

1 **Three-year-olds' comprehension of contrastive and descriptive adjectives:**  
2 **Evidence for contrastive inference**

3  
4 Catherine DAVIES<sup>1</sup>\*, Jamie LINGWOOD<sup>2</sup>, Bissera IVANOVA<sup>3</sup>, and Sudha  
5 ARUNACHALAM<sup>4</sup>

6 <sup>1</sup>University of Leeds, UK; <sup>2</sup>Liverpool Hope University, UK; <sup>3</sup>Aix-Marseille University,  
7 France; <sup>4</sup>New York University, USA

8  
9 \*Corresponding author: School of Languages, Cultures and Societies, University of Leeds,  
10 LS2 9JT, UK. Email: [c.n.davies@leeds.ac.uk](mailto:c.n.davies@leeds.ac.uk)

11  
12 **This is the author-accepted version of a manuscript accepted by *Cognition*, 26/03/2021**

13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25 **Acknowledgements**

26 This work was funded by the Economic and Social Research Council (grant ES/P010296/1)  
27 and the National Science Foundation (NSF BCS-1748826). We thank all of the families for  
28 their generous participation. We gratefully acknowledge assistance from Kurt Debono and Sam  
29 Hutton at SR Research for advice on experimental programming and data preparation, Michelle  
30 Peter for guidance on the speed of processing measure, Annika van Wijk for assistance in data  
31 entry and for helpful discussions about the study, and Dan Mirman for advice on statistical  
32 modelling.

33 **Three-year-olds' comprehension of contrastive and descriptive adjectives: Evidence for**  
34 **contrastive inference.**

35

36 **Abstract**

37 Combining information from adjectives with the nouns they modify is essential for  
38 comprehension. Previous research suggests that preschoolers do not always integrate  
39 adjectives and nouns, and may instead over-rely on noun information when processing  
40 referring expressions (Fernald, Thorpe, & Marchman, 2010; Thorpe, Baumgartner, &  
41 Fernald, 2006). This disjointed processing has implications for pragmatics, apparently  
42 preventing under-fives from making contrastive inferences (Huang & Snedeker, 2013).  
43 Using a novel experimental design that allows preschoolers time to demonstrate their abilities  
44 in adjective-noun integration and in contrastive inference, two visual world experiments  
45 investigate how English-speaking three-year-olds ( $N=73$ ,  $M_{age}=44$  months) process size  
46 adjectives across syntactic (prenominal; postnominal) and pragmatic (descriptive;  
47 contrastive) contexts.

48 We show that preschoolers are able to integrate adjectives and nouns to resolve reference  
49 accurately by the end of the referring expression, in a variety of pragmatic and syntactic  
50 contexts and in the presence of multiple distractors. We reveal for the first time that they can  
51 contrastively infer, given a slowed speed of presentation and visually salient size contrasts.  
52 Our findings provide evidence for a continuity in the development of pragmatic skills, which  
53 do not appear to be linked to children's language proficiency or speed of processing.

54

55 **Keywords**

56 Language development; developmental pragmatics; contrastive inference; adjectives; eye  
57 tracking.

58

59

60

61 **1. Introduction**

62 Children's comprehension of referring expressions develops throughout the preschool years.  
63 They gradually master the referential links between nouns and their real-world referents  
64 between 6 and 24 months (e.g., Bergelson & Swingley, 2012; Fernald et al., 1998). However,  
65 it is not until their third year that children start to integrate (or combine) information from  
66 adjectives to refine their referential understanding, and it is not until a year later that they are  
67 able to do this efficiently and flexibly in naturalistic contexts (Klibanoff & Waxman, 2000).  
68 The development of adjective comprehension is therefore a protracted process relative to  
69 other open word classes (e.g., Berman, 1988; Booth & Waxman, 2009; Gentner &  
70 Boroditsky, 2001; Ninio, 1988; Ramscar, Thorpe, & Denny, 2007; Waxman & Booth, 2001).  
71 Several reasons have been proposed for this lengthier path of acquisition, mainly relating to  
72 the conceptual and distributional aspects of adjectives. Adjectives make reference to only a  
73 property of an object, for example its texture or colour, which violates the whole-object  
74 assumption that a new word refers to a complete object (Markman, 1990; Sandhofer & Smith,  
75 2007). They make up around 10% of tokens in child-directed speech: a lower proportion of  
76 the input relative to other open classes (Sandhofer, Smith, & Luo, 2000). Adjectives may also  
77 pose difficulties due to their semantic, syntactic, and pragmatic variability. The meaning of  
78 adjectives often depends on the noun they modify. Consider the relational relativity that is  
79 involved in interpreting "little" in relation to a mouse or an elephant; the range of meanings  
80 between "nice day", "nice meal", and "nice work"; or the colour similarity between grey  
81 clouds and black clouds, grey hair and white hair (Gentner, 1982; Medin & Shoben, 1988;  
82 Smith, Cooney, & McCord, 1986; Syrett, Kennedy, & Lidz, 2010). In languages such as  
83 English that often place the adjective before the noun, this semantic variability may be  
84 doubly hard since the adjective is presented before the noun that constrains its meaning (e.g.,  
85 Arunachalam, 2016; Ninio, 2004). Pragmatically, adjectives play either a contrastive or a  
86 descriptive function in discourse, which determines the path of further inferential processing.  
87 This study focuses on children's real-time processing of adjectives across syntactic and  
88 pragmatic contexts. It is important to investigate processing because processing efficiency  
89 mediates the association between language input and growth outside of the lab (Weisleder &  
90 Fernald, 2013). Children who are fast to process language will have better learning  
91 opportunities to acquire subsequent unfamiliar words in the speech stream (Fernald,  
92 Marchman & Hurtado, 2008; He, Kon, & Arunachalam, 2020). This is evidenced by studies

93 showing that the faster three-year-olds process an adjective-noun referring expression, the  
94 more likely they are to acquire a novel noun later in the utterance (e.g., "The red car is on the  
95 deebo"; Fernald, et al., 2008). It is especially important to study how adjectives are processed  
96 because in natural speech, they commonly appear in combination with other words, meaning  
97 that efficient processing is necessary not just for comprehending adjectives themselves, but  
98 also for the constituents they combine with.

99 There has been less recent research on adjective acquisition compared to noun and verb  
100 acquisition, and it is important that older research questions are revisited using newer  
101 experimental methodologies. Many existing developmental studies on adjective  
102 comprehension have used methods that monitor children's offline performance, i.e., after an  
103 adjective or utterance has been presented (Gao, Zalazo, Sharpe, & Mashari, 2014; Hall,  
104 Waxman, & Hurwitz, 1993; Mintz & Gleitman, 2002; Mintz, 2005; Nelson & Benedict,  
105 1974; Ninio, 2004; Taylor & Gelman, 1988; Waxman & Booth, 2001). This provides only a  
106 limited picture. Since offline studies only capture children's final referential choice (which  
107 may have been heavily influenced by the phrase-final noun, or by an earlier parsing decision  
108 that children fail to revise), they don't reflect earlier stages of processing, e.g., processes  
109 triggered by competitors, and impacts of these processes on accuracy and latency. Offline  
110 studies tell us nothing about the timecourse of comprehension, e.g., how long after a  
111 prenominal adjective is presented do children show that they have encoded it? By definition,  
112 the live record captures processing abilities, which play an important role for acquisition, as  
113 discussed above. Finally, online measures can uniquely tell us about children's predictions  
114 about elements yet to appear: this is important specifically for investigating contrastive  
115 inference (defined in section 1.2), as well as for the wider domain of processing research. For  
116 all of these reasons, and given the syntactic, lexical, and pragmatic dimensions of adjectives  
117 that need to be integrated online, it is essential that children's real-time processing is  
118 analysed.

119 The current study focuses on three-year-olds' online interpretation of adjectives in continuous  
120 speech. We examine this age group for both empirical and theoretical reasons. As discussed  
121 below, although adjective comprehension in two-referent displays has been evidenced in  
122 three-year-olds (Thorpe, Baumgartner, & Fernald; 2006; Weisleder & Fernald, 2009), this  
123 has been limited to paradigms in which the adjective or the noun (but not both) have to be  
124 comprehended. In contrast, our design requires an understanding of both adjective and noun

125 in the same phrase: an ability not yet tested in this age group. Likewise, unscaffolded  
126 contrastive inference ability has not yet been tested in the under-fives. On the theoretical  
127 assumption that children need a substantial amount of language experience to tackle complex  
128 pragmatic or sentence processing, studies in this domain have rarely tested preschoolers (e.g.,  
129 studies on over-fours by Snedeker & Trueswell, 2004; Trueswell et al., 1999; Weighall,  
130 2008; Woodard, Pozzan, & Trueswell, 2016). Here we investigate whether younger children,  
131 i.e., those with less language experience can pass complex pragmatic tasks, given time (exp.  
132 2). If they fail, this would promote the importance of language for pragmatics. Conversely if  
133 they succeed, this might suggest a role for domain-general skills in pragmatics, and that  
134 sophisticated language abilities are less important for specific pragmatic tasks, in this case  
135 contrastive inference.

136 Overall, we analyse comprehension across sentential and pragmatic contexts by addressing  
137 four distinct but related research questions in two experiments within a single study (thereby  
138 eliminating disparities brought about by different methods used between previous studies). In  
139 doing so, it conveys a detailed account of the development of adjective understanding.

#### 140 *1.1 Children's integration of adjectives and nouns*

141 Our first research question examines three-year-olds' adjective-noun integration, i.e., to what  
142 extent do they combine crucial information from the adjective with the noun to derive a  
143 composed meaning and uniquely resolve the intended reference. Meaning integration is  
144 necessary across all levels of language processing and is especially pertinent in adjective  
145 interpretation given that the primary function of adjectives is to specify the meaning of a  
146 noun, and that adjectives rarely occur as isolated words (Davies, Lingwood, & Arunachalam,  
147 2020). Comprehension is at risk if children do not integrate and instead process the elements  
148 serially, for example when asked to pick the "second green ball", five-year-olds picked the  
149 second ball in the series which also happened to be green, but not the second of two green  
150 balls in the set (Matthei, 1982). At later stages of acquisition, adjective-noun integration is  
151 likely to act as a stepping stone for more complex referential structures, e.g., relative clauses  
152 or constructions containing a chain of adjective or adverb modifiers.

153 Integrating adjectives and nouns is challenging for young children, and there are several ways  
154 in which this can fail. A widely attested strategy is to use only information from the noun,  
155 which has been shown across languages that place nouns both before and after adjectives,

156 ruling out a bias based on linear order. Ninio (2004) showed that Hebrew-speaking children  
157 (1;6 – 4;4) frequently ignored postnominal adjectives and unreliably prioritised noun  
158 information to resolve reference. In response to requests to point to e.g., a big teddy, they  
159 pointed to a small teddy in almost a quarter of trials. Interestingly, their low performance was  
160 only apparent in the presence of an adjective competitor – a different object sharing the  
161 target's size, e.g., a big clock. Performance significantly increased when the choice was  
162 restricted to the contrasting noun pair alone (a big and a small teddy), suggesting that the  
163 children could understand the adjective when the noun was not at issue. Thorpe et al. (2006)  
164 refined Ninio's study by testing discrete age groups on simple referent pairs such as a red car  
165 and a blue car. They showed that English-speaking children at 2;5 over-relied on  
166 postadjectival noun information (exp. 1) and did not integrate the noun and adjective until  
167 after the whole phrase had been heard (exp. 2). This difficulty was resolved by 3;9 when they  
168 were able to do simple adjective-noun integration online.

169 The offline penalty introduced by competitors that Ninio (2004) and Thorpe et al. (2006)  
170 have documented also surfaces in studies measuring online processing. In displays with nine  
171 referents including a target referent (a red butterfly), an adjective competitor (a red fox), a  
172 noun competitor (a purple butterfly), and six unrelated distractors, Russian-speaking six-year-  
173 olds did not use information from the prenominal adjectives to fixate the red referents during  
174 the adjective, and instead waited until they had heard the noun (Sekerina & Trueswell, 2012).  
175 However, in much simpler displays of two referents, e.g., a red car and a blue car, three-year-  
176 olds showed a preference for the target during the prenominal adjective region (Fernald,  
177 Thorpe, & Marchman, 2010). Likewise, Spanish-speaking 3;6 year-olds did not wait for the  
178 completion of noun-adjective expressions but successfully interpreted them at the earliest  
179 possible opportunity (Weisleder & Fernald, 2009). However, in these simple contexts,  
180 processing the adjective (or noun in the Spanish case) was sufficient for reference resolution.  
181 In the English case, three-year-olds may be treating the adjectives as referential terms in their  
182 own right, and ignoring the following noun. Therefore, although the early looking behaviour  
183 of three-year-olds in these two studies suggests that they can rapidly recruit meaning to  
184 restrict reference, it does not constitute evidence of adjective-noun integration where  
185 information from both elements is required.

186 In an attempt to investigate preschoolers' ability to integrate meaning from adjectives and  
187 nouns, Tribushinina and Mak (2016) tested whether three-year-olds could integrate properties

188 of adjectives (e.g., soft) with relevant objects (e.g., pillow) by measuring whether the children  
 189 looked at the target referent during the prenominal adjective. When the adjective was  
 190 uninformative (e.g., new), looks to the target object unsurprisingly increased only on hearing  
 191 the noun. However, when the adjective was informative (e.g., soft), three-year-olds showed a  
 192 preference for the target object during the adjective, suggesting integration of adjective  
 193 semantics, informativeness, and world knowledge. However, in line with Fernald et al.  
 194 (2010), this task could be passed by attending to the adjective and using conceptual  
 195 knowledge of the target object, i.e., knowing that a pillow is typically soft whereas a  
 196 competitor (e.g., a book) is not. Adjective-noun co-occurrence statistics are also likely to  
 197 have scaffolded the early looking behaviour. Thus, Tribushinina and Mak's (2016) results do  
 198 not directly demonstrate adjective-noun integration.

199 Collectively, existing research on children's comprehension of adjectives suggests that  
 200 preschoolers do not reliably integrate adjective-noun combinations online and instead over-  
 201 rely on information from just one of these constituents: the noun when both adjective and  
 202 noun information is required for disambiguation, and the adjective when noun information is  
 203 not required. For successful comprehension however, the child must hold on to the adjective  
 204 before they hear the noun, combining information from both elements. To robustly test  
 205 children's integration of referring expressions when *both* the adjective and the noun are  
 206 required, the current study includes conditions containing both noun and adjective  
 207 competitors in the same visual display. We also use non-collocational adjectives to remove  
 208 any opportunity for children to complete the task via co-occurrence statistics or from world  
 209 knowledge.

210 The specific adjectives we use are “big” and “little”. These are scalar adjectives, meaning that  
 211 the noun they modify can possess the property they denote (in this case, size) to varying  
 212 degrees. They are inherently comparative because they can only be interpreted with reference  
 213 to something else, for example, a big mouse is big for a mouse (see e.g., Kennedy, 2012 for  
 214 further details about adjective taxonomies). These adjectives are ideally suited for this  
 215 investigation for several reasons. First, they are early acquired; at two years children can  
 216 interpret these size terms accurately (Ebeling & Gelman, 1988). They are also highly  
 217 frequent, e.g., they were the two most frequent scalar adjectives found in a recent corpus  
 218 study on child-directed speech (Davies et al., 2020). Because they are scalar adjectives, their  
 219 interpretation necessarily involves semantic integration of the adjective and noun (e.g.,

220 Ziegler & Pylkkanen, 2016). Finally, they were used in a comparable study with five-year-  
221 olds (Huang & Snedeker, 2013).

222 *1.2 The emergence of contrastive inference*

223 After ascertaining whether three-year-olds can integrate noun and adjective information by  
224 the end of a referring expression, our second research question investigates whether children  
225 can integrate adjectival and referential information earlier in the utterance. That is, we  
226 analyse the incidence of contrastive inference in younger children than has been documented  
227 previously. In response to modified nouns, e.g., “the tall glass”, adults routinely contrastively  
228 infer, i.e., they resolve reference during the prenominal adjective, before the noun has been  
229 produced. They engage in this type of pragmatic inferencing by exploiting the relationship  
230 between the linguistic input, the nonlinguistic context, and their knowledge of referential  
231 principles. Sedivy et al. (1999) were among the first to show this effect in adults by  
232 documenting early looks to a target member of a contrast set, e.g., a tall glass alongside a  
233 short glass in the presence of a singleton object that was also tall, e.g., a tall jug (see also  
234 Grodner & Sedivy, 2011; Ryskin, Kurumada, & Brown-Schmidt, 2019). Theoretically,  
235 contrastive inference is explained using Grice's Cooperative Principle (Grice, 1975) and its  
236 second maxim of quantity, by which comprehenders reason that a speaker would not have  
237 used an adjective to refer to the singleton object because it would be overinformative to do  
238 so. As a result of this inferential processing, comprehenders fixate the tall member of the  
239 contrast set during the adjective. Contrastive inference is key to efficient sentence processing  
240 for several reasons. By implicitly signalling a focus on the contrast set, it allows listeners to  
241 quickly eliminate the singleton item and reduces the need for speakers to explicate this.  
242 Deriving meaning before the end of the referring expression means that comprehension can  
243 proceed more quickly, leaving more attentional resources for other kinds of processing.  
244 Contrastive inference is also a form of redundancy, safeguarding against potential failures in  
245 the system later on, e.g., if the noun signal becomes degraded. Finally, it reduces working  
246 memory demands by fostering a global representation rather than the serial retention of  
247 individual words (Omaki & Lidz, 2015: 162-3).

248 To date, adult-like contrastive inference has not been attested online in the under-fives.  
249 Seven-year-olds have been shown to fail in an offline contrastive inferencing task  
250 (Kronmüller, Morisseau & Noveck, 2014). In an indirect test of contrastive inference, five-  
251 but not three-year-olds showed delays and checking behaviour when responding to

252 overinformative expressions (Morisseau, Davies & Matthews, 2013). Four-year-olds were  
253 able to contrastively infer in simple, two-referent displays, but only when given framing cues  
254 or training (Horowitz & Frank, 2014). It is not until children are five years of age that novel  
255 and unscaffolded adjective-noun integration has been documented online, constituting  
256 evidence for contrastive inference (Huang & Snedeker, 2013, countering earlier data by  
257 Nadig et al., 2003). In displays of four real objects, children showed a preference for the  
258 target (a big coin) in the presence of a contrast-mate (a small coin) and a competitor sharing  
259 the property of the target (a big stamp). Crucially, this preference emerged during the  
260 adjective. Thus, in simple visual contexts, five-year-olds can integrate meaning from a scalar  
261 adjective and a noun, and use their knowledge of adjective semantics and informativeness to  
262 engage in incremental processing before the onset of the noun, though at slower rates than  
263 adults. Huang and Snedeker's (2013) results suggest that this mechanism is functioning at  
264 five years of age. However, this is relatively late compared to other kinds of pragmatic  
265 inference, many of which have been found in younger children once task demands have been  
266 reduced, for example scalar implicature (Pousoulous et al., 2007; Stiller, Goodman & Frank,  
267 2015), relevance implicatures (Schulze, Grassmann, & Tomasello, 2013), metaphor  
268 (Pousoulous & Tomasello, 2019), metonymy (Falkum, Recasens, Clark, 2016), and  
269 presuppositions (Berger & Höhle, 2012). In line with this recent trend in experimental  
270 pragmatics, we aim to discover whether contrastive inference is within reach of under-fives.

