer to
keep their generated energy for future use. In contrast, when the
energy price is high (high buyer cost scenario), the sellers can
achieve a higher profit by selling their generated energy to the
MGO, thus, a higher percentage of prosumers acts as sellers. The
even cost scenario presents an intermediate behavior between
the high seller and the high buyer cost scenarios. Also, com-
paring the prosumer-centric approach [see Fig. 4(a)] against an
MGO-centric approach [see Fig. 4(b)] that aims at maximizing
the MGO utility, we observe in the latter case a higher offset of
the percentages of the prosumers acting as sellers for the high
seller and even cost scenarios, as theMGOaggressively provides

rewards to the prosumers to sell their energy. The opposite holds
true for the high buyer scenario, as the MGO prefers to sell its
available energy to the buyers at a higher price, as compared
to buying energy from the sellers. An intermediate behavior of
the percentages of the prosumers acting as sellers is observed
when the goal is to solely maximize their social welfare [see
Fig. 4(c)], as the selfish behavior of theMGO and the prosumers
is balanced.
Fig. 5(a) and (b) presents the prosumers’ average energy

generation and the percentage of them that act as sellers during
the day, respectively, for two comparative scenarios: 1) high
generation scenario; and 2) low generation scenario, where
the prosumers have high and low energy generation capacity,
respectively. The prosumers’ energy generation is solely based
on solar photovoltaic panels. The results reveal that during the
sunny periods of the day, the prosumers generate more energy
[see Fig. 5(a)], thus, a greater percentage of them is incentivized
to act as sellers [see Fig. 5(b)] in both examined scenarios. In
the high generation scenario, it is observed that the prosumers
generate sufficient amount of energy to cover their personal
energy needs, thus, they act as sellers for the majority of the
day’s duration. It is noted that the energy price and generation
costs are assumed to remain fixed throughout the day.
The above analysis is extended in Figs. 5 and 6, where both

the prosumers and MGO average utilities are presented for
two different scenarios: high buyer cost with pM = 6, pS = 2
(Fig. 5); and high seller cost with pM = 2, pS = 6 (see Fig. 6),
respectively. The energy generation characteristics for both sce-
narios follow the behavior presented in Fig. 5(a). The results
reveal that when the energy price pM is high and the energy
generation cost pS is low, more prosumers act as sellers, thus,
their average utility is higher [see Fig. 6(a)], compared to the
alternative scenario [see Fig. 7(a)]. This trend is expected as the
prosumers generate energy with low cost. The offset of the high
and low Generation scenarios in Figs. 8(a) and 9(a) stems from
the corresponding percentage of prosumers that act as sellers.
Also, the benefit of the prosumers corresponds to the loss of the
MGO, thus, the exact flipped trend is observed in Figs. 6(b) and
7(b) regarding the achieved MGO’s utility.

C. Impact of Energy Generation and Demand on the
Prosumers’ and MGO’s Interactions

In the following, we focus our study on the impact of the
prosumers’ energy generation and demand characteristics on
their interactions with the microgrid system during a day. We
consider an evolving behavior where the prosumers’ demand
is low for t ∈ [0, 8], then it increases for t ∈ [8, 16], and then
drops again for t ∈ [16, 24], representing the realistic prosumers’
energy demand during the day. The aforementioned case, is
evaluated and studied under three different scenarios regarding
the prosumers’ energy generation capacity, i.e, high, medium,
and low. Following a similarmethodologywith our evaluation in
the previous figures in this section (i.e., considering high buyer
cost and high seller cost alternatives), two sets of results are
produced and presented, differentiated exactly with respect to
the considered energy price pM , and the energy generation cost
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Fig. 4. Percentage of prosumers acting as sellers to achieve maximum (a) prosumers’ average utility (i.e., prosumer-centric), (b) MGO utility (i.e., MGO-centric),
and (c) social welfare, versus increasing number of prosumers, under three scenarios.

Fig. 5. (a) Average energy generation. (b) Percentage of prosumers acting as
sellers under high and low energy generation.

Fig. 6. (a) Average prosumers’ utility. (b)MGO’s utility for pM = 6, pS = 2,
under high and low energy generation.

Fig. 7. (a) Average prosumers’ utility. (b) MGO’s utility for pM = 2, pS = 6
under high and low energy generation scenarios.

pS , i.e., pM = 6, pS = 2 for Fig. 8(a)–(d) and pM = 2, pS = 6
for Fig. 9(a)–(d).
Specifically, Fig. 8(a)–(c) presents the percentage of pro-

sumers acting as sellers, their average utility, and the MGO’s
utility during the day, respectively, for the three aforementioned
energy generation scenarios. The results reveal that in the high
energy generation scenario, all the prosumers act as sellers, as
they have sufficient energy surplus to support their personal

energy need, while the exact opposite holds true in the Low
energy generation scenario [see Fig. 8(a)]. In order to gain
insight about the behavior of the curves for the medium energy
generation scenario, we should turn our attention to Fig. 8(d).
Particularly, with reference to the medium energy generation

