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Abstract

Despite recent progress, learning new tasks
through language instructions remains an ex-
tremely challenging problem. On the AL-
FRED benchmark for task learning, the pub-
lished state-of-the-art system only achieves a
task success rate of less than 10% in an un-
seen environment, compared to the human per-
formance of over 90%. To address this issue,
this paper takes a closer look at task learning.
In a departure from a widely applied end-to-
end architecture, we decomposed task learning
into three sub-problems: sub-goal planning,
scene navigation, and object manipulation;
and developed a model HiTUT! (stands for
Hierarchical Tasks via Unified Transformers)
that addresses each sub-problem in a uni-
fied manner to learn a hierarchical task struc-
ture. On the ALFRED benchmark, HiITUT has
achieved the best performance with a remark-
ably higher generalization ability. In the un-
seen environment, HITUT achieves over 160%
performance gain in success rate compared to
the previous state of the art. The explicit rep-
resentation of task structures also enables an
in-depth understanding of the nature of the
problem and the ability of the agent, which
provides insight for future benchmark develop-
ment and evaluation.

1 Introduction

As physical agents (e.g., robots) start to emerge as
our assistants and partners, it has become increas-
ingly important to empower these agents with an
ability to learn new tasks by following human lan-
guage instructions. Many benchmarks have been
developed to study the agent’s ability to follow
natural language instructions in various domains
including navigation (Anderson et al., 2018; Chen
et al., 2019), object manipulation (Misra et al.,

'Source code available at https://github.com/
594zyc/HiTUT
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Figure 1: An example task in ALFRED.

2017; Zhu et al., 2017) and embodied reasoning
(Das et al., 2018a; Gordon et al., 2018). Despite re-
cent progress, learning new tasks through language
instructions remains an extremely challenging prob-
lem as it touches upon almost every aspect of Al
from perception, reasoning, to planning and actions.
For example, on the ALFRED benchmark for task
learning (Shridhar et al., 2020), the state-of-the-art
system only achieves less than 10% task success
rate in an unseen environment (Singh et al., 2020),
compared to the human performance of over 90%.
Most previous works apply an end-to-end neural ar-
chitecture (Shridhar et al., 2020; Singh et al., 2020;
Storks et al., 2021) which attempt to map language
instructions and visual inputs directly to actions.
While striving to top the leader board for end task
performance, these models are opaque, making it
difficult to understand the nature of the problem
and the ability of the agent.

To address this issue, this paper takes a closer
look at task learning using the ALFRED bench-
mark. In a departure from an end-to-end ar-
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chitecture, we have developed an approach to
learn the hierarchical structure of task composi-
tions from language instructions. As shown in
Figure 1, a high-level goal directive (“place a
clean mug in the coffee machine”) can be de-
composed to a sequence of sub-goals. Some sub-
goals involve navigation in space (e.g., Goto (Mug),
Goto (sink)) and others require manipulation of
objects (e.g., Pickup (Mug), Clean (Mug) ). These
sub-goals can be further decomposed into naviga-
tion actions such as RotateLeft and MoveAhead,
and manipulation actions such as put (Mug, Sink),
TurnOn (Faucet). In fact, such hierarchical struc-
ture is similar to Hierarchical Task Network (HTN)
widely used in Al planning (Erol et al., 1994).
While this hierarchical structure is explicit and has
several advantages in planning and making models
transparent, how to effectively learn such structure
remains a key challenge.

Motivated by recent work in multi-task learn-
ing (Liu et al., 2019a), we decomposed task learn-
ing in ALFRED into three sub-problems: sub-goal
planning, scene navigation, and object manipula-
tion; and developed a model called HiTUT (stands
for Hierarchical Tasks via Unified Transformers)
that addresses each sub-problem in a unified man-
ner to learn a hierarchical task structure. On the
ALFRED benchmark, HiTUT has achieved the best
performance with a remarkably higher generaliza-
tion ability. In the unseen environment, HITUT
achieves over 160% performance gain in success
rate compared to the previous state of the art.

The contributions of this work lie in the follow-
ing two aspects.

An explainable model achieving the new state-of-
the-art performance. By explicitly modeling a hi-
erarchical structure, our model offers explainability
and allows the agent to monitor its own behaviors
during task execution (e.g., what sub-goals are com-
pleted and what to accomplish next). When a failed
attempt occurs, the agent can backtrack to previ-
ous sub-goals for alternative plans to execute. This
ability of self-monitoring and backtracking offers
flexibility to dynamically update sub-goal planning
at the inference time to cope with exceptions and
new situations. It has led to a significantly higher
generalization ability in unseen environments.