271 *1.3 Children's comprehension of prenominal and postnominal adjectives*

272 Our third research question investigates whether adjective position affects children's  
273 processing of modified noun phrases. The majority of research with English-speaking  
274 children has focused on adjectives in prenominal (attributive) positions since this ordering  
275 allows researchers to measure children's online comprehension of adjectives versus reliance  
276 on the later-presented noun. However, English adjectives can also occur postnominally when  
277 used predicatively in a sentence (e.g., "that car is blue") or in a relative clause (e.g., "the car  
278 that's blue"). Reducing the hypothesis space to a subset of referents using a noun, and then  
279 narrowing it down further to the target using an adjective should intuitively facilitate  
280 identification of the referent (Ninio, 2004). This two-step process of adjective comprehension  
281 predicts that postnominal frames will result in more efficient processing than prenominal  
282 frames.

283 To our knowledge, only one study has compared the processing of adjectives in both  
284 positions, finding that 3-4 year-old English speakers processed referring expressions with a  
285 postnominal modifier (in a preposition phrase or relative clause) faster than those with a  
286 prenominal adjective (Arunachalam, 2016). Relatedly, training that presented colour  
287 modifiers postnominally in English resulted in better learning of these colour words by two-  
288 year-olds (Ramscar, et al., 2010).

289 So why should children find prenominal adjectives more demanding than those in  
290 postnominal position? Given that interpretation of the adjective is dependent on the noun it  
291 modifies (e.g., Kamp & Partee, 1995), children may fare better if they get the constraining  
292 word first. After all, children have limited memory and processing capacities, and having to  
293 process and retain the meaning of the adjective before the noun is heard may overtax them  
294 (e.g., Arunachalam, 2016). Further, noun labels may be more familiar, more robustly  
295 represented, and more accessible for children than modifier labels (e.g., Hall, Waxman, &  
296 Hurwitz, 1993). Perhaps paradoxically, corpus studies of child-directed speech show that  
297 modifying adjectives occur more frequently in prenominal positions. In an analysis of 12  
298 common adjectives used by and to children, parents used prenominal frames in 52% of the  
299 3,067 occurrences in a child-directed speech corpus, with colour words occurring  
300 prenominally roughly 70% of the time (Thorpe & Fernald, 2006). In a larger corpus of  
301 adjectives in child-directed speech across a range of interactive and socioeconomic contexts,  
302 adjectives were found to occur prenominally in 52% of occurrences, cf. 41% postnominally  
303 (Davies et al., 2020). These findings present a puzzle: the forms that should be more  
304 cognitively taxing for children are also more frequent in the input. Our study tackles this  
305 incongruity by ascertaining empirically whether prenominals are indeed more taxing than  
306 postnominals.

307 *1.4 Drivers of contrastive inferencing ability*

308 Although this small research base documents young children's emerging skills in adjective-  
309 noun integration and contrastive inferencing, it is not yet clear what matures in the child to  
310 enable them to master these abilities. Thorpe et al. (2006) speculate that holding an adjective  
311 in mind while listening to a noun poses a memory demand, manifest in younger children's  
312 retention of utterance-final noun information. Vocabulary may also play a role, such that the  
313 richer a child's lexicon, the faster they are at responding to familiar words, and the better they  
314 will be at leveraging off those words to interpret word combinations (Fernald, Perfors &

315 Marchman, 2006). In a detailed discussion, Fernald et al. (2010, p.210ff) suggest three  
316 potential causes of developmental changes in contrastive inference: robustness of lexical  
317 knowledge, language processing speed, and semantic integration. Our final research question  
318 (addressed in Experiment 2) analyses the relationship between these skills and children's  
319 performance in our contrastive inference task in an attempt to reveal what may underpin  
320 adjective-noun integration.

321

## 322 **2. Experiment 1**

323 The first experiment analysed eye movement data to investigate three-year-olds' integration  
324 of adjectives and nouns, their contrastive inferencing ability, and their comprehension of  
325 prenominal and postnominal adjectives. It examined the nature and timecourse of each of  
326 these skills across two pragmatic and two syntactic contexts. Stimuli exploited size contrasts  
327 using "big" and "little". Four conditions were included in a fully crossed design. The two  
328 pragmatic conditions were Contrastive (i.e., there was a competitor object in the display from  
329 the same object category that contrasted in size) and Descriptive (i.e., there were no  
330 competitor objects from the same object category). The two syntactic conditions were  
331 Prenominal and Postnominal (relative clause) positioning of the adjective (see Table 1 for  
332 stimulus details). Here, we briefly outline the hypothesized computations that listeners should  
333 make for each condition. In the Contrastive conditions, (mature) listeners can use the first  
334 element in the phrase (i.e., the adjective in the Prenominal conditions, or the noun in the  
335 Postnominal conditions) to begin to narrow their search for the referent. Importantly, in the  
336 Prenominal Contrastive condition, if listeners are able to use contrastive inference, the  
337 presence of a contrast set plus a prenominal adjective enables early target fixation during the  
338 adjective (addressed by RQ2 below). In the Descriptive conditions, we would expect listeners  
339 to show a slightly different pattern. Because the Descriptive conditions did not have a noun  
340 competitor, reference can be resolved quickly in the Postnominal Descriptive condition (as  
341 soon as the noun is heard), but only later in the Prenominal Descriptive condition, due to the  
342 presence of an adjective competitor. Across all conditions, children may rely only on the first  
343 element, or only on the noun (Ninio, 2004), which would render them unable to select  
344 reliably between the target and the competitors.

345 The experiment addresses three research questions, formulated to give a comprehensive  
346 account of three-year-olds' adjective comprehension both offline and online. RQ1b was

347 included to develop earlier research on the role of distractors in the computation of referential  
348 meaning (Ninio (2004)).

349 1. a. *Do preschoolers integrate adjectives and nouns to reliably resolve reference?*  
350 b. *To what extent does the presence of competitors that share property or object*  
351 *features with the target threaten reference resolution?*

352 We hypothesised that three-year-olds will integrate nouns and adjectives to preferentially  
353 look at the target referent by the offset of the referring expression in all conditions, and that  
354 the presence of both noun and adjective competitors in the Contrastive displays will reduce  
355 target preference as compared to the Descriptive condition.

356 2. *Do preschoolers show contrastive inference?*

357 Since contrastive inference has not been widely tested in this age group, two hypotheses of  
358 differing strengths drive this analysis. The first, stronger hypothesis predicts a developed skill  
359 in contrastive inferencing. The second, weaker one predicts an emerging skill.

360 a. Children will show a stronger preference for the target during the prenominal  
361 adjective in the Contrastive condition relative to the Descriptive condition (by  
362 using the presence of a contrast set in the Contrastive condition to infer that a  
363 speaker intends their adjective to distinguish between members of that contrast  
364 set).

365 b. Children will show greater distraction from the adjective competitor in the  
366 Descriptive condition relative to the Contrastive condition (since in the absence  
367 of a contrast set in the Descriptive condition, the prenominal adjective could  
368 equally apply to the adjective competitor and the target).

369 3. *Do preschoolers process modified noun phrases more quickly when adjectives occur*  
370 *pre- or post-nominally?*

371 We hypothesised that children will show stronger and earlier target preference in response to  
372 utterances containing postnominal adjectives compared to prenominal adjectives.

373

374 2.1 *Method*

375 2.1.1 *Participants*

376 Child participants ( $N = 37$ ) were recruited from a database of family volunteers at the lead  
377 author's institution. One participant was excluded as they were outside the target age range.  
378 The final sample of 36 children (21 girls, 15 boys) had a mean age of 3 years 9 months ( $= 45$   
379 months; range 42 – 48 months,  $SD = 2$ ). This sample size allowed detection of a  
380 medium/large effect size with a two-sided 5% significance level and a power of 80%. All  
381 were typically developing, monolingual, native speakers of British English with normal or  
382 corrected-to-normal vision and hearing. Caregivers were asked to complete a short family  
383 questionnaire that collected demographic information. Regarding the highest level of  
384 maternal education, 19% had completed high school, 39% had a Bachelor's degree, 25% had  
385 a Master's degree, and 6% had a PhD. Three percent of participants chose not to answer.  
386 Families received £10 for their participation.

387 2.1.2 *Design*

388 Using a 2x2 repeated measures design, two variables were manipulated within subjects. We  
389 manipulated the **pragmatic function** of adjectives. Their function was either contrastive (for  
390 disambiguating between a big cow and a little cow) or descriptive (for describing a singleton  
391 cow). We also manipulated the **syntactic frame** by presenting adjectives either in prenominal  
392 or postnominal position (e.g., "Where's the big cow?" vs. "Where's the cow that's big?").  
393 The four conditions are exemplified in Table 1.

394 2.1.3 *Materials: Visual world task*

395 The visual world task used grayscale stimulus images created from child-friendly drawings of  
396 familiar objects (originally created for Davies, Andrés-Roqueta & Norbury, 2016). None of  
397 the object names began with the same onset as other objects in the concurrent array, or with  
398 the same onset as "big" or "little" to avoid false anticipation of the target. All images fitted  
399 within a 234 x 247 pixel interest area. The big images fitted tightly within this frame and  
400 were 1.5 times the size of little ones. Each display contained 4 images. Twenty-six trials were  
401 created: 16 critical items (4 in each condition), 8 filler items, and 2 practice items.  
402 As exemplified in Table 1 and Figure 1, in the two Contrastive conditions there was a target  
403 object, a noun (category) competitor that was the same object as the target but of a

404 contrasting size, an adjective (property) competitor that was an unrelated object sharing the  
 405 same attribute as the target, and an unrelated distractor. In the two Descriptive conditions  
 406 there was a target object, an adjective competitor, and two unrelated distractors. No other  
 407 adjectives were required to discriminate the target from its noun competitor.

408 **Table 1.** Example stimuli in the critical conditions plus filler items.

| Condition               | Utterance<br>( <i>Where's the...</i> ) | Target  | Noun<br>competitor /<br>Distractor | Adjective<br>competitor | Distractor |
|-------------------------|----------------------------------------|---------|------------------------------------|-------------------------|------------|
| Prenominal Contrastive  | “big cow”                              | big cow | little cow                         | big flower              | tree       |
| Postnominal Contrastive | “cow that's big”                       | big cow | little cow                         | big flower              | tree       |
| Prenominal Descriptive  | “big cow”                              | big cow | scissors                           | big flower              | tree       |
| Postnominal Descriptive | “cow that's big”                       | big cow | scissors                           | big flower              | tree       |
| Filler items            | “book”                                 | book    | little melon                       | big melon               | lorry      |

409 Filler items always contained two noun competitors (i.e., a contrast set), and two unrelated  
 410 objects. Filler targets were never a member of the contrast set and were always described  
 411 using an unmodified noun. The fillers were designed this way to mask the pattern inherent in  
 412 the contrastive trials (where the target was always a member of the contrast set), and in doing  
 413 so reduced the predictability of the target.

414 Participants viewed displays while listening to pre-recorded utterances of the form “Where's  
 415 the [big/little] [noun]?” or “Where's the [noun] that's [big/little]?” All trials ended with the  
 416 question “Can you point to it?” Utterances were recorded by a female native speaker of  
 417 English without pitch accent to prevent prosodic cues (Nadig et al., 2003). The average  
 418 utterance duration was 1500 ms ( $SD = 233$ ) for the prenominal trials and 1504 ms ( $SD =$   
 419 274) for the postnominal trials. All stimuli can be found at [osf.io/hp9ns](https://osf.io/hp9ns).

420 The critical items appeared in 4 pseudorandomised lists, counterbalanced for the target size  
 421 adjective and block randomised. For example, half the participants saw the little cow as the  
 422 target, while the other half saw the big cow as the target. No object appeared as target more  
 423 than once throughout the experiment, and the position of the target and the contrast objects  
 424 was rotated around each quadrant of the displays. Between lists, critical target images  
 425 appeared once as a target and once as an adjective competitor. The order of stimuli  
 426 presentation was pseudorandomised such that there were at most two consecutive trials of the  
 427 same condition.

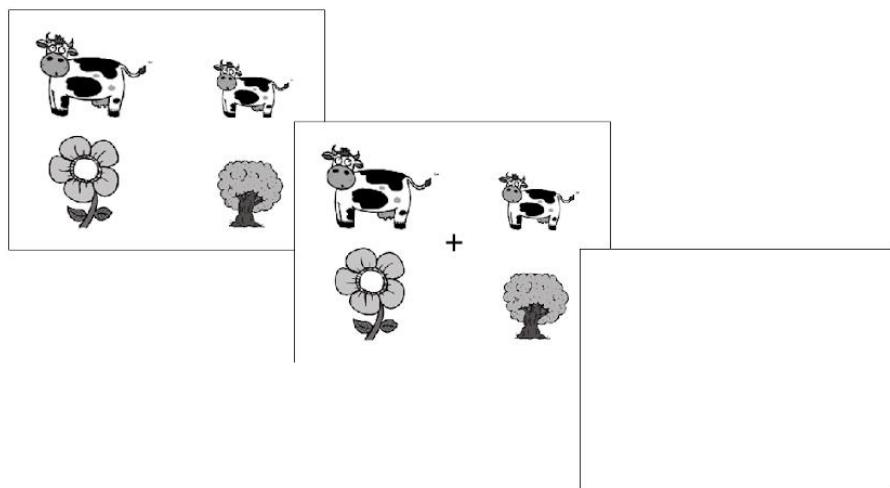
428 The trial sequence with timings is shown in Figure 1. A colourful, jangling animation in the  
429 centre of the screen acted as an attention getter. This was gaze-contingent so that each  
430 successive trial would not begin until the participant had fixated the attention getter for 500  
431 ms. In cases where they did not focus on it for 500 ms, the next trial automatically began after  
432 2000 ms.

433 *2.1.4 Materials: Standardised tests*

434 Subscales of the Clinical Evaluation of Language Fundamentals Preschool 2 UK (CELF)  
435 (Wiig, Second, & Semel, 2006) were administered to the children to investigate associations  
436 between their linguistic abilities and their performance in the visual world task. However, due  
437 to uncertainties about the interpretation of the children's performance on the visual world  
438 task, we did not analyse these measures for Experiment 1. Full details of this part of the  
439 experiment can be found in section 3.1 below.

440 *2.1.5 Procedure*

441 Participants were tested individually in a purpose-designed lab. The experimenter welcomed  
442 families to the warm-up area and played with the child until they were comfortable in the  
443 setting. The procedure was then explained to the caregiver. Caregivers gave their informed  
444 consent on behalf of their child before completing the family questionnaire.


445 Verbal assent was secured from each child before proceeding. The children first completed an  
446 object recognition task in which the 26 target images used in the visual world task were  
447 presented one by one on PowerPoint slides. All children were able to name all of the images.

448 For the visual world task, participants then moved to a neighbouring room set up for  
449 eyetracking. Each child was sat in a car seat in front of a 21.5" Iiyama monitor (1920 x 1080  
450 resolution) at a distance of approximately 90cm. An SR Research EyeLink 1000Plus  
451 eyetracker sampling at 500Hz with a 16mm lens was used to monocularly track the right ( $N =$   
452 35) or left eye ( $N = 1$ ). A 5-point calibration and validation was performed. During the  
453 experiment participants viewed the visual displays while listening to pre-recorded utterances  
454 presented through external speakers. Caregivers were positioned behind the child and were  
455 asked not to talk to them outside of the scheduled breaks.

456 Children were told that they would see pictures on the screen and would be asked to point to  
457 one of them. They were asked to place their hands on two cut-out handprints in front of them

458 between trials, and to point to the named object using the hand on the same side of the screen  
 459 as the object. The purpose of the pointing task was to get children actively involved in the  
 460 task; the data was not analysed. Trials were presented in blocks of 6, with the opportunity for  
 461 breaks in between. The visual world task lasted 15 minutes.

462 On completing the session, the families were thanked, debriefed, and paid for their  
 463 participation. Participants also received a book, a small toy, and a certificate. The whole  
 464 testing session lasted approximately one hour. The study was approved by the Faculty  
 465 Research Ethics Committee at the lead author's institution.



466

467 **Figure 1.** Trial sequence. 1) The display was previewed for 1000 ms. 2) A fixation cross  
 468 appeared in the centre of the display for a further 1000 ms. With the display visible, the audio  
 469 stimulus was played, e.g., "Where's the big cow?" ( $\approx$ 1500 ms in Experiment 1;  $\approx$ 2800 ms in  
 470 Experiment 2), followed by a 2500 ms pause and "Can you point to it?", at which point the  
 471 participant pointed to image which best matched the referring expression. 3) Trials ended  
 472 with a blank screen lasting 1000 ms.

473

474 *2.2 Results*

475 *2.2.1 Data preparation and analytical approach*

476 Prior to analysis we excluded trials in which the eyetracker lost track of participants' eyes on  
 477 more than half of the samples per trial. This resulted in 180 exclusions out of the original 560  
 478 trials (32% of the original data set).

479 To address research question 1a, we calculated log gaze probability ratios for the target,  
 480 which are calculated as:  $\log(\text{proportion of looks to the target} + 1) / \text{sum of proportion of looks}$   
 481 to competitors +1)-1 (Wienholz & Lieberman, 2019). Positive values indicate greater  
 482 preference for the target; negative values indicate greater preference to the other images. We  
 483 used linear mixed-effects regression with probability ratio as the dependent variable and  
 484 participant as random factor. A significant intercept parameter in this model indicates that  
 485 participants looked significantly more to the target than the competitors.

486 To address research questions 1b and 2, the effect of condition on looks to the target image  
 487 was modelled for specific time windows using Growth Curve Analysis (GCA; Mirman,  
 488 2014). GCA is a multilevel regression technique designed for analysing time course data. By  
 489 using polynomial models that are able to capture any data shape, it provides a way to  
 490 explicitly model change in gaze preference over time. It also quantifies both group-level  
 491 effects (i.e., experimental manipulations) and the effects of individual differences<sup>1</sup>.