scenario, Fig. 8(d) presents the behavior of the prosumers’
average utility and the MGO’s utility for different percentages
of prosumers acting as sellers. We observe that the maximum
prosumers’ average utility is achieved,when approximately 60%
of the prosumers act as sellers. Correlating this value with the re-
sults in Fig. 8(a), we observe that approximately 60% of the pro-
sumers act as sellers, except for the time interval 11 A.M.–3 P.M.,
when the prosumers’ energy demand becomes high, and accord-
ingly fewer prosumers are acting as sellers. Also, given that the
energy generation cost is low, i.e., pS = 2, as compared to the
energy price, which is high, i.e., pM = 6, the prosumers that
generate a lot of energy achieve higher utility compared to the
scenario of generating small amount of energy [see Fig. 8(b)].
The exact opposite is observed from the MGO’s perspective
[see Fig. 8(c)]. Focusing on the medium energy generation
scenario, we observe that during the morning hours t ∈ [0, 11],
the prosumers generate more energy, thus, accumulating energy
surplus, and 60% of them act as sellers [see Fig. 8(a)], achieving
the maximum possible utility [see Fig. 8(d)], thus, their average
achieved utility increases [see Fig. 8(b)]. In the slot t ∈ [10, 11],
their energy demands increase and the percentage of prosumers
acting as sellers drops to 20% [see Fig. 8(a)], achieving the
lowest possible utility [see Fig. 8(d)], driving their average utility
to drop [see Fig. 8(b)]. Similar analysis can be derived and
followed for the rest of the day. Still focusing on the medium
energy generation scenario but from the MGO’s perspective,
we jointly study Fig. 8(c) and (d). We observe that for the
time periods t ∈ [0, 10] ∪ [15, 24], where the percentage of the
prosumers acting as sellers is approximately 60% [see Fig. 8(a)],
the MGO achieves a relatively high utility [see Fig. 8(d)], and
slowly increases its profit during those time periods. On the other
hand, for the time interval t ∈ [10, 15], where only 20% of the
prosumers act as sellers [see Fig. 8(a)] due to their personal high
energy demand, the MGO achieves the highest possible utility
[see Fig. 8(d)], as the MGO has set its price at a high value,
i.e., pM = 6. Thus, during this period, the MGO accumulates a
higher profit.
Last, a symmetric scenario is presented in Fig. 9, where a low

energy price (pM = 2) and high energy generation cost (pS = 6)
is considered instead. The point that should be highlight here
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Fig. 8. (a) Percentage of prosumers acting as sellers, (b) prosumers’ average utility, and (c) MGO’s utility during the day for the three energy generation scenarios
(pM = 6, pS = 2). (d) achieved utility in the system of for different percentages of prosumers functioning as sellers.

Fig. 9. (a) Percentage of prosumers acting as sellers, (b) prosumers’ average utility, and (c) MGO’s utility during the day for the three energy generation scenarios
(pM = 2, pS = 6). (d) achieved utility in the system for different percentages of prosumers functioning as sellers.

Fig. 10. Comparative evaluation—buyers and sellers utility and MGO’s utility for the buyers and sellers market, respectively.

Fig. 11. (a) Buyers and (b) sellers social welfare.

is that the average utility of the prosumers with high energy
generation is lower compared to the ones with low energy
generation as the energy generation cost is higher. The exact
opposite behavior is presented by the MGO’s utility, as more
prosumers tend to buy energy from it.

D. Comparative Evaluation

In the following,weprovide a detailed comparative evaluation
analysis of the proposed framework, against alternative

strategies, with respect to both the sellers’ and the buyers’ inter-
actions with the MGO. Specifically, we consider the following
scenarios: 1) incomplete: the proposed realistic incomplete
information scenario of the prosumers’ types from the MGO’s
perspective; 2)–4) max, min, and random: the prosumers
sell/buy their maximum, minimum, and random amount of
energy, respectively; 5) Scenario 1: the prosumers sell/buy in
total the same amount of energy as in the proposed incomplete
information scenario (for fairness in the comparison) allowing
first the prosumers of higher type to sell/buy their total amount
of energy; 6) Scenario 2: the sellers sell in total the same amount
of energy as in the proposed incomplete information scenario,
however, the sellers that will sell their total amount of energy
are selected randomly. Fig. 10 (a)–(d) presents the buyers’ and
sellers’ utility as a function of their type (the sellers’ and buyers’
IDs have been sorted with respect to their increasing types), as
well as the MGO utility. The results reveal that the proposed
incomplete information contract-theoretic framework overall
outperforms all other scenarios, achieving better results for the
prosumers, while simultaneously leading to realistic benefits
for the MGO. It is noted that though the max scenario leads to
higher values for the MGO utility, this happens at the cost of
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significantly penalizing the prosumers (both sellers and buyers),
leading to very low utility values for the overwhelming majority
of them. The combined effect of each framework, accounting
for both the prosumers and MGO utilities, is demonstrated by
the corresponding social welfare as shown in Fig. 11(a) and (b),
referring to the behavior of the overall examined system, where
we clearly see that the proposed framework achieves higher
values than all other examined strategies.

VI. CONCLUSION

In this article, the paradigmof prosumer-centric self-sustained
smart grid systems is introduced, by capturing and properly
modeling the interactions of the prosumers with the microgrid
operator via a labor economics-based approach. The prosumers
throughout the system operation may serve as sellers or buyers,
based on their personal energy generation, demand, and storage
characteristics. The MGO offers personalized rewards to the
sellers and buyers to incentivize them to sell and purchase
energy, respectively. The contract-theoretic optimization prob-
lems between the MGO and the sellers and the MGO and the
buyers respectively, are formulated and solved to determine
the optimal personalized contracts, i.e., rewards and amount
of sold/purchased energy. Detailed numerical and comparative
evaluation results—obtained via modeling and simulation—are
presented to demonstrate the operation of the proposed frame-
work andhighlight itsmain characteristics, under various diverse
scenarios.
Part of our current and future work refers to the incorporation

of the prosumers reactions to the energy price fluctuation, which
introduces risk in their decision to act as sellers or buyers. In
our efforts to study and address this problem, the principles of
prospect theory are adopted. Furthermore, along the same lines,
we plan to consider a systemwhere multipleMGOsmay coexist
and therefore the prosumers may dynamically get associated
with differentMGOs at different times, thus, introducing several
uncertainties within a more competitive market overall.
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