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Abstract— It is well known that microRNAs (miRNAs or miRs)
are small (~18-25 nt) yet highly potent non-coding RNA-derived
RNAs (ndRNAs), originating from pre-miRNA fragmentation,
that have been shown to alter the post-transcriptional
functionality of many messenger RNAs (mRNAs). Biologically, the
identification and study of miRNAs is very critical due to their
increasing significance as biomarkers for many types of cancers
and other genetic diseases. While empirical evidence supporting
the existence of several novel ndRNAs excised from other longer
non coding RNAs (ncRNAs) is growing, recent evidence suggests
the full extent of their prevalence is likely underappreciated.
Although some computational methods have been designed to help
domain experts identify and understand miRNAs by analyzing
Next Generation Sequencing (NGS) datasets, there are some
crucial challenges, such as efficiency, effectiveness, and
generalizability, in the state-of-the-art in-silico methods. To
address such problems, our group proposed a new algorithm to
mine ndRNAs by applying wavelet-based signal processing
techniques as opposed to the current string-based NGS sequence
alignment/analysis. However, due to novelty of the approach, our
initial version of the algorithm was focused specifically on mining
miRNAs, snoRNA-derived RNAs (sdRNAs) and transfer RNA
(tRNA) fragments (tRFs) because of their importance in the
literature plus the availability of experimentally validated
databases to confirm our findings. Despite the computational
issues, we still lack a basic understanding of the existence and the
range of ndRNA functionalities from a) ndRNAs other than miRs,
sdRNAs & tRFs in humans, and b) all ndRNAs in millions of
organisms other than humans. Hence, there is an urgent
requirement to automate the extraction and experimentation of
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ndRNAs, especially considering the rate at which NGS data is
being produced. Therefore, in the current article, we extended our
algorithm to be applicable to ~500 organisms—including
eukaryotes, plants, bacteria, fungi, and protists—along with all
their ncRNAs available in the current NCBI annotation. We also
constructed a real-time user-friendly platform, SURFR, available
at salts.soc.southalabama.edu/surfr, to aid domain experts and the
aspiring biomedical scientists to perform RNA-Seq experiments to
study ndRNAs. Not only our platform is extremely efficient, but
we are also capable of allowing the users to identify, analyze,
visualize, and compare ndRNAs from up to 30 NGS files to
perform rigorous experimentation. Moreover, access to NGS files
from public databases like SRA, and ndRNAs from private
databases like TCGA are made readily available to the users to
further validate their novel findings. Finally, we provide
theoretical validation to examine our platform’s effectiveness.

Keywords— microRNAs, small ncRNAs, ncRNA-derived RNAs,
Differential Expression Analysis, Gene Expression Visualization,
Wavelet

I. INTRODUCTION

Ribonucleic Acids (RNAs) can broadly be classified into
two categories: coding, and non-coding RNAs (ncRNAs). The
coding RNAs, also commonly known as messenger RNAs
(mRNAs), carry and execute the information required for the
formation of proteins—hence the name coding/protein-coding
RNAs. On the other hand, the RNAs that do not encode the
information for protein synthesis are known as ncRNAs.
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However, although ncRNAs do not directly code for proteins,
they do possess many functionalities within the cell [1]. As a
matter of fact, ncRNAs are critical to every cellular function,
and how their misexpressions contribute to a wide range of
diseases is only now beginning to be appreciated [1-3]. That
said, it’s now clear that >98% of eukaryotic RNAs are actually
non-coding [4] making the study of ncRNAs even more critical.
Notably, the functions of thousands of recently discovered
ncRNAs remain largely unclear; what’s more, recent evidence
suggests less than half of functional cellular ncRNAs have yet
to be identified [4].

