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Abstract 

Research suggests that evaluations of an object can be jointly influenced by (1) the mere co-

occurrence of the object with a pleasant or unpleasant stimulus (e.g., mere co-occurrence of 

object A and negative event B) and (2) the object’s specific relation to the co-occurring stimulus 

(e.g., object A starts vs. stops negative event B). Three experiments investigated the impact of 

cognitive load during learning on the effects of stimulus co-occurrence and stimulus relations. 

Counter to the shared prediction of competing theories suggesting that effects of stimulus 

relations should be reduced by cognitive load during learning, effects of stimulus relations were 

greater (rather than smaller) under high-load compared to low-load conditions. Effects of 

stimulus co-occurrence were not significantly affected by cognitive load. The results are 

discussed in terms of theories suggesting that cognitive load can influence behavioral outcomes 

via strategic shifts in resource allocation in response to task-specific affordances.  

 

Keywords: cognitive load; dual-process theory; evaluative conditioning; propositional learning; 

resource allocation 
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Research on evaluative conditioning (EC) suggests that, when a neutral conditioned 

stimulus (CS) repeatedly co-occurs with a positive or negative unconditioned stimulus (US), 

people will show an evaluative response to the CS that matches the valence of the US (for a 

meta-analysis, see Hofmann, De Houwer, Perugini, Bayens, & Crombez, 2010). For a long time, 

EC effects have been explained in terms of associative learning mechanisms, involving the 

automatic formation of mental associations in memory (e.g., Baeyens, Eelen, Crombez, & Van 

den Bergh, 1992; Martin & Levey, 1978). More recently, associative accounts have been 

challenged by theories that attribute EC effects to propositional learning mechanisms, involving 

the non-automatic formation of mental propositions about the relation between a CS and a co-

occurring US (e.g., De Houwer, 2018; De Houwer, Van Dessel, & Moran, 2020). Integrating the 

central ideas of both accounts, dual-process accounts suggest that EC effects can be the result of 

either associative or propositional learning, with their respective contributions depending on the 

processing conditions during the encoding of CS-US pairings (e.g., Gawronski & Bodenhausen, 

2011, 2018).    

The current research was inspired by the dual-process hypothesis that evaluative 

responses to a CS can be jointly influenced by (1) its mere co-occurrence with a positive or 

negative US and (2) the CS’s specific relation to the co-occurring US. In cases involving 

assimilative relations between a CS and a co-occurring US (e.g., object A starts negative event 

B), the two effects influence CS evaluations in the same direction. However, in cases involving 

contrastive relations between a CS and a co-occurring US (e.g., object A stops negative event B), 

the two effects influence CS evaluations in opposite directions (e.g., Heycke & Gawronski, 

2020; Hu, Gawronski, & Balas, 2017; Kukken, Hütter, & Holland, 2020; Moran & Bar-Anan, 
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2013).1 According to dual-process accounts, mere co-occurrence effects are driven by an 

associative learning mechanism, whereas effects of stimulus relations are driven by a 

propositional learning mechanism. Although joint effects of CS-US co-occurrence and CS-US 

relations can also be explained by single-process propositional accounts (for discussions, see 

Heycke & Gawronski, 2020; Van Dessel, Gawronski, & De Houwer, 2019), a unique assumption 

of dual-process accounts is that the two effects should have distinct functional properties, due to 

the presumed independence of their underlying mental processes (Gawronski & Bodenhausen, 

2018).  

Expanding on these ideas, the current research aimed to test the dual-process hypothesis 

that cognitive load during learning should selectively impair the non-automatic formation of 

mental propositions about CS-US relations without affecting the automatic formation of 

associations in memory (see Gawronski & Bodenhausen, 2014, 2018). These assumptions imply 

that cognitive load during learning should selectively reduce effects of CS-US relations without 

affecting effects of CS-US co-occurrence. These predictions were tested against alternative 

predictions derived from single-process propositional accounts, which reject the idea of 

automatic association formation (see De Houwer, 2018; De Houwer et al., 2020). According to 

single-process propositional accounts, mere co-occurrence effects in cases involving contrastive 

relations do not result from the automatic formation of associations during learning. Instead, 

such effects can be explained as the result of incomplete retrieval of stored propositional 

information during the expression of an evaluative response (e.g., retrieval of A is related to B 

                                                 
1 The distinction between assimilative and contrastive relations subsumes a wide range of dichotomous or bipolar 

dimensions with one end-point reflecting opposition between the co-occurring stimuli. Examples include causality 

(e.g., A causes vs. prevents B), similarity (e.g., A is similar vs. dissimilar to B), or sentiments (e.g., A likes vs. 

dislikes B). For a detailed discussion of potential relations between co-occurring stimuli and their conceptual 

properties, see Hughes, Ye, Van Dessel, and De Houwer (2019). 
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instead of A stops B; see Van Dessel et al., 2019). Thus, to the extent that cognitive load during 

learning increases the likelihood of incomplete retrieval, cognitive load during learning should 

reduce effects of CS-US relations and increase effects of CS-US co-occurrence. Specifically, 

under conditions of low cognitive load during learning, retrieval of stored propositional 

information should be more likely to be complete, which should increase effects CS-US relations 

and decrease effects of CS-US co-occurrence. In contrast, under conditions of high cognitive 

load during learning, retrieval of stored propositional information should be more likely to be 

incomplete, which should decrease effects CS-US relations and increase effects of CS-US co-

occurrence.  

Counter to the shared prediction of the two accounts regarding the impact of cognitive 

load on the effect of CS-US relations, three experiments found that effects of CS-US relations 

were greater (rather than smaller) under conditions of high cognitive load compared to 

conditions of low cognitive load. Because the finding contradicts dominant theorizing about 

cognitive-load effects and the processing of stimulus relations, we discuss this finding in terms 

of its implications for how cognitive load may influence the strategic allocation of mental 

resources instead of treating it as evidence for or against a particular mental-process theory of 

EC. Yet, to provide sufficient background for the reported experiments, we will briefly review 

the available evidence regarding effects of cognitive load on EC and the impact of CS-US co-

occurrence and CS-US relations. 

