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Abstract

1.

Heat waves cause mass mortality of animals, including humans, across the globe
annually, which has drawn new attention to how animals cope with high air tem-
peratures. Recent field research has explored behavioral responses to high air

temperatures, which can influence reproductive success and mortality.

. Less well studied are the effects of high air temperatures on cognition, which may

underlie behavioral changes. Specifically, it is poorly known if cognitive declines
occur at high temperatures, and if cognitive and motor components of behavior

are similarly affected.

. We tested how well zebra finches (Taeniopygia guttata castanotis), a model for

cognition research, performed two learned foraging tasks (color association and
detour-reaching) at mild (22°C) and high (43 and 44°C) air temperatures that occur
naturally in their range. We habituated birds to the trial conditions and tempera-
tures on days preceding the test trials and at the trial temperature for 30 min
immediately prior to each test trial. Trials lasted less than 10 min. At high air tem-
peratures, zebra finches exhibited heat dissipation behaviors during most tasks,

suggesting thermoregulatory challenge.

. Cognitive performance declined at high air temperatures in two of three meas-

ures: Color association was unaffected, but birds missed more food rewards, and
did more unproductive behaviors. Motor performance declined at high tempera-
tures on the color association task, including longer times to complete the task,
move between food rewards, and process individual seeds. Performance declines

varied among components of behavior and among individuals.

. We combined our behavioral data with existing climate data and predicted that

in the austral summer of 2018-2019, zebra finches experienced air temperatures
that caused cognitive and motor declines in our captive birds in 34% and 45% of

their Australian range, respectively.

. This study provides novel experimental evidence that high air temperatures cause

cognitive and motor performance decline in birds. Further, our results provide in-
sights to how those declines might affect bird ecology and evolution. First, dif-

ferences in declines among behavioral components may allow identification of
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1 | INTRODUCTION

Life on Earth is currently experiencing the hottest air temperatures
in recent history with continued increases in temperature across
large areas of land and ocean (Wallace-Wells, 2020). The last
5 years have been the hottest in 140 years of recorded history
(NOAA, 2019a), with July of 2019 being the hottest month ever
recorded (NOAA, 2019b). Not only are average air temperatures
higher, but there is also an increase in the frequency of “extreme
events,” including increases in extreme high temperatures (Drumond
et al., 2020; Jentsch et al., 2007). Whereas these hot extremes were
limited to less than 1% of the Earth's surface in the past, extreme
anomalies in high air temperatures now cover more than 10% of land
area (Hansen et al., 2012). Thus, terrestrial organisms are experienc-
ing not only a long-term increase in air temperature but also marked
stretches of high heat, or “heat waves.” Despite this global challenge,
we know relatively little about the impact of heat waves on animal
populations (Jentsch et al., 2007; Stillman, 2019).

Predicting how animals will respond to high air temperatures re-
quires knowledge of its impact on animal behavior and physiology,
as well as the genetic capacity of a species to adapt to changing tem-
peratures (Huey et al., 2012). Our knowledge of these effects is woe-
fully limited for most species, inhibiting our ability to make specific
predictions about the effects of climate change or recurring heat
waves on populations. In particular, we know little about how high
air temperatures affect the behavior and physiology of endotherms,
such as humans, mammals, birds, and many fish, in comparison to
the literature on effects of heat on performance in ectotherms, such
as reptiles, amphibians, and insects (reviewed in Angilletta, 2009).
Filling this knowledge gap is particularly pressing given mass mor-
tality events among birds (McKechnie & Wolf, 2010), small mam-
mals (Ratnayake et al., 2019), and humans (Zhao et al., 2018) during
heat waves, and has spurred recent interest in measuring the ef-
fects of elevated, sublethal air temperatures in endotherms (Hurley
et al., 2018; Jimenez & Williams, 2014; Lovegrove et al., 2013;
McKechnie, Smit, et al., 2016; McKechnie, Whitfield, et al., 2016; du
Plessis et al., 2012).