492 We used two outcome variables in the analyses: a) proportion of looks to target, and b) target  
 493 advantage. The proportion of looks measure indicates the strength of preference for the target  
 494 over all other sections of the array. Observations were aggregated into 100 ms bins (Barr,  
 495 2008), and the proportion of looks to target was derived by dividing the number of samples  
 496 that fall in the target interest area by the number of samples that fall elsewhere, i.e., the other  
 497 three predefined interest areas, onscreen looks outside of the predefined interest areas, and  
 498 off-screen looks. This gives a value between 0 and 1. Target advantage then refines the first  
 499 measure; it is often used in visual world studies to indicate the extent to which a specific  
 500 competitor draws attention away from the target (e.g., Brown-Schmidt, Gunlogson, &  
 501 Tanenhaus, 2008; Schwarz, 2014; Tian, Ferguson, & Breheny, 2016). Target advantage is  
 502 derived by subtracting the proportion of looks to the most relevant distractor from the  
 503 proportion of looks to the target, giving a value of 1 (solely fixating target), 0 (fixating  
 504 neither target nor specified distractor) and -1 (solely fixating specified distractor). For  
 505 example, in the Prenominal conditions, target advantage would indicate the degree to which

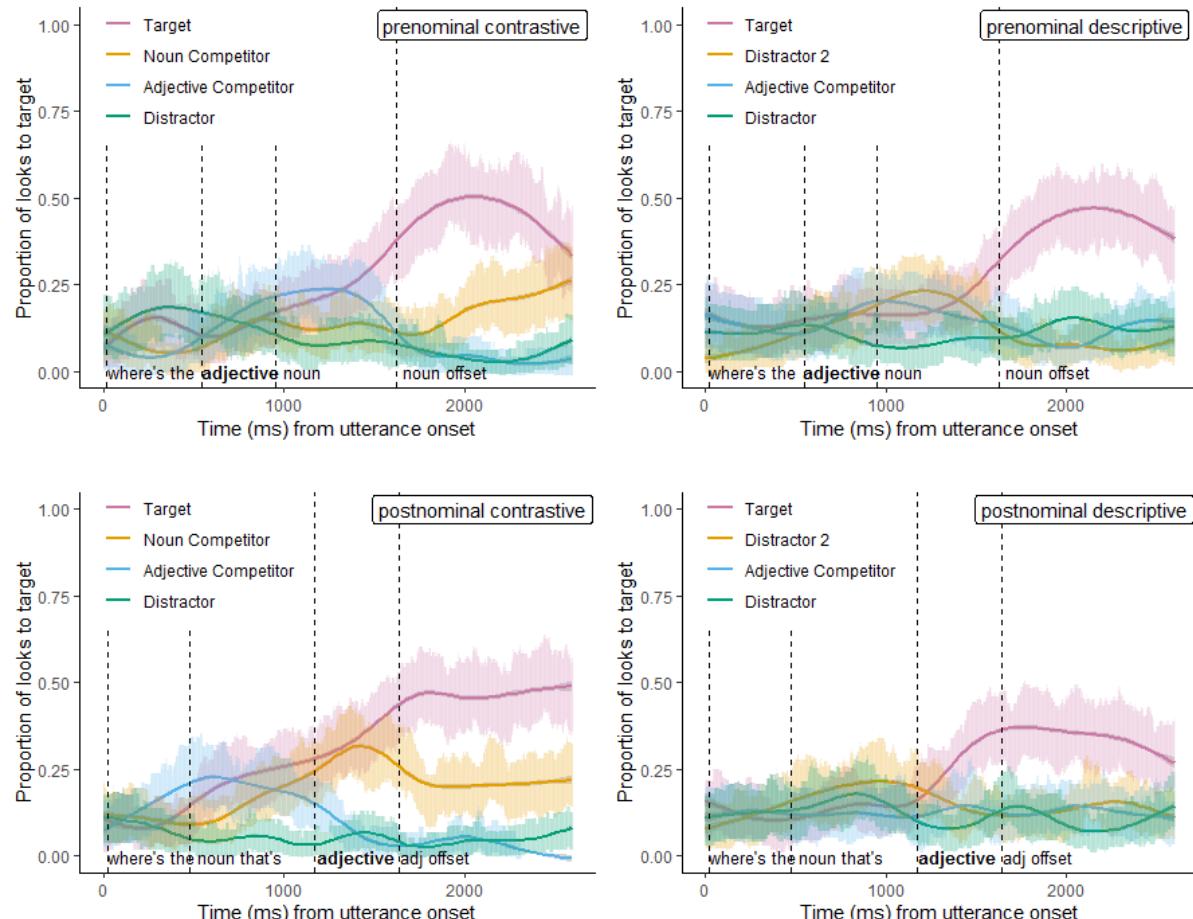
---

<sup>1</sup> Recently published analyses have raised concerns about GCA. For example, that it can lead to biased parameter estimates and spurious interactions when observed proportions are based on few observations or show floor/ceiling effects (Donnelly and Verkuilen, 2017), or that it is anticonservative (Huang & Snedeker, 2020). Following Huang and Snedeker's recommendation that logistic regression should be used in place of GCA, we modelled our data using both approaches and found similar results. Comparative analyses can be found in the scripts at [osf.io/hp9ns](https://osf.io/hp9ns).

506 participants were solely fixating the target (e.g., the big cow), or fixating the image that  
 507 shared the same property as the target (e.g., the big flower).

508 Both outcome measures were transformed using an empirical logit transformation (elogit)  
 509 (Barr, 2008). It is calculated as  $\log(Y+.5N-Y+.5)$ , where Y is the number of samples within  
 510 the 100 ms timebin for which the gaze fell within the bounds of the target object and N is the  
 511 total number of samples within each bin. Log is an approximation of log odds. Although  
 512 some researchers have argued that floor and ceiling effects can mean that elogit analysis can  
 513 produce biased parameter estimates (Donnelly & Verkuilen, 2017), there were no such effects  
 514 in our data.

515 Analyses were performed using mixed-effects regression as implemented in the package *lme4*  
 516 (Bates, Maechler, Bolker, & Walker, 2015) in R (R Core Team, 2018). All pre-processing  
 517 was conducted in EyeLink Data Viewer v.4.1.63 (2020). Full details of model fitting can be  
 518 found in Supplementary Materials B. Data and analysis scripts are available at [osf.io/hp9ns](https://osf.io/hp9ns/).


519 *Preliminary observations*

520 Before presenting the analyses, we note that visual inspection of Figure 2 (which depicts the  
 521 proportion of looking to each interest area by condition over time) offers three preliminary  
 522 insights that are supported by the analyses reported below.<sup>2</sup> First, looks to the target increase  
 523 as the utterance unfolds (examined statistically in research question 1a). Second, target  
 524 preferences emerge at different time points across conditions. This is not surprising because  
 525 reference can be resolved at different points in each condition: when the adjective occurs  
 526 before the noun (Prenominal conditions), the target can be uniquely identified during the  
 527 adjective in the Contrastive condition (if contrastive inference occurs), but not until the noun  
 528 in the Descriptive condition. Note that the emergence of target preference around the noun  
 529 offset in the Prenominal Contrastive condition suggests that preschoolers are not drawing  
 530 contrastive inferences (investigated further in research question 2). In the Postnominal  
 531 conditions, the target can be uniquely identified during the noun in the Descriptive condition  
 532 (with no pragmatic inferencing), but not until the adjective in the Contrastive condition.  
 533 These disambiguation points are indicated in bold text annotations in Figure 2. Third,  
 534 competition emerges from different interest areas across conditions (examined in research

---

<sup>2</sup> A sample of adult participants undergoing the same experiment show similar patterns to those shown in Figure 2. A summary of the method and results from the adult sample can be found in Supplementary Materials A.

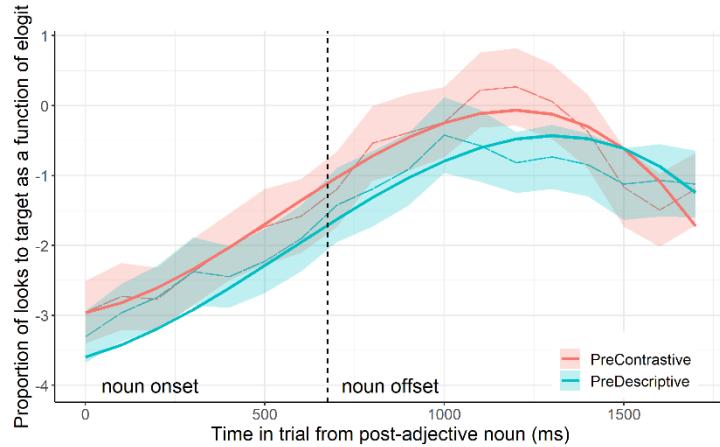
535 question 2). For example, in the Postnominal Contrastive condition, the noun competitor  
 536 presents strong competition for the utterance “the cow that’s big” until the disambiguation  
 537 point.



538 **Figure 2.** Proportion of looks (untransformed) to each interest area in each condition.  
 539 Vertical dashed lines represent mean onset times Confidence bands show standard error of  
 540 participant means. Bold text annotations indicate disambiguation points.  
 541

542  
 543 *2.2.2 RQ1a: Do preschoolers integrate adjectives and nouns to reliably resolve reference?*  
 544 Here, because our focus is on whether children ultimately resolve reference, we examine  
 545 looking behaviour after the utterance has unfolded (akin to an offline measure rather than a  
 546 measure of incremental processing), specifically, during a 2000 ms window from the offset of  
 547 the utterance during which there was silence. We calculated log gaze probability ratios for the  
 548 target relative to all other images to quantify target preference. Values averaged over  
 549 participants, items, and conditions suggest a greater preference for the target ( $M = 0.10$ ,  $SD =$

550 0.24, range = -0.49 - 0.99). We then fitted a linear-mixed effects regression to compare the  
 551 probability ratios to the intercept with participant as a random effect. This revealed a main  
 552 effect of the intercept ( $\beta = .04$ ;  $SE = .02$ ;  $t = 2.19$ ;  $p < .05$ ), indicating that participants looked  
 553 significantly more to the target picture than the competitors, as predicted.


554 *2.2.3 RQ1b. Where the adjective appears before the noun, to what extent does the presence of  
 555 an adjective and a noun competitor threaten reference resolution?*

556 Next, we asked whether the presence of an adjective and a noun competitor weakens target  
 557 preference (measured as proportion of looks to the target) in the Prenominal conditions.  
 558 Recall that displays in the Contrastive condition contained both a category (noun) and a  
 559 property (adjective) competitor, whereas displays in the Descriptive condition contained only  
 560 an adjective competitor. This difference allows us to run an analysis with condition as the  
 561 predictor and strength of target preference as the outcome. If target preference is weaker in  
 562 the Contrastive condition, this should reflect the additive effect of two types of competitor  
 563 drawing attention away from the target. Our initial hypothesis was that this would be the  
 564 case, and this pattern is reflected in Figure 2 (upper panels), in which children look more to  
 565 the noun competitor (yellow line) in the Contrastive conditions than the Descriptive  
 566 conditions.

567 Like for research question 1a, we were interested in preschoolers' final interpretation of the  
 568 utterance, but here, we included the noun in the time window as well. Because the  
 569 preschoolers appear not to be making a contrastive inference, their functional disambiguation  
 570 point falls during the noun in both Prenominal conditions, allowing us to analyse looking  
 571 behaviour during the same time window. The time window for analysis therefore runs from  
 572 the onset of the noun and for the following 2000 ms. The mean duration of the noun was 675  
 573 ms ( $SD = 164$ , range 502 - 1116). Because the audio stimuli were identical, any differences  
 574 in gaze behaviour will be due to differences in the visual stimuli.

575 We now present the growth curve analyses of pragmatic condition (Contrastive, Descriptive)  
 576 on proportion of looks to target. Growth functions were added stepwise to the model and the  
 577 overall curves were modelled with third-order orthogonal time orders (OTs) in addition to the  
 578 fixed effect of condition. Table 2 shows the fixed effect parameter estimates and their  
 579 standard errors along with  $p$ -values estimated using the normal approximation for the  $t$ -  
 580 values. There was no effect of condition, indicating no differences in overall target fixation

581 proportions ( $\beta = -0.39$ ,  $SE = 0.49$ ,  $p = .43$ ). Likewise, there was no significant interaction  
 582 between condition and any of the linear, quadratic or cubic terms (all  $p$ -values  $> .05$ ),  
 583 indicating no difference in the curvature between conditions. Significant main effects of those  
 584 terms reflect the change (increase) in looking to the target over time. Figure 3 shows elogit-  
 585 transformed mean proportions of looks with GCA cubic curves.



586

587 **Figure 3.** Elogit-transformed proportion of looks to target (dashed curves) in Prenominal  
 588 conditions from the onset of the noun. Bold curves indicate cubic growth curves fitted to the  
 589 data. Confidence bands show standard error of participant means.

590 **Table 2:** Model summary for effect of condition on proportion of looks to target from the  
 591 onset of the adjective. PreD = Prenominal Descriptive. P-values are marked with an asterisk  
 592 only if critical to the analysis.

| Term            | Estimate | SE   | t     | p    |
|-----------------|----------|------|-------|------|
| (Intercept)     | -1.23    | 0.42 | -2.92 | 0.01 |
| Linear          | 3.02     | 0.43 | 7.02  | 0.00 |
| Quadratic       | -2.46    | 0.42 | -5.84 | 0.00 |
| Cubic           | -1.22    | 0.42 | -2.88 | 0.00 |
| PreD            | -0.39    | 0.49 | -0.81 | 0.43 |
| Linear: PreD    | 1.09     | 0.59 | 1.84  | 0.07 |
| Quadratic: PreD | 0.72     | 0.58 | 1.23  | 0.22 |
| Cubic: PreD     | -0.72    | 0.54 | -1.33 | 0.60 |

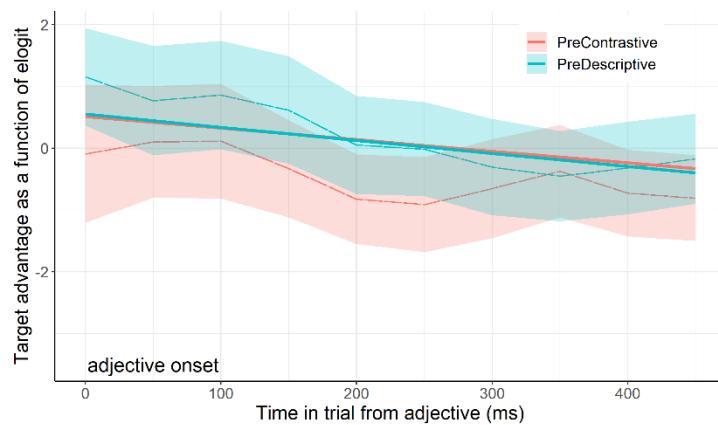
593

594 The lack of difference between conditions indicates that contrary to our prediction,  
 595 preschoolers did not show a weaker preference for the target in the Contrastive condition  
 596 where there were both noun and adjective competitors.

597 2.2.4 *RQ2: Do preschoolers show contrastive inference?*

598 This analysis investigates whether during the adjective, preschoolers show a stronger  
599 preference for the target in the Contrastive condition – where they could use Gricean  
600 reasoning to exclude the singleton object as the intended target – relative to the Descriptive  
601 condition. Data supporting this pattern would evidence that preschoolers are able to make  
602 contrastive inferences. Visual inspection of the prenominal contrastive panel in Figure 2  
603 tentatively suggests that contrastive inference is out of reach of this age group.

604 Here we used target advantage as the outcome variable. This measure is most suitable  
605 because it indicates preference for the target in relation to the strength of competition from  
606 the adjective competitor, thus providing a measure of how much preschoolers consider the  
607 adjective competitor (which is the only other object that fits the unfolding utterance) as a  
608 likely referent for the referring expression. If participants generate a contrastive inference, the  
609 adjective competitor should not present competition effects. By analysing looks to the same  
610 competitor object in both conditions, we can compare the extent to which that competitor is  
611 drawing attention away from the target. If preschoolers use the presence of the contrast set to  
612 infer that the adjective is likely to refer to one of its members rather than to the singleton  
613 item, and equally, use the *absence* of a contrast set to infer that the adjective is equally likely  
614 to refer to either of the images that matches the adjective, they should show lower levels of  
615 distraction from the adjective competitor in the Contrastive condition, and more distraction in  
616 the Descriptive condition.


617 Two hypotheses of differing strengths drive this analysis. The first, stronger hypothesis  
618 predicts a developed skill in contrastive inferencing. The second, weaker one predicts an  
619 emerging skill.

- 620 1. Preschoolers will show a stronger preference for the target in the Contrastive  
621 condition relative to the Descriptive condition.
- 622 2. Preschoolers will show greater distraction from the adjective competitor in the  
623 Descriptive condition relative to the Contrastive condition.

624 *Prenominal conditions*

625 To investigate the strength of competition away from the target, we analysed the effect of  
626 condition on proportion of looks to the target minus looks to the adjective competitor (=  
627 target advantage) during the adjective window. The mean duration of this window was 407

628 ms ( $SD = 65$ , range 265 - 506). If children used the presence of a contrast set to infer that the  
 629 adjective refers to one of its members, they should show fewer looks to the adjective  
 630 competitor, and thus a stronger target advantage in the Contrastive condition. Growth  
 631 functions were added stepwise to the model and the overall curves were modelled with first-  
 632 order OTs in addition to our fixed effect of condition. For this analysis, observations were  
 633 aggregated into 50 ms bins because of the short duration of the time window. As Table 3  
 634 shows, there was no effect of condition on the intercept term, indicating no overall  
 635 differences in target advantage between Prenominal Descriptive and Prenominal Contrastive  
 636 conditions ( $\beta = -0.01$ ,  $SE = 1.09$ ,  $p = .99$ ). There was also no significant interaction between  
 637 the linear term and condition ( $\beta = -0.10$ ,  $SE = 0.71$ ,  $p = .88$ ), confirming that there was no  
 638 difference in the linear slopes of target advantage scores between conditions. Figure 4 shows  
 639 elogit-transformed target advantage scores with GCA linear curves.

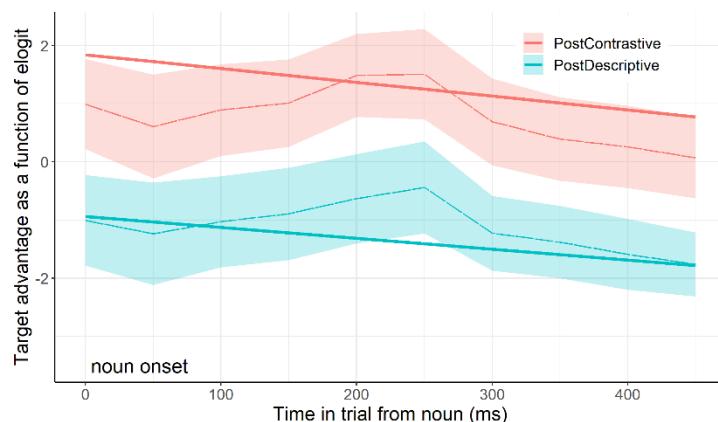


640

641 **Figure 4.** Elogit-transformed target advantage scores (dashed curves) in Prenominal  
 642 conditions from the onset of the adjective. Bold curves indicate linear growth curves fitted to  
 643 the data.