A de-composable platform to support more in-
depth evaluation and analysis. The decomposi-
tion of task learning into sub-problems not only
makes it easier for an agent to learn, but also pro-

vides a tool for an in-depth analysis of task com-
plexity and the agent’s ability. For example, one
of our observations from the ALFRED benchmark
is that the agent’s inability to navigate is a major
bottleneck in task completion. Navigation actions
are harder to learn than sub-goal planning and ma-
nipulation actions. For manipulation actions, the
agent can learn action types and action arguments
predominantly based on sub-goals and the history
of actions, while language instructions do not con-
tribute significantly to learning. The success of
manipulation actions also largely depends on the
agent’s ability in detecting and grounding action
arguments to corresponding objects in the environ-
ment. These findings allow a better understanding
of the nature of the tasks in ALFRED and provide
insight to address future opportunities and chal-
lenges in task learning.

2 Related Work

Recent years have seen an increasing amount of
work on in the intersection of language, vision and
robotics. One line of work particularly focuses on
teaching robots new tasks through demonstration
and instruction (Rybski et al., 2007; Mohseni-Kabir
et al., 2018). Originated in the robotics community,
learning from demonstration (LfD) (Thomaz and
Cakmak, 2009; Argall et al., 2009) enables robots
to learn a mapping from world states to robots’
manipulations based on human’s demonstration of
desired robot behaviors. More recent work has also
explored the use of natural language and dialogue
together with demonstration to teach robots new
actions (Mohan and Laird, 2014; Scheutz et al.,
2017; Liu et al., 2016; She and Chai, 2017; Chai
et al., 2018; Gluck and Laird, 2018).

To facilitate task learning from natural lan-
guage instructions, several benchmarks using sim-
ulated physical environment have been made avail-
able (Anderson et al., 2018; Misra et al., 2018;
Blukis et al., 2019; Shridhar et al., 2020). In par-
ticular, the vision and language navigation (VLN)
benchmark (Anderson et al., 2018) has received a
lot of attention. Many models have been developed,
such as the Speaker-Follower model (Fried et al.,
2018), the Self-Monitoring Navigation Agent(Ma
etal., 2019a; Ke et al., 2019), the Regretful Agent
(Ma et al., 2019b), and the environment drop-out
model (Tan et al., 2019). The VLN benchmark
is further extended to study the fidelity of instruc-
tion following (Jain et al., 2019) and examined
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to understand the bias of the benchmark (Zhang
et al., 2020). Beyond navigation, there are also
benchmarks that additionally incorporate object
manipulation to broaden research on vision and
language reasoning, such as embodied question an-
swering (Das et al., 2018a; Gordon et al., 2018).
The work closest to ours is the Neural Modular
Control (NMC) (Das et al., 2018b), which also
decomposes high-level tasks into sub-tasks and ad-
dresses each sub-task accordingly. However, self-
monitoring and backtracking between sub-tasks is
not explored in NMC.

The ALFRED benchmark consists of high-level
goal directives such as “place a clean mug in the
coffee machine” and low level language instruc-
tions such as “rinse the mug in the sink” and “turn
right and walk to the coffee machine” to accom-
plish these goals. In addition to language instruc-
tions, it also comes with expert demonstrations
of task execution in an interactive visual environ-
ment. We choose this dataset because its unique
challenges are closer to the real world, which re-
quire the agent to not only learn to ground language
to visual perception but also learn to plan for and
execute actions for both navigation and object ma-
nipulation.

3 Hierarchical Tasks via Unified
Transformers

As discussed in Section 1, task structures are inher-
ently hierarchical, which compose of goals and sub-
goals. Different sub-goals involve tasks of different
nature. For example, navigation focuses on path
planning and movement trajectories, while manip-
ulation concerns more about interactions with con-
crete objects. Instead of end-to-end mapping from
language instructions to primitive actions (Shrid-
har et al., 2020; Singh et al., 2020; Storks et al.,
2021), we decomposed task learning into three sep-
arate but connected sub-problems: sub-goal plan-
ning, scene navigation, and object manipulation,
and developed a model called HiTUT (stands for
Hierarchical Tasks via Unified Transformers) to
tie these sub-problems together to form a hierarchi-
cal task structure.

3.1 Task Decomposition

We first introduce some notations to describe the
task and the model. There are three types of infor-
mation:

- Language (£). We use G to denote a high-level

goal directive, e.g., “place a clean mug in the coffee
machine” and I; to refer to a specific low-level
language instruction.

- Vision (V). It captures the visual representation
of the environment.