Non coding RNAs (ncRNAs) can be subdivided into two
main groups: 1. small ncRNAs (sncRNAs) — shorter than 200
nucleotides (nts) in length, and 2. long ncRNAs (IncRNAs) —
longer than 200 nucleotides (nts). MicroRNAs (miRNAs) are a
large class of sncRNAs that were discovered only ~2 decades
ago [5]. Although overlooked for decades due to their size,
miRNAs - only about 18-25 nts long, have turned out to be the
best studied group of sncRNAs and are currently the focus of
many studies involving billions of research dollars. MiRNAs
associate with the RNA-induced silencing complex (RISC) to
directly target mRNAs and regulate their expressions in very
specific manners [6][7]. Each miRNA is capable of targeting
multiple mRNAs, and each mRNA can be targeted by more than
one miRNAs, i.e., a many-to-many relation exists between
miRNA and mRNA interactions (although the majority of these
remain unknown) [8]. What’s clear however, is that the
expressions and functions of every unique miRNA is highly
specific and contributes to a multitude of phenotypic and
genotypic outcomes [9-12] (e.g.. cell proliferation, metabolism,
drug resistance, tumorigenesis, apoptosis, etc. [4,7,13-15]).
Importantly, the identification and mechanistic understanding of
miRNAs and novel miRNA-like RNAs will undoubtedly lead to
major advances in agriculture, green energy, and medicine in the
near future making their characterization a hotly pursued area of
research [16-18].

Importantly, small nucleolar RNAs (snoRNAs) and transfer
RNAs (tRNAs)—two other widely studied types of ncRNAs—
have recently been found to be processed into fully-functional
miRNA-like fragments—known as snoRNA-derived RNAs
(sdRNAs) and tRNA-Fragments (tRFs) respectively [19-22].
Similar to miRNAs, sdRNAs and tRFs are also exceptionally
small in size, i.e., only around 18-35nt, making them very hard
to identify and study biologically in the laboratory. That said,
despite only being discovered less than a decade ago, numerous
studies have now reported specific contributions of sidRNAs and
tRFs in a wide range of activities (e.g., RNA silencing,
translation regulation, epigenetic regulation, cell invasion,
malignant transformation, metastatic progression, etc.) [19-22].
Notably, specific roles for miRNAs in the onset and progression
of malignancy is currently one of the hottest areas of oncological
and pharmacological research. That said, siRNAs and tRFs
have recently been shown to function almost indistinguishably
from miRNAs and to possess clear involvements in various
cancers. As such, we believe that they will similarly soon
become a research priority to many biomedical and
pharmacological studies.

Also of note, several studies have recently reported the
existence of miRNA-like RNAs processed from other types of
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ncRNAs in addition to snoRNAs and tRNAs (e.g rRNAs, Y
RNAs, vault RNAs, etc...) [23,24]. As such, the full repertoire
of miRNA-like RNAs remains largely unclear in humans and
almost entirely unexplored in most other organisms. That said,
in a previous study [25], we coined the term, “ncRNA-derived
RNAs (ndRNAs)” for any miRNA-like RNA processed from a
longer ncRNA [26], and the identification of these ndRNAs
constitutes the focus of the current study as we argue that, there
is an urgent need to develop highly accurate and efficient new
methods for the identification, exploration, and characterization
of ndRNAs.

The development and recent advancements in Next
Generation Sequencing (NGS) technologies now allow us to
investigate the genetic realm computationally [27]. Sequencing
refers to the set of technologies that are used to extract data from
DNA/RNA samples. Having potential applications within
crucial domains such as agriculture, medicine, drug
development, microbiology, DNA forensics, health,
phylogenetics, etc., NGS technologies have been widely
adopted by hundreds to thousands of laboratories across the
globe, thus producing daunting amounts of data every year
[27][28]. Notably, the prices to perform NGS have reduced
dramatically as of late and are still going down. For instance, the
Human Genome Project by the National Institutes of Health
(NIH) during the 90s, took about 15 years to sequence the
human genome, and cost over 2.5 billion dollars [29,30]. With
the massively parallelized second-generation sequencing
techniques, sequencing a whole genome only takes about a few
hours to a day and is priced just over 1000$. That said, the raw
data obtained from NGS cannot be interpreted by humans
directly as each file is typically several Giga Bytes in size
containing 10-100 million lines of DNA/RNA reads making
NGS data analysis—and thereby ndRNA analysis—a critical
computational challenge. Some of the preeminent issues
associated with NGS analyses are efficiency and parallelization.