Emerging research suggests that heat affects fitness-related be-
haviors, such as foraging or breeding, and that these sublethal ef-

fects occur at air temperatures well below those that cause death

behaviors that are most susceptible to decline in the wild. Second, variation in
performance declines and heat dissipation behaviors among individuals suggests
variability in heat tolerance, which could lead to differential fitness in the wild.
Last, these results suggest that high air temperatures cause cognitive declines in
the wild and that understanding cognition could help refine predictive models of

population persistence.

behavior, climate change, cognition, cognitive performance, heat wave, zebra finch

(Cunningham et al., 2013). For example, recent field studies provide
evidence that birds forage less (Carroll et al., 2015; Funghi et al., 2019;
Goldstein, 1984) and less efficiently (du Plessis et al., 2012; van de
Ven et al., 2019), spend less time incubating eggs and provisioning
young (Cunningham et al., 2013, 2015; Wiley & Ridley, 2016), and
sing less in hot weather (Luther & Danner, 2016). Similarly, high
air temperatures reduce feed intake in livestock, including poultry
(Nawab et al., 2018), and reduced time spent foraging in a free-liv-
ing montane mammal (Hall & Chalfoun, 2019). Because performance
of foraging and mating behaviors can affect survival and reproduc-
tive success (Borgia, 1985; Sonnenberg et al., 2019), these sublethal
behavioral effects of heat may be essential to predicting species'
persistence in the face of high and rising temperatures (Conradie
et al., 2019, 2020; McKechnie et al., 2012; Sinervo et al., 2010).

Studies that experimentally evaluate behavioral effects of high
air temperatures in birds are rare. Controlled experimental studies
are valuable, allowing for behavioral assays that are not logistically
possible in the wild and reducing the number of potential explana-
tory variables, which can help identify mechanisms. Past experimen-
tal, physiological studies include notes that birds lose the ability of
coordinated movement when at or nearing lethal air temperatures
(Dawson, 1954; Whitfield et al., 2015), which could affect behav-
ioral performance. Recently, Coomes et al. (2019) found that high air
temperatures reduced female birds’ ability to discriminate between
conspecific and heterospecific sexual signals. Results from these few
experimental studies highlight the need to investigate the effect of
high temperatures on bird behavior.

High air temperatures and resulting hyperthermia could limit
both motor and cognitive performance components of behaviors.
Motor performance (e.g., speed) may decline when individuals slow
movements in high temperatures (e.g., in humans and rats: Fuller
et al., 1998; Morrison et al., 2004; Racinais et al., 2008) as animals
seek to reduce heat generation (hypothesized by Tucker et al., 2004)
or experience declines in muscle performance (Racinais et al., 2008).
However, it is not known whether or how reductions in motor
speed would affect performance of foraging or mating behaviors.
Hyperthermia may also affect cognitive function. Studies on humans
have shown that high air temperatures reduce performance on tests
of memory, but not attention (Racinais et al., 2008), as well as re-

duced performance on work tasks (Mazloumi et al., 2014). In other
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animals, a recent experimental study demonstrates female birds be-
come less discriminating among male signals when exposed to high
air temperatures during an operant conditioning assay of preference
(Coomes et al., 2019). Together, these studies indicate the need to
consider both motor and cognitive components of behavior when
measuring the effects of high air temperature on performance.
Here, we test the effect of simulated heat waves on cognitive
and motor performance of foraging assays, using zebra finches
(Figure 1), Taeniopygia guttata, an emerging model system for stud-
ies on cognition (Healy et al., 2010). Zebra finches live in the hot,
arid interior of Australia, where they experience heat waves (Funghi
et al., 2019). Cognitive tasks measure how animals collect, retain,
and use information from the environment, which is essential in fit-
ness-related behaviors, including foraging, predator avoidance, and
mating (Morand-Ferron et al., 2016). We tested zebra finches using
two different established assays of cognitive performance: a color
association task and a detour-reaching task (Boogert et al., 2011).
Color association tasks measure associative learning, which has been
linked to foraging success in free-living animals (Cole et al., 2012;
Raine & Chittka, 2008). Detour-reaching tasks measure self-control,
also referred to as inhibitory control, which is important for making
decisions related to foraging (MacLean et al., 2014). For both tasks,
we tested performance at typical housing air temperatures and at
temperatures above the published thermoneutral zone for zebra
finches. The zebra finch's thermoneutral zone is approximately
36-42°C and mortality is expected above 45°C (Bech et al., 2004;
Cade et al.,, 1965; Calder, 1964; Rgnning et al., 2005). There is no
apparent difference between domesticated and wild zebra finches in
their physiological response to high air temperatures (Calder, 1964).
We predicted that high temperatures would cause zebra finches
to perform heat dissipation behaviors, which would suggest ther-
moregulatory challenges, and experience reduced cognitive and
motor performance on both tasks. To place our results in a relevant