644 **Table 3.** Model summary for effect of condition on target advantage scores during the  
 645 adjective. PreD = Prenominal Descriptive.

| Term        | Estimate | SE   | t     | P    |
|-------------|----------|------|-------|------|
| (Intercept) | 0.09     | 0.90 | 0.10  | 0.92 |
| Linear      | -0.85    | 0.52 | -1.62 | 0.10 |
| PreD        | -0.01    | 1.09 | -0.01 | 0.99 |
| Linear:PreD | -0.10    | 0.71 | -0.15 | 0.88 |


646

647 This analysis confirms that preschoolers did not show direct or emerging contrastive  
648 inferencing. They did not show a stronger preference for the target in the Contrastive  
649 condition relative to the Descriptive condition, nor did they show greater distraction from the  
650 adjective competitor in the Descriptive condition relative to the Contrastive condition.

651 *Postnominal conditions*

652 Although not traditionally analysed in studies of contrastive inference, we also ran a post hoc  
653 analysis on the effect of Postnominal conditions on target advantage during the noun +  
654 relative pronoun window. Here we ask whether preschoolers use the presence of the singleton  
655 object in the Descriptive condition to infer that no adjective is needed after the noun, and  
656 look at the target before they hear the adjective. If this is the case, they should show an earlier  
657 target advantage in the Descriptive than in the Contrastive condition.

658 Growth functions were added stepwise to the model and the overall curves were modelled  
659 with fourth-order OTs in addition to our fixed effect of condition. For this analysis,  
660 observations were aggregated into 50 ms bins, because of the small duration of this time  
661 window. As Table 4 shows, there was a significant effect of condition, though against our  
662 predictions, there was a higher overall target advantage in the Contrastive condition rather  
663 than in the Descriptive condition ( $\beta = -2.66$ ,  $SE = 0.58$ ,  $p < .01$ ,  $d = -2.46$ ). There was no  
664 significant interaction between the linear term and condition ( $\beta = 0.22$ ,  $SE = 0.75$ ,  $p = .77$ ),  
665 indicating no difference in trajectories of target advantage across condition. Figure 5 shows  
666 elogit-transformed target advantage scores with GCA linear curves.



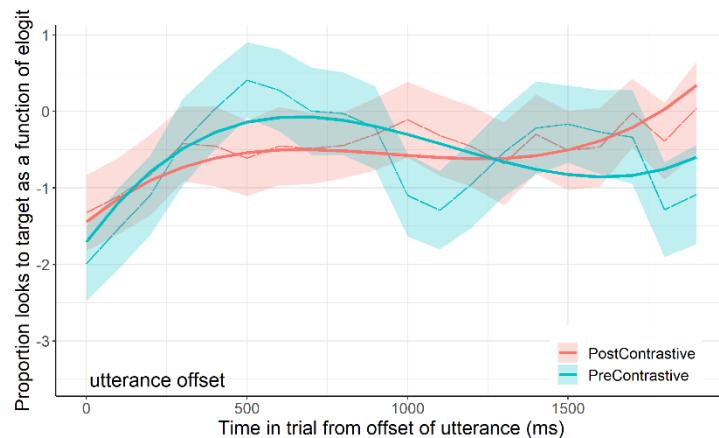
667

668 **Figure 5.** Empirical logit-transformed target advantage scores (dashed curves) in  
669 Postnominal conditions from the onset of the noun. Bold curves indicate linear growth curves  
670 fitted to the data.

671 **Table 4.** Model summary for effect of condition on target advantage scores during the noun.  
672 PostD = Postnominal Descriptive.

| Term         | Estimate | SE   | t     | p     |
|--------------|----------|------|-------|-------|
| (Intercept)  | 1.30     | 0.61 | 2.13  | 0.04  |
| Linear       | -1.07    | 0.70 | -1.53 | 0.13  |
| PostD        | -2.66    | 0.58 | -4.56 | 0.00* |
| Linear:PostD | 0.22     | 0.75 | 0.30  | 0.77  |

673


674 This analysis confirms that preschoolers did not use the uniqueness of the target in the  
675 Descriptive condition to resolve reference during the noun.

676 *2.2.5 RQ3: Do preschoolers process modified noun phrases more quickly when adjectives  
677 occur pre- or post-nominally?*

678 We restricted this analysis to those conditions in which the adjective was required for unique  
679 reference resolution, i.e., the two Contrastive conditions. We analysed proportion of looks to  
680 the target immediately after the earliest time window in which reference could be resolved in  
681 each condition. Because the adjective appears as the first lexical element in the Prenominal  
682 condition and as the second lexical element in the Postnominal condition, disambiguation can  
683 in principle occur at different time points in each condition, if contrastive inference occurs.  
684 However, since the analysis above revealed that preschoolers do not contrastively infer, we  
685 assume that they resolve reference during the second lexical element in both conditions.  
686 Thus, we investigate the effect of syntactic frame by comparing the proportion of looks to the  
687 target in each Contrastive condition during the post-utterance time window. Based on two-  
688 step models of adjective comprehension (Ninio, 2004), we expected to see a facilitatory  
689 effect of postnominal adjectives, which would manifest as a stronger preference for the target  
690 in the Postnominal condition.

691 Growth functions were added stepwise to the model and the overall curves were modelled  
692 with second-order OTs in addition to our fixed effect of condition. As Table 5 shows, there  
693 was no effect of condition, indicating no difference in overall looks to target between the  
694 Postnominal condition and the Prenominal condition ( $\beta = -0.02$ ,  $SE = 0.15$ ,  $p =$   
695 .88). However, there was an effect of condition on the quadratic term, indicating differences  
696 in the curvature between conditions ( $\beta = -1.34$ ,  $SE = 0.65$ ,  $p < .05$ ,  $d = -0.07$ ). During the  
697 post-utterance time window, the proportion of looks to target follow a shallow curve in the  
698 Postnominal condition reflecting a slow increase in looks to the target at utterance offset,

699 followed by a further rise towards the end of the time window. The proportion of looks to  
700 target follow deeper curve in the Prenominal condition, with a larger peak at utterance offset,  
701 followed by a decrease. Figure 6 shows elogit-transformed mean proportions of looks with  
702 GCA cubic curves.



703 **Figure 6.** Elogit-transformed proportion of looks to target (dashed curves) in Contrastive  
704 conditions from utterance offset. Bold curves indicate cubic growth curves fitted to the data.

705 **Table 5.** Model summary for effect of condition on proportion of looks to target from the  
706 onset of the adjective. PreC = Prenominal Contrastive. P-values are marked with an asterisk  
707 only if critical to the analysis.

| Term            | Estimate | SE   | t     | p     |
|-----------------|----------|------|-------|-------|
| (Intercept)     | -0.55    | 0.25 | -2.15 | 0.04  |
| Linear          | 1.31     | 0.44 | 2.95  | 0.00  |
| Quadratic       | 0.01     | 0.44 | 0.02  | 0.98  |
| Cubic           | 0.93     | 0.44 | 2.13  | 0.03  |
| PreC            | -0.02    | 0.15 | -0.15 | 0.88  |
| Linear: PreC    | -1.23    | 0.66 | -1.88 | 0.06  |
| Quadratic: PreC | -1.34    | 0.65 | -2.05 | 0.04* |
| Cubic: PreC     | 0.27     | 0.65 | 0.42  | 0.68  |

708  
709 This analysis indicates that after hearing the entire utterance, the syntactic frame of the  
710 utterance did not influence the speed at which preschoolers processed modified noun phrases  
711 (mirroring patterns in the adult data; see Supplementary Materials). However, the significant  
712 difference in curvature suggests that despite the lack of an overall difference between  
713 conditions, there were differences in the pattern of changes in looking over time. The higher  
714 peak in the Prenominal condition suggests some integration of adjectival information from  
715 earlier in the utterance.

717 *2.3 Discussion*

718 The results of Experiment 1 show that by the end of the referring expression, three-year-olds  
719 can integrate adjectives and nouns to resolve reference accurately in a variety of pragmatic  
720 and syntactic contexts, as hypothesised. On the whole, there is no evidence that they do so  
721 during the expressions, as the 5-year-olds and adults did in Huang and Snedeker's (2013)  
722 similar task. However, contrary to our predictions, and counter to previous research (Ninio,  
723 2004; Sekerina & Trueswell, 2012), the presence of two types of competitor does not impose  
724 an extra processing toll relative to contexts with only one type. Instead, preschoolers only  
725 show a preference for the target at the offset of the utterance. This indicates that they do not  
726 successfully engage in incremental processing for these types of utterances and instead  
727 require all the information before settling on the target – at least when the utterance is  
728 presented at a natural speed.

729 On the question of contrastive inferencing, Experiment 1 shows that three-year-olds did not  
730 show an early preference for the target in the presence of a contrast set. A more subtle  
731 indication of emerging contrastive inference ability would be a consideration of the adjective  
732 competitor (the big flower) as a target in the absence of a contrast set (whereas its presence  
733 may cue them to discount the adjective competitor as a potential target). Our data did not  
734 reveal this pattern either. In line with research question 1, three-year-olds do not resolve  
735 reference until the end of the utterance, even when it is pragmatically possible to do so  
736 earlier. For utterances where the noun preceded the adjective, preschoolers did not prefer the  
737 target until they had heard the adjective, even when reference could be resolved during the  
738 noun.

739 However, there may be a methodological explanation for this apparent delay in processing in  
740 both syntactic frames: Because our naturalistic stimuli were presented as continuous speech,  
741 children's relatively slow reference resolution may have merely coincided with the  
742 presentation of the next lexical element. We return to this issue in Experiment 2.

743 On the question of whether adjectives are more helpful when presented pre- or  
744 postnominally, we find that the syntactic frame of the utterance did not influence how quickly  
745 preschoolers process modified noun phrases. This, too, though contrary to our hypothesis, is  
746 in line with the previous findings suggesting that preschoolers are not making use of the  
747 incoming information incrementally to eliminate potential targets.

748 Taken together, results from Experiment 1 suggest that three-year-olds adopt a wait-and-see  
749 strategy when processing modified noun phrases rather than engaging in incremental  
750 processing that recruits sophisticated pragmatic abilities. But, the naturalistic stimuli used in  
751 this experiment may not have afforded children the opportunity to show their developing  
752 incremental skills. For example, if preschoolers did in fact contrastively infer during  
753 prenominal contrastive utterances but were delayed by their generally slower processing  
754 capacity, any such ability would have been masked by the rapidly incoming noun. To detect  
755 any incremental abilities, a pause is required between the adjective and the noun. If three-  
756 year-olds can in fact contrastively infer, this should manifest during the pause. Adapting the  
757 stimuli to allow for young children's processing speed may also reveal other hidden abilities  
758 probed by the Experiment 1 analyses. Experiment 2 aimed to address these concerns.

759

### 760 3. Experiment 2

761 We made multiple changes to the Experiment 1 method. Several changes were made to the  
762 audio stimuli to allow participants more time for processing. We also adjusted the visual  
763 stimuli to facilitate performance. All changes are detailed in *Materials* below. We also  
764 secured each child in a car seat during the visual world task to reduce track loss.

765 Experiment 2 addressed the same research questions as Experiment 1. Additionally, and due  
766 to the improved method used for the visual world task, we were able to address research  
767 question 4, which probed the skills that may drive children's emerging contrastive  
768 inferencing ability.

769 3.1 Method

#### 770 3.1.1 Participants and Design

771 Using the same power calculation as Experiment 1, which yielded a target sample size of 36,  
772 40 new child participants were recruited from the same population. Three participants were  
773 excluded: two for refusing to participate and one for equipment failure. The final sample of  
774 37 children (19 female) had a mean age of 3 years 8 months (= 44 months; range 42 – 49  
775 months,  $SD = 2$ ). Caregivers completed a short family questionnaire that collected  
776 information on educational background and income. Regarding the highest level of maternal<sup>3</sup>

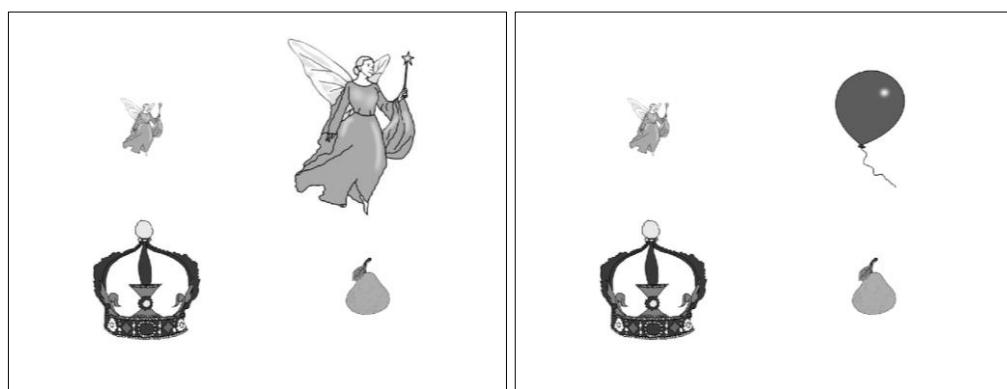
---

<sup>3</sup> One caregiver in the sample was a father, so qualification refers to paternal education in this case.

777 education, 5% had completed high school, 54% had a Bachelor's degree, 22% had a Master's  
778 degree, and 8% had a PhD. For total household income (including all tax credits), 5% of  
779 participants were earning between £0 and £14,000, 5% between £14,001 and £24,000, 22%  
780 between £24,001 and £42,000, and 68% £42,001 or more. Overall, participants had similar  
781 demographic characteristics to the sample from Experiment 1. Participant remuneration and  
782 experimental design were the same as Experiment 1.

783 *3.1.2 Materials: Visual world task*

784 Several adaptations were made to the stimuli used in the visual world task. To give children  
785 the opportunity to demonstrate their contrastive inferencing ability, audio manipulations were  
786 made using PRAAT (Boersma, & Weenink, 2019). New utterances were recorded by a  
787 female native speaker of English, again without pitch accent. In prenominal utterances, 500  
788 ms of silence was inserted between the offset of the adjective and the onset of the noun, and  
789 in postnominal trials, 500 ms of silence was inserted between the offset of "that's" and the  
790 onset of the adjective. In the prenominal positions, the same token of "where's the  
791 big/where's the little" was used for every utterance, and the duration of the adjective was  
792 manually lengthened by 75%. In the postnominal positions, different tokens of "where's the  
793 NOUN that's" were used for each utterance, and the duration of the adjective (big/little) was  
794 manually lengthened by 60%<sup>4</sup>. Finally, the duration of all postnominal utterances were  
795 further lengthened by 10% to ensure that the prenominal and postnominal utterances were  
796 perceptually matched for speed. No manipulations were made to the fillers. In the final set of  
797 stimuli, the average utterance duration was 2621 ms ( $SD = 110$ ) for the prenominal trials and  
798 3093 ms ( $SD = 92$ ) for the postnominal trials.


799 The visual stimuli were also adapted (see Figure 7 for an example). The original images were  
800 replaced with images that were more lifelike. These were grayscale drawings of familiar  
801 objects from the MultiPic repository (Duñabeitia et al., 2018). All images fitted within a 378  
802  $\times$  345 pixel interest area. The big images fitted tightly within this frame and were three times  
803 the size of little ones; a substantial increase in the relative size difference between the images  
804 used in Experiment 1. We also ensured that all images that shared an array were of similar  
805 real-world size, e.g., car, sofa, camel, horse (after Long et al. 2019, showing that 3-4 year-  
806 olds are slower to process images that are incongruent with their real-world size). Regarding

---

<sup>4</sup> In the original recordings, the adjectives had a shorter duration in prenominal position. Therefore, increasing the adjective duration by 60% in the postnominal utterances was enough to perceptually match its duration in the prenominal positions.

807 array composition, we minimised differences between contrastive and descriptive trials by  
808 only substituting targets and contingent competitors across lists and keeping all other  
809 distractors constant. For example, the first descriptive trial in list 1 contained a little fairy  
810 (target), a balloon (distractor), a crown (distractor), and a little pear (adjective competitor),  
811 and the first contrastive trial in list 2 contained a little fairy (target), a big fairy (noun  
812 competitor), a crown (distractor), and a little pear (adjective competitor).

813 Like Experiment 1, there were 26 trials: 16 critical items (4 in each condition), 8 filler items,  
814 and 2 practice items. All stimuli can be found at [osf.io/hp9ns](https://osf.io/hp9ns). Randomisation,  
815 counterbalancing, trial sequencing, and the procedure were the same as in Experiment 1.



816  
817 **Figure 7.** Example visual stimuli from Experiment 2 (left panel = Contrastive; right panel =  
818 Descriptive). The audio stimulus for these trials was “Click on the little fairy”.

819

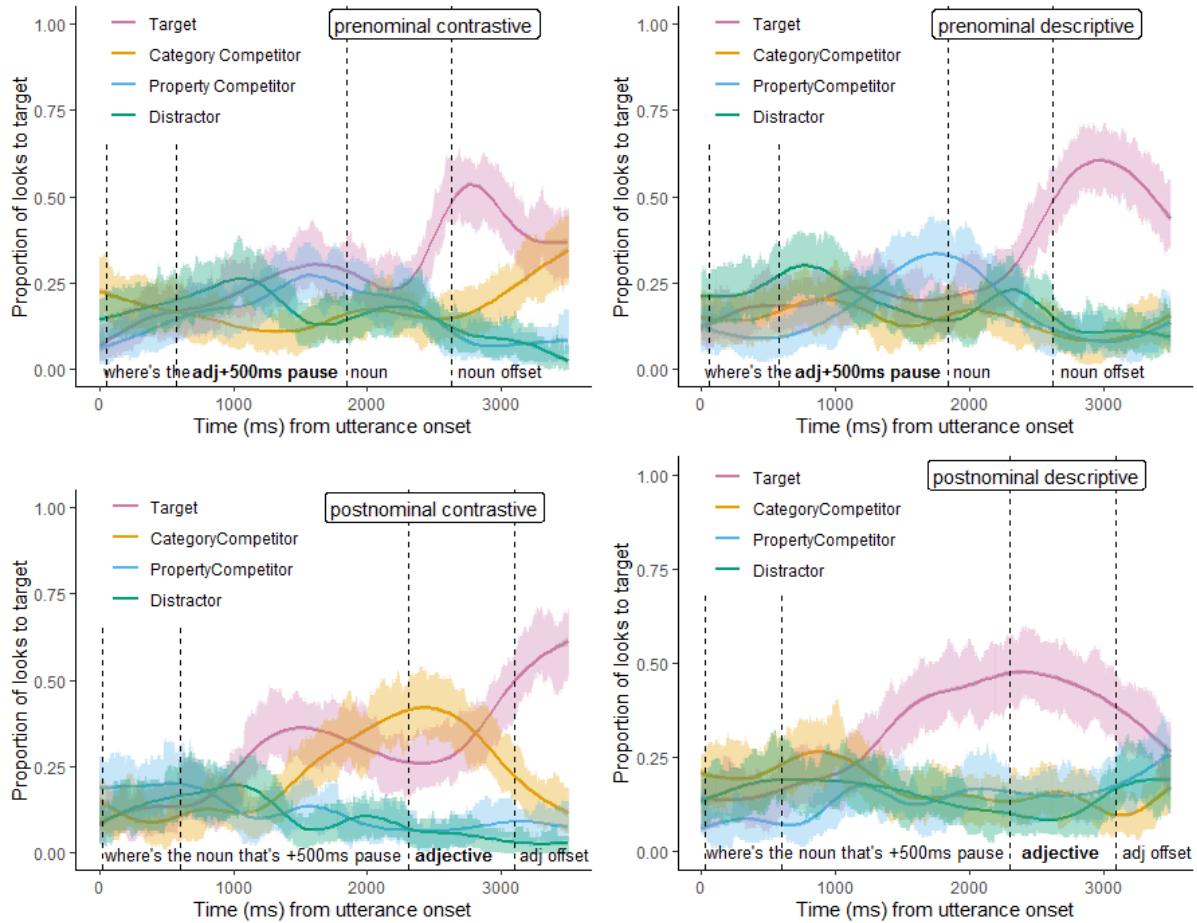
820 *3.1.3 Materials: Standardised tests*

821 Standardised tests of language ability were administered to the participants to investigate  
822 associations between their linguistic abilities and their performance in the visual world task.  
823 We selected relevant subscales from the Clinical Evaluation of Language Fundamentals  
824 Preschool 2 UK (Wiig, Second, & Semel, 2006). First, the Language Content Index (a  
825 composite measure comprised of Expressive Vocabulary, Concepts and Following  
826 Directions, and Basic Concepts subtests) was used to measure vocabulary and semantics.  
827 Second, the Sentence Structure subtest was used to measure syntactic comprehension. We  
828 chose these measures because contrastive inferencing requires an understanding of adjective  
829 semantics as well as the ability to process multi-word utterances. The researcher  
830 administering the CELF coded the children’s responses live using the stopping rules  
831 published in the test manuals.