Although, to date, several computational methods have been
proposed to identify and analyze ndRNAs from NGS datasets
[31-37], all previous methods carry serious limitations (e.g.,
human specific, only assessing limited subsets of ncRNAs, poor
accuracy/efficiency, etc...). Therefore to address all the above
mentioned problems, in our study [25], we developed a highly-
efficient, algorithm to comprehensively find, analyze, and
visualize the full repertoire of ndRNAs (miRNAs, sdRNAs &
tRFs) contained within a RNA-seq NGS dataset. Strikingly, we
find that >95% of ndRNA sequences identified by our algorithm
that correspond to previously annotated, experimentally
validated miRNAs agree within 1-2 nt [25] confirming the
accuracy and reproducibility of our method. That said, in [25]
we only applied our method to human miRNA, sdRNA, and tRF
discovery since the approach was novel and existing
experimental evidence in the literature on these three ndRNAs
allowed us to rigorously evaluate our findings. Therefore, in the
work described herein, we have expanded our resource scope to
allow the user to comprehensively screen NGS datasets for all
miRNA-like RNAs excised from any known human sncRNAs
to likewise identify miRNA-like RNAs in 439 other organisms.

In the current article, we also discuss the development and
usage of our new real-time, user-friendly web interface
specifically designed for the aspiring biomedical experts to
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easily perform complex computational tasks that are significant
with respect to ndRNA research such as NGS data transfer,
processing, analysis, visualization, and comparison. Such a
platform could be extremely helpful even for the experts to
explore complex patterns within ndRNA expressions across
multiple samples. What makes our platform unique is the usage
of specialized, light-weight data structures which are explained
further in the paper.

In the next section, the current state of the related literature
and the challenges associated are explained. Then in the later
section, our algorithm, and the theory on which it is built-upon
are described. Most importantly, in the current article, we
provide qualitative evidence to evaluate our algorithm’s
effectiveness and provide some empirical validation. The
Materials and Methods section, elaborates on our techniques,
tools, and data sources. In the remaining sections, our
application and its features are discussed along with example
analyses. Finally, we conclude by summarizing our
contributions and discussing future research directions.

II. BACKGROUND AND RELATED WORK

NdRNAs are miRNA-like fragments specifically excised
from sncRNAs. The first and foremost issue with effective
ndRNA mining is that the concept of ndRNAs itself is relatively
new in terms of both biology, and computer science. Therefore,
there is a huge gap in the literature in terms of the theory behind
computationally extracting such RNAs. Moreover, most of the
already proposed methods use one of the existing SA methods—
such as BLAST or Bowtie — to obtain pre-aligned outputs to
roughly estimate the presence of ndRNAs. The problem with
almost all the existing SA algorithms is that they are expensive
either in terms of time or memory or both. For example, Bowtie
is one such method which maps all the NGS reads to a reference
genome. However, even though Bowtie is moderately faster, it
requires at least 2GB of memory just for the human database.
Plus, to date, only a handful of organisms’ reference genomes
are available to us. On the other hand, pair-wise local alignments
such as BLAST require less memory but consume hours of
processing time [25].

Furthermore, many of the existing ndRNA algorithms/tools
[36][37] focus primarily on miRNAs and are not capable of fully
defining ndRNA profiles. That said, the methods that are
capable of characterizing novel ndRNAs [31-34] require fairly
extensive computational expertise for utilization, and are
dependent on pre-aligned file inputs such as BAM. For example,
Flaimapper, one such gold-standard method that tries to predict
miRNAs by parsing BAM formatted files, can only correctly
identify 54% of experimentally validated miRNA end positions
[34]. Anyway, such methods provided a means to strengthen our
preliminary understanding of miRNAs, but they possess a large
number of drawbacks. Hence, there is an urgent requirement for
a direct computational approach to:

a) Aid finding all unknown ndRNAs in any commonly
studied organism, including ndRNAs excised from
other types of ncRNAs.

b) Quickly and accurately identify, and compare the
gene expression levels of all the known ndRNAs in
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millions of NGS files i.e., both existing and the files
yet to come.

c) Provide a standard means of data analysis for the
study of ndRNAs.