Cognitive-Load Effects on EC 

Challenging long-standing assumptions about the automaticity of EC effects, several 

studies showed that cognitive load during the encoding of simple CS-US pairings reduces the 

overall size of EC effects (e.g., Davies, El-Deredy, Zandstra, & Blanchette, 2012; Dedonder, 
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Corneille, Yzerbyt, & Kuppens, 2010; Mierop, Hütter, & Corneille, 2017; Pleyers, Corneille, 

Yzerbyt, & Luminet, 2009; for a review, see Corneille & Stahl, 2019). These results are 

consistent with the hypothesis that EC effects can be product of a resource-dependent 

propositional learning mechanism (e.g., De Houwer, 2018; De Houwer et al., 2020). However, 

the obtained reduction of EC effects under cognitive load does not necessarily contradict the 

dual-process hypothesis that EC effects can also be the product of a resource-independent 

associative learning mechanism (e.g., Gawronski & Bodenhausen, 2011, 2018). As noted by 

Gawronski and Bodenhausen (2018), while significant differences across cognitive-load 

conditions are informative about the contribution of resource-dependent learning mechanisms, 

claims about the operation of additional resource-independent learning mechanisms have to be 

evaluated based on whether there is a residual EC effect under cognitive load. Moreover, to the 

extent that EC effects resulting from resource-independent mechanisms are relatively small, lack 

of a significant EC effect under cognitive load could be due to low statistical power rather than 

genuine non-existence of resource-independent EC. Consistent with these arguments, Mierop et 

al. (2017) report non-significant residual EC effects under cognitive-load conditions in three 

relatively low powered studies (Ns = 34, 41, 61, respectively), while an integrative analysis of 

the combined data from the three studies (N = 136) did obtain a significant residual EC effect 

under cognitive load. Thus, although there is clear evidence for the contribution of resource-

dependent processes to EC (e.g., non-automatic generation of mental propositions), the available 

evidence against the role of resource-independent processes (e.g., automatic formation of mental 

associations) is still inconclusive.  



COGNITIVE LOAD  7 

CS-US Co-Occurrence and CS-US Relations 

Expanding the focus from operating conditions (i.e., automatic vs. non-automatic) to 

operating principles (i.e., associative vs. propositional), some studies aimed to provide deeper 

insights into the mental processes underlying EC effects by investigating effects of CS-US co-

occurrence and CS-US relations. Early studies suggested that joint effects of CS-US co-

occurrence and CS-US relations could potentially be identified via dissociations on explicit and 

implicit measures (for a review of implicit measures, see Gawronski & De Houwer, 2014). 

Whereas evaluations captured by explicit measures (e.g., self-reported evaluative ratings) have 

been found to reliably reflect effects of CS-US relations, some studies found that evaluations 

captured by implicit measures (e.g., evaluative priming effects) reflected unqualified effects of 

mere CS-US co-occurrences (e.g., Hu et al., 2017, Experiments 1 and 2; Moran & Bar-Anan, 

2013). For example, when participants were repeatedly presented with information that a 

pharmaceutical product prevents a negative health condition, they subsequently showed a 

positive response to the product on an explicit measure (reflecting the product’s relation to the 

negative health condition) and a negative response on an implicit measures (reflecting the 

product’s co-occurrence with the negative health condition; see Hu et al., 2017, Experiments 1 

and 2).  

While the described dissociation is consistent with the predictions of dual-process 

accounts (e.g., Gawronski & Bodenhausen, 2006, 2011, 2018), the full body of evidence 

regarding mere co-occurrence effects on implicit measures is rather mixed and inconclusive (for 

a review, see Kurdi & Dunham, 2020). While some studies found unqualified co-occurrence 

effects on implicit measures (e.g., Moran & Bar-Anan, 2013), other studies found attenuated co-

occurrence effects on implicit measures in cases involving contrastive CS-US relations (e.g., 
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Zanon, De Houwer, & Gast, 2012), while others found strong effects of CS-US relations and no 

effects of mere co-occurrence (e.g., Gawronski, Walther, & Blank, 2005, Experiment 1). In 

addition to the mixed evidence, a major interpretational problem in this line of research is that 

dissociations between explicit and implicit measures could be driven by processing differences 

during the measurement of evaluative responses rather than two distinct learning mechanisms 

(see Van Dessel et al., 2019). For example, based on the idea that implicit measures capture 

relatively fast responses and explicit measures typically provide more time for evaluations of a 

target object, dissociations between implicit and explicit measures may reflect differences in the 

retrieval of stored propositional information rather than two distinct learning mechanisms. Thus, 

in line with the assumptions of single-process propositional accounts (e.g., De Houwer, 2018; De 

Houwer et al., 2020), slow evaluations captured by explicit measures may be shaped by 

completely retrieved propositions (e.g., A prevents B), while fast evaluations captured by implicit 

measures may be driven by incompletely retrieved propositions (e.g., A is related to B).  

To address these ambiguities, some researchers have utilized multinomial modeling (see 

Hütter & Klauer, 2016) to quantify the contributions of CS-US co-occurrence and CS-US 

relations to responses on a single task (e.g., Gawronski & Brannon, in press; Heycke & 

Gawronski, 2020; Kukken et al., 2020). Consistent with the idea that CS-US co-occurrence and 

CS-US relations can jointly influence evaluative responses, research using a multinomial 

modeling approach has found scores that reliably differed from a neutral baseline for both a 

model parameter capturing effects of CS-US co-occurrence and a model parameter capturing 

effects of CS-US relations. Expanding on these findings, several studies aimed to provide deeper 

insights into the contribution of learning-related and judgment-related processes to the effects of 

CS-US co-occurrence and CS-US relations by separately manipulating processing conditions 
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during learning and the measurement of evaluative responses (e.g., Gawronski & Brannon, in 

press; Heycke & Gawronski, 2020).  

The Current Research 

An interesting question linking operating conditions (i.e., automatic vs. non-automatic) to 

operating principles (i.e., associative vs. propositional) is how cognitive load during learning 

affects the impact of CS-US co-occurrence and CS-US relations. According to dual-process 

accounts (e.g., Gawronski & Bodenhausen, 2018), effects of CS-US co-occurrence are driven by 

an associative learning mechanism involving the automatic formation of mental associations, 

while effects of CS-US relations are driven by a propositional learning mechanism involving the 

non-automatic formation of mental propositions about CS-US relations. From this perspective, 

cognitive load during learning should reduce the impact of CS-US relations without affecting the 

impact of CS-US co-occurrence. Single-process propositional accounts (e.g., De Houwer, 2018) 

reject the idea of automatic association formation and instead suggest that mere co-occurrence 

effects can result from incomplete retrieval of stored propositional information during the 

expression of evaluative responses (e.g., retrieval of A is related to B instead of A prevents B). 