832 3.1.4 Reliabilities

833 The four CELF subtests were coded live using the protocols from the manual. A second  
834 researcher recoded participant responses from 10% of the sample using the video recording to  
835 check the reliability of the test administration and scoring. Intra-class correlation coefficients  
836 were computed along with 95% confidence intervals (CI) to assess the agreement between  
837 two raters. There was excellent absolute agreement between the two raters using the two-way  
838 mixed effects model and single rater unit,  $ICC = 0.96 (.954 - .969)$ ,  $p < .001$ .

839 3.2 Results


840 Prior to analysis, we excluded any trials in which the eyetracker lost track of participants'  
841 eyes on more than half of the samples per trial. This resulted in 117 exclusions out of the  
842 original 592 trials (19% of the original data set). Data preparation and analytical approach  
843 was the same as Experiment 1.

844 3.2.1 *RQ1a: Do preschoolers integrate adjectives and nouns to reliably resolve reference?*

845 As with Experiment 1, we hypothesised that three-year-olds will integrate nouns and  
846 adjectives to preferentially look at the target referent by the offset of the referring expression  
847 in all 4 conditions.

848 Figure 8 shows the proportion of looks to each interest area by condition. Broadly,  
849 Experiment 2 replicated the findings of Experiment 1. There is a clear preference for the  
850 target at the end of the utterance in all conditions, indicating that preschoolers integrate  
851 adjectives and nouns to correctly resolve reference in all conditions (log gaze probability  
852 ratios for the target relative to all other images from the offset of the utterance and the  
853 following 2000 ms;  $M = 0.08$ ,  $SD = 0.31$  range = -0.48 to 0.98). A linear-mixed effects  
854 regression revealed a main effect of the intercept ( $\beta = .08$ ;  $SE = .03$ ;  $t = 2.53$ ;  $p < .05$ )  
855 indicating that preschoolers looked significantly more to the target picture than the  
856 competitors, as predicted.

857

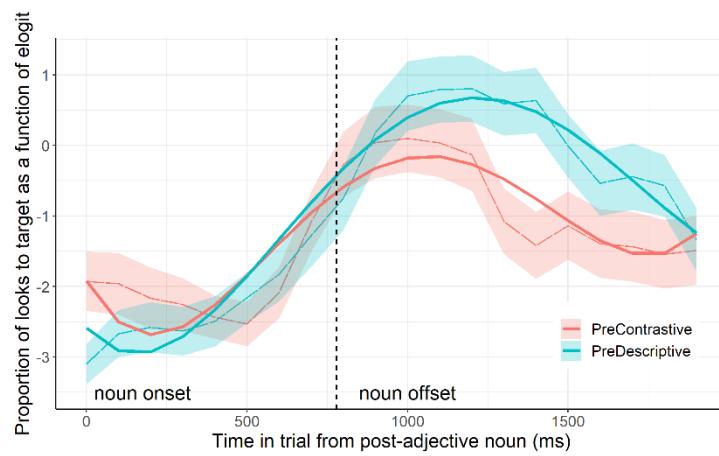


858

859 **Figure 8.** Proportion of looks (untransformed) to each interest area in each condition.

860 Vertical dashed lines represent mean onset times. Bold text annotations indicate

861 disambiguation points.


862

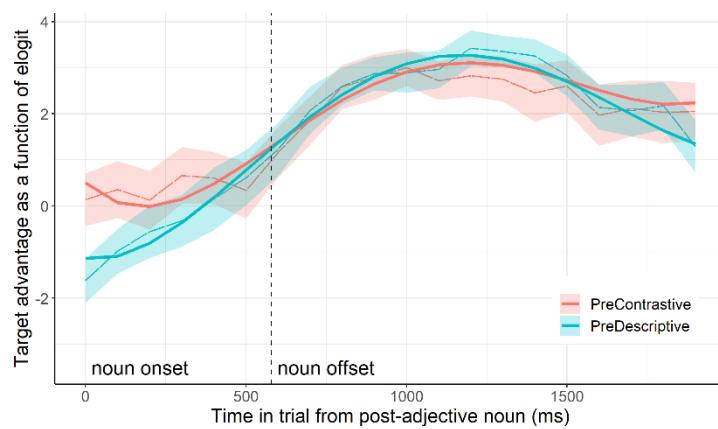
863 *3.2.2 RQ1b. Where the adjective appears before the noun, to what extent does the presence of*  
 864 *an adjective and a noun competitor threaten reference resolution?*

865 We pursued the patterns shown in Figure 8 to reveal whether the presence of an adjective and  
 866 a noun competitor weakens target preference in Prenominal conditions. Recall that if target  
 867 preference is weaker in the Contrastive condition, this is likely to reflect the additive effect of  
 868 two types of competitor. We originally hypothesised that this would be the case, though this  
 869 was not found in Experiment 1.

870 As in Experiment 1, the analysed time window runs from the onset of the noun and for the  
 871 following 2000 ms, which captures the offset of the expression plus a period of silence. The  
 872 mean duration of the noun was 779 ms ( $SD = 124$ , range 505 - 946). Growth functions were

873 added stepwise to the model and the overall curves were modelled with fourth-order OTs in  
 874 addition to our fixed effect of condition. Table 6 shows the fixed effect parameter estimates  
 875 and their standard errors along with  $p$ -values estimated using the normal approximation for  
 876 the t-values. There was an effect of condition indicating higher overall target fixation  
 877 proportions for the Descriptive condition relative to the Contrastive condition ( $\beta = 0.41$ ,  $SE =$   
 878  $0.12$ ,  $p < .01$ ,  $d = 0.10$ ). This is complemented by a significant effect of condition on the  
 879 linear term ( $\beta = 0.41$ ,  $SE = 0.12$ ,  $p < .01$ ,  $d = 0.12$ ), confirming a steeper linear climb in the  
 880 Descriptive condition relative to the Contrastive condition. Figure 9 shows elogit-transformed  
 881 mean proportions of looks with GCA cubic curves.




882 **Figure 9.** Elogit-transformed proportion of looks to target (dashed curves) in Prenominal  
 883 conditions from the onset of the noun. Bold curves indicate quartic growth curves fitted to the  
 884 data.  
 885

886 **Table 6.** Model summary for effect of condition on proportion of looks to target from the  
 887 onset of the adjective. PreD = Prenominal Descriptive. P-values are marked with an asterisk  
 888 only if critical to the analysis.

| Term            | Estimate | SE   | t     | p     |
|-----------------|----------|------|-------|-------|
| (Intercept)     | -1.28    | 0.24 | -5.39 | 0.00  |
| Linear          | 1.88     | 0.39 | 4.86  | 0.00  |
| Quadratic       | -2.37    | 0.38 | -6.21 | 0.00  |
| Cubic           | -0.81    | 0.38 | -2.13 | 0.03  |
| Quartic         | 1.77     | 0.38 | 4.64  | 0.00  |
| PreD            | 0.41     | 0.12 | 3.36  | 0.00* |
| Linear: PreD    | 2.07     | 0.54 | 3.81  | 0.00* |
| Quadratic: PreD | -1.04    | 0.54 | -1.93 | 0.05  |
| Cubic: PreD     | -0.97    | 0.54 | -1.81 | 0.07  |
| Quartic: PreD   | -0.72    | 0.54 | -1.33 | 0.18  |

889 Unlike in Experiment 1, the difference between conditions indicates that preschoolers showed  
890 a weaker preference for the target when there was a noun competitor object in addition to an  
891 adjective competitor in the display, as originally hypothesised. But was this because they  
892 were additionally distracted by the adjective competitor in the Contrastive condition (which  
893 was the only other object that would fit the unfolding utterance), or did they simply find this  
894 condition more taxing and so they spent less time looking? If the former, the difference  
895 between conditions should hold if looks to the adjective competitor are factored into the  
896 dependent variable. If the latter, the difference between conditions should reduce.

897 To investigate the source of competition away from the target, we analysed the effect of  
898 condition on the proportion of looks to the target minus looks to the adjective competitor  
899 (target advantage) during the same time window as the preceding analysis. Since GCA  
900 requires a binary outcome variable, when modelling target advantage we included only the  
901 samples when participants were looking at the target or the relevant competitor. Growth  
902 functions were added stepwise to the model and the overall curves were modelled with  
903 fourth-order OTs in addition to our fixed effect of condition. As Table 7 shows, there was no  
904 effect of condition, indicating no difference in target advantage scores for the Descriptive and  
905 the Contrastive conditions ( $\beta = -0.27$ ,  $SE = 0.14$ ,  $p = .06$ ). This suggests that preschoolers  
906 were not specifically distracted by the adjective competitor in the Contrastive condition. The  
907 significant effect of condition on the quadratic term, indicating a brief target advantage in the  
908 Contrastive condition at the very beginning of the time window ( $\beta = -2.04$ ,  $SE = 0.62$ ,  $p <$   
909  $.01$ ,  $d = -0.12$ ) is likely to reflect processing from earlier in the utterance. Figure 10 shows  
910 elogit-transformed target advantage scores with GCA quartic curves.



911

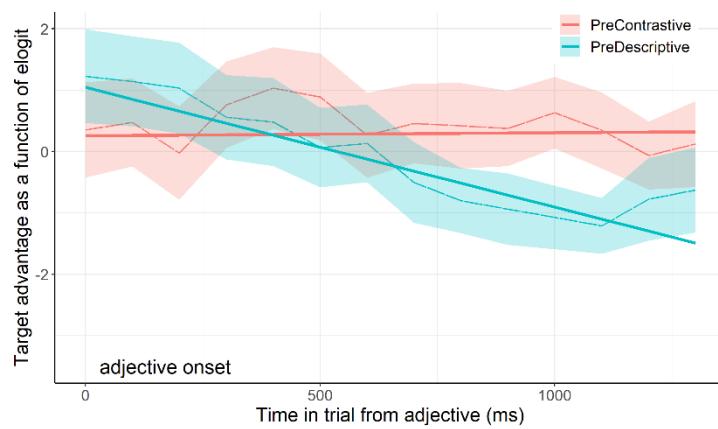
912 **Figure 10.** Elogit-transformed target advantage scores (dashed curves) in Prenominal  
913 conditions from the onset of the noun. Bold curves indicate quartic growth curves fitted to the  
914 data.

915 **Table 7.** Model summary for effect of condition on target advantage scores from the onset of  
916 the adjective. PreD = Prenominal Descriptive.

| Term            | Estimate | SE   | t     | p     |
|-----------------|----------|------|-------|-------|
| (Intercept)     | -1.28    | 0.24 | -5.39 | 0.00  |
| Linear          | 1.88     | 0.39 | 4.86  | 0.00  |
| Quadratic       | -2.37    | 0.38 | -6.21 | 0.00  |
| Cubic           | -0.81    | 0.38 | -2.13 | 0.03  |
| Quartic         | 1.77     | 0.38 | 4.64  | 0.00  |
| PreD            | 0.41     | 0.12 | 3.36  | 0.00* |
| Linear: PreD    | 2.07     | 0.54 | 3.81  | 0.00* |
| Quadratic: PreD | -1.04    | 0.54 | -1.93 | 0.05  |
| Cubic: PreD     | -0.97    | 0.54 | -1.81 | 0.07  |
| Quartic: PreD   | -0.72    | 0.54 | -1.33 | 0.18  |

917

918 The lack of difference between conditions in this target advantage analysis (which  
919 incorporated looks to a specific competitor) indicates that the effect found in the proportion  
920 of looks analysis was not due to the inclusion of the adjective competitor. The Prenominal  
921 Contrastive panel in Figure 8 suggests that distraction instead stemmed from the noun  
922 competitor at the end of the utterance, potentially because they were scanning between the  
923 big and little contrast set to check the size difference.


924 *3.2.3 RQ2: Do preschoolers show contrastive inference?*

925 *Prenominal conditions*

926 As shown in Figure 8, the emergence of target preference at noun offset in the Prenominal  
927 Contrastive condition suggests that despite amending our stimuli to help children show latent  
928 ability in contrastive inference, this aspect of pragmatic development still appears to be  
929 beyond their grasp. However, to capture what are likely to be subtle effects in this age group,  
930 we ran a fine-grained analysis of by-condition differences during the prenominal adjective.

931 To investigate the strength of competition away from the target, we analysed the effect of  
932 condition on proportion of looks to the target minus looks to the adjective competitor (target  
933 advantage) during the adjective + pause window. The mean duration of this window was

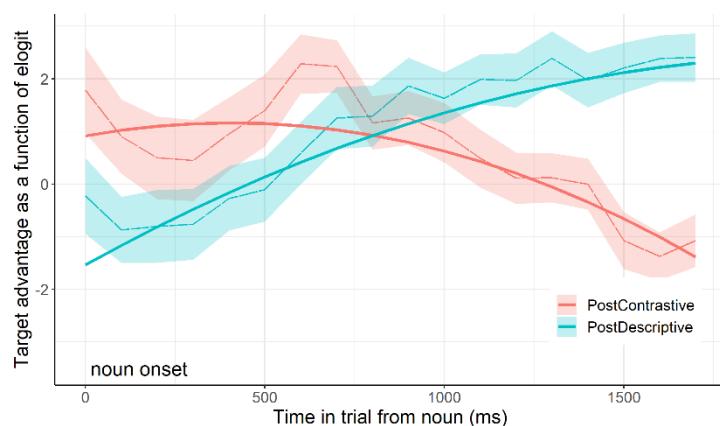
934 1266 ms ( $SD = 69$ , range 1194 - 1365). If children used the presence of a contrast set to infer  
 935 that the adjective refers to one of its members, they should show fewer looks to the adjective  
 936 competitor, and thus a stronger target advantage in the Contrastive condition. Growth  
 937 functions were added stepwise to the model and the overall curves were modelled with first-  
 938 order OTs in addition to our fixed effect of condition. As Table 8 shows, there was an effect  
 939 of condition, indicating higher target advantage for the Contrastive condition ( $\beta = -0.51$ ,  $SE =$   
 940  $0.22$ ,  $p < .05$ ,  $d = -0.12$ ). There was also a significant interaction between the linear term and  
 941 condition ( $\beta = -3.02$ ,  $SE = 0.83$ ,  $p < .01$ ,  $d = -0.19$ ). In the Descriptive condition, there was a  
 942 linear decline in target advantage from adjective onset, whereas in the Contrastive condition  
 943 target advantage remained linearly stable. Figure 10 shows elogit-transformed target  
 944 advantage scores with GCA linear curves.



945  
 946 **Figure 11.** Elogit-transformed target advantage scores (dashed curves) in Prenominal  
 947 conditions from the onset of the adjective. Bold curves indicate linear growth curves fitted to  
 948 the data.

949 **Table 8.** Model summary for effect of condition on target advantage scores during the  
 950 adjective. PreD = Prenominal Descriptive.

| Term        | Estimate | SE   | T     | p     | d     |
|-------------|----------|------|-------|-------|-------|
| (Intercept) | 0.29     | 0.54 | 0.52  | 0.60  | NA    |
| Linear      | 0.07     | 0.57 | 0.13  | 0.90  | 0.01  |
| PreD        | -0.51    | 0.22 | -2.36 | 0.02* | -0.12 |
| Linear:PreD | -3.02    | 0.83 | -3.66 | 0.00* | -0.19 |


951

952 Unlike Experiment 1, these results confirm that preschoolers showed a stronger preference  
953 for the target during the adjective in the Contrastive condition relative to the Descriptive  
954 condition. In the Descriptive condition, the decline in target advantage (and the  
955 corresponding rise in distractor advantage) evidences a greater distraction from the adjective  
956 competitor.

957 *Postnominal conditions*

958 Here we ask whether participants use the presence of the singleton object in the Descriptive  
959 condition to infer that no adjective is needed, and look at the target before the adjective is  
960 heard. If this is the case, they should show an earlier target advantage in the Descriptive than  
961 in the Contrastive condition.

962 Growth functions were added stepwise to the model and the overall curves were modelled  
963 with second-order OTs in addition to our fixed effect of condition. As Table 9 shows, there  
964 was a marginally significant effect of condition indicating higher overall target advantage for  
965 the Descriptive condition relative to the Contrastive condition ( $\beta = 0.34$ ,  $SE = 0.17$ ,  $p = .05$ ,  
966  $d = 0.08$ ). There was also a significant interaction between the linear term and condition ( $\beta =$   
967  $7.94$ ,  $SE = 0.76$ ,  $p < .01$ ,  $d = 0.44$ ), indicating different trajectories in preference across  
968 condition. In the Descriptive condition, target advantage followed a curved incline whereas in  
969 the Contrastive condition it showed a curved decline. Figure 12 shows elogit-transformed  
970 target advantage scores with GCA quadratic curves.



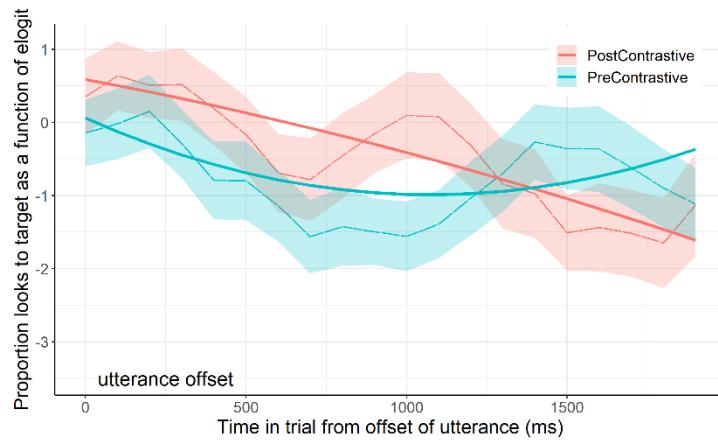
971  
972 **Figure 12.** Elogit-transformed target advantage scores (dashed curves) in Postnominal  
973 conditions from the onset of the noun. Bold curves indicate quadratic growth curves fitted to  
974 the data.