Therefore, to address many of the aforementioned
challenges, we proposed an algorithm to retrieve ndRNAs from
RNA-Seq files without the necessity to use any intermediate
tools. In the next section, we will briefly go through our strategy
and explain how and why it works.

III. MATERIALS AND METHODS

The main objective of the current body of work is to provide
a straight forward approach to study ndRNAs to support domain
experts explore the complex relation between ncRNAs,
ndRNAs, and cancers. This section will describe the materials
and methods required in order to provide some of our critical
observations to validate our approach. Our proposed method
consists of two major steps, 1. Data collection and pre-
processing, 2. Sequence Alignment (MoVaK alignment)
followed by ndRNA mining using wavelets (SURFR algorithm)
[25]. Each of these steps along with theoretical and qualitative
validation of our method are elaborated in the sub-sections
below.

A. Data Collection and Pre-Processing

Our strategy of sequence alignment makes use of three data
structures, namely, Aho-Corasick Automaton (ACA), Similarity
Vector (SV), and Differential Expression Vector (DEV). ACA
and SVs are necessary to perform the alignment and are required
to be pre-processed before-hand. Therefore, in this sub-section,
we will briefly discuss pre-processing approaches and the
required data sources.

Data Collection: An up-to-date list of all the known ncRNAs
of 440 species and the associated sequences are collected from
reliable sources such as NCBI [40]. However, NCBI only
contains certain types of ncRNAs and do not contain eukaryotic
tRNAs. Therefore another database of tRNAs, GtRNAdb [41],
has been utilized for obtaining the tRNA sequences.

ACA construction: Aho-Corasick (AC) algorithm is an
efficient multi-keyword search strategy that uses the data
structure, AC automaton (ACA) [42]. In our method, we make
use of AC algorithm to perform a quick initial filtering of all the
reads from a file.

SV generation: SV is a data structure that was introduced in
a previous study [25] to store and process DNA/RNA sequences
efficiently and effectively. SVs represent the information about
each character of a genetic sequence stored in the form of binary
arrays. Hence, four mandatory SVs for each sequence are
constructed, i.e., for each of A, C, T, and G.

B. MoVaK Alignment and Wavelet-based ndRNA mining

The initial step in almost every NGS data analysis is SA,
i.e., to match the NGS file’s reads to a genome or a known
database. Genome alignment methods are used to map all the
reads in the file to a reference genome, and pair-wise alignment
methods are used to align the reads to known databases.
Genome alignment techniques consume high memory because
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the entire genome has to be loaded into memory, while pair-
wise alignments consume relatively higher time to thoroughly
filter all the reads. However, all such traditional SA algorithms
strictly consider the problem at hand as a permutation and
combination-based string alignment problem and emphasize
too much on potential mutations at individual read-level—
thereby consuming heavy amounts of resources. Therefore,
through our research, we found the necessity to revisit the
problem of sequence alignment for NGS data analysis
specifically to address the issue of ndRNAs. Therefore, in [25]
a new way of SA that produces a data structure called
Differential Expression Vector (DEV), as shown in figure 1
below, to identify ncRNA fragmentation. Once the DEVs for
all the expressed ncRNAs in a given dataset are calculated using
MoVakK alignment, our technique is to employ a wavelet-based
approach for identifying differentially fragmented regions with
lengths around 18-35 nt within the DEVs to automatically mine
ndRNAs [25]. A major part of the current body of work
includes showing how the concept of DEVs can be leveraged
to perform automated NGS analysis and to construct robust
real-time platforms with greater biological significance.

[924, 953, 955, 954, 945, 958, 954, 959, 959, 962, 962,
964, 964, 961, 965, 964, 964, 964, 957, 951, 941, 928,
928, 925, 895, 917, 907, 908, 693, 813, 628, 798, 616,
793, 844, 537, 33, 14, 14, 15, 15, 15, 17, 18, 20, 19,
101, 161, 208, 863, 1163, 1201, 1343, 1437, 1451, 1477,
1487, 1515, 1522, 1583, 1539, 1945, 3047, 1813, 1934,2105
10424, 11509, 12593, 12867, 13074, 13073, 13068, 13068,
13070, 13065, 13069, 13068, 13068, 13064, 13061, 13059,
12974, 12916, 12864, 12165, 11778, 11666]
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Fig. 1. 1(a) An example of a DEV. 1(b) Visualization of a DEV from 1.A
representing the gene expression of one ncRNA.