Thus, to the extent that cognitive load during learning increases the likelihood of incomplete 

retrieval by impairing the storage of propositional information, cognitive load during learning 

should reduce the impact of CS-US relations and increase the impact of CS-US co-occurrence. 

The main goal of the current research was to test these competing predictions.  

To this end, three experiments used a learning paradigm by Hu et al. (2017, Experiment 

3) and Heycke and Gawronski’s (2020) RCB model, a multinomial model to quantify effects of 

CS-US co-occurrence and CS-US relations on evaluative responses (see also Kukken et al., 

2020). Participants were presented with pairings of pharmaceutical products (CS) and images of 
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positive or negative health conditions (US). For half of the pairings, participants received 

information that the pharmaceutical product causes the depicted health condition. For the 

remaining half, participants received information that the pharmaceutical product prevents the 

depicted health condition. Participants’ task was to form an impression of the pharmaceutical 

products based on the presented information. Afterwards, participants were presented with the 

pharmaceutical products one-by-one and asked to indicate whether or not they would choose the 

product (yes vs. no).  

Applied to Hu et al.’s (2017) learning paradigm, Heycke and Gawronski’s (2020) RCB 

model captures patterns of evaluative responses to four kinds of stimuli: (1) pharmaceutical 

products that cause positive health outcomes, (2) pharmaceutical products that cause negative 

health outcomes, (3) pharmaceutical products that counteract positive health outcomes, and (4) 

pharmaceutical products that counteract negative health outcomes (see Figure 1). Based on the 

observed responses to the four kinds of stimuli, the RCB model provides numerical estimates for 

the probabilities that (1) responses to the pharmaceutical products are driven by their relation to 

the depicted health outcomes (labeled R), (2) responses to the pharmaceutical products are driven 

by their mere co-occurrence with the depicted health outcomes (labeled C), and (3) responses to 

the pharmaceutical products reflect a general positivity or negativity bias regardless of their 

relation and co-occurrence with particular health outcomes (labeled B).  

To investigate the impact of cognitive load on the effects of CS-US co-occurrence 

(captured by the RCB model’s C parameter) and CS-US relations (captured by the RCB model’s 

R parameter), participants were instructed to memorize a digit-string prior to the learning task, 

keep it in mind during the learning task, and reproduce it after the learning task. For one group of 

participants, the digit-string included a meaningless combination of eight letters, numbers, and 
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symbols, rendering the memory task relatively difficult (i.e., high load). For a second group of 

participants, the digit-string included a simple combination of one letter and one number, 

rendering the memory task relatively easy (i.e., low load). Experiment 3 additionally included a 

third condition in which participants completed the learning task without having to memorize a 

digit-string.2  

To investigate the impact of cognitive load on the effects of CS-US co-occurrence and 

CS-US relations, we conducted three experiments. Experiment 1 aimed to test the competing 

predictions of dual-process and single-process propositional accounts. Based on the unexpected 

results of Experiment 1, Experiment 2 served as a direct replication of Experiment 1. Experiment 

3 aimed to replicate and extent the findings of the first two studies. In line with concerns about 

selective reporting of statistically significant effects (Ioannidis, Munafo, Fusar-Poli, Nosek, & 

David, 2014), we report the results of all three experiments regardless of their outcomes. For 

Experiments 1 and 2, we aimed to recruit 480 participants (i.e., 240 participants in each of two 

cognitive-load conditions), which provides a power of 80% in detecting a small difference of d = 

0.26 between cognitive-load conditions in a traditional t-test for two independent groups (two-

tailed).3 For Experiment 3, we initially aimed to recruit 750 participants (i.e., 250 participants in 

each of three cognitive-load conditions), which provides a power of 80% in detecting a small 

effect of f = 0.11 in a one-way ANOVA with three independent groups (two-tailed). However, 

due to the Covid-19 pandemic, the lab in which the data were collected had to close on March 

                                                 
2 Although control conditions without mental load are rather common in the literature, they are suboptimal for 

inferences regarding resource-dependence because they confound resource-dependence with goal-dependence (see 

Gast, Gawronski, & De Houwer, 2012). A superior approach that does not suffer from this ambiguity is to compare 

conditions of high vs. low cognitive load (e.g., rehearsal of two-digit vs. eight-digit string), as in the current studies 

(see also Gawronski, Armstrong, Conway, Friesdorf, & Hütter, 2017; Yzerbyt, Coull, & Rocher, 1999).  
3 Because power analyses within multinomial modeling require simulations with expected population values for the 

three parameters and any specific expectations in this regard would be arbitrary, we made our a priori sample-size 

decision in a heuristic fashion based on simple comparisons of mean values.  
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13, 2020 and the data collection for Experiment 3 had to be terminated early after the recruitment 

of 687 participants and valid data from 668 participants (see below). The final sample of 668 

participants in Experiment 3 provides a power of 80% in detecting a small effect of f = 0.12 in a 

one-way ANOVA with three independent groups (two-tailed). The data for each study were 

collected in one shot without intermittent statistical analyses. We report all measures, all 

conditions, and all data exclusions. The materials, raw data, and analysis files for all studies are 

publicly available at https://osf.io/yx67j/?view_only=9e35ec87b7ab425ea8abf7d763a7c9c2. The 

studies were not formally preregistered. 

Methods 

Participants and Design  

Experiments 1 and 2 included the same 2 (US Valence: positive vs. negative) × 2 (CS-US 

Relation: causes vs. prevents) × 2 (Cognitive Load: low vs. high) mixed design with the first two 

variables being manipulated within-subjects and the last one being manipulated between-

subjects. Experiment 3 included an additional no-load condition in a 2 (US Valence: positive vs. 

negative) × 2 (CS-US Relation: causes vs. prevents) × 3 (Cognitive Load: no vs. low vs. high) 

mixed design with the first two variables being manipulated within-subjects and the last one 

being manipulated between-subjects.  

For Experiment 1, we recruited 493 psychology undergraduates for a one-hour battery 

entitled “First Impressions” that included the current study and one unrelated study.4 The current 

study was always completed as the second one in the battery. Participants received credit for a 

research participation requirement. Data from two participants were lost due to experimenter 

error, data from two participants were lost due to computer malfunctions, and data from three 

                                                 
4 Due to excessive sign-ups at the end of the academic term, the sample size was slightly larger than the desired 

sample size of 480 participants.  

https://osf.io/yx67j/?view_only=9e35ec87b7ab425ea8abf7d763a7c9c2
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participants who did not respond within the 1000 ms response deadline on more than 50% of the 

trials in the choice task were excluded from analyses, leaving us with valid data from 486 

participants (356 women, 130 men).  