FIGURE 1 Photo of a male zebra finch (Taeniopygia guttata).
Photo by Jim Bendon
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ecological context, we then built maps from climate data to deter-
mine whether wild zebra finches in their native range in Australia
would experience air temperatures at which captive birds exhibited
changes in behavioral performance. Together, our work represents a
novel experimental test of the sublethal effects of high air tempera-
tures on cognitive and motor performance in an endotherm and fur-

ther places our results in the context of the organism's environment.

2 | MATERIALS AND METHODS
2.1 | Subjects

We obtained two groups (n = 12 and 12, respectively) of adult male
zebra finches from an avian breeder (Magnolia Farms). Like the ma-
jority of breeding facilities, this breeder provides individuals from
the subspecies T. g. castanotis. One group was housed at the senior
author's institution for the color association task, and one group was
housed at the lead author's institution for the detour-reaching task.
We housed birds individually for trials in wire cages with perches and
cuttlebone and provided food and water ad libitum. We kept birds
on a 12:12 light-dark cycle at air temperature of 22°C and relative
humidity of 50%-75%.

2.2 | Heat dissipation behaviors

We tested if birds showed heat dissipation behaviors during behavio-
ral tasks at four air temperatures (22, 40, 43, and 44°C). Our experi-
mental temperatures spanned a range of published effects on zebra
finch body temperatures. Calder (1964) found that zebra finches ex-
perience mild hyperthermia above 30°C, and by 44°C had increased
body (i.e., cloacal) temperature by 3.5°C. All data and scripts are
available on Zenodo (https://zenodo.org/record/4437461).

2.3 | Color association task

We taught birds to remove lids fitted snugly into six wells drilled in
a gray composite plastic block (10 x 14 cm) in order to reach mil-
let seed following Boogert et al. (2011). This task had three phases:
habitation, training, and testing. Habitation and training included
five stages of trials: (a) no lids, (b) lids next to wells, (c) lids tipped into
wells, and (d) lids covering wells. Birds had to eat from at least two of
four baited wells within two minutes to pass a trial and had to pass
three out of four consecutive trials to move to the next stage. We
baited wells randomly and changed every trial. For the last stage, (e)
birds were taught to associate seed with only one randomly assigned
color of lid (yellow or blue). For this stage, we used two blocks and
baited the six wells with either yellow or blue lids. To pass a trial,
birds had to flip the four lids of the reward color before trying lids of
the other color. To pass the stage, birds had to pass six out of seven

consecutive trials. Birds stuck on a stage returned to the previous
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stage. Birds that did not complete a stage in 2 weeks (60 trials) were
removed. To ensure motivation, we removed food from cages five
hours before trials began. After trial completion, we performed a
motivation test placing food dishes in cages and recording the time it
took birds to approach. All birds approached food dishes in less than
one minute, which is considered sufficiently motivated (Boogert
et al., 2011). We removed water immediately before the trial began.