C. Theoretical Foundation for SURFR Algorithm

Biologically, ndRNAs (miRs, sdiRNAs, tRFs) are small (18-
35nt) yet fully functional RNAs that are derived from larger
sncRNAs. Therefore, in our theory, we hypothesized that “being
derived into ndRNAs” is one of the characteristics/behaviors
possessed by all the ncRNAs thus generalizing the problem
statement. Moreover, we aimed to investigate if it is possible to
provide a mathematical basis to understand the phenomenon of
ncRNAs being processed into ndRNAs? In order to answer that
question, it is important to discuss the relationship between
ncRNA fragmentation and DEVs in a detailed manner.

Our main idea behind the DEV concept is to capture the
entire ‘activity’ of a given ncRNA into a single construct (i.e.,
unit/function) representing the current snapshot of its expression
within a sample/NGS file. However, instead of considering
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expression of a ncRNA as mere “read count” or “reads per
million count”, we use higher dimensional vectors to
reformulate the current mathematical understanding of the
concept of ncRNA expression.

To elaborate, all the cellular-level activities such as
transcription, translation, signaling, etc., happen at real-time
speeds. Moreover, some of the transcriptomic activities occur in
a continuous/regular basis, while some others occur as a
response to some external stimuli. That said, it is reasonable to
think that a NGS file is a snapshot of the current genetic
activities within a tissue/sample within which the expressed
ncRNAs are being processed or already processed. Although we
do not know the exact rates at which different ncRNAs are
processed, it is reasonable to think that the expression/presence
of ncRNAs 1is directly associated to their processing
phenomenon. Therefore, we gathered the information from all
the genetic sequences associated to each ncRNA together into a
1d matrix (DEV) to understand the physical process of ncRNA
fragmentation. Such an understanding comes from the notion of
complex Hilbert spaces representing the current state of a
physical phenomenon. As predicted, we were successfully able
to view the ncRNA fragmentation using DEVs which is further
explained in the next section.

D. Qualitative validation of our Algorithm: proof for the gene
expression curves

As of now, we explained a new way of quantifying the term
“expression” as a ld matrix as opposed to the common
interpretation, i.e., read count or reads per million count or
millions of individual strings. That said, in this section, we will
reveal some exciting observations within DEVs which we used
to layout a mathematical basis for ndRNAs. By comparing
DEVs of the same ncRNAs from hundreds of files, we found
that one of the direct applications of DEVs is to visualize
ndRNAs being processed from ncRNAs. An example of the
evidence showing DEVs for a known pre-miRNA (hsa-miR-
27a) calculated 17 different RNA-Seq samples is shown in
Figure 2 below with the miRNA is being derived/processed
highlighted using red start and end lines. Excitingly, miRBase
provides experimental validation to confirm that hsa-miR-27a is
indeed processed into two miRNA fragments, as shown in
Figure 3, one of which is located exactly at the locations as
shown in our DEVs Figure 2. Similar phenomenon has also been
observed in many sncRNAs instead of just miRNAs. Such
example showing a tRF is shown in Figure 4.

Fig. 2. DEVs and corresponding SURFR-identified miRs originating from
known pre-miRNA (hsa-miR-27a) from 17 different samples showing the
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mature miRNA fragment being derived from the same positions as
validated by miRBase shown in Fig 3.

tem-loop sequence hsa-mir-2/a
Pt MIDO0008S (change log)

TR OBl hsa-mir-27
L HGNC:MIR27A

DEST TG L Homo sapiens miR-27a stem-loop

(IR EDTE MIPFO000036; mir-27

Literature

search 380 open access papers mention hsa-mir-27a

(2263 sentences)

Stem-loop
5' cug gg gc gag
LTI T
3! gac ct cg culigasucs Ba cacuy
c c ¢ gu -

3554414 reads, 8.59e+03 reads per million, 159 experiments

(o1, 1.1, I-W Annotation confidence: high

Feedback: Do you believe this miRNA is real?

cuusgc cu gugagea
LI 1

Deep
sequencing

| Yes (+47) | No (-7) | Leave comment

Fig. 3. Experimental evidence from miRBase for hsa-miR-27a.