For Experiment 2, we recruited 494 psychology undergraduates for a one-hour battery 

entitled “First Impressions” that included the current study and one unrelated study.5 The current 

study was always completed as the second one in the battery. Participants received credit for a 

research participation requirement. Data from one participant were lost due to experimenter 

error, data from four participants were lost due to computer malfunctions, and data from one 

participant who did not respond within the 1000 ms response deadline on more than 50% of the 

trials in the choice task were excluded from analyses, leaving us with valid data from 488 

participants (348 women, 140 men).  

For Experiment 3, we recruited 687 psychology undergraduates for a one-hour battery 

entitled “Moral Judgment and Impression Formation” that included the current study and one 

unrelated study. The current study was always completed as the second one in the battery. 

Participants received credit for a research participation requirement. Data from eight participants 

were lost due to computer malfunctions, three participants left the lab before completing the 

study, and data from eight participants who did not respond within the 1000 ms response 

deadline on more than 50% of the trials in the choice task were excluded from analyses, leaving 

us with valid data from 668 participants (454 women, 214 men).  

Learning Task  

Participants in all three experiments completed the same learning task, which was 

directly adapted from Heycke and Gawronski (2020). The task included information about 

                                                 
5 Due to excessive sign-ups at the end of the academic term, the sample size was slightly larger than the desired 

sample size of 480 participants.  
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whether pharmaceutical products cause or prevent either healthy or unhealthy physical 

conditions. The stimuli in the task included 12 images of hypothetical pharmaceutical products, 6 

images of healthy physical conditions (e.g., voluminous hair), and 6 images of unhealthy 

physical conditions (e.g., tooth decay). On each trial of the task, an image of a pharmaceutical 

product (CS) was presented on the left and an image of a healthy or unhealthy physical condition 

(US) on the right, with one of the two qualifiers causes or prevents being presented in the center 

of the screen between the two images. Each stimulus combination was presented for 3000 ms 

with an inter-trial interval of 1000 ms. Three CSs were presented with a positive US and the 

relational qualifier causes; three CSs were presented with a negative US and the relational 

qualifier causes; three CSs were presented with a positive US and the relational qualifier 

prevents; and three CSs were presented with a negative US and the relational qualifier prevents. 

The use of a given CS for pairings with positive versus negative USs and the relational qualifiers 

causes versus prevents was counterbalanced by means of a Latin square. The learning phase 

consisted of 4 blocks with self-paced breaks between blocks. Within each block, each CS-US-

qualifier combination was presented twice, summing up to 8 presentations of each stimulus 

combination over the four blocks. For each participant, a given CS was always presented 

together with the same US. With 12 unique CS-US-qualifier combinations and 8 presentations of 

each CS-US-qualifier combination, the learning task included a total of 96 trials. Following 

Heycke and Gawronski (2020), participants received the following instructions for the learning 

task: 

The next part of this study is concerned with how people process information about 

consumer products. For this purpose, you will be presented with images of 

pharmaceutical products and visual information about their effects. As you know, many 
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pharmaceutical products have positive effects, but some products also have negative 

side-effects. For each product you will see whether this product causes or prevents a 

health outcome. Your task is to think of the image pairs, such that the pharmaceutical 

product CAUSES or PREVENTS what is displayed in the other photograph. For example, 

if a product is paired with a positive image and it says 'causes', you should think of the 

product in terms of it causing the positive outcome displayed in the image. Conversely, if 

a product is paired with a negative image and it says 'causes', you should think of the 

product in terms of it causing the negative outcome displayed in the image. If a product is 

paired with a positive image and it says 'prevents', you should think of the product in 

terms of it preventing the positive outcome displayed in the image. Conversely, if a 

product is paired with a negative image and it says 'prevents', you should think of the 

product in terms of it preventing the negative outcome displayed in the image. 

Cognitive Load Manipulation 

After the basic instructions for the learning task, participants were provided with the 

following instructions for the manipulation of cognitive load: 

In the current study, we are interested in how the processing of such information is 

influenced by mental distraction. Toward this end, you will be asked to memorize a digit-

string and rehearse it during the presentation of the information about the consumer 

products. Please memorize the following string of digits. You will be asked to repeat it at 

the end of this task. It is VERY IMPORTANT that you keep this string in mind throughout 

the entire task until you are asked to report it.   

Participants in the low-load condition were then presented with a simple two-digit string 

that included one letter and one number (h7). Participants in the high-load condition were 
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presented with a complex eight-digit string that included a meaningless combination of letters, 

numbers, and symbols (h7%r5K$3). After the presentation of the digit-string. Participants were 

instructed to rehearse it, keep it in mind during the impression formation task, and to think of the 

presented image pairs in terms of the relation presented on the screen. After completion of the 

learning task, participants were asked to type the digit-string they were asked to memorize into a 

text box. Participants in the no-load condition of Experiment 3 received only the basic 

instructions for the learning task without being instructed to memorize a digit-string. 

Measures 

Choice task. After the learning task, participants in all three experiments completed a 

speeded choice task in which they were asked to indicate whether they would choose a given 

product (see Heycke & Gawronski, 2020). On each trial of the task, a CS was shown in the 

center of the screen, and participants had 1000 ms to indicate whether or not they would choose 

the presented product. Participants were asked to press a left-hand key (A) if their answer was no 

and a right-hand key (Numpad 5) if their answer was yes. If participants did not respond within 

the 1000 ms response window, they were presented with the message Please try to respond 

faster! for 1000 ms. Only valid responses within the 1000 ms response window were used in the 

analysis. Each trial started with a blank screen for 500 ms, followed by a fixation cross for 500 

ms. During the 1000 ms presentation of a given CS, labels for the two response options (no vs. 

yes) were displayed on the bottom-left side and the bottom-right side of the screen, with the 

question Would you choose this product? being displayed slightly below the CS. The choice task 

included three blocks, with each CS being presented once in each block, summing up to a total of 

36 trials. The order of CSs within each block was randomized separately for each participant. 
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Manipulation check. To test the effectiveness of the cognitive-load manipulation, 

participants in the high-load and the low-load conditions were asked to indicate how difficult it 

was to keep the digit-string in mind during the learning task. Responses were recorded with a 7-

point rating scale ranging from 1 (very easy) to 7 (very difficult).   