We included only birds that learned the color association task in
test trials (n = 6, 50% of original group). We then tested these birds
with two blocks with their reward color baited. We repeated the
color association task for each bird at three air temperatures with
treatment order randomized within temperature pairs: 22 and 40°C,
and then 22 and 43°C. We maintained relative humidity at approxi-
mately 65% in trials at 22°C because this was similar to the housing
conditions. For the high-temperature trials, we maintained relative
humidity at 25% to ensure that it did not constrain evaporative
cooling (van Dyk et al., 2019; Gerson et al., 2014). Birds underwent
trials in home cages placed in an environmental chamber (Conviron
A1000). We recorded all test trials using webcams mounted inside
the environmental chamber. We took six behavioral measures from
these trials: latency to begin the task (time from trays were added to
the first lid flipped), time to complete the task (from first to last lids
flipped), time to process individual seeds (from picking up a seed to
the husk falling from the mouth), whether or not the bird missed food
rewards (i.e., ate less than all three seeds in each well before moving
to the next well), the proportion of lids that birds flipped correctly,
and whether or not the bird panted during the trial. To test the ef-
fect of temperature on the first five behaviors, we built generalized
linear mixed models with functions “Ime” (Pinheiro et al., 2020) and
“glmer” (Bates et al., 2015) in R (R Core Team, 2020) following Zuur
et al. (2009). Models included a factor variable for trial tempera-
ture, and all models included bird identification as a random effect
in order to account for repeated measures within individuals. For
models with continuous data, we use a Gaussian error distribution,
and for models with binary or proportional data, we used a binomial
error distribution. We present effect sizes (B or ;) + standard errors
estimated from the models, measures of support for models, includ-
ing test statistics (t, F, or z), p-values for specific terms, test statistics,
and p-values from likelihood-ratio tests comparing models with and
without air temperature, and r? for full models when available using
package r2glmm (Jaeger, 2017). To describe interindividual variation,
we present the standard deviation of interbird variation from the lin-
ear models. Models with binomial error distributions had dispersion
parameters of 1.5 and 2.0, respectively, following Bolker (2020). All
R scripts and data are available in Zenodo (https://zenodo.org/recor
d/4437461).

2.4 | Detour-reaching task

Birds were taught to reach into a tube to retrieve a food reward fol-
lowing Boogert et al. (2011). This task had three phases: habituation,

training, and testing. For all phases, a trial consisted of placing a tube

(5 cm length, 4 cm diameter) mounted on a thin piece of wood in a
bird's home cage for 10 min with a food reward (freshly killed mini-
mealworm) at the center of the tube. Trials were repeated sequen-
tially until the bird passed each phase, with no more than 20 trials
per day. During the habituation phase, birds were taught to associate
an opaque tube with food and passed habituation by taking food in
three consecutive trials. Birds were in the main housing room during
habituation but visually isolated from other birds with opaque black
plastic partitions. For training and testing, we moved birds in their
home cage to an environmental chamber (Caron 7000-10). During
the training phase, we exposed birds to the same air temperature
and relative humidity as the main housing room (22°C, 55%-65%
rH). Birds were then taught to reach around the opaque tube to re-
move food instead of pecking on the surface. An individual passed
training when it no longer pecked on the side of the tube before
removing the food in four out of five consecutive trials.

We included only birds that passed the training phase in the test-
ing phase (n = 9, 75% of original group). In the testing phase, birds
were presented with baited clear tubes and passed when they no
longer pecked on the side of the tube before removing the food in
four out of five consecutive trials. We repeated the testing phase
at two air temperatures: 22 and 44°C in a repeated measures de-
sign with treatment order randomized across birds. We maintained
relative humidity at the same levels as in the color association task.
We recorded all test trials to a computer using webcams. Closely
matching our protocol for the color association task, we removed
food from cages four hours before trials began to ensure motivation
and removed water from cages immediately before the trial began.

We tested for differences in the number of trials to pass the task
between temperature treatments by fitting generalized linear mixed
models using function “glmer” (Bates et al., 2015) that included trial
temperature as a fixed factor variable and bird identification as a ran-
dom effect. In a separate model, we tested if trial number influenced
performance. To describe interindividual variation, we present the
standard deviation of interbird variation from the linear models. For
both models, we used Poisson error distributions; models were not
overdispersed (dispersion parameters 0.53 and 0.85, respectively,
chi-square test both p 2 0.62, following Bolker, 2020). We calculated
r? using package r2glmm (Jaeger, 2017) and plotted raw data with

model predictions based on bootstrapping (Duursma, 2020).

2.5 | Ethical treatment

The IACUC at each institution approved housing and experimental
conditions. We habituated birds to thermal chambers immediately
prior to the test trials and on days preceding test trials. Habituation
immediately before the trial was for 30 min at trial air temperature.
For the color association task, we also habituated birds to the en-
vironmental chamber on separate days at 22°C for 2 hr and at an
elevated temperature (36°C) for 1.5 hr. For the detour-reaching
task, we also habituated the birds to the chamber on a separate day

at 22°C for 1 hr. We monitored birds continuously during trials via
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webcams and removed one bird from a test trial because it exhib-
ited signs of prolonged stress. Following each trial, we supplied fresh

food and water to the birds’ cages.