Fig. 4. DEVs of same tRNAs from eight different samples showing a tRF
being derived.

To further evaluate that the validity of DEVs in terms of
observing the differences in ncRNAs being processed, we
performed our analysis on more RNA-Seq samples expecting to
find such patterns across 1) the same ncRNAs in different cell
types/conditions, 2) same ncRNAs in same cell type/condition,
since ndRNA formation depends upon various factors as
previously mentioned. Therefore, we chose some publicly
available datasets from the NCBI’s SRA database [38] to
perform our tests. Figure 5 below shows the striking similarity
between the DEVs for a misc RNA in mcf-7 cells belonging to
a study with Accession identifier: DRX048619, collected from
5 different samples over a period of 12 weeks. We can clearly
notice that, even though the overall expression levels are varying
across the samples and across multiple weeks, the gene
expression patterns look very similar to each other—which was
also apparent for many other ncRNAs from the same analysis.
Next, in Figure 6, DEVs for the same snoRNA, SNORD96A,
from both the same and different cell types are compared to each
other where, SRR4217151 and SRR4217150 correspond to
adenocarcinoma, and our DEVs clearly show that SNORD96A
does not undergo any processing and is expressed as a full length
snoRNA. The other four DEVs in Figure 6 correspond to
prostate cancers where, SRR3400536 and SRR3400539
correspond to the same type, and SRR11061161 and
SRR10186659 are from different prostate cancers. Overall,
apparent differences in SNORD96A processing and ncRNA
expression patterns are clearly depicted in the DEV array
(Figure 6)—thus providing the basis for our method.
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Fig. 5. Comparison of DEVs for 60 samples of same ncRNA across same cell
type and condition.

.................................

Fig. 6. DEVs for the same ncRNA across different cell types and conditions.

IV. SURFR PLATFORM

SURFR is an interactive web application platform that we
developed using the SURFR algorithm specifically to help
experts perform automated and visual ncRNA fragmentation
analysis to learn and explore new ndRNA functions. Most
importantly, through our work we want to provide a
standardized ndRNA mining procedure. In this section, the
features of our web application along with some instructions on
how to use these resources are provided.

A. Features of our Application

Our application is a combination of two portals SURFR, and
SURFR-ULTRA designed explicitly to mine novel and
annotated ndRNAs. Both are currently available online at
salts.soc.southalabama.edu/surfr. Importantly, these resources
have been carefully engineered to be capable of handling many
of the issues with NGS data analysis including size, structure,
format. Notable features are as follows:

Flexible Data Transfer: Our tool provides users with
multiple options to transfer data. A total of 10 files can be
transferred per each job to be analyzed simultaneously. Users
have an option to upload their own files in the raw FASTA/
FASTQ format, or they also have an option to analyze any of the
publicly-available files in the NCBI’s SRA database by simply
entering the SRA file identifier. If needed, users can also mix-
and-match between the two options.

Multiple Organisms: As previously noted, we extended our
method to identify ndRNAs from a total of 440 organisms
including eukaryotes, plants, fungi, protist, and bacteria
databases which are readily available in NCBI.

Interactive Results: Since the concept of ndRNAs is
relatively new, SURFR is designed for users to explore and
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interact with the results. Several filters can be applied to the
results to view ndRNAs of interest. Most importantly,
interactive visualizations are also included for each ndRNA to
reflect gene expression patterns at a single nt level. Figure 7
provides an overview of our dashboard, and Figure 6 provides
an example of the visual differential expression analysis portal
of our application.