- Predicates (P). Symbolic representations are de-
fined to capture three types of predicates: sub-
goals (sg), navigation actions (a’), and manip-
ulation actions (a™). Each sg has two parts
(sgtvPe, sg?9) where sg'¥P¢ is the type (e.g.,
Goto) and sg®9 is the argument (e.g., Knife).
Each a" specifies a type (a™'¥P¢) of action,
from {RotateLeft, RotateRight, MoveAhead,
LookUp, LookDown}. Each a has also two parts
(a™-tPe, q-979) where a"-'YP€ is the action type
(e.g., Turnon); a™%"9 is the action argument (e.g.,

Faucet).

Sub-Goal Planning. Sub-goal planning acquires
a sequence of sub-goals sgi,--- , sg, to accom-
plish the high-level goal G. We predict the type
59,""° and argument sg;"? separately to avoid the
combinatorial expansion of the output space. Previ-
ous work (Jansen, 2020) models sub-goal planning
merely from high-level goal directives without vi-
sual grounding. These plans are fixed and thus not
robust to potential failures during execution and
variations of the visual environment. To overcome
these drawbacks, our sub-goal planning is done on
the fly after the previous sub-goal is executed in
the environment. More specifically, our sub-goal
planning objective is to learn a model (M) that
takes the visual observation at the current step (vy),
the high-level goal directive (), and a complete
sub-goal history prior to the current step (sg<;) to
predict the current sub-goal as follows:
sgi = (59, 595"7) = Mg (ve, G, s9<i)

The predicted sub-goals serve as a bridge between
the high-level goal and the low-level predictions of
navigation actions and/or manipulation actions.

Scene Navigation. Navigation sub-goals only re-
quire predictions for the types of navigation actions.
The objective is to learn a model for navigation
(M,,) which takes the current visual observation
(ve), current sub-goal (sg;), language instruction
(I;), and the navigation action history up to the
current step (aZ;) to predict the next navigation
action:

n A nitype _ n
aj = a; = My (v, 1i, 89, aZ ;)
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Figure 2: The structure of HITUT.

Object Manipulation. For a manipulation sub-
goal, in addition to the type and argument of the
action, the model (M,,,) also needs to generate a
segmentation mask (1) on the current visual ob-
servation to indicate which object to interact with
(i.e., which object the argument is grounded to):

(af',my) £ (a7, "7 my)

= Mo (vr, I, 5gi, ™))

The mask prediction is crucial because the action
will not be successfully executed with an incorrect
grounding even if 7" is correctly predicted.

As described above, although the context of the
three sub-problems varies, each model has simi-
lar input components from the space of (V, L, P).
This similarity inspires us to design an unified
model to solve three sub-problems simultaneously.

3.2 Unified Transformers

We leverage the effective self-attention based
model (Vaswani et al., 2017) to capture the cor-
respondence of different input sources as shown in
Figure 2. We first project the input from different
modalities into the language embedding space, and
adopt a transformer to integrate the information
together. Multiple prediction heads are constructed
on top of the transformer encoder to make pre-
dictions for the sub-goal type and argument, the

action type and argument, and object masks respec-
tively. As the three sub-problems share the similar
input form, we solve them all together using a uni-
fied model based on multi-task learning (Liu et al.,
2019a).

Our model differs from previous works (Shrid-
har et al., 2020; Singh et al., 2020) in the following
aspects. First, we do not apply recurrent state tran-
sitions, but feed the prediction history as the input
to each subsequent prediction. This may help better
capture correlations between predicates and other
modalities. Second, we do not use dense visual fea-
tures from the scene, but rather the object detection
results. By doing this, we map different modalities
to the word embedding space before feeding them
into the transformer encoder, thus taking advantage
of the pre-trained language models. Third, we use a
predicate embedding to share linguistic knowledge
between predicate symbols and word embeddings.

Predicate Embedding. We use the term predi-
cates to refer to symbolic representations including
sub-goal types, action types, and their arguments.
We map symbols to their corresponding natural
language phrases (e.g., AppleSliced is mapped to
a sliced apple). We then tokenize and embed the
tokens using word embeddings, and take the sum
of the embeddings to obtain the representation of
each predicate.

Vision Encoding. We use a pre-trained object
detector (Mask R-CNN (He et al., 2017)) to en-
code visual information. Instead of dense features,
we simply use the detection results (class labels,
bounding box coordinates and confidence scores)
as visual features. Specifically, we use the top K
detected objects with a confidence score higher
than 0.4 to form the visual features. The object
class labels share the same space with object argu-
ments, thus can be embedded into the same space.
The position information of an object is encoded
by a 7-dimensional vector consisting of its coordi-
nates, width and height of the bounding box and its
confidential score. This vector is first mapped to
the same dimension as word embeddings by a liner
transformation, then added to the class embedding
to form the final object representation.