2.6 | Airtemperature in native range

We mapped air temperature in the native range of the zebra finch
subspecies used in our captive studies (T. g. castanotis). This sub-
species is found across mainland Australia, generally in the more
arid areas. The other, nominate subspecies of zebra finch is found
in the Lesser Sunda Islands and coastal areas of Australia (BirdLife
International, 2016; Sullivan et al., 2009). We downloaded daily
maximum air temperature maps from the Australian Bureau of
Meteorology (http://www.bom.gov.au/jsp/awap/temp/archive.jsp).
These maps are interpolated based on data from several hundred
weather stations around Australia. We used the bindings for the
Geospatial Data Abstraction Library (Bivand et al., 2014) as well
as the raster package (Hijmans & van Etten, 2020) in R (R Core
Team, 2020) to read these maps and to calculate the number of
days that reached air temperatures of 40°C and then 44°C for each
geographical coordinate. We then overlayed the outline of Australia
using the maps package (Brownrigg, 2021). Finally, we clipped the air
temperature data to the zebra finch range. We obtained this range
from BirdLife International (BirdLife International, 2016) and veri-
fied the range by ensuring that zebra finch sightings (eBird: Sullivan
et al., 2009) and museum collection sites (VertNet: vertnet.org) were

within that range.

3 | RESULTS
3.1 | Heat dissipation behaviors

When exposed to higher air temperatures, birds showed heat dis-
sipation behaviors, including panting, wing spreading, and taller
posture (Figure 2). At low temperatures (22°C), birds never showed
these behaviors (n = 9 in detour-reaching study, n = 6 in color asso-
ciation study). At 40°C, four of six birds showed all three behaviors
during color association trials (note that detour-reaching trials were
not conducted at this temperature). At 43 and 44°C, all birds (n = 15)
showed all three thermoregulatory behaviors during trials for both
color association and detour-reaching tasks. These data suggest var-
iability in heat tolerance.

3.2 | Color association task

Motor performance on the color association task declined at high
air temperatures. Compared to the low air temperature (22°C), the
time to finish the task was slightly longer per individual at 40°C,
though not significant (Figure 3a,b = 20 s + 49 s.e,, t,, = 0.415,
p < 0.69), and was significantly longer at 43°C (B = 147 s + 48 s.e.,
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FIGURE 2 Zebrafinches performed heat dissipation behaviors
(panting, wing spreading, and taller posture) at air temperatures
of 40°C and above on a color association task (a) and a detour-
reaching task (b). Gray lines connect repeated measurements for
individuals (n = 6 and 9, respectively). Data points offset vertically
to show all data

t,, = 3.0, p < 0.011, likelihood-ratio test: p < 0.015, r? q=0.47,
sd of interbird variation = 49). One individual took four times

adjuste

longer to complete the trial at 43°C than at 22°C. The slower com-
pletion times at higher temperatures were attributed to at least
two factors. First, birds paused to perform thermoregulatory be-
haviors, which caused them to take longer between flipping lids
of the correct color (Figure 3b). The time between correct flips
was slightly longer per individual at 40°C, though not significant
(B=2sx+5s.e,t, =041, p <0.7), and was significantly longer at
43°C (B=23s + 6 s.e., t;; = 3.8, p < 0.004, likelihood-ratio test:
p <0.03, r? = 0.60, sd of interbird variation = 4.8). Second, birds pro-
cessed food rewards more slowly at higher temperatures (Figure 3c).
Compared to 22°C, the time to eat a seed was significantly longer
at both 40°C (B = 0.48 s + 0.08 s.e,, t;5; = 6.1, p < 0.0001) and
43°C(B=0.72s+ 0.09 s, t;5; = 8.2, p < 0.0001, likelihood-ratio
test: p < 0.0001, r? = 0.34, sd of interbird variation = 0.17). Latency
to begin the task was generally short (average = 9 s + 2.8 s.e. for
completed trials, sd of interbird variation = 0.001) and did not differ
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FIGURE 3 Zebra finches required longer to complete a color
association task at higher air temperatures. This was reflected in
total time to complete the trial (a) and resulted from longer times
between flipping correct lids (b) and slower seed processing speeds
(c) (p < 0.05 for all measures at 43°C and p < 0.05 for time to
process a seed at 40°C). Filled dots and error bars represent model-
based predictions and standard errors; gray lines connect repeated
measurements for individuals (n = 6). We did not provide lines in
panel c because there were several measurements per individual

at each temperature; instead, we added a small amount of random
variation to values on the y-axis to help visualize the points

significantly based on air temperature (t < |0.75| and p > 0.47 for
both higher temperatures), although during one incomplete trial at
40°C, the bird performed heat dissipation behaviors for over four

minutes before beginning the task.