H. Derived RNA Profile I

Fig. 7. SURFR dashboard. (A) drop down menu for selecting individual RNA-
seq files. (B) A summary of the dataset and time taken. (C) the “Create ncR
Profile” button which automatically populates the derived RNA Profile section
at the bottom of the page. (D) details about each fragment identified in the
individual, selected small RNA-seq dataset. (E) download an excel with all the
ndRNAs and associated information (F) The “Differential Expression Vector
(DEV)” visualized ndRNAs within the ncRNAs with a blue highlighted area.
The x-axis represents the position in the ncRNA selected (e.g. miR-29a) and
the y-axis depicts the expression levels of the ncRNA at each position. (G) The
full length host ncRNA (miR-29a) highlighting the SURFR-called ndRNA in
yellow. (H) Portal to compare nRNA expressions across samples. (I) The
“OmniSearch for miRNAs” window lists the top 50 Omnisearch entries
(reported targets and PubMed publications) for an individual microRNA
selected in the “Derived RNA Profile” window (H). (J) The “Full Length
ncRNA Expression Analyses” button in the upper center of the results page
redirects the user to SURF-ULTRA platform designed for full-length sncRNA
analysis and visual differential expression analysis.

SURFR-ULTRA and visual differential expression analysis:

SURFR-ULTRA is an extended version of our SURFR
platform described above. The main goal of SURFR is to
provide users with a list of all the ndRNAs obtained after
filtering all the DEVs. However, in SURFR, only the ndRNAs
with high-confidence levels are provided to the users to avoid
any false-positives. But, SURFR-ULTRA allows the users to
further explore and compare the full-length ncRNAs including
the ncRNAs that are being processed into ndRNAs. An example
analysis of SURFR-ULTRA is shown in Figure 6, where, the
DEVs of the ncRNAs from multiple files are compared to each
other. Such a platform can provide a means to explore the
differences between ndRNA processing and how they are
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affected by different changes/conditions within samples.
SURFR-ULTRA is made available to the users using a link on
the SURFR platform as shown in Fig 7 (J).

Restorable and Comparable Sessions:

One of the major advantages of our platform compared to
that of the others is our concept of restorable and comparable
data analysis sessions where each session is protected using
state-of-the-art cryptographic algorithms. This feature helps the
users to utilize a SURFR-generated session ID/key to retrieve
their previously completed data analysis sessions. This feature
also enables users to compare files from different sessions
simply by entering multiple session IDs/keys in our data
retrieval portal, thus aiding the domain experts share their
findings in a simple manner. Files from a total of three different
sessions can be compared against each other, allowing the users
to compare up to 30 files together.

V. CONCLUSION

This paper presented a novel, generalizable computational
algorithm, SURFR, to identify and visualize miRNA-like RNAs
in a highly effective and efficient manner. SURFR was designed
to automatically extract ndRNAs followed by an intuitive
visualization of the processing of these ndRNAs. SURFR is
based on (1) a new computational theory that we introduced,
where gene expression is considered a multi-dimensional
construct and further interpreted as a signal using our data
structure DEV; (2) an original pair-wise sequence alignment
strategy, MoVaK alignment; and (3) a concept known as the
DEVs. The current version of SURFR is able to handle all
ncRNAs from about 450 organisms, including animals, plants,
fungus, protist, and bacterial species, which are annotated and
readily available in NCBI. In addition, a publicly available,
interactive NGS data analytics platform has been built for
domain experts to conduct RNA-Seq analyses for their ndRNA
studies. Not only are users allowed to upload their own datasets,
but they can also simply retrieve any publicly available SRA file
to be automatically analyzed. Using our visual differential
expression analysis, users can now detect single nucleotide level
expression changes within ncRNAs in individual files and
compare up to 30 files simultaneously allowing domain experts
to easily identify complex patterns associated with the ndRNA
expressions of interest.

Qualitative evidence was provided to evaluate our
theoretical contribution by showing and discussing the proof for
different gene expression curves. Altogether a total of three
DEV pattern comparisons were used to illustrate ndRNA
processing visualization: (1) same RNA same cell, (2) same
RNA different cells, and (3) same RNA same cell but with
different conditions. Our results show that changes in ncRNA
processing are indeed reflected in our DEVs. Most importantly,
by comparing DEVs from hundreds of files together, we were
able to observe the wavelet-like behavior of the ndRNAs.

One potential direction of our future work is to further
improve our algorithm’s effectiveness by integrating deep-
learning techniques.
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