RCB Model 

Because the mathematical underpinnings of the RCB model are explained in detail by 

Heycke and Gawronski (2020), we will only summarize the basic steps in analyzing data with 

the model. Based on the processing tree depicted in Figure 1, the RCB model provides four non-

redundant mathematical equations to estimate numerical values for the three model parameters 

(R, C, B) based on the empirically observed probabilities of a positive (i.e., yes) versus negative 

(i.e., no) response to the four types of stimuli (see Appendix). These equations include the three 

model parameters as unknowns and the empirically observed probabilities of positive versus 

negative responses to the four types of stimuli as known numerical values. Using maximum 

likelihood statistics, multinomial modeling generates parameter estimates for the three unknowns 

that minimize the difference between the empirically observed probabilities of positive versus 

negative responses to the four types of stimuli and the probabilities of positive versus negative 

responses predicted by the model equations using the generated parameter estimates. The 

adequacy of the model in describing the data can be evaluated by means of goodness-of-fit 

statistics, such that poor model fit would be reflected in a statistically significant discrepancy 

between the empirically observed probabilities in a given data set and the probabilities predicted 

by the model for this data set. Differences in parameter estimates across groups can be tested by 

enforcing equal estimates for a given parameter across groups. If setting a given parameter equal 

across groups leads to a significant reduction in model fit, it can be inferred that the parameter 



COGNITIVE LOAD  18 

estimates for the two groups are significantly different. If setting a given parameter equal across 

groups does not lead to a significant reduction in model fit, the parameters for the two groups are 

not significantly different from each other. RCB model analyses were conducted with the free 

software multiTree v0.43 (Moshagen, 2010) and the multiTree template files for RCB model 

analyses provided by Heycke and Gawronski (2020).  

Results 

Manipulation Checks 

Supporting the intended effect of the cognitive-load manipulation, participants in the 

high-load condition found it more difficult to keep the digit-string in mind than participants in 

the low-load condition. This difference was reflected in a significant effect of cognitive load in 

Experiment 1 (Ms = 2.15 vs. 3.48, respectively), t(472.92) = 8.71, p < .001, d = 0.790, 

Experiment 2, (Ms = 2.01 vs. 3.31, respectively), t(465.43) = 9.21, p < .001, d = 0.835, and 

Experiment 3 (Ms = 1.91 vs. 3.31, respectively), t(398.31) = 9.29, p < .001, d = 0.875.  

RCB Model  

Mean proportions and 95% confidence intervals of yes vs. no responses to the four kinds 

of stimuli as a function of cognitive-load conditions are presented in Table 1. The RCB model 

was fit to the data of each experiment with the three model parameters varying freely across 

cognitive-load conditions. Although the RCB model has shown adequate fit in numerous prior 

studies using the same learning and choice tasks (e.g., Gawronski & Brannon, in press; Heycke 

& Gawronski, 2020), model fit was acceptable only in Experiment 3, G2(3) = 6.21, p = .102, w = 

.017, but suboptimal in Experiment 1, G2(2) = 5.92, p = .052, w = .019, and Experiment 2, G2(2) 

= 6.59, p = .037, w = .020. Because large sample sizes increase the likelihood of significant 

discrepancies between actual and predicted response probabilities, and the effect sizes of the 
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observed discrepancies all fell far below Cohen’s (1988) benchmark for a small effect (w = .10), 

we nevertheless tested whether the obtained estimates for the three parameters were significantly 

different across conditions. Parameter estimates obtained in the three experiments are presented 

in Table 2.  

In Experiment 1, analyses revealed a significant effect of Cognitive Load on the R 

parameter, ΔG2(1) = 7.89, p = .005, w = .022, indicating that CS-US relations had a greater 

impact on participants’ choices in the high-load condition compared to the low-load condition. 

There was no significant effect of Cognitive Load on the C parameter, ΔG2(1) = 0.39, p = .535, 

w = .005, and the B parameter, ΔG2(1) < 0.01, p = .983, w < .001.  

In Experiment 2, analyses revealed a marginal effect of Cognitive Load on the R 

parameter, ΔG2(1) = 3.75, p = .053, w = .015, indicating that CS-US relations tended to have a 

greater impact on participants’ choices in the high-load condition compared to the low-load 

condition. There was also a significant effect of Cognitive Load on the B parameter, ΔG2(1) = 

4.41, p = .036, w = .017, indicating a greater tendency to reject all products in the high-load 

condition compared to the low-load condition. There was no significant effect of Cognitive Load 

on the C parameter, ΔG2(1) < 0.01, p = .966, w < .001.  

In Experiment 3, Cognitive Load showed a significant effect on the R parameter, ΔG2(2) 

= 18.30, p < .001, w = .030, but not the C parameter, ΔG2(2) = 4.62, p = .099, w = .015, and the 

B parameter, ΔG2(2) = 2.23, p = .327, w = .010. Further analyses with the R parameter revealed 

that CS-US relations had a weaker impact in the low-load condition compared to both the high-

load condition, ΔG2(1) = 15.42, p < .001, w = .027, and the no-load condition, ΔG2(1) = 11.77, p 

< .001, w = .024. The impact of CS-US relations did not significantly differ across high-load and 

no-load conditions, ΔG2(1) = 0.20, p = .651, w = .003. 
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Integrative Data Analysis  

Although the sample sizes in the three individual studies were relatively large and the 

unexpected effect of cognitive load on the R parameter replicated across studies, a potential 

question is whether this unexpected effect remains reliable in an integrative analysis that 

includes the data from all three experiments (see Curran & Hussong, 2009). A related question is 

whether the sample sizes in three individual studies were insufficient to detect small effects of 

cognitive load that might be detected in a larger sample (e.g., a small effect on the C parameter). 

To address these questions, we combined the data of the low-load and high-load conditions from 

the three experiments (N = 1424) and investigated differences in the three RCB parameters 

across conditions in the combined sample.  

Although model fit was suboptimal in the combined sample, G2(2) = 16.19, p < .001, w = 

.019, the effect size of the observed discrepancy again fell far below Cohen’s (1988) benchmark 

for a small effect (w = .10). We therefore moved on to test whether the obtained estimates for the 

RCB model parameters were significantly different across conditions (see Figure 2). Consistent 

with the main finding of the three individual experiments, Cognitive Load showed a significant 

effect on the R parameter, ΔG2(1) = 24.28, p < .001, w = .023, indicating that CS-US relations 

had a greater impact under high-load compared to low-load conditions. Despite the greater 

statistical power for the detection of very small effects, there was no significant effect of 

Cognitive Load on the C parameter, ΔG2(1) = 0.49, p = .482, w = .003, and the B parameter, 

ΔG2(1) = 1.97, p = .161, w = .007. 