975 **Table 9.** Model summary for effect of condition on target advantage scores during the noun.

976 PostD = Postnominal Descriptive.

| Term            | Estimate | SE   | t     | p     |
|-----------------|----------|------|-------|-------|
| (Intercept)     | 0.45     | 0.39 | 1.14  | 0.27  |
| Linear          | -2.98    | 0.85 | -3.49 | 0.00  |
| Quadratic       | -1.54    | 0.52 | -2.98 | 0.09  |
| PostD           | 0.34     | 0.17 | 1.98  | 0.05† |
| Linear:PostD    | 7.94     | 0.76 | 10.45 | 0.00* |
| Quadratic:PostD | 0.63     | 0.71 | 0.88  | 0.38  |

977


978 Unlike Experiment 1, these results indicate that preschoolers used the uniqueness of the target  
979 in the Descriptive condition to resolve reference during the noun + relative pronoun window.  
980 This is supported by the early target looks in the Postnominal Descriptive panel in Figure 8.

981 *3.2.4 RQ3: Do preschoolers process modified noun phrases more quickly when adjectives  
982 occur pre- or post-nominally?*

983 As in Experiment 1, we restricted this analysis to the two Contrastive conditions where the  
984 adjective is required for reference resolution. Thus, we investigate the effect of syntactic  
985 frame by comparing the proportion of looks to the target in each the Contrastive conditions,  
986 during and after the noun at the end of the utterance. Again, we expected to see a facilitatory  
987 effect of postnominal adjectives, manifest as a stronger preference for the target.

988 Growth functions were added stepwise to the model and the overall curves were modelled  
989 with second-order OTs in addition to our fixed effect of condition. As Table 10 shows, there  
990 was no effect of condition, indicating no difference in overall looks to target across condition  
991 ( $\beta = -0.26$ ,  $SE = 0.26$ ,  $p = .32$ ). This indicates that after the effective disambiguation time  
992 window, the syntactic frame of the utterance did not influence whether preschoolers  
993 processed modified noun phrases more quickly. However, there was an effect of condition on  
994 the linear term, indicating differences in the slope between conditions ( $\beta = 2.40$ ,  $SE =$   
995  $0.64$ ,  $p < .01$ ,  $d = 0.13$ ). This is complemented by a significant effect of condition on the  
996 quadratic term, indicating differences in curvature between conditions ( $\beta = 1.44$ ,  $SE =$   
997  $0.63$ ,  $p < .05$ ,  $d = 0.08$ ). During the post-utterance time window, the proportion of looks to  
998 target follow a shallow U-shaped curve in the Prenominal condition, first declining then  
999 increasing slightly towards the end of the time window. In the Postnominal condition,  
1000 proportion of looks followed a downwards linear slope (but note that the slope did not

1001 capture the brief increase in looks to target that begins around 500 ms). Figure 13 shows  
1002 elogit-transformed mean proportions of looks with GCA quadratic curves.



1003

1004 **Figure 13.** Empirical logit-transformed proportion of looks to target (dashed curves) in  
1005 Contrastive conditions from offset of the utterance. Bold curves indicate quadratic growth  
1006 curves fitted to the data.

1007 **Table 10.** Model summary for effect of condition on proportion of looks to target from the  
1008 onset of the adjective. PreC = Prenominal Contrastive

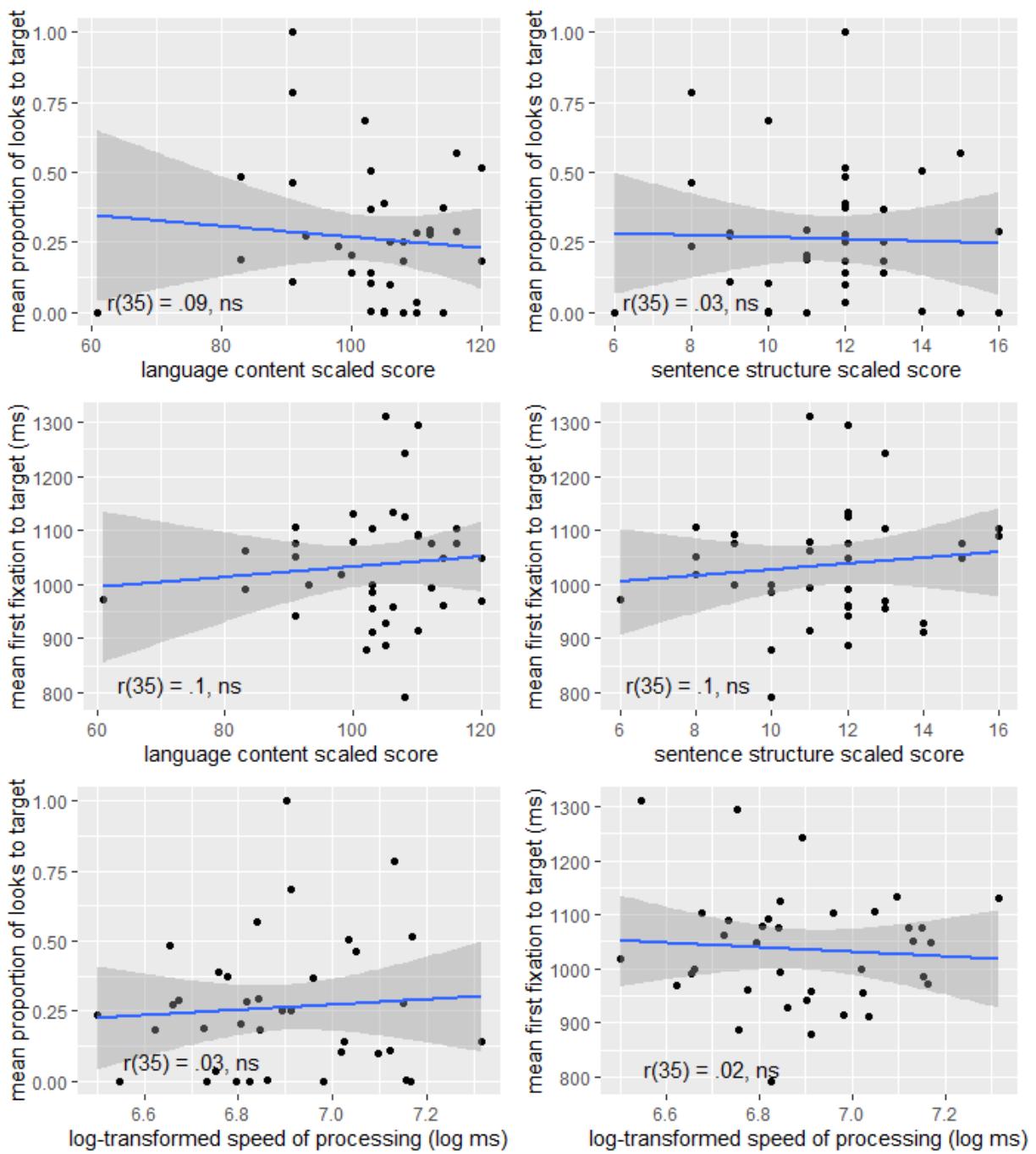
| Term            | Estimate | SE   | t     | p     |
|-----------------|----------|------|-------|-------|
| (Intercept)     | -0.41    | 0.29 | -1.38 | 0.18  |
| Linear          | -2.98    | 0.49 | -6.08 | 0.00  |
| Quadratic       | -0.23    | 0.48 | -0.48 | 0.63  |
| PreC            | -0.26    | 0.26 | -1.02 | 0.32  |
| Linear: PreC    | 2.40     | 0.64 | 3.75  | 0.00* |
| Quadratic: PreC | 1.44     | 0.63 | 2.29  | 0.02* |

1009

1010 Like Experiment 1, this analysis indicates that after hearing the entire utterance, the syntactic  
1011 frame of the utterance did not influence the speed at which preschoolers processed modified  
1012 noun phrases. The differences in curvature in Figure 13 suggest that once reference has been  
1013 resolved, children may start to look around the screen at the other items in the array, for  
1014 example the noun competitor. This may be more common in the Postnominal condition  
1015 where they have more recently received the disambiguating information.

1016 3.2.5 *RQ4: Is there an association between preschoolers' language ability, their speed of*  
1017 *processing, and their contrastive inferencing ability?*

1018 To address this research question, we analysed correlations between a) measures of  
1019 contrastive inferencing and language and b) measures of contrastive inferencing and speed of  
1020 processing. We hypothesised that children who showed contrastive inferencing will score  
1021 higher on measures of semantics and syntax, and a show a faster speed of processing.


1022 To measure language ability, recall that we used two subscales from the Clinical Evaluation  
1023 of Language Fundamentals Preschool 2 UK (Wiig et al., 2006). From the Language Content  
1024 composite measure, we used the sum of scaled scores from each subtask ( $M = 103$ ,  $SD = 12$ ,  
1025 range 61-120). From the Sentence Structure we used the scaled score ( $M = 12$ ,  $SD = 2$ , range  
1026 6-16).

1027 To measure speed of processing (SoP), we used responses to the filler trials ( $N = 8$  per  
1028 participant). Recall that in these trials, the target image was always a singleton object within  
1029 the array, and utterances contained an unmodified noun, e.g., "where's the bus?" SoP was  
1030 defined as the average latency from noun onset to first valid fixation to the target (>100 ms).  
1031 The critical time window ran from 300 ms after the onset of the noun to its offset. Trials were  
1032 included only if the participant was not already fixating the target prior to the time window of  
1033 interest. After exclusions, 203 trials went forward for analysis (69% of the original dataset).  
1034 The mean latency to fixate the target was 1003 ms ( $SD = 196$ , range 665-1505). Latencies  
1035 were log-transformed prior to analysis to remove some of the skewness in the data (Baayen &  
1036 Milin, 2010).

1037 To measure contrastive inferencing, we used two measures of looks to target during the  
1038 adjective for the Prenominal Contrastive condition ( $N = 4$  per participant). First, proportion of  
1039 looks to target from the onset of the adjective (+300 ms) to its offset. This indexed the  
1040 strength of preference for the target. It is derived by dividing the number of samples that fall  
1041 in the target interest area by the number of samples that fall elsewhere, i.e., the other three  
1042 predefined interest areas, onscreen looks outside of the predefined interest areas, and off-  
1043 screen looks, giving a value between 0 and 1. This was then averaged over trials, giving each  
1044 participant a mean score for proportion of looks to target. The group mean proportion of  
1045 looks to target was .26 ( $SD = .24$ , range 0-1). The second measure was the onset of the first  
1046 valid fixation (>100 ms) to the target from the onset of the adjective (+300 ms) to its offset.  
1047 This is equivalent to mean reaction time to look at the target. This indexed the speed of

1048 preference for the target. These reaction times were averaged over trials, giving each  
1049 participant a mean RT for first fixation to target. The group mean RT to fixate the target was  
1050 1035 ms ( $SD = 110$ , range 793-1310).

1051 As Figure 13 shows, neither of the language measures, nor speed of processing significantly  
1052 correlated with either of the contrastive inference measures.



1053

1054 **Figure 13.** Scatterplots showing associations between contrastive inference and both  
1055 language measures, and contrastive inference and speed of processing.

1056 3.3 *Discussion*

1057 Stimuli used in Experiment 2 were designed to enable three-year-olds to show their latent  
1058 abilities in online adjective-noun comprehension that may have been masked by those used in  
1059 Experiment 1. Overall, they fulfilled this aim. While some of the abilities evidenced by  
1060 Experiment 1 were replicated by Experiment 2, some new abilities were evidenced, and some  
1061 remained out of preschoolers' reach.

1062 As in Experiment 1, children showed that they can resolve reference accurately by integrating  
1063 adjectives and nouns by the end of the referring expression to in a variety of pragmatic and  
1064 syntactic contexts. Unlike Experiment 1, they showed a weaker preference for the target  
1065 when there was both an adjective and a noun competitor in the display. However, this was not  
1066 due to increased competition from the object that shared a property with the target, but due to  
1067 post-utterance checking of the target's contrast mate. This was afforded by the slower speed  
1068 of presentation and/or the enhanced size differences in this experiment.

1069 Experiment 2 elicited emerging evidence of contrastive inferencing in three-year-olds. Unlike  
1070 Experiment 1, preschoolers showed a preference for the target during the adjective when a  
1071 contrast set was present (Figure 11). Children also show greater distraction from the adjective  
1072 competitor where no contrast set is present, suggesting that they use the absence of the set to  
1073 infer that the adjective is likely to have a descriptive rather than contrastive function. These  
1074 results support two manifestations of contrastive inference, facilitated by slower presentation  
1075 of the stimuli, the pause between the adjective and the noun, and clearer size distinctions.

1076 Where the adjective appears postnominally, preschoolers used the uniqueness of the target in  
1077 the Descriptive condition to resolve reference early, i.e., during the noun + relative pronoun  
1078 window. This is enabled by the slower speed of presentation, the postnominal pause, or the  
1079 clearer visual size contrast, and is in stark contrast to Experiment 1 in which preschoolers  
1080 waited to hear the final element of the utterance (Figures 2 and 8; postnominal descriptive  
1081 panels).

1082 On the question of whether adjectives are more helpful when presented pre- or  
1083 postnominally, Experiment 2 replicated the findings of Experiment 1. After hearing the entire  
1084 utterance – even at a reduced speed - the syntactic frame of the utterance did not influence the  
1085 speed at which preschoolers processed modified noun phrases.

1086 Our novel correlational analysis found no relationship between contrastive inferencing and  
1087 language or speed of processing. This is despite a good range of abilities in inferencing in our  
1088 sample. On the basis of this data we conclude that inferencing is not supported by language  
1089 or by processing speed, as measured using these particular instruments.

1090 Taken together, results from Experiment 2 suggest that given the opportunity through slower,  
1091 clearer stimulus materials, three-year-olds can use their developing pragmatic skills to  
1092 integrate visual and auditory information and incrementally process modified utterances.

1093

#### 1094 **4. General Discussion**

1095 Previous studies of three-year-olds' ability to use adjectival information in resolving  
1096 reference have relied on either 'end-point' offline data, or have analysed online behaviour in  
1097 response to very simple or scaffolded displays where integration with nouns has been  
1098 unnecessary. Our experiments have taken a comprehensive, rigorous approach by analysing  
1099 high-resolution online data in response to stimuli that demand full integration of both lexical  
1100 elements, in younger children than have been tested previously. Taken together, results show  
1101 that like adults, children use multiple sources of information to interpret language in real  
1102 time.

##### 1103 *4.1 Summary of results*

1104 Table 11 summarises the main findings from experiments 1 and 2. Both experiments centred  
1105 on a visual world task. The first used naturalistic audio stimuli; the second adapted these so  
1106 that they were presented more slowly and contained pauses. This allowed children to  
1107 demonstrate their latent ability in contrastive inferencing. Both experiments revealed that  
1108 three-year-olds were able to integrate adjectives and nouns to resolve reference accurately by  
1109 the end of the referring expression. Experiment 1 showed that the presence of both a noun  
1110 and an adjective competitor did not reduce target preference. Although Experiment 2 elicited  
1111 a reduction in target preference in the presence of two distractors, this was not until after  
1112 reference had been resolved, so we take it to represent post-utterance checking rather than  
1113 compromised online processing. Thus, we conclude that children can resolve reference  
1114 accurately in a variety of pragmatic and syntactic contexts, and in the presence of multiple  
1115 distractors.

1116 Experiment 2 revealed for the first time that three-year-olds are able to contrastively infer.  
1117 They showed a stronger preference for the target during the adjective in contrast displays than  
1118 in non-contrast displays, and greater attention on the adjective competitor in the latter. When  
1119 the adjective occurred postnominally, they were able to use the presence of a singleton object  
1120 to infer during the noun that no adjective is needed, and showed early reference resolution.  
1121 None of these effects were found in Experiment 1, suggesting that young children need ample  
1122 time to demonstrate these sophisticated online skills.

1123 In both experiments, children processed modified noun phrases equally quickly regardless of  
1124 adjective position, like adults (see Supplementary Materials A). Finally, children's skills in  
1125 language and speed of processing do not appear to be linked to their contrastive inferencing  
1126 abilities.

1127 **Table 11.** Summary of results.

| RQ | Effect                                                                                                                                                                                                  | Exp. 1 | Exp. 2 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|
| 1  | Integration of adjectives and nouns to resolve reference by the offset a referring expression.<br>Reduced target preference in the presence of two types of distractors.                                | ✓<br>✗ | ✓<br>✓ |
| 2  | Contrastive inference, manifest as:<br>- stronger preference for the target during the adjective in contrast displays;<br>- greater distraction from the adjective competitor in non-contrast displays. | ✗<br>✗ | ✓<br>✓ |
|    | In postnominal frames, use of a singleton object to infer during the noun that no adjective is needed.                                                                                                  | ✗      | ✓      |
| 3  | Quicker reference resolution when adjectives occur postnominally than prenominally.                                                                                                                     | ✗      | ✗      |
| 4  | Relationship between contrastive inferencing and language or speed of processing                                                                                                                        | NA     | ✗      |

1128

#### 1129 *4.2 Children's integration of adjectives and nouns*

1130 We have evidenced that integration of noun and adjective information is achievable by  
1131 preschoolers when faced with 4-referent displays. This finding is more robust than  
1132 conclusions made on the basis of previous research with this age group, in which

1133 experimental paradigms meant that the referential task could be passed using adjective  
1134 information alone (Fernald et al., 2010; Thorpe et al., 2006) or world knowledge  
1135 (Tribushinina & Mak, 2016). Our finding that the presence of multiple competitors does not  
1136 jeopardise reference resolution suggests that by three years of age, children are neither  
1137 distracted by nor over-rely on information from either the noun or the adjective, reflecting  
1138 integration, contrary to what has been found in slightly younger children (Ninio, 2004;  
1139 Thorpe et al., 2006), as well as older children (Nadig et al., 2003, exp. 2). Further, once the  
1140 noun has been presented and reference has been resolved, preschoolers look away from the  
1141 target towards the noun competitor, sensibly checking their choice against the contrast mate  
1142 (replicating behaviour found in 5-6 year-olds by Nadig et al., 2003). Studies examining  
1143 online processing can therefore shed light on *when* children show evidence of resolving  
1144 reference, even if their overall looking time at the target over a long time window, or the final  
1145 location on which their gaze lands, do not necessarily suggest that the child prefers the target.

