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Abstract— It is well known that microRNAs (miRNAs or miRs) 

are small (~18-25 nt) yet highly potent non-coding RNA-derived 

RNAs (ndRNAs), originating from pre-miRNA fragmentation, 

that have been shown to alter the post-transcriptional 

functionality of many messenger RNAs (mRNAs). Biologically, the 

identification and study of miRNAs is very critical due to their 

increasing significance as biomarkers for many types of cancers 

and other genetic diseases. While empirical evidence supporting 

the existence of several novel ndRNAs excised from other longer 

non coding RNAs (ncRNAs) is growing, recent evidence suggests 

the full extent of their prevalence is likely underappreciated. 

Although some computational methods have been designed to help 

domain experts identify and understand miRNAs by analyzing 

Next Generation Sequencing (NGS) datasets, there are some 

crucial challenges, such as efficiency, effectiveness, and 

generalizability, in the state-of-the-art in-silico methods. To 

address such problems, our group proposed a new algorithm to 

mine ndRNAs by applying wavelet-based signal processing 

techniques as opposed to the current string-based NGS sequence 

alignment/analysis. However, due to novelty of the approach, our 

initial version of the algorithm was focused specifically on mining 

miRNAs, snoRNA-derived RNAs (sdRNAs) and transfer RNA 

(tRNA) fragments (tRFs) because of their importance in the 

literature plus the availability of experimentally validated 

databases to confirm our findings. Despite the computational 

issues, we still lack a basic understanding of the existence and the 

range of ndRNA functionalities from a) ndRNAs other than miRs, 

sdRNAs & tRFs in humans, and b) all ndRNAs in millions of 

organisms other than humans. Hence, there is an urgent 

requirement to automate the extraction and experimentation of 

ndRNAs, especially considering the rate at which NGS data is 

being produced. Therefore, in the current article, we extended our 

algorithm to be applicable to ~500 organisms—including 

eukaryotes, plants, bacteria, fungi, and protists—along with all 

their ncRNAs available in the current NCBI annotation. We also 

constructed a real-time user-friendly platform, SURFR, available 

at salts.soc.southalabama.edu/surfr, to aid domain experts and the 

aspiring biomedical scientists to perform RNA-Seq experiments to 

study ndRNAs. Not only our platform is extremely efficient, but 

we are also capable of allowing the users to identify, analyze, 

visualize, and compare ndRNAs from up to 30 NGS files to 

perform rigorous experimentation. Moreover, access to NGS files 

from public databases like SRA, and ndRNAs from private 

databases like TCGA are made readily available to the users to 

further validate their novel findings. Finally, we provide 

theoretical validation to examine our platform’s effectiveness.  

Keywords— microRNAs, small ncRNAs, ncRNA-derived RNAs, 

Differential Expression Analysis, Gene Expression Visualization, 

Wavelet 

I. INTRODUCTION

Ribonucleic Acids (RNAs) can broadly be classified into 
two categories: coding, and non-coding RNAs (ncRNAs). The 
coding RNAs, also commonly known as messenger RNAs 
(mRNAs), carry and execute the information required for the 
formation of proteins—hence the name coding/protein-coding 
RNAs. On the other hand, the RNAs that do not encode the 
information for protein synthesis are known as ncRNAs. 
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However, although ncRNAs do not directly code for proteins, 
they do possess many functionalities within the cell [1]. As a 
matter of fact, ncRNAs are critical to every cellular function, 
and how their misexpressions contribute to a wide range of 
diseases is only now beginning to be appreciated [1-3]. That 
said, it’s now clear that >98% of eukaryotic RNAs are actually 
non-coding [4] making the study of ncRNAs even more critical. 
Notably, the functions of thousands of recently discovered 
ncRNAs remain largely unclear; what’s more, recent evidence 
suggests less than half of functional cellular ncRNAs have yet 
to be identified [4]. 

Non coding RNAs (ncRNAs) can be subdivided into two 
main groups: 1. small ncRNAs (sncRNAs) – shorter than 200 
nucleotides (nts) in length, and 2. long ncRNAs (lncRNAs) – 
longer than 200 nucleotides (nts). MicroRNAs (miRNAs) are a 
large class of sncRNAs that were discovered only ~2 decades 
ago [5]. Although overlooked for decades due to their size, 
miRNAs - only about 18-25 nts long, have turned out to be the 
best studied group of sncRNAs and are currently the focus of 
many studies involving billions of research dollars. MiRNAs 
associate with the RNA-induced silencing complex (RISC) to 
directly target mRNAs and regulate their expressions in very 
specific manners [6][7]. Each miRNA is capable of targeting 
multiple mRNAs, and each mRNA can be targeted by more than 
one miRNAs, i.e., a many-to-many relation exists between 
miRNA and mRNA interactions (although the majority of these 
remain unknown) [8]. What’s clear however, is that the 
expressions and functions of every unique miRNA is highly 
specific and contributes to a multitude of phenotypic and 
genotypic outcomes [9-12] (e.g.. cell proliferation, metabolism, 
drug resistance, tumorigenesis, apoptosis, etc. [4,7,13-15]). 
Importantly, the identification and mechanistic understanding of 
miRNAs and novel miRNA-like RNAs will undoubtedly lead to 
major advances in agriculture, green energy, and medicine in the 
near future making their characterization a hotly pursued area of 
research [16-18]. 