A potential concern about the reported findings is that the RCB model showed 

suboptimal fit in two of the three experiments as well as the integrative data analysis, raising 

questions about the interpretability of the obtained effect of Cognitive Load on the R parameter. 
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A related concern is that, like any multinomial model, the RCB model is based on a number of 

background assumptions and violations of these assumptions could potentially undermine the 

interpretation of findings obtained with the RCB model (see Hütter & Klauer, 2016). To address 

these concerns, we also analyzed the combined data by submitting the proportions of yes (vs. no) 

responses to a 2 (US Valence: positive vs. negative) × 2 (CS-US Relation: causes vs. prevents) × 

2 (Cognitive Load: low vs. high) mixed ANOVA with the first two variables as within-subjects 

factors and the last one as a between-subjects factor. Although not statistically identical, the R 

parameter of the RCB model conceptually corresponds to the two-way interaction between US 

Valence and CS-US Relation in the ANOVA, reflecting a response pattern consistent with the 

presumed impact of CS-US relations (see first row in Figure 1). Thus, if the obtained effect of 

Cognitive Load on the R parameter reflects a reliable difference in the impact of CS-US 

relations, the ANOVA should reveal a significant three-way interaction between US Valence, 

CS-US Relation, and Cognitive Load, such that the two-way interaction between US Valence 

and CS-US Relation is more pronounced under high-load compared to low-load conditions.  

The ANOVA revealed a significant main effect of US Valence, F(1, 1422) = 325.11, p < 

.001, ηp
2 = .186, a significant main effect of CS-US Relation, F(1, 1422) = 12.38, p < .001, ηp

2 = 

.009, and a significant two-way interaction between US Valence and CS-US Relation, F(1, 1422) 

= 1151.41, p < .001, ηp
2 = .447, which were qualified by the predicted three-way interaction 

between US Valence, CS-US Relation, and Cognitive Load, F(1, 1422) = 6.05, p = .014, ηp
2 = 

.004. Further analyses revealed that the two-way interaction between US Valence and CS-US 

Relation was more pronounced under high-load conditions, F(1, 711) = 619.32, p < .001, ηp
2 = 

.466, compared to low-load conditions, F(1, 711) = 532.10, p < .001, ηp
2 = .428 (see Figure 3). 
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These results support the conclusion that Cognitive Load increased (rather than decreased) the 

impact of CS-US relations. 

Discussion 

Counter to the shared prediction of dual-process and single-process propositional 

accounts that cognitive load during learning should reduce the impact of CS-US relations on CS 

evaluations, effects of CS-US relations were greater (rather than smaller) under conditions of 

high cognitive load compared to conditions of low cognitive load. Although this unexpected 

effect was relatively small overall, it replicated across three individual studies and in an 

integrative analysis of the data from all three studies. The effect also emerged regardless of 

whether effects of CS-US relations were quantified via multinomial modeling or analyzed using 

standard ANOVA. 

Potential Explanations 

One potential conclusion from this unexpected effect is that the propositional learning 

mechanism claimed to underlie effects of CS-US relations is highly efficient, questioning the 

common assumption that propositional learning depends on the amount of available cognitive 

resources. However, it is worth noting that such a conclusion would suggest a null effect of 

cognitive load on the impact of CS-US relations. It does not explain why effects of CS-US 

relations were greater under high-load compared to low-load conditions. This difference cannot 

be explained with the simple assumption of resource-independence (which implies no difference 

between load conditions), but instead requires additional assumptions about how greater 

cognitive load can increase the impact of CS-US relations. 

A more plausible explanation could be derived from recent theories suggesting that 

experimental procedures that have traditionally been interpreted as direct manipulations of 
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mental resources may influence behavioral outcomes via strategic shifts in the allocation of 

mental resources (e.g., Inzlicht, Schmeichel, & Macrae, 2014). Applied to the current 

manipulation of cognitive load, the requirement to memorize a highly complex digit-string may 

influence effects of CS-US relations, not by influencing the amount of residual resources for the 

encoding of CS-US relations, but by leading to a strategic shift in the allocation of mental 

resources to the encoding of CS-US relations. Based on the meta-cognitive assumption that 

having to memorize a highly complex digit-string might interfere with the focal task of forming 

impressions based on CS-US relations, participants may decide to allocate greater mental effort 

to the encoding of CS-US relations to compensate for the presumed processing impairments. In 

contrast, participants asked to memorize a relatively simple digit-string may not assume any such 

impairments, and therefore not increase the allocation of resources for the focal task. Consistent 

with this interpretation, effects of CS-US relations were significantly weaker under conditions of 

low cognitive load where participants had to memorize a relatively simple two-digit string 

compared to both (1) conditions of high load where participants had to memorize a relatively 

complex eight-digit string and (2) conditions of no load where participants were not asked to 

memorize to memorize any digit-string. Although interpretations of differences between load and 

no-load conditions are somewhat difficult due to the confound between cognitive load and 

processing goals (see Gast et al., 2012), the obtained pattern in Experiment 3 is consistent with 

the idea that (1) having to memorize a simple two-digit string impaired the processing of CS-US 

relations in the low-load condition compared to the no-load condition and (2) participants did not 

assume any such impairments and therefore did not allocate greater effort to the focal task of 

encoding CS-US relations. Moreover, the outcome in the high-load condition can be explained 

by the assumptions that (3) having to memorize a complex eight-digit string impaired the 
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processing of CS-US relations in the high-load condition and (4) participants overcompensated 

for these impairments by allocating greater effort to the focal task of encoding CS-US relations. 

Together, these assumptions imply that effects of CS-US relations should be weaker under low-

load compared to both high-load and no-load conditions, as found in Experiment 3. Although 

these assumptions are admittedly post-hoc, future research may help to provide deeper insights 

into the processes underlying the obtained results by independently manipulating (1) incremental 

levels of secondary task demands and (2) strategic allocation of mental resources (e.g., via 

instructions and performance incentives). Combined with (1) a measure of meta-cognitive beliefs 

about processing demands and (2) a measure of resource allocation that is independent of 

participants’ performance on the focal task, such research may provide further evidence for the 

interactive role of processing resources and resource allocation in dual-task paradigms.6  

Implications 

The proposed explanation in terms of strategic resource allocation not only accounts for 

the unexpected effect of cognitive load on the impact of CS-US relations; it also reconciles this 

finding with the core assumptions of dual-process and single-process propositional accounts. 