Object Grounding. HiTUT does not generate
masks by itself. Instead it chooses an object from
the K input objects and uses the corresponding
mask generated by the object detector. This method
makes use of the strong prior learned from object
detection pre-training, so the model can focus on
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Figure 3: Overview of HITUT where unified transformers
for sub-programs are integrated together .

learning the grounding task. A drawback is that the
object detector cannot be improved during training,
and the performance of the detector determines
the upper bound of our model’s grounding ability.
We leave the exploration of more robust grounding
method for future work.

Posture Feature We use an additional posture
feature to assist scene navigation, which includes
the agent’s rotation (N, S, E, W) and its angle of
sight horizon (discretized by 15 degree). The po-
sitions are embedded and summed up to form the
posture feature representation. The agent maintains
its own posture in the form of a relative change to
its initial posture instead of the absolute posture in
the environment, thus avoid using additional sen-
sory data.

3.3 Self-Monitoring and Backtracking

These unified transformers trained for sub-
problems are integrated together as shown in Fig-
ure 3. One important advantage of intermedi-
ate sub-goal representations is to facilitate self-
monitoring and backtracking which allows the
agent to dynamically adjust the plan to cope with
failures during execution. As shown in Section 4,
this feature brings out the most remarkable perfor-
mance gain compared to the state of the art.

Self-Monitoring. The world is full of uncer-
tainties, and mistakes are inevitable. Based on
the learned model, the agent should be able
to monitor its own behaviors and dynamically
update its plan when the situation arises. Our
explicit representation of sub-goals allows the
agent to self-check whether some sub-goals are
accomplished.  Particularly for manipulation
sub-goals, it is feasible for the agent to detect
their failures by simply monitoring whether all the

Train Validation Test

Seen Unseen Seen Unseen

#Scenes 108 88 4 107 8
#Demonstrations 6,574 251 255 483 488
#Annotations 21,023 820 821 1,533 1,529
#Sub-goals 162k 6.4k 6.0k - -
#Navi. Actions 983k 39k 35k - -
#Mani. Actions 209k 8.3k 8.1k - -

Table 1: Statistics of data distribution in ALFRED. The
number of annotations is equivalent to the number of
tasks in each split.

manipulation actions are successfully executed.
For example, clean(Mug) cannot succeed if
any of the actions along the path Pput (Mug,
Sink), TurnOff (Facuet),
Pickup (Mug) fail. When the agent detects the fail-
ure of a subgoal, for example, as shown in Figure 4
the manipulation sub-goal Pickup (Mug) fails, it
can reason about whether the previous sub-goal
(i.e., Goto (Mug) ) is successfully achieved.

TurnOn (Facuet),

Backtracking. In classical Al, backtracking is
the technique to go back and try an alternative path
that can potentially lead to the goal. As shown in
Figure 4, when Pickup (Mug) fails, the agent back-
tracks to Goto (Mug) and tries a different sequence
of primitive actions to accomplish this sub-goal.
In ALFRED, only based on the visual information
without other sensory information (e.g., only ob-
serving a mug without knowing how far it is), is it
difficult to check whether a navigation sub-goal is
successfully achieved (e.g. whether a Mug is reach-
able). So every time after trying a different path
for Goto (Mug), the agent will check whether the
subsequent manipulation action Pickup (Mug) iS
successful. If it’s successful, the agent will move
on to the next sub-goal; otherwise the agent will
continue to backtrack until a limit on the maximum
number of attempts is reached. Our explicit rep-
resentation of sub-goals makes this backtracking
possible and has led to a significant performance
gain in unseen environments.