Importantly, small nucleolar RNAs (snoRNAs) and transfer 
RNAs (tRNAs)—two other widely studied types of ncRNAs—
have recently been found to be processed into fully-functional 
miRNA-like fragments—known as snoRNA-derived RNAs 
(sdRNAs) and tRNA-Fragments (tRFs) respectively [19-22]. 
Similar to miRNAs, sdRNAs and tRFs are also exceptionally 
small in size, i.e., only around 18-35nt, making them very hard 
to identify and study biologically in the laboratory. That said, 
despite only being discovered less than a decade ago, numerous 
studies have now reported specific contributions of sdRNAs and 
tRFs in a wide range of activities (e.g., RNA silencing, 
translation regulation, epigenetic regulation, cell invasion, 
malignant transformation, metastatic progression, etc.) [19-22]. 
Notably, specific roles for miRNAs in the onset and progression 
of malignancy is currently one of the hottest areas of oncological 
and pharmacological research. That said, sdRNAs and tRFs 
have recently been shown to function almost indistinguishably 
from miRNAs and to possess clear involvements in various 
cancers. As such, we believe that they will similarly soon 
become a research priority to many biomedical and 
pharmacological studies.  

Also of note, several studies have recently reported the 
existence of miRNA-like RNAs processed from other types of 

ncRNAs in addition to snoRNAs and tRNAs (e.g rRNAs, Y 
RNAs, vault RNAs, etc…) [23,24]. As such, the full repertoire 
of miRNA-like RNAs remains largely unclear in humans and 
almost entirely unexplored in most other organisms. That said, 
in a previous study [25], we coined the term, “ncRNA-derived 
RNAs (ndRNAs)” for any miRNA-like RNA processed from a 
longer ncRNA [26], and the identification of these ndRNAs 
constitutes the focus of the current study as we argue that, there 
is an urgent need to develop highly accurate and efficient new 
methods for the identification, exploration, and characterization 
of ndRNAs.   

The development and recent advancements in Next 
Generation Sequencing (NGS) technologies now allow us to 
investigate the genetic realm computationally [27]. Sequencing 
refers to the set of technologies that are used to extract data from 
DNA/RNA samples. Having potential applications within 
crucial domains such as agriculture, medicine, drug 
development, microbiology, DNA forensics, health, 
phylogenetics, etc., NGS technologies have been widely 
adopted by hundreds to thousands of laboratories across the 
globe, thus producing daunting amounts of data every year 
[27][28]. Notably, the prices to perform NGS have reduced 
dramatically as of late and are still going down. For instance, the 
Human Genome Project by the National Institutes of Health 
(NIH) during the 90s, took about 15 years to sequence the 
human genome, and cost over 2.5 billion dollars [29,30]. With 
the massively parallelized second-generation sequencing 
techniques, sequencing a whole genome only takes about a few 
hours to a day and is priced just over 1000$. That said, the raw 
data obtained from NGS cannot be interpreted by humans 
directly as each file is typically several Giga Bytes in size 
containing 10-100 million lines of DNA/RNA reads making 
NGS data analysis—and thereby ndRNA analysis—a critical 
computational challenge. Some of the preeminent issues 
associated with NGS analyses are efficiency and parallelization.  

Although, to date, several computational methods have been 
proposed to identify and analyze ndRNAs from NGS datasets 
[31-37], all previous methods carry serious limitations (e.g., 
human specific, only assessing limited subsets of ncRNAs, poor 
accuracy/efficiency, etc…). Therefore to address all the above 
mentioned problems, in our study [25], we developed a highly-
efficient, algorithm to comprehensively find, analyze, and 
visualize the full repertoire of ndRNAs (miRNAs, sdRNAs & 
tRFs) contained within a RNA-seq NGS dataset. Strikingly, we 
find that >95% of ndRNA sequences identified by our algorithm 
that correspond to previously annotated, experimentally 
validated miRNAs agree within 1-2 nt [25] confirming the 
accuracy and reproducibility of our method. That said, in [25] 
we only applied our method to human miRNA, sdRNA, and tRF 
discovery since the approach was novel and existing 
experimental evidence in the literature on these three ndRNAs 
allowed us to rigorously evaluate our findings. Therefore, in the 
work described herein, we have expanded our resource scope to 
allow the user to comprehensively screen NGS datasets for all 
miRNA-like RNAs excised from any known human sncRNAs 
to likewise identify miRNA-like RNAs in 439 other organisms. 

In the current article, we also discuss the development and 
usage of our new real-time, user-friendly web interface 
specifically designed for the aspiring biomedical experts to 

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on April 08,2022 at 19:35:17 UTC from IEEE Xplore.  Restrictions apply. 



2722

easily perform complex computational tasks that are significant 
with respect to ndRNA research such as NGS data transfer, 
processing, analysis, visualization, and comparison. Such a 
platform could be extremely helpful even for the experts to 
explore complex patterns within ndRNA expressions across 
multiple samples. What makes our platform unique is the usage 
of specialized, light-weight data structures which are explained 
further in the paper. 