Both accounts assume that effects of CS-US relations are driven by a propositional learning 

mechanism, involving the non-automatic formation of mental propositions about the relation 

between a CS and a co-occurring US. This shared hypothesis led to the prediction that cognitive 

load should reduce effects of CS-US relations. However, to the extent that high cognitive load 

                                                 
6 A potential alternative explanation is that participants in the high-load condition may have tried to simplify the 

focal task by drawing abstract evaluative inferences about the products (e.g., X is good) instead of learning specific 

information about the products (e.g., X prevents something bad). We deem this interpretation insufficient for two 

reasons. First, it presupposes that drawing abstract evaluative inferences requires less mental resources than 

memorizing the specific information, which conflicts with recent evidence suggesting the opposite (Gawronski, 

Luke, & Ng, 2021). Second, given that abstract evaluative inferences seems to require more (rather than less) 

resources than memorizing specific information (see Gawronski et al., 2021), one would have to make additional 

assumptions to explain why effects of CS-US relations were greater under high-load compared to low-load 

conditions (e.g., overcompensation via strategic shifts in resource allocation).  
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leads to a strategic shift in resource allocation (see above), both theories would suggest that 

effects of CS-US relations should be greater under high load compared to low load, reconciling 

the two accounts with the unexpected finding in the current studies. Nevertheless, the two 

accounts still lead to different predictions about how strategic shifts in resource allocation should 

influence effects of CS-US co-occurrence. Dual-process accounts assume that mere co-

occurrence effects result from an associative learning mechanism of automatic link formation, 

which is claimed to be independent of mental resources. From this perspective, effects of CS-US 

co-occurrence should be unaffected by strategic resource allocation, consistent with the obtained 

null effect of cognitive load on the impact of CS-US co-occurrence. In contrast, single-process 

propositional accounts suggest that mere co-occurrence effects can result from incomplete 

retrieval of stored propositional information, which should become less likely with increasing 

amounts of resources allocated during learning. Thus, if the unexpected impact of cognitive load 

of the effects of CS-US relations is driven by strategic shifts in resource allocation, effects of 

CS-US co-occurrence should be smaller under high-load compared to low-load conditions, 

which is inconsistent with the obtained null effect of cognitive load on the impact of CS-US co-

occurrence. Together, these considerations suggest that, although the unexpected effect of 

cognitive load on the impact of CS-US relations can be reconciled with the two accounts via 

additional assumptions about strategic resource allocation, the pattern of obtained for CS-US co-

occurrence is easier to reconcile with dual-process compared to single-process propositional 

accounts.     

Although the current research focused exclusively on effects of CS-US co-occurrence 

and CS-US relations, the unexpected effect of cognitive load has important implications for 

research on the resource-dependence of mental processes more broadly (see Bargh, 1994; Moors 



COGNITIVE LOAD  26 

& De Houwer, 2006). To the extent that the above interpretation in terms of strategic resource 

allocation is correct, it suggests a fundamental ambiguity in the interpretation of data patterns in 

studies on the efficiency of mental processes. Specifically, it suggests that null effects of 

traditional manipulations of cognitive load (e.g., dual-task paradigms) should not be interpreted 

as evidence for the resource-independence of the process underlying a focal effect. After all, it is 

possible that the process does require a considerable amount of resources, but the processing 

impairments resulting from the manipulation are compensated by a strategic shift in the 

allocation of mental resources. In this case, it would be ill-founded to infer that the underlying 

process is automatic in terms of the efficiency criterion (see Bargh, 1994; Moors & De Houwer, 

2006). Thus, although significant effects of traditional manipulations of cognitive load can help 

to demonstrate resource-dependence, null effects of such manipulations are insufficient to 

demonstrate resource-independence, even if the reliability of such null effects is confirmed by 

studies with large sample sizes and advanced statistical tools, such as Bayesian analyses (Morey 

& Rouder, 2011) or equivalence tests (Lakens, Scheel, & Isager, 2018). 

At the theoretical level, these considerations echo broader concerns that experimental 

manipulations should be described in terms of operational differences in environmental 

conditions rather than mental constructs (De Houwer, 2011; De Houwer, Gawronski, & Barnes-

Holmes, 2013; Gawronski & Bodenhausen, 2015). Following the modal practice in the field, the 

current research was based on the assumption that dual-task manipulations such as the 

concurrent memory task in the current studies influence the amount of residual resources that are 

available for a focal task. Although the terms no load, low load and high load could be 

interpreted as referring to environmental task affordances, these term are often interpreted at the 

mental level, suggesting that they reflect differences in the amounts of residual resources (for a 
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discussion, see De Houwer & Moors, 2012). However, differences in residual resources may be 

just one mental factor that mediates effects of environmental task affordances on behavioral 

outcomes. Another important factor might be strategic resource allocation, which is ignored 

when dual-task manipulations are described in terms a specific mental construct (e.g., available 

residual resources) instead of environmental conditions (e.g., environmental task affordances).  

Limitations 

Although the unexpected effect of cognitive load replicated across studies and data 

analytic approaches, it is worth noting that the effect was very small overall. Moreover, although 

mean difficulty ratings in the manipulation checks were significantly different across cognitive-

load conditions, the observed scores suggest that participants in the high-load condition found 

the memory-task only moderately difficult. Hence, it is possible that strategic shifts in resource 

allocation can compensate for performance impairments caused by concurrent tasks only to a 

level of moderate load, with higher levels of load showing the typically expected performance 

impairments. These considerations suggest potential limits in the generality of the obtained 

results, in that they may not replicate with higher levels of cognitive load. Similar caveats seem 

in order for generalizations across populations, in that the current studies were conducted with 

psychology undergraduates, who might have larger working memory capacity compared to other 

groups of potential participants (see Wilhelm, Hildebrandt, & Oberauer, 2013). To the extent that 

compensatory effects of strategic resource allocation require a minimum amount of working 

memory capacity, the obtained results may not replicate in populations with lower working 

memory capacity. Finally, it is worth noting that all three experiments used the same task and the 

same set of stimuli, calling for conceptual replications with different tasks and stimuli.    
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Conclusion 