4 Experiments

4.1 Setting and Implementation

Dataset. We follow the train/validation/tests data
partition proposed in ALFRED, where validation
and test sets are further split into seen and unseen
based on whether the scene is shown to the model
during training. Each sub-goal planning step or a
primitive prediction step forms a data instance for
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Figure 4: Illustration of self-monitoring and backtracking.
Validation Seen Validation Unseen Test Seen Test Unseen
Model Success Goal-Cond Success Goal-Cond Success Goal-Cond Success Goal-Cond
Seq2Seq 3.70 (2.10) 10.00 (7.00)  0.00 (0.00) 6.90 (5.10) 3.98 (2.02) 9.42 (6.27) 0.39 (0.80) 7.03 (4.26)
HAM , . , : 12.40 (8.20) 20.68 (18.79)  4.50 (2.24)  12.34 (9.44)
MOCA 19.15 (13.60) 28.50(22.30) 3.78 (2.00)  13.40(8.30) 22.05 (15.10) 28.29 (22.05) 5.30(2.72) 14.28 (9.99)
HiTUT 2524 (12.20) 34.85(18.52) 12.44 (6.85) 23.71(11.98) 21.27(11.10) 29.97 (17.41) 13.87 (5.86) 20.31 (11.51)
HiTUT (G only)  18.41(7.59) 2527 (12.55) 10.23(4.54) 20.71(9.56) 13.63(5.57) 21.11(11.00) 11.12(4.50) 17.89 (9.77)
Human - - - - 91.00 (85.80)  94.50 (87.60)

Table 2: Task and Goal-Condition success rates. The path length weighted version is in parentheses. The highest values per

column are in bold. ”-” denotes scores that are not reported
without any sub-goal instructions.

the corresponding sub-problem. The number of
data instances are shown in Table 1.

Pre-training. We employ the pre-training fol-
lowed by fine-tuning paradigm for both the object
detector and the main model. For the object detec-
tor, we use a Mask R-CNN (He et al., 2017) model
pre-trained on MSCOCO (Lin et al., 2014), and
fine-tune it on 50K images collected by replaying
the expert trajectories in the ALFRED train split.
As we observe that the model struggles on detecting
small objects together with large receptacles, we
train two networks to detect movable objects and
big receptacles separately. We use the pre-trained
RoBERTa (Liu et al., 2019b) model to initialize the
transformer encoder.

Training. We perform imitation learning (super-
vised learning) on the expert demonstrations. The
ground-truth labels of sub-goals and primitive ac-
tions are obtained from the metadata. Different
input and output labels are organized for each sub-
problem respectively as described in Section 3. We
use the mask proposal that overlaps the most with
the ground truth mask as the mask selection la-
bel if the intersection-of-union is above 50%. If
there is no valid mask proposals, the label is as-
signed to 0 as an indicator of non-valid grounding.
We optimize the cross-entropy loss between model
predictions and the ground truth. We follow the

. G only denotes only using the goal directive during evaluation

multi-task training schema in Liu et al. (2019a)
where for each iteration, a batch is randomly sam-
pled among all the sub-problems, and the model is
updated according to the corresponding objective.
More details are in Appendix.

Evaluation Metrics. ALFRED leverages an in-
teractive evaluation in the AI2-THOR environment
(Kolve et al., 2017). A task is considered success-
ful if all the goal conditions (e.g. the target object
is placed on a correct receptacle and in a requested
state such as heated or cleaned etc.) are met. Three
measures are used: (1) success rate (the ratio of
successfully completed tasks), (2) goal-condition
rate (ratio of completed goal conditions), and (3) a
weight version of these two rates which takes into
account of the length difference between the pre-
dicted action sequence and the expert demonstrated
action sequence (Shridhar et al., 2020).

Baselines. We compare HiTUT to: (1) Seq2Seq -
an LSTM-based baseline model with progress mon-
itoring proposed in Shridhar et al. (2020); (2) HAM
- a hierarchical attention model over enriched visual
inputs (Nguyen and Okatani, 2020), and (3) MOCA
- a modular approach which also uses a Mask R-
CNN for mask generation (Singh et al., 2020) and
achieved previous state-of-the-art performance.
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B
x> 5 5 5 & &
QO 5 o ~
Modet & & & & T &§ & Avg.
= Seq2Seq 32 81 88 8 81 25 100 70
ﬁ MOCA 53 62 8 8 79 51 93 73
HiTUT 81 77 95 100 83 81 97 88
5 Seq2Seq 21 46 92 89 57 12 32 50
g MOCA 44 39 38 8 71 55 11 49
= HiTUT 71 69 100 97 91 78 58 81

Table 3: Success rates of manipulation sub-goals on valida-
tion sets. The highest values per fold are in bold.

4.2 Evaluation Results

4.2.1 Overall Performance of HiITUT

We first evaluate the overall performance of the
proposed framework as shown in Table 2. On
the testing data reported by the leader board, in
seen environments, HITUT achieves comparable
performance as MOCA. However in unseen en-
vironments, HiITUT outperforms MOCA by over
160% on success rate. This demonstrates our hi-
erarchical task modeling approach has higher gen-
eralization ability compared to end-to-end models.
Self-monitoring and backtracking enabled by hier-
archical task structures allows the agent to better
handle new situations. Remarkably, only based on
high-level goal directives (i.e., HiTUT (G Only)) with-
out using any sub-goal instructions, is HITUT able
to obtain a success rate of 11% in unseen environ-
ment, achieving 110% performance gain compared
to MOCA. This result indicates that HITUT can
learn prior task knowledge from the hierarchical
modeling process and apply that directly in new
environment with some success. Nevertheless, our
results are far from human performance and there
is still huge room for future improvement.