Birds exhibited declines in one of two cognitive aspects of the
color association task at a higher air temperature. Accuracy of the
color association task was not related to temperature (Figure 4a,
z < |1.9] and p > 0.05 for both higher temperatures, sd of interbird
variation = 1.4). In contrast, birds were significantly more likely to
miss food rewards at 40°C (Figure 4b, n = -1.15 + 0.37 s.e.,z=-3.1,
p < 0.018) and 43°C (y = -1.21 + 0.39 s.e., z= -3.1, p < 0.003, like-
lihood-ratio test: p < 0.002, sd of interbird variation = 0.5). Trial
number did not influence performance in any of the above measure-
ments (all t < ]0.81|, p > 0.3), indicating that birds did not improve or

decline in performance in successive trials.

3.3 | Detour-reaching task

Cognitive performance of the detour-reaching task declined at the
high air temperature. Birds required more trials to complete the
task at the higher air temperature (Figure 5; n = 0.37 (i.e., 2.35 tri-
als) + 0.17 s.e., z = 2.22, p < 0.03, r? = 0.26, likelihood-ratio test:
p < 0.03, sd of interbird variation = 0.25), indicating lower cognitive

(a)

0.6 0.8

Error ratio

0.0

(b)

Missed food reward

None
|

22 40 43
Trial temperature (°C)

FIGURE 4 Zebra finches showed evidence of cognitive decline
at high air temperatures in one of two aspects of a color association
task. Finches maintained high accuracy of color association at
higher temperatures (p > 0.5 at both 40 and 43°C) (a), though

they were more likely to miss food rewards (p < 0.05 at both 40
and 43°C) (b). Filled dots and error bars represent model-based
predictions and standard errors; gray lines connect repeated
measurements of performance for individuals (n = 6)
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peratures exceeded temperatures causing motor decline (40°C) on
up to 89 days (99% of the austral summer days) and exceeded tem-
peratures causing cognitive decline (44°C) on up to 61 days (68% of
the austral summer days) (Figure 6). During this time period, zebra
finches experienced at least one day at or above 40°C in 45% of their
range and 44°C in 34% of their range.

4 | DISCUSSION

Our findings support the hypothesis that exposure to high air tem-
peratures limits behavioral performance in an endotherm. The
behavioral output of animals is composed of motor patterns (e.g.,
food manipulation) and cognitive processing (e.g., recall of foraging
sites), and our findings indicate that both are affected by exposure
to high temperatures. At higher air temperatures, when this species
is known to experience hyperthermia (Calder, 1964), the birds exhib-
ited heat dissipation behaviors and took longer to complete the color
association task, demonstrating reduced motor performance. Birds
also required more trials to retrieve the food reward in the detour-
reaching task and missed food rewards during the color association

task at higher temperatures, indicating lower cognitive performance

T T T 1
120 130 140 150

Longitude

FIGURE 6 Geographical areas within the zebra finch range
(Taeniopygia guttata castanotis) during austral summer 2018-2019
in which air temperatures caused (a) motor decline (40°C) and (b)
cognitive decline (44°C) in our captive studies. Data taken from
the austral summer months of December 2018 to February 2019.
Presented as a heat map with the maximum number of days that
reached or exceeded that temperature in red and zero days in
white. Zebra finch range is outlined in gray

on these tasks. Taken together, our findings indicate that high air
temperatures can reduce motor and cognitive performance in zebra
finches.

Our study shows that reductions in cognitive performance resulted
from changes in the thermal environment. Other factors known to in-
fluence cognitive performance include interindividual variability in
personality (e.g., risk taking), motor ability (e.g., dexterity), motivation
(e.g., hunger), and perceptual ability (e.g., visual acuity) (Morand-Ferron
etal., 2016). Our repeated measures design limited the potentially con-

founding factors of personality, motor ability, and perceptual ability
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among individuals. Of course, variation in motor ability and even per-
ceptual ability within an individual at different air temperatures is likely
part of the explanation for reduced performance. The remaining factor
that could explain variability in performance among individuals is mo-
tivation. However, we assessed motivation to feed immediately after
each assay, and all individuals showed motivation.