1146 *4.3 Contrastive inference*

1147 Whether a real developmental limitation, or a methodological flaw conflating late contrastive  
1148 inferencing with noun processing, previous research with three-year-olds (Fernald et al.,  
1149 2010; Sekerina & Trueswell 2012; Thorpe et al., 2006) suggested that preschoolers listened  
1150 through prenominal material and waited for the noun before they fixated the target object. In  
1151 contrast, our results show that this age group can in fact deduce the informativeness of the  
1152 adjective online then use it in incremental adjective interpretation.

1153 Crucially, the insertion of a pause between the adjective and the noun in Experiment 2  
1154 allowed children to demonstrate their emerging skills in contrastive inference. Cognitively, it  
1155 allowed them more time to process adjective information. Methodologically, it allowed us to  
1156 separate the point at which contrastive inferences manifest from the point at which the  
1157 (delayed) noun is presented. In Experiment 1, these points coincided, leaving two alternate  
1158 conclusions available: a) preschoolers are unable to generate contrastive inferences, or b)  
1159 they do contrastively infer, though more slowly than adults, during the noun. For this reason,  
1160 it was not possible to state unequivocally that three-year-olds fail to contrastively infer when  
1161 presented with naturally-paced utterances. Assuming that their apparent failure is due to  
1162 cognitive rather than methodological limitations, here we explore reasons for why they can  
1163 only demonstrate contrastive inference when time allows.

1164 On the basis of the age of acquisition of the vocabulary used in our stimuli, we argue that  
1165 preschoolers' lexical processing is sufficient to complete the task, but when faced with the  
1166 onslaught of incoming information they are unable to deploy their developing pragmatic  
1167 skills to infer the speaker's meaning. It is entirely feasible that coordinating their lexical  
1168 knowledge of familiar adjectives and nouns with the pragmatic demands of incorporating  
1169 referential context and inferential reasoning while processing continuous speech and building  
1170 representations, is beyond the reach of this age group. However, our findings suggest that  
1171 extra time and clear standards of comparison facilitate their fragile developing abilities,  
1172 enabling them to coordinate lexical and referential processing, and recruit pragmatic  
1173 information incrementally. Thus we provide evidence for developmental continuity in  
1174 contrastive inference: three-year-olds possess the knowledge and skills required, but due to  
1175 processing limitations are not typically able to demonstrate it.

1176 Why does extra time allow young children to show contrastive inferencing? During this kind  
1177 of processing, comprehenders must coordinate strong bottom-up constraints from the  
1178 auditory signal with top-down, resource-heavy referential constraints (Dell, 1986).  
1179 Identifying the pragmatic implications of using an adjective to refer to a singleton item then  
1180 feeding this knowledge into a referential choice takes time. Without this time (as in  
1181 naturalistic speech), young children are likely to resort to the simpler, unambiguous bottom-  
1182 up signal from the postadjectival noun to resolve reference at the end of the utterance. Our  
1183 study has highlighted that given that extra time, young children can engage in the necessary  
1184 processing, and that this ability may not have been absent but merely delayed in previous  
1185 findings. The facilitatory effect of slow speech has also been shown in a recent study  
1186 suggesting that contrary to classic findings (Trueswell et al., 1999), five-year-olds can recruit  
1187 referential information to guide syntactic parsing if given time to do so (Qi et al., in press).

1188 Our findings on slow speech (and potentially also clearer visual differences) have important  
1189 implications for both research and practice. We would expect slower speech to facilitate  
1190 online referential processing as well as word learning (following Fernald et al., 2008 and He  
1191 et al., 2020). In previous work (Davies et al., 2020), we endorsed therapeutic materials that  
1192 emphasised contrast for children who struggle with adjectives. With the benefit of our current  
1193 findings, we would also recommend slow speech to further scaffold their learning.

1194 Robust comparison skills are central to our task. As pointed out by Huang and Snedeker  
1195 (2013: 1100), most semantic theories propose that we must establish a standard of

1196 comparison to determine what counts as having a certain property in a given context (Barner  
1197 et al., 2009; Barner & Snedeker, 2008; Bierwisch, 1987; Kamp & Partee, 1995; Kennedy,  
1198 1999). In our experiments, participants would have used the saliently contrasting image in the  
1199 scene to do this (*...that cow is big relative to the other one*). The fact that preschoolers only  
1200 showed contrastive inferencing in Experiment 2 where size contrasts were greater suggests  
1201 that a clear standard of comparison is key for children still developing their pragmatic  
1202 system.

1203 Methodology clearly plays a role in the contrasting findings of Experiments 1 and 2. A recent  
1204 research programme in pragmatic development has elicited latent abilities in a variety of  
1205 pragmatic phenomena in younger children than initially documented, once task demands have  
1206 been reduced (Berger & Höhle, 2012; Falkum et al., 2016; Pouscoulous et al., 2007;  
1207 Pouscoulous & Tomasello, 2019; Schulze et al., 2013; Stiller, et al., 2015). In adjective  
1208 processing, Syrett et al. (2019) showed that although 36-month-olds failed to recruit known  
1209 adjectival semantics in a passive online task to select an animate referent, they were  
1210 successful in a more interactive, offline version of the task without time pressure. Our study  
1211 illustrates once again that when young children are given tasks that incorporate sufficient  
1212 time to deploy higher level reasoning skills, they are able to engage in highly sophisticated  
1213 language processing.

1214 Considering the striking preponderance of adjectives that function descriptively relative to  
1215 those that function contrastively in child-directed speech (94% descriptive vs. 6% contrastive  
1216 documented in a large corpus; Davies et al., 2020), it is all the more impressive that young  
1217 children could readily infer a contrast function of adjectives in our task. This casts doubt on  
1218 the requirement for high-frequency models in the input. Indeed, although correlations  
1219 between adjective frequencies in child speech and child-directed speech are strong for 18-  
1220 month-olds, this relationship decreases over time as children develop independent adjective  
1221 use (Tribushinina et al., 2014). Instead, contrastive inference may be driven by a more  
1222 domain-general reasoning process.

#### 1223 4.4 *Comprehension of prenominal and postnominal adjectives*

1224 This study was partly motivated by a puzzle proposed by Davies et al. (2020). Because of the  
1225 need to calibrate adjectives to the nouns they modify, it was hypothesised that prenominal  
1226 adjectives are more challenging for children. However, in a corpus of child-directed speech,  
1227 prenominal adjectives were found to occur more often. Why should the more challenging

1228 forms occur more frequently in the input? The current study offers an answer to that paradox:  
1229 prenominals are in fact no more taxing than postnominals.

1230 Against our hypothesis, the two-step strategy enabled by postnominal frames did not help  
1231 preschoolers. Although homing in on the nominal class before using the adjective to  
1232 disambiguate the target seems like an appealing strategy, prenominal and postnominal frames  
1233 were processed equally quickly in both experiments and by both populations. We propose  
1234 several possible explanations for this. First, any postnominal advantage may have been  
1235 cancelled by emerging (in Expt. 1) or secure (Expt. 2) contrastive inferencing abilities, which  
1236 would facilitate earlier reference resolution in prenominal frames. Second, adjectives in  
1237 prenominal position are said to bias towards a contrastive meaning (Diesendruck, Hall, &  
1238 Graham, 2006; Prasada, 1992; Prasada & Cummins, 2000). Relatedly, subsective adjectives  
1239 like “big” and “little” may have slightly different interpretations in prenominal position and  
1240 postnominal position (Higginbotham, 1995). That is, saying that an object is big (predicative  
1241 use) may leave open the standard of comparison; the phrase, “big cow” denotes a cow that is  
1242 big for a cow, while the phrase “cow that’s big” may be ambiguous as to what the cow is big  
1243 relative to. Given that our analysis of syntactic frame was restricted to the contrastive  
1244 conditions, prenominal utterances may have facilitated reference resolution to the exact  
1245 pragmatic function that the children faced. This bias may have worked against the  
1246 postnominal utterances. Third, postnominal frames may only be helpful in challenging  
1247 contexts, e.g., long-distance linguistic dependencies or visually complex scenes. When an  
1248 array is cluttered with many competitors and distractors, focusing on the nominal class should  
1249 allow comprehenders to usefully rule out a number of these on their way to resolving  
1250 reference (Gatt et al., 2012; Rubio-Fernández, 2016). In our simple array of four objects, this  
1251 strategy is unlikely to apply. Fourth, in our (English) stimuli, the postnominal information  
1252 was part of a relative clause, a late-developing syntactic construction. Taken together,  
1253 developing contrastive inference skills, a prenominal contrastive bias, the simple displays,  
1254 and the more complex postnominal syntax may have masked a postnominal advantage that  
1255 may manifest under different conditions. Alternatively, considering the adjective-noun  
1256 integration evidenced in the experiments, perhaps preschoolers simply have no problem  
1257 keeping adjectival information in mind until the noun information is presented, especially as  
1258 the noun follows rapidly from the adjective. Crosslinguistic studies that capitalise on  
1259 prenominal/postnominal alternates of comparable complexity have the potential to add to this  
1260 body of evidence (see Rubio-Fernández, Mollica, & Jara-Ettinger, 2021).

1261 *4.5 Drivers of contrastive inferencing ability*

1262 In an attempt to reveal what matures in the child to enable them to integrate adjectives and  
1263 nouns online, we measured semantic and syntactic comprehension and speed of processing in  
1264 our sample. None of these measures significantly correlated with contrastive inferencing,  
1265 casting doubt on the hypothesis that proficiency in lexical knowledge and processing speed is  
1266 required. Coupled with the fact that children only needed a firm understanding of the  
1267 adjectives “big” and “little” (which should be strongly represented in three-year-olds), we  
1268 rule out lexical knowledge as a driver of contrastive inferencing. Our finding that  
1269 preschoolers (i.e., children with relatively little language experience) can pass complex  
1270 pragmatic tasks (given time) suggests that sophisticated language abilities may be less  
1271 important for this kind of inferential processing. Although we did not find a significant  
1272 correlation between speed of processing and contrastive inferencing, the fact that  
1273 preschoolers demonstrate contrastive inferencing in Experiment 2 suggests that time for  
1274 processing is a key component. Further, Fernald et al. (2009) found that processing speed  
1275 differences within their 30-month-olds were associated with differential success in online  
1276 interpretation of adjective–noun phrases. It may be that the way that we measured processing  
1277 speed (i.e., the speed at which children shifted to the correct target in a lexical task) was too  
1278 narrow. Instead, a broader conception of processing speed which encompasses the  
1279 psycholinguistic and neural mechanics of pragmatic processing (as probed in our contrastive  
1280 inference task) may be a more appropriate measure. Indeed, a recent study on the relationship  
1281 between processing speed, vocabulary size, and subsequent vocabulary growth reveals a  
1282 complex, dynamic, and variable interaction (Peter et al., 2019; see also Koenig,  
1283 Arunachalam, & Saudino, 2020). Future work investigating the drivers of pragmatic  
1284 inferencing should take this complexity into account.

1285 The aspects of cognition that we analysed were of course just a subset of a wider range of  
1286 skills that may be relevant for contrastive inference, separately or in combination. For  
1287 example, semantic short-term memory may be implicated in the need to store and manipulate  
1288 adjectival information during the processing of referring expressions (Hanten & Martin,  
1289 2000; Martin & He, 2004). This is likely to be related to other examples of combinatorial  
1290 language processing. Future work could compare adjective-noun integration with the  
1291 integration of linguistic units that rely less on pragmatics to reveal the relative contribution of  
1292 linguistic and pragmatic skills in generating contrastive inferences.

1293 *4.6 Future directions*

1294 Several questions remain as a result of our chosen methodology. Our design cannot definitely  
1295 answer the question of whether or not three-year-olds were contrastively inferring (albeit  
1296 slowly) in Experiment 1. All we know at this point is that when time is provided to  
1297 demonstrate / measure it, and key visual and audio manipulations were made to the stimuli,  
1298 contrastive inference manifests in this age group. Future experiments should separate speed  
1299 of presentation, and size/speed of stimuli to identify their relative contribution. To ascertain  
1300 the generalisability of our findings, we would like to extend this paradigm to adjectives with  
1301 different semantics, e.g., colour, height, (cf. Jincho et al., 2019), or those that are less polar,  
1302 or imageable. “Big” and “small” have served as a useful starting point for testing contrastive  
1303 inferencing in such young children due to their familiarity and their strong links to multiple-  
1304 referent contexts in the child’s language experience (Huang & Snedeker, 2013). However, it  
1305 is possible that more challenging adjectives might elicit different patterns of results with  
1306 respect to inferencing, pre- vs. post-nominal performance, or correlations with language  
1307 ability. Relatedly, we would welcome studies that test our findings in less controlled  
1308 environments, e.g., during shared reading or free play. Because lab-based processing in  
1309 preschoolers correlates well with vocabulary (Koenig et al., 2020), we would expect our  
1310 results to generalise as long as the extra time affordances were retained.

1311 *4.7 Conclusion*

1312 Findings from two experiments provide evidence that children’s interpretation of adjective-  
1313 noun combinations is integrated, and informed by multiple information sources recruited  
1314 online. Unlike previous research, we provide evidence of a continuity in children’s  
1315 development of sophisticated, adult-like pragmatic skills. Critically, we found that three-year-  
1316 olds understand that modification is expected in the presence of multiple referents of the  
1317 same class, and are able to apply this principle during referential processing, when given the  
1318 time to do so.

1319

1320 **References**

1321 Arunachalam, S. (2016) A new experimental paradigm to study children's processing of their  
1322 parent's unscripted language input. *Journal of Memory and Language*, 88, 104-116.  
1323 doi: 10.1016/j.jml.2016.02.001

1324 Baayen, R. H., and Milin, P (2010). Analyzing reaction times. *International Journal of*  
1325 *Psychological Research*, 3.2, 12-28. doi: 10.21500/20112084.807.

1326 Barner D. and Snedeker J. (2008). Compositionality and statistics in adjective acquisition: 4-  
1327 year-olds interpret tall and short based on the size distributions of novel noun referents.  
1328 *Child Development*, 79(3), 594-608. doi: 10.1111/j.1467-8624.2008.01145.x

1329 Barner, D., Goodman, N., Schmidt, L., and Tenenbaum, J. (2009). How tall is tall?  
1330 Compositionality, statistics, and gradable adjectives. *Proceedings of the Annual*  
1331 *Meeting of the Cognitive Science Society*, 31.

1332 Barr, D. J. (2008). Analyzing "visual world" eyetracking data using multilevel logistic  
1333 regression. *Journal of Memory and Language*, 59, 457–474. doi:  
1334 10.1016/j.jml.2007.09.002

1335 Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects  
1336 models using lme4. *Journal of Statistical Software*, 67, 1–48. doi:  
1337 10.18637/jss.v067.i01.

1338 Bergelson, E., and Swingley, D. (2012). At 6–9 months, human infants know the meanings of  
1339 many common nouns. *Proceedings of the National Academy of Sciences*, 109, 3253–  
1340 3258.

1341 Berger, F., and Höhle, B. (2012). Restrictions on addition: children's interpretation of the  
1342 focus particles auch ('also') and nur ('only') in German. *Journal of Child Language*.  
1343 39, 383-410.

1344 Berman, (1988). On the ability to relate events in narrative, *Discourse Processes* 11, 469-497.  
1345 doi: 10.1080/01638538809544714

1346 Bierwisch, M. (1987). The semantics of gradation. In M. Bierwisch and E. Lang (Eds.),  
1347 *Dimensional Adjectives* (pp. 71–262). Berlin, Germany: SpringerVerlag.

1348 Boersma, P., and Weenink, D. (2020). Praat: doing phonetics by computer [Computer  
1349 program]. Version 6.1.16, retrieved 6 June 2020 from <http://www.praat.org/>

1350 Booth, A. E., and Waxman, S. R. (2009). A horse of a different color: Specifying with  
1351 precision infants' mappings of novel nouns and adjectives. *Child Development*, 80(1),  
1352 15-22. doi.org/10.1111/j.1467-8624.2008.01242.x

1353 Brown-Schmidt, S., Gunlogson, C., and Tanenhaus, M. K. (2008). Addressees distinguish  
1354 shared from private information when interpreting questions during interactive  
1355 conversation. *Cognition*, 107(3), 1122–1134. [doi: 10.1016/j.cognition.2007.11.005](https://doi.org/10.1016/j.cognition.2007.11.005)

1356 Davies, C., Andrés-Roqueta, C., and Norbury, C. F (2016). Referring expressions and  
1357 structural language abilities in children with specific language impairment: A  
1358 pragmatic tolerance account. *Journal of Experimental Child Psychology*, 144, 98-113.  
1359 doi: 10.1016/j.jecp.2015.11.011

1360 Davies, C., Lingwood, J. and Arunachalam, S. (2020) Adjective forms and functions in  
1361 British English child-directed speech. *Journal of Child Language*, 47, 159-185. doi:  
1362 10.1017/S0305000919000242

1363 Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production.  
1364 *Psychological Review*, 93(3), 283–321. doi: 10.1037/0033-295X.93.3.283

1365 Diesendruck, Gil, Hall, D. Geoffrey, and Graham, Susan (2006). Children's use of syntactic  
1366 and pragmatic knowledge in the interpretation of novel adjectives. *Child  
1367 Development*, 77(1), 16–30. doi:10.1111/j.1467-8624.2006.00853.x

1368 Donnelly, S., and Verkuilen, J. (2017). Empirical logit analysis is not logistic regression.  
1369 *Journal of Memory and Language*, 94, 28-42. doi: 10.1016/j.jml.2016.10.005

1370 Duñabeitia J. A., Crepaldi D., Meyer A. S., New B., Pliatsikas C., Smolka E., et al.  
1371 (2018). MultiPic: a standardized set of 750 drawings with norms for six European  
1372 languages. *Quarterly Journal of Experimental Psychology. Exp. Psychol.* 71 808–816.  
1373 doi: 10.1080/17470218.2017.1310261

1374 Ebeling, K. S., and Gelman, S. A. (1988). Coordination of size standards by young children.  
1375 *Child Development*, 59, 888–896. doi: 10.2307/1130256

1376 EyeLink Data Viewer v.4.1.63 (2020). Mississauga, Ontario, Canada: SR Research Ltd

1377 Falkum, I. L., Recassen, M., and Clark, E. (2017). "The moustache sits down first": on the  
1378 acquisition of metonymy. *Journal of Child Language*, 44, 87-119. doi:  
1379 10.1017/S0305000915000720

1380 Fernald, A., Marchman, V., and Hurtado, N. (2008) Input affects uptake: How early language  
1381 experience influences processing efficiency and vocabulary learning. *Proceedings of*  
1382 *the 7th IEEE International Conference on Development and Learning*. IEEE; pp. 37–  
1383 42. doi: 10.1109/DEVLRN.2008.4640802

1384 Fernald, A., Perfors, A. F., and Marchman, V. A. (2006). Picking up speed in understanding:  
1385 Speech processing efficiency and vocabulary growth across the second year.  
1386 *Developmental Psychology*, 42, 98–116. doi: 10.1037/0012-1649.42.1.98

1387 Fernald, A., Pinto, J. P., Swingley, D., Weinberg, A., and McRoberts, G. W. (1998). Rapid  
1388 gains in speed of verbal processing by infants in the 2<sup>nd</sup> year. *Psychological Science*, 9,  
1389 228–231. doi: 10.1111/1467-9280.00044

1390 Fernald, A., Thorpe, K., and Marchman, V. A. (2010). Blue car, red car: Developing  
1391 efficiency in online interpretation of adjective-noun phrases. *Cognitive Psychology*, 60,  
1392 190–217. doi: 10.1016/j.cogpsych.2009.12.002

1393 Gao, H. H., Zelazo, P. D., Sharpe, D., and Mashari, A. (2014). Beyond early linguistic  
1394 competence: Development of children's ability to interpret adjectives flexibly. *Cognitive*  
1395 *Development*, 32, 86–102. doi.org/10.1016/j.cogdev.2014.08.003

1396 Gatt, A., R. van Gompel, E. Krahmer and K. van Deemter (2012). Does domain size impact  
1397 speech onset time during reference production? *Proceedings of the 34th annual meeting*  
1398 *of the Cognitive Science Society (CogSci 2012)*. Sapporo, Japan, pp. 1584 – 1589

1399 Gentner, D. (1982). Why nouns are learned before verbs: Linguistic relativity versus natural  
1400 partitioning. In S. Kuczaj (Ed.), *Language development: Language, cognition, and*  
1401 *culture* (pp. 301–334). Hillsdale, NJ: Erlbaum.