To have a better understanding of the problem,
we also conduct evaluations on sub-goals. The
agent is positioned at the starting point of each sub-
goal by following the expert demonstration and the
success rate of accomplishing the sub-goal is mea-
sured. HiTUT predicts first a symbolic sub-goal
representation and then the action sequence to com-
plete the sub-goal. As shown in Table 3, HiTUT
outperforms previous models on almost all of the
manipulation sub-goals by a large margin. The per-
formance gain is particularly significant in unseen
environment, which demonstrates the advantage of
our explicit hierarchical task modeling in low-level
action planning.

Valid Seen Valid Unseen
#BT Success Goal-Cond  Success  Goal-Cond
No 10.5(6.0) 18.4(13.8) 5.2(3.0) 13.5(11.1)
2 18.9(9.9) 27.6(18.0) 10.2(5.9) 20.2(13.6)
4 23.1 (11.3) 329(18.6) 12.9(7.0) 22.7(12.9)
6 25.6 (12.0) 35.1(18.5) 14.5(7.4) 24.3(12.3)
8 272 (12.5) 37.0(18.5) 16.2(7.8) 25.9(12.1)

Table 4: Success rates w.r.t. the allowed maximum backtrack-
ing number (#BT).

Seq2Seq  MOCA Our model with different #backtracks

I 2 4 6 8
Seen 51 54 35 48 56 64 68 70
Unseen 22 32 31 45 53 60 63 65

Table 5: Success rate of the navigation sub-goal Got o with
backtracking .

4.2.2 The Role of Backtracking

We conduct experiments to better understand the
role of self-monitoring and backtracking. We re-
peat the task-solving evaluation with different lim-
its on the allowed maximum number of backtrack-
ing. The agent only stops when the model pre-
dicts to stop (i.e., predicts End) or it reaches the
backtracking limit. As shown in Table 4, as the
limit increases, the task/goal-condition success rate
increases accordingly. One thing notable is that
the gap between success rates (weighted and un-
weighted) become larger when more backtrack at-
tempts are allowed. This is within our expecta-
tion because backtracking deviates from instruc-
tion following navigation to goal-oriented explo-
ration, which usually takes more steps than the
expert demonstration.

Since backtracking is particularly targeted to nav-
igation sub-goals Goto (see Section 3.3), we further
examine the role of number of re-tries (i.e. back-
tracks) in completing the sub-goal. As shown in
Table 5, HiTUT reaches more targets when given
more opportunities to backtrack. The backtracking
is most beneficial in unseen environment.

4.2.3 Complexity of Tasks

Task decomposition provides a tool to enable better
understanding of task complexity and agent’s abil-
ity. To do that, we replace different part of model
predictions by the corresponding oracle sub-goals,
actions, or masks, as shown in Table 6.

Using oracle sub-goals improves the success
rate for 2%-6% (line SG), showing sub-goal plan-
ning is a relatively easy problem and the agent can
perform reasonably well. After using the oracle

4208



90 { 82 T e e
[ 80 4
g =801 S
= < - 781
§ g 701 g :
U] --- all (100% data) Q -=- all (100% data) Q761
4 944 all 2 60 all = ¥ --- all (100% data)
=] > 4
¥ g3 | —F— no vision i —F— no vision & 74 all .
—— no goal directive 50 1 —— no goal directive 72 —f— no vision
92 —}— sub-goal history only —}— sub-goal history only —F— no instruction
91 : T : : 40 T T r r " " " "
1% 5% 15% 25% 1% 5% 15% 25% 1% 5% 15% 25%
(a) Sub-Goal Type (b) Sub-Goal Argument (c) Navigation Action Type
100 90
s
] 2 88
g s
2 Q
c 98 S & 861
2 3 <
3 < 11 (100% dat @
< 97 ~ = all (100% data) - == all (100% data) S g4
2 all S 95~ all =
] 1 —F— no vision s ~F—= no vision c --- all (100% data)
= 961 —F— no instruction 94 A ) —F— no instruction g 827 ) all
—J— action history only —J— action history only  § —J— no instruction
95 93 80 —
1%

1% 5% 15% 25% 1% 5%

(d) Manipulation Action Type

(e) Manipulation Action Argument

15% 25% 5% 15% 25%

(f) Manipulation Mask Selection

Figure 5: Step-by-step prediction accuracies given the golden sub-goal/action history w.r.t. the proportion of training data on
the unseen validation set. Each solid line corresponds to a specific input configuration. Dashed lines are the scores obtained

using 100% of training data.