The original aim of the current research was to test conflicting predictions of dual-

process and single-process propositional accounts regarding the impact of cognitive load on the 

effects of mere CS-US co-occurrence when there is a clear assimilative vs. contrastive relation 

between the CS and the US. This endeavor led to the unexpected discovery that cognitive load 

increased effects of CS-US relations, a finding that conflicts with a shared prediction of both 

accounts suggesting that cognitive load should decrease effects of CS-US relations. The apparent 

conflict can be reconciled via theories suggesting that cognitive-load manipulations can 

influence behavioral outcomes via strategic shifts in the allocation of mental resources, which 

can lead to seemingly paradoxical outcomes like the one obtained in the current studies. These 

findings have important implications not only for research on EC but also for the broader field of 

automaticity research, demanding caution in the interpretation of cognitive-load effects.  
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Appendix: RCB Model Equations 

Equations of the RCB model for the estimation of effects of CS-US relations (R), CS-US co-

occurrence (C), and general response bias (B) in evaluative responses to stimuli (CS) that cause 

or prevent a positive or negative stimulus (US). Adapted from Heycke and Gawronski (2020). 

Reprinted with permission. 

 

p(positive response | causes positive) = R + [(1 – R) × C] + [(1 – R) × (1 – C) × B] 

p(positive response | causes negative) = (1 – R) × (1 – C) × B 

p(positive response | prevents positive) = [(1 – R) × C] + [(1 – R) × (1 – C) × B] 

p(positive response | prevents negative) = R + [(1 – R) × (1 – C) × B] 

 

p(negative response | causes positive) = (1 – R) × (1 – C) × (1 – B) 

p(negative response | causes negative) = R + [(1 – R) × C] + [(1 – R) × (1 – C) × (1 – B)] 

p(negative response | prevents positive) = R + [(1 – R) × (1 – C) × (1 – B)] 

p(negative response | prevents negative) = [(1 – R) × C] + [(1 – R) × (1 – C) × (1 – B)] 
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Table 1. Mean proportions and 95% confidence intervals of choice responses (yes vs. no) as a function of valence of co-occurring 

stimulus (positive vs. negative), relation to co-occurring stimulus (stimulus causes vs. prevents co-occurring stimulus), and cognitive 

load (low load vs. high load vs. no load), Experiments 1-3.  

  Positive Co-Occurring Stimulus Negative Co-Occurring Stimulus 

 Stimulus Causes  

Co-Occurring Stimulus 

Stimulus Prevents  

Co-Occurring Stimulus 

Stimulus Causes  

Co-Occurring Stimulus 

Stimulus Prevents  

Co-Occurring Stimulus 

 M 95% CI M 95% CI M 95% CI M 95% CI 

Experiment 1         

low load .68 [.65, .71] .38 [.35, .41] .29 [.26, .32] .56 [.52, .59] 

high load .71 [.68, .74] .36 [.33, .39] .28 [.25, .31] .58 [.54, .61] 

Experiment 2         

low load .69 [.66, .72] .38 [.35, .41] .29 [.26, .32] .55 [.52, .59] 

high load .68 [.65, .72] .36 [.32, .39] .26 [.23, .29] .56 [.52, .59] 

Experiment 3         

low load .65 [.62, .69] .41 [.37, .44] .30 [.27, .34] .51 [.47, .55] 

high load .66 [.62, .69] .36 [.32, .39] .29 [.25, .32] .56 [.53, .60] 

no load .65 [.62, .69] .35 [.32, .39] .28 [.25, .32] .55 [.51, .59] 
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Table 2. Parameter estimates without model restrictions as a function of cognitive load (low load vs. high load vs. no load). 

 Experiment 1 Experiment 2 Experiment 3 

Parameter Estimate 95% CI Estimate 95% CI Estimate 95% CI 

R       

low load 0.29 [0.27 - 0.31] 0.29 [0.27 - 0.31] 0.23 [0.21 - 0.25] 

high load 0.33 [0.31 - 0.35] 0.32 [0.30 - 0.34] 0.30 [0.27 - 0.32] 

no load - - - - 0.29 [0.27 - 0.31] 

C       

low load 0.15 [0.12 - 0.18] 0.16 [0.13 - 0.19] 0.16 [0.13 - 0.19] 

high load 0.16 [0.13 - 0.20] 0.16 [0.13 - 0.19] 0.11 [0.08 - 0.14] 

no load - - - - 0.12 [0.09 - 0.15] 

B       

low load 0.46 [0.45 - 0.48] 0.47 [0.45 - 0.48] 0.45 [0.44 - 0.47] 

high load 0.46 [0.45 - 0.48] 0.44 [0.42 - 0.46] 0.45 [0.43 - 0.47] 

no load - - - - 0.44 [0.42 - 0.45] 

 

Note. The R parameter captures effects of stimulus relations; the C parameter captures effects of stimulus co-occurrence; the B 

parameter captures general response biases. The neutral reference point for R and C is 0; the neutral reference point for B is 0.5, with 

scores higher than 0.5 reflecting a general bias toward positive responses and scores lower than 0.5 reflecting a general bias toward 

negative responses.  
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Figure 1. Multinomial processing tree depicting effects of CS-US relations, CS-US co-occurrence, and general response biases on 

evaluative responses (positive vs. negative) for stimuli that cause or prevent either positive or negative stimuli. Adapted from Heycke 

and Gawronski (2020). Reprinted with permission. 
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Figure 2. Parameter estimates without model restrictions as a function of cognitive load (low 

load vs. high load), combined data from Experiments 1-3. 

 

 

Note. The R parameter captures effects of stimulus relations; the C parameter captures effects of 

stimulus co-occurrence; the B parameter captures general response biases. The neutral reference 

point for R and C is 0; the neutral reference point for B is 0.5, with scores higher than 0.5 

reflecting a general bias toward positive responses and scores lower than 0.5 reflecting a general 

bias toward negative responses. Error bars depict 95% confidence intervals. 

  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R Parameter C Parameter B Parameter

P
a

ra
m

e
te

r 
E

s
ti
m

a
te

low load

high load



COGNITIVE LOAD  40 

Figure 3. Mean proportions and 95% confidence intervals of choice responses (yes vs. no) as a 

function of valence of co-occurring stimulus (positive vs. negative), relation to co-occurring 

stimulus (stimulus causes vs. prevents co-occurring stimulus), and cognitive load (low load vs. 

high load), combined data from Experiments 1-3. 
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