We found evidence that exposure to high air temperatures
caused motor performance declines through two primary mecha-
nisms. First, birds altered their time budgeted to specific behaviors
at high temperatures: birds stopped performing the color associa-
tion tasks to perform heat dissipation behaviors. This time-budget
trade-off led to slower completion of the color association trials
and is consistent with field observations of reduced foraging effi-
ciency while birds perform heat dissipation behaviors (du Plessis
et al., 2012). Second, motor speed declined at high air tempera-
tures: birds processed seeds more slowly. Because birds did not
actively pant while processing individual seeds, we can be con-
fident that longer seed processing times were a result of slower
muscle movement rather than a time-budget trade-off. Slowed
muscle movement could have been intended to reduce heat gener-
ation or have resulted from muscle function decline. Indeed, expo-
sure to sublethal air temperatures has been shown to alter muscle
physiology in birds (Jimenez & Williams, 2014), which could re-
duce muscle performance, though this relationship has not been
established.

Exposure to high air temperatures also reduced cognitive perfor-
mance, but not for all cognitive abilities. We found strong effects of
temperature on inhibitory behavior. Birds had to inhibit the unpro-
ductive behavior of pecking on a clear barrier between themselves
and the food reward in order to reach around the tube to acquire
the food. The same individuals that could solve this task quickly at
a lower air temperature were significantly slower to do so at higher
temperatures. In contrast, heat did not have as strong of an effect
on discrimination behaviors, as assayed in the color association task.
Birds missed food rewards but did not make more mistakes in select-
ing the correct lid color during color association. Therefore, high air
temperatures may have different effects on different cognitive pro-
cesses. This could be because thermal stress has differential effects
on different regions of the brain (Sharma & Hoopes, 2003), warrant-
ing further investigation. Further work is also needed to assay addi-
tional cognitive processes important to endotherms, such as spatial
memory.

The cognitive assays used in our experiments should map onto
functional behaviors in the wild. Our color association task measured
associative learning. In bumblebees, Bombus terrestris dalmatians
associative learning speed is correlated with foraging rate (Raine &
Chittka, 2008). Our detour-reaching task measured inhibitory be-
haviors, which are predictive of problem-solving skills (Hauser, 1999)
and have been correlated with offspring fledged and mating success
in wild birds (Cauchard et al., 2013; Keagy et al., 2009; Morand-
Ferron et al., 2016).

The interindividual variation in heat dissipation behaviors and

performance declines suggests variability in heat tolerance, which

could lead to differential fitness in the wild. Specifically, two of six in-
dividuals did not display heat dissipation behaviors at 40°C, whereas
all individuals performed these behaviors at 43 and 44°C. Similarly,
there was greater variability in aspects of cognitive and motor per-
formance at the higher air temperatures. This is consistent with re-
sults from van de Ven et al. (2019), who found that male hornbills
(Tockus leucomelas) had more variable foraging efficiency in the hot-
test of the microclimates studied. Luther and Danner (2016) found
that male song sparrows with larger bills (which function as heat dis-
sipators) sang more in hot temperatures. Other field studies of birds
have not reported interindividual variation in behavioral responses
to high air temperatures (Carroll et al., 2015; Funghi et al., 2019;
Goldstein, 1984; du Plessis et al., 2012; Wiley & Ridley, 2016). We
hypothesize that interindividual variation in behavioral responses to
temperature is easier to observe in captive studies, which allow de-
tailed measurement of complex behaviors.

Our study revealed an order to declines in behavioral compo-
nents at high air temperatures. First, motor and cognitive perfor-
mance began to decline measurably at different temperatures.
Motor decline was evident at 40°C, whereas cognitive decline oc-
curred at 43 and 44°C. Second, motor performance declined sharply
between 40 and 43°C. In birds, such temperature response curves
are known for some physiological processes (Gerson et al., 2014;
McKechnie, Smit, et al., 2016; McKechnie, Whitfield, et al., 2016)
and threshold temperatures have been identified for some behaviors
(Cunningham, Kruger, et al., 2013), but patterns for cognitive and
specific motor processes are poorly known in endotherms. We pre-
dict that other endotherms would show similar patterns of cognitive
and motor decline, but those specific temperatures at which declines
occur vary depending on several factors inherent to the species and
its environment.