Valid Seen Valid Unseen

Method

Success  Goal-Cond  Success  Goal-Cond
HiTUT 25.2(12.2) 34.8(18.5) 124(6.8) 23.7(12.0)
+ Oracle
SG 29.0 (15.6) 39.1(21.3) 14.0(7.6) 25.6(12.7)
N 75.0 (72.7) 78.0 (77.4) 57.9(60.0) 67.7 (65.2)
SG+N 79.2 (77.8) 84.0(81.3) 64.2(64.2) 72.0(68.1)
SG+N+M 89.0 (100)  90.0 (100)  80.5 (100)  83.7 (100)
SG+N+GR  99.3(99.0) 99.4(99.1) 99.4(99.3) 99.6 (99.6)

Table 6: Success rates of HITUT with different parts of pre-
dictions replaced by oracle operations with expert demonstra-
tions. N, M, SG and GR denote oracle navigation actions,
manipulation actions, sub-goals and object grounding (i.e.,
mask generation) respectively.

navigation actions, the seen and unseen success
rates are boosted by an absolute gain of 50% and
46% respectively (line N), indicating that navigat-
ing to reach target objects is a particularly hard
problem and the agent performs poorly. When ora-
cle sub-goals, navigation actions, and manipulation
actions (only symbolic representations) are given
(line SG+N+M), the task success is bounded by the
performance of the pre-trained object mask gener-
ator (i.e., visual grounding of the object). When
oracle object masks are given together with oracle
sub-goals and navigation actions (line SG+N+GR)
and the agent only needs to predict symbolic repre-
sentation of manipulation actions, the performance
is near perfect. These last two lines indicate that
predicting the type and the argument of a manip-

ulation action is a rather simple problem in the
ALFRED benchmark while grounding action ar-
guments to the visual environment remains a chal-
lenging task.

We further examine the complexity of learning
to solve sub-problems by evaluating the next-step
prediction accuracy given the golden history under
different conditions as shown in Figure 5. The mod-
els are trained and evaluated with different com-
binations of input and different amount of train-
ing data. We observe that excluding the visual
input does not hurt performance for sub-goal pre-
diction and manipulation action prediction (shown
by a,b,d,e). This indicates that in ALFRED, pure
symbolic planning is often independent from visual
understanding, which is consistent with the find-
ings in (Shridhar et al., 2020). However, this could
be an oversimplification brought by the bias in the
dataset rather than a true reflection of the physical
world. For example, next action prediction can be
made by remembering the correlation of predicates
instead of reasoning over vision and language, due
to the lack of diversity of the task environments.
Removing language instructions causes a minimal
performance drop of 1%-2% on action prediction
tasks, which brings up the question about the use-
fulness of language instructions in this benchmark.
Furthermore, the prediction accuracy is above 90%
and 98% with only 5% training data for sub-goal
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and manipulation planning respectively, while the
navigation accuracy is only 82% given all the data.
This again supports the finding that planning and
performing navigation actions is a much harder
problem than sub-goal planning and manipulation
actions in ALFRED.

5 Discussion and Conclusion

This paper presents a hierarchical task learning
approach that achieves the new state-of-the-art per-
formance on the ALFRED benchmark. The task
decomposition and explicit representation of sub-
goals enable a better understanding of the problem
space as well as the current strengths and limi-
tations. Our empirical results and analysis have
shown several directions to pursue in the future.
First, we need to develop more advanced compo-
nent technologies integral to task learning, e.g.,
more advanced navigation modules through either
more effective structures (Hong et al., 2020) or
richer perceptions (Shen et al., 2019) to solve navi-
gation bottleneck. We need to develop better repre-
sentations and more robust and adaptive learning
algorithms to support self-monitoring and back-
tracking. We also need to seek ways to improve
visual grounding, which is crucial to both naviga-
tion and manipulation.

Second, we should also take a closer look at
the construction and objective of existing bench-
marks. How a benchmark is created and how truth-
fully it reflects the complexity of the physical world
would impact the scalability and reliability of the
approach in the real world. As for the objective,
there is a distinction between learning to perform
tasks and learning to follow language instructions.
If the objective is the former, the agent should be
measured by the ability to learn to accomplish high-
level goal directives without being given specific
language instructions at the inference time. If the
objective is the latter, then the agent should be mea-
sured by how faithful it follows human instructions
aside from achieving the goals, similar to (Jain
etal., 2019). We need to be clear about the objec-
tives and develop evaluation metrics accordingly.