1402 Gentner, D., and Boroditsky, L. (2001). Individuation, relativity and early word learning. In  
1403 M. Bowerman and S. Levinson (Eds.), *Language acquisition and conceptual*  
1404 *development* (pp. 215–256). Cambridge, UK: Cambridge University Press.

1405 Grice, H. P. (1975) 'Logic and conversation'. In P. Cole and J. Morgan (eds) *Studies in Syntax*  
1406 *and Semantics III: Speech Acts*, New York: Academic Press, pp. 183–98.

1407 Grodner, D., and Sedivy, J. C. (2011). The effect of speaker specific information on  
1408 pragmatic inferences. In N. Pearlmuter and E. Gibson (eds.). *The Processing and*  
1409 *Acquisition of Reference* (Vol. 2327, pp. 239– 272). MIT Press.

1410 Hall, D. G., Waxman, S. R., and Hurwitz, W. M. (1993). How two- and four-year-old  
1411 children interpret adjectives and count nouns. *Child Development*, 64(6), 1651–  
1412 1664. [doi.org/10.2307/1131461](https://doi.org/10.2307/1131461)

1413 Hanten, G., and Martin, R. C. (2000). Contributions of phonological and semantic short-term  
1414 memory to sentence processing: Evidence from two cases of closed head injury in  
1415 children. *Journal of Memory and Language*, 43, 335–361. doi: 10.1006/jmla.2000.2731

1416 He, A. X., Kon, M, and Arunachalam, S. (2020). Linguistic context in verb learning: Less is  
1417 sometimes more. *Language Learning and Development*, 16(1), 22-42. doi:  
1418 10.1080/15475441.2019.1676751

1419 Higginbotham, J. (1985). On semantics. *Linguistic Inquiry*, 16, 547-594.

1420 Horowitz, A. C. and Frank, M. C. (2014). Preschoolers infer contrast from adjectives if they  
1421 can access lexical alternatives. *Proceedings of the 36th Annual Conference of the*  
1422 *Cognitive Science Society*.

1423 Huang, Y. and Snedeker, J. (2013). The use of referential context in children's online  
1424 interpretation of scalar adjectives. *Developmental Psychology*, 49, 1090-1102. doi:  
1425 10.1037/a0029477

1426 Huang, Y., and Snedeker, J. (2020). Evidence from the visual world paradigm raises  
1427 questions about unaccusativity and growth curve analyses. *Cognition*, 104251. doi:  
1428 10.1016/j.cognition.2020.104251

1429 Jincho, N., Oishi, H., and Mazuka, R. (2019). Developmental changes in the utilization of  
1430 referential visual context during sentence comprehension: Eye movement and pupil  
1431 dilation evidence from children and adults. *Language Learning and Development*,  
1432 15(4), 350-365. doi: 10.1080/15475441.2019.1645668

1433 Kamp, H., and Partee, B. (1995). Prototype theory and compositionality. *Cognition*, 57, 129–  
1434 191. doi:10.1016/0010-0277(94)00659-9

1435 Kennedy, C. (1999). *Projecting the adjective: The syntax and semantics of gradability and*  
1436 *comparison*. New York, NY: Garland.

1437 Kennedy, C. (2012). Adjectives. In Russell, G. and D. Graff Fara (eds.), *Routledge*  
1438 *Companion to Philosophy of Language*. Routledge.

1439 Klibanoff, R. S., & Waxman, S. R. (2000). Basic level object categories support the  
1440 acquisition of novel adjectives: Evidence from preschool-aged children. *Child  
1441 Development*, 71(3), 649–659. <https://doi.org/10.1111/1467-8624.00173>

1442 Koenig, A., Arunachalam, S., and Saudino, K. (2020). Lexical processing of nouns and verbs  
1443 at 36 months of age predicts concurrent and later vocabulary and school readiness.  
1444 *Journal of Cognition and Development*, 21:5, 670-689, doi:  
1445 10.1080/15248372.2020.1802277

1446 Kronmüller, E., Morisseau, T., and Noveck, I. (2014). Show me the pragmatic contribution:  
1447 A developmental investigation of contrastive inference. *Journal of Child Language*,  
1448 41(5), 985-1014. doi:10.1017/S0305000913000263

1449 Long, B., Moher, M., Carey, S., and Konkle, T. (2019). Real-world size is automatically  
1450 encoded in preschoolers' object representations. *Journal of Experimental Psychology:  
1451 Human Perception and Performance*. doi: 10.1037/xhp0000619

1452 Markman, E. M. (1990). Constraints children place on word meanings. *Cognitive Science*, 14,  
1453 57–77. doi: 10.1207/s15516709cog1401\_4

1454 Martin, R. C., and He, T. (2004). Semantic short-term memory and its role in sentence  
1455 processing: A replication. *Brain and Language*, 89, 76–82. doi: 10.1016/S0093-  
1456 934X(03)00300-6

1457 Matthei, E. M. (1982). The acquisition of prenominal modifier sequences. *Cognition*, 2, 301-  
1458 332. doi: 10.1016/0010-0277(82)90018-X

1459 Medin, D. L., and Shoben, E. J. (1988). Context and structure in conceptual combination.  
1460 *Cognitive Psychology*, 20, 158–190. doi: 10.1016/0010-0285(88)90018-7

1461 Mintz, T. H. (2005). Linguistic and conceptual influences on adjective acquisition in 24- and  
1462 36-month-olds. *Developmental Psychology*, 41, 17–29

1463 Mintz, T. H., and Gleitman, L. (2002). Adjectives really do modify nouns: The incremental  
1464 and restricted nature of early adjective acquisition. *Cognition*, 84, 267–293

1465 Mirman, D. (2014). *Growth curve analysis and visualization using R* (Chapman and  
1466 Hall/CRC the R series). Boca Raton: CRC Press.

1467 Morisseau, T., Davies, C. and Matthews, D. (2013). How do 3- and 5-year-olds respond to  
1468 under- and overinformative utterances? *Journal of Pragmatics*, 59, 26-39 doi:  
1469 10.1016/j.pragma.2013.03.007

1470 Nadig, A., Sedivy, J., Joshi, A., and Bortfeld, H. (2003). The development of discourse  
1471 constraints on the interpretation of adjectives. In B. Beachley, A. Brown, and F. Conlin  
1472 (Eds.), *Proceedings of the 27th Annual Boston University Conference on Language*  
1473 *Development* (pp. 568-579). Somerville, MA: Cascadilla Press.

1474 Nelson, K. and Benedict, H. (1974). The comprehension of relative, absolute, and contrastive  
1475 adjectives by young children. *Journal of Psycholinguistic Research*, 3, 333-42.

1476 Ninio, A. (1988). On formal grammatical categories in early child language. In Y. Levy, I. M.  
1477 Schlesinger, and M. D. S. Braine (Eds.), *Categories and processes in language*  
1478 *acquisition* (pp. 99–119). Hillsdale, NJ: Lawrence Erlbaum Associates.

1479 Ninio, A. (2004). Young children's difficulty with adjectives modifying nouns. *Journal of*  
1480 *Child Language*, 31, 255–285. doi: 10.1017/s0305000904006191.

1481 Omaki, A. and Lidz, J. (2015). Linking parser development to acquisition of syntactic  
1482 knowledge. *Language Acquisition*, 22:2, 158-192, doi: 10.1080/10489223.2014.943903

1483 Peter, M. S., Durrant, S., Jessop, A., Bidgood, A., Pine, J. M. and Rowland, C. F.  
1484 (2019). Does speed of processing or vocabulary size predict later language growth in  
1485 toddlers? *Cognitive Psychology*, 115, 101-238. [doi: 10.1016/j.cogpsych.2019.101238](https://doi.org/10.1016/j.cogpsych.2019.101238)

1486 Pousoulous, N. and Tomasello, M. (2019). Early birds: Metaphor understanding in 3-year-  
1487 olds. *Journal of Pragmatics*, 156, 160-167. doi: 10.1016/j.pragma.2019.05.021

1488 Pousoulous, N., I. Noveck, G. Politzer, and A. Bastide (2007). A developmental  
1489 investigation of processing costs in implicature production. *Language Acquisition*, 14:  
1490 347-376. doi: 10.1080/10489220701600457

1491 Prasada, S. (1992). *Acquisition of adjective meanings: A lexical semantic approach*. Doctoral  
1492 dissertation, MIT.

1493 Prasada, S., and Cummins, M. (2001). Structural constraints on the interpretation of novel  
1494 count nouns. *Proceedings of the Boston University Conference on Language*  
1495 *Development*, 25, 623-632.

1496 Qi, Z., Love, J., Fisher, C., & Brown-Schmidt, S. (2020). Referential context and executive  
1497 functioning influence children's resolution of syntactic ambiguity. *Journal of*  
1498 *experimental psychology. Learning, memory, and cognition*, 46(10), 1922–1947.  
1499 <https://doi.org/10.1037/xlm0000886>

1500 R Core Team (2018). *R: A language and environment for statistical computing*. Vienna,  
1501 Austria: R Foundation for Statistical Computing.

1502 Ramscar, M., Thorpe, K., and Denny, K. (2007). Surprise in the learning of color words.  
1503 Proceedings of the 29th Meeting of the Cognitive Science Society, Nashville, TN.

1504 Ramscar, M., Yarlett, D., Dye, M., Denney, K., and Thorpe, K. (2010) The effects of feature-  
1505 label-order and their implications for symbolic learning. *Cognitive Science*, 34, 909–  
1506 957. doi: 10.1111/j.1551-6709.2009.01092.x

1507 Rubio-Fernandez, P., Mollica, F., & Jara-Ettinger, J. (2021). Speakers and listeners exploit  
1508 word order for communicative efficiency: A cross-linguistic investigation. *Journal of*  
1509 *Experimental Psychology: General*, 150(3), 583–594.  
1510 <https://doi.org/10.1037/xge0000963>

1511 Rubio-Fernández, P. (2016) How redundant are redundant color adjectives? An efficiency-  
1512 based analysis of color overspecification. *Frontiers in Psychology*. 7:153. doi:  
1513 10.3389/fpsyg.2016.00153

1514 Ryskin, R., Kurumada, C., and Brown-Schmidt, S. (2019). Information integration in  
1515 modulation of pragmatic inferences during online language comprehension. *Cognitive*  
1516 *Science*, 43(8), e12769. [doi: 10.1111/cogs.12769](https://doi.org/10.1111/cogs.12769)

1517 Sandhofer, C. M., and Smith, L. B. (2007). Learning adjectives in the real world: how  
1518 learning nouns impedes learning adjectives. *Language, Learning and Development*, 3,  
1519 233–67. doi: 10.1080/15475440701360465

1520 Sandhofer, C. M., Smith, L. B., and Luo, J. (2000). Counting nouns and verbs in the input:  
1521 Differential frequencies, different kinds of learning? *Journal of Child Language*, 27,  
1522 561–585. doi: 10.1017/S0305000900004256

1523 Schulze, C., Grassmann, S., and Tomasello, M. (2013). 3-year-old children make relevance  
1524 inferences in indirect verbal communication. *Child Development*, 84 (6), 2079-2093.

1525 Schwarz, F. (2014). Presuppositions are fast, whether hard or soft - evidence from the visual  
1526 world. In M. Wiegand, T. Snider, and S. D'Antonio (Eds.), *Semantics and Linguistic*  
1527 *Theory* (SALT). Vol. 24, pp. 1-22). LSA and CLC Publications.

1528 Sedivy, J. C., Tanenhaus, M. K., Chambers, C. G. and Carlson, G. N. (1999). Achieving  
1529 incremental semantic interpretation through contextual representation. *Cognition*, 71,  
1530 109-147. doi: 10.1016/s0010-0277(99)00025-6.

1531 Sekerina, I. A. and Trueswell, J. C. (2012). Interactive processing of contrastive expressions  
1532 by Russian children. *First Language*, 32, 63–87. doi: 10.1177/0142723711403981

1533 Smith, L. B., Cooney, N. J., and McCord, C. (1986). What is "high"? The development of  
1534 reference points for "high" and "low." *Child Development*, 57(3), 583–  
1535 602. [doi.org/10.2307/1130338](https://doi.org/10.2307/1130338)

1536 Snedeker, J., and Trueswell, J. C. (2004). The developing constraints on parsing decisions:  
1537 the role of lexical-biases and referential scenes in child and adult sentence processing.  
1538 *Cognitive Psychology*, 49(3), 238–299. doi: 10.1016/j.cogpsych.2004.03.001.

1539 Stiller, A., Goodman, N., and Frank, M. (2015). Ad-hoc implicature in preschool children.  
1540 *Language Learning and Development*, 11 (2), 176-190.

1541 Syrett, K., Kennedy, C. and Lidz, J. (2010). Meaning and Context in Children's  
1542 Understanding of Gradable Adjectives, *Journal of Semantics*, 27(1), 1-  
1543 35. [doi.org/10.1093/jos/ffp011](https://doi.org/10.1093/jos/ffp011)

1544 Syrett, K., LaTourrette, A., Ferguson, B., and Waxman, S. R. (2019). Crying helps, but being  
1545 sad doesn't: Infants constrain nominal reference online using known verbs, but not  
1546 known adjectives. *Cognition*, 104033, doi: 10.1016/j.cognition.2019.104033

1547 Taylor, M. and Gelman, S. A. (1988). Adjectives and nouns: Children's strategies for  
1548 learning new words. *Child Development*, 59, 411–419

1549 Thorpe, K., and Fernald, A. (2006). Knowing what a novel word is not: Two year-olds  
1550 “listen through” ambiguous adjectives in fluent speech. *Cognition*, 100, 389–433. doi:  
1551 10.1016/j.cognition.2005.04.009

1552 Thorpe, K., Baumgartner, H., and Fernald, A. (2006). Children's developing ability to  
1553 interpret adjective–noun combinations. In *Proceedings of the 30th Annual Boston*  
1554 *University Conference on Language Development*. Somerville, MA: Cascadilla Press

1555 Tian, Y., Ferguson, H., and Breheny, R. (2016). Processing negation without context - Why  
1556 and when we represent the positive argument. *Language, Cognition and Neuroscience*,  
1557 31(5), 683–698. doi: 10.1080/23273798.2016.1140214

1558 Tribushinina, E. and Mak, W. M. (2016). Three-year-olds can predict a noun based on an  
1559 attributive adjective: Evidence from eye-tracking. *Journal of Child Language*, 43, 425–  
1560 44. doi: 10.1017/S0305000915000173

1561 Tribushinina, E., van den Bergh, H., Ravid, D., Aksu-Koç, A., Kilani-Schoch, M., Korecky-  
1562 Kröll, K., Leibovitch-Cohen, I., Laaha, S., Nir, B., Dressler, W. U. and Gillis, S. (2014).  
1563 Development of adjective frequencies across semantic classes - A growth curve analysis

1564 of child speech and child-directed speech. *Language, Interaction and Acquisition*, 5 (2),  
1565 185-226. doi: 10.1075/lia.5.2.02tri

1566 Trueswell, J. C., Sekerina, I., Hill, N. M., and Logrip, M. L. (1999). The kindergarten-path  
1567 effect: Studying on-line sentence processing in young children. *Cognition*, 73(2), 89–  
1568 134. doi:10.1016/S0010-0277(99)00032-3

1569 Waxman, S. R., and Booth, A. E. (2001). On the insufficiency of evidence for a domain-  
1570 general account of word learning. *Cognition*, 78, 277–9. doi: 10.1016/S0010-  
1571 0277(00)00119-0

1572 Weighall, A. R. (2008). The kindergarten path effect revisited: Children's use of context in  
1573 processing structural ambiguities. *Journal of Experimental Child Psychology*, 99(2),  
1574 75–95. doi: 10.1016/j.jecp.2007.10.004.

1575 Weisleder, A. and Fernald, A. (2013). Talking to children matters: Early language experience  
1576 strengthens processing and builds vocabulary. *Psychological Science*, 24(11), 2143–  
1577 2152. doi:10.1177/0956797613488145

1578 Weisleder, A., and Fernald, A. (2009). Real-time processing of postnominal adjectives by  
1579 Latino children learning Spanish as a first language. In J. Chandlee, M. Franchini, S.  
1580 Lord, and G.-M. Rheiner (Eds.), *Proceedings of the 33rd Annual Boston University  
1581 Conference on Language Development* (pp. 611-621). Somerville, MA: Cascadilla  
1582 Press.

1583 Wienholz, A and Lieberman, A. M. (2019). Semantic processing of adjectives and nouns in  
1584 American Sign Language: effects of reference ambiguity and word order across  
1585 development. *Journal of Cultural Cognitive Science*, 3, 217–234. doi: 0.1007/s41809-  
1586 019-00024-6

1587 Wiig, E., Secord, W.A. and Semel, E. (2004). *The clinical evaluation of language  
1588 fundamentals–Preschool*. (2nd edn). San Antonio, TX: Harcourt Assessment.

1589 Woodard, K., Pozzan, L., and Trueswell, J. C. (2016). Taking your own path: Individual  
1590 differences in executive function and language processing skills in child learners.  
1591 *Journal of Experimental Child Psychology*, 141, 187–209. doi:  
1592 10.1016/j.jecp.2015.08.005

1593 Ziegler, J., and Pylkkänen, L. (2016). Scalar adjectives and the temporal unfolding of  
1594 semantic composition: An MEG investigation. *Neuropsychologia*, 89, 161-171.  
1595 [doi.org/10.1016/j.neuropsychologia.2016.06.010](https://doi.org/10.1016/j.neuropsychologia.2016.06.010)