Our study tested how birds respond to relatively brief exposures
to high air temperatures. It is possible that exposure to recurring
heat waves or consistently high air temperatures causes acclimati-
zation to, and higher behavioral performance at, high temperatures.
For example, acclimation to high temperatures allows some birds to
adjust physiological traits such as evaporative cooling (McKechnie
& Wolf, 2004). The effects of acclimatization on behavioral per-
formance are poorly understood and deserve study. On the other
hand, continuous exposure to high temperatures (e.g., several hours
or days) can lead to dehydration and hyperthermia in zebra finches
(Calder, 1964), which we hypothesize could lead to even greater de-
clines in behavioral performance than observed in our study. Our
work provides a first step to building behavioral response curves at
high temperatures and provides a framework for follow-on studies
to address these additional factors.

We assumed that air temperatures in our climate chambers and
those used for estimating temperature in the native range repre-
sent conditions that zebra finches experience in the wild. Similar to
Conradie et al. (2020), we made these assumptions based on a sce-
nario of birds foraging in the shade in a microclimate with air tem-
perature that matches air temperature of the site generally. In the

wild, zebra finches likely experience microclimates that match our
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conditions, as well as those that are cooler and warmer. For example,
wind can have a cooling effect, whereas radiation from sunlight and
from the ground and vegetation can substantially increase heat gain.
Further studies may explore the potential influences of cooler and
hotter microclimates on behavioral performance.

Declines in cognitive and motor performance could help predict
when and where high air or environmental temperatures will influ-
ence population persistence and fitness. McKechnie et al. (2012)
described heat-related mortality in Australian birds and cautioned
about greater threats to survival and reproduction in the future.
They urged colleagues to create predictive models and provided a
conceptual framework for doing so. Our results suggest that zebra
finches experienced declines in cognitive and motor performance in
portions of their native range in 2018-2019, and paired with future
climate scenarios, could provide predictions of behavioral perfor-
mance declines and mortality in the future. Our results might also
help refine existing predictive models that are based on physiology
and behavior.

Predictive models of avian mortality in response to heatwaves
now exist for Australia (Conradie et al., 2020), the US southwest
(Albright et al., 2017), and the Kalahari Desert (Conradie et al., 2019).
For Australia and the US southwest, Conradie et al. (2020) and
(Albright et al., 2017) used physiological measurements to predict
population declines from dehydration and hyperthermia for several
species by the end of the century. In Australia, by year 2,100, zebra
finches will experience heat waves capable of causing lethal dehy-
dration for over 20 days per year in over 50% of their Australian
range and up to 100 days per year in some places (Conradie
et al., 2020). In addition, Conradie et al. (2020) provide evidence that
zebra finch populations are already declining in the hottest locations
and hypothesize that small birds may experience even higher mor-
tality by seeking water in exposed places, which could increase risk
of hyperthermia. It is possible that the cognitive and motor perfor-
mance declines we described in our study exacerbate the threats of
dehydration and hyperthermia for birds in the wild by reducing their
ability to optimally find water and cooler microhabitats.

For the Kalahari Desert, Conradie et al. (2019) used both phys-
iological and behavioral data to predict that much of the avian bio-
diversity of that region will be extinct by 2,100 as a result of high
air temperatures. Conradie et al. (2019) show that mortality from
dehydration and hyperthermia will remain low for birds in shaded
locations, and that population declines will result from extended
periods of body mass loss, lower nestling growth rates, or breeding
failure. Our data support a model of less efficient foraging, which
could lead to mass loss and lower nestling mass at high temperatures
(Cunningham, Kruger, et al., 2013; van de Ven et al., 2019).

Incorporating cognitive information into predictive models might
offer refinements. For example, because cognitive declines occur
at higher air temperatures, models of foraging loss might describe
increased losses at the highest temperatures. In addition, cognitive
and motor decline as described in this study, along with interindivid-
ual variation in performance, could provide the basis for predictive

models of mate choice (Coomes et al., 2019) and other aspects of
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breeding biology, which could influence relative fitness and lead to
trait evolution.
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