Finally, when humans perform poorly in a com-
plex task, we have the ability to diagnose the prob-
lem and put more energy on learning the difficult
part. Physical agents should also have similar abil-
ities. In task learning, on the one hand, the agent
should be able to master simple sub-tasks from a
few data instances, e.g., through a few turns of inter-
actions with humans (Karamcheti et al., 2020). On

the other hand, it should be aware of the bottleneck
of its learning progress and proactively request for
help when problems are encountered either dur-
ing learning or during deployment (She and Chai,
2017). How to effectively design interactive and
active learning algorithms for the agent to learn
complex and compositional tasks remains an im-
portant open research question.
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Appendix
A Additional Training Details

We use the RoBERTa (Liu et al., 2019b) implemen-
tation from Huggingface (Wolf et al., 2019). The
model is fine-tuned for 10 epochs with the Adam
(Kingma and Ba, 2015) optimizer on the ALFRED
training set. The learning rate warms up over the
first half of the first epoch to a peak value of 1e-5,
and then linearly decayed. The model achieving
the highest navigation action prediction accuracy
on the validation seen set is selected for evaluation.
All the models are trained on one NVIDIA V100
16GB GPU.

B Additional Evaluation Details

We follow the evaluation setting in the ALFRED
benchmark?. For each episode, the agent is given
a task, which is composed of a goal directive G
and several sub-goal instructions. The agent needs
to sequentially perform actions to achieve the goal
based on the visual observations of RGB image
only. This progress ends if the agent predicts an
End action (an End sub-goal for HITUT), which is
made after up to 10 failed interaction attempts or
reaching the maximum step limitation. For HiTUT,
there is also a maximum number of backtracking
attempts, and the model will be forced to stop if
the budget runs out. The maximum number of
backtracking is 8 in all of our experiments with-
out explicitly mentioning the backtracking number.
We also leverage two techniques to reduce the in-
teraction attempt failures. We use the obstruction
detection trick proposed in Singh et al. (2020) to
avoid failures caused by repeated tries of moving
toward obstructions. We propose a self-monitoring
approach to check the validity of manipulation ac-
tions. If no mask is selected or a predicted action
argument is not consistent with the class prediction
from Mask R-CNN for the selected object, the ma-
nipulation action is decided as failed and the agent
performs a backtrack without trying to execute the
action. Note that in Table 4, we remove the in-
teraction attempt constraint when comparing the
effect of different allowed maximum backtracking
numbers, thus the results of # BT = 8§ is slightly
higher than those shown in Table 2.

https://leaderboard.allenai.org/
alfred/submissions/get-started

Task-Type MOCA HiTUT
Seen Unseen Seen Unseen

Pick & Place 29.5 5.0 359 26.0
Cool & Place 26.1 0.7 19.0 4.6
Stack & Place 5.2 1.8 12.2 7.3
Heat & Place 15.8 2.7 14.0 11.9
Clean & Place 22.3 2.4 50.0 21.2
Examine & Place 20.2 13.2 26.6 8.1
Pick Two & Place 11.2 1.1 17.7 124
Average 18.6 3.8 25.2 124

Table 7: Success rates across 7 task types on the valida-
tion sets. Highest values per fold are bold.

Model #Backtracking Seen SR Unseen SR
RoBERTa no 10.5 5.2
Scratch no 7.9 2.8
RoBERTa 4 23.1 12.9
Scratch 4 18.1 10.2
RoBERTa 8 27.2 16.2
Scratch 8 26.8 14.0
MOCA - 19.15 3.78

Table 8: The validation success rates for models pre-
trained and trained from scratch with different allowed
maximum number of backtrackings.

C Additional Results

A detailed per-task performance comparison of Hi-
TUT and MOCA is shown in Table 7. As the
comparison might be unfair since HiTUT bene-
fits from model pre-training, we also conduct an
ablation study to show the effectiveness of pre-
training. In Table 8, we compare the fine-tuned
RoBERTa model to a Transformer with the same
size trained from scratch to show the role of the
RoBERTa pretraining. We can see that RoOBERTa
consistently improves the performance over train-
ing from scratch both w/o and w/ backtracking
with an absolute gain between 0.4% and 5% on
task success rate. Notably, Scratch with 4 or 8
backtrackings still outperform MOCA by a large
margin in terms of the unseen success rate.
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