In the next section, the current state of the related literature 
and the challenges associated are explained. Then in the later 
section, our algorithm, and the theory on which it is built-upon 
are described. Most importantly, in the current article, we 
provide qualitative evidence to evaluate our algorithm’s 
effectiveness and provide some empirical validation. The 
Materials and Methods section, elaborates on our techniques,  
tools, and data sources. In the remaining sections, our 
application and its features are discussed along with example 
analyses. Finally, we conclude by summarizing our 
contributions and discussing future research directions. 

II. BACKGROUND AND RELATED WORK 

NdRNAs are miRNA-like fragments specifically excised 
from sncRNAs. The first and foremost issue with effective 
ndRNA mining is that the concept of ndRNAs itself is relatively 
new in terms of both biology, and computer science. Therefore, 
there is a huge gap in the literature in terms of the theory behind 
computationally extracting such RNAs. Moreover, most of the 
already proposed methods use one of the existing SA methods—
such as BLAST or Bowtie — to obtain pre-aligned outputs to 
roughly estimate the presence of ndRNAs. The problem with 
almost all the existing SA algorithms is that they are expensive 
either in terms of time or memory or both. For example, Bowtie 
is one such method which maps all the NGS reads to a reference 
genome. However, even though Bowtie is moderately faster, it 
requires at least 2GB of memory just for the human database. 
Plus, to date, only a handful of organisms’ reference genomes 
are available to us. On the other hand, pair-wise local alignments 
such as BLAST require less memory but consume hours of 
processing time [25]. 

Furthermore, many of the existing ndRNA algorithms/tools 
[36][37] focus primarily on miRNAs and are not capable of fully 
defining ndRNA profiles. That said, the methods that are 
capable of characterizing novel ndRNAs [31-34] require fairly 
extensive computational expertise for utilization, and are 
dependent on pre-aligned file inputs such as BAM. For example, 
Flaimapper, one such gold-standard method that tries to predict 
miRNAs by parsing BAM formatted files, can only correctly 
identify 54% of experimentally validated miRNA end positions 
[34]. Anyway, such methods provided a means to strengthen our 
preliminary understanding of miRNAs, but they possess a large 
number of drawbacks. Hence, there is an urgent requirement for 
a direct computational approach to:  

a) Aid finding all unknown ndRNAs in any commonly 
studied organism, including ndRNAs excised from 
other types of ncRNAs. 

b) Quickly and accurately identify, and compare the 
gene expression levels of all the known ndRNAs in 

millions of NGS files i.e., both existing and the files 
yet to come. 

c) Provide a standard means of data analysis for the 
study of ndRNAs. 

Therefore, to address many of the aforementioned 
challenges, we proposed an algorithm to retrieve ndRNAs from 
RNA-Seq files without the necessity to use any intermediate 
tools. In the next section, we will briefly go through our strategy 
and explain how and why it works. 

III. MATERIALS AND METHODS 

The main objective of the current body of work is to provide 
a straight forward approach to study ndRNAs to support domain 
experts explore the complex relation between ncRNAs, 
ndRNAs, and cancers. This section will describe the materials 
and methods required in order to provide some of our critical 
observations to validate our approach. Our proposed method 
consists of two major steps, 1. Data collection and pre-
processing, 2. Sequence Alignment (MoVaK alignment) 
followed by ndRNA mining using wavelets (SURFR algorithm) 
[25]. Each of these steps along with theoretical and qualitative 
validation of our method are elaborated in the sub-sections 
below. 

A. Data Collection and Pre-Processing 

Our strategy of sequence alignment makes use of three data 
structures, namely, Aho-Corasick Automaton (ACA), Similarity 
Vector (SV), and Differential Expression Vector (DEV). ACA 
and SVs are necessary to perform the alignment and are required 
to be pre-processed before-hand. Therefore, in this sub-section, 
we will briefly discuss pre-processing approaches and the 
required data sources. 

Data Collection: An up-to-date list of all the known ncRNAs 
of 440 species and the associated sequences are collected from 
reliable sources such as NCBI [40]. However, NCBI only 
contains certain types of ncRNAs and do not contain eukaryotic 
tRNAs. Therefore another database of tRNAs, GtRNAdb [41], 
has been utilized for obtaining the tRNA sequences. 

ACA construction: Aho-Corasick (AC) algorithm is an 
efficient multi-keyword search strategy that uses the data 
structure, AC automaton (ACA) [42]. In our method, we make 
use of AC algorithm to perform a quick initial filtering of all the 
reads from a file. 

SV generation: SV is a data structure that was introduced in 
a previous study [25] to store and process DNA/RNA sequences 
efficiently and effectively. SVs represent the information about 
each character of a genetic sequence stored in the form of binary 
arrays. Hence, four mandatory SVs for each sequence are 
constructed, i.e., for each of A, C, T, and G. 

B. MoVaK Alignment and Wavelet-based ndRNA mining 

The initial step in almost every NGS data analysis is SA, 
i.e., to match the NGS file’s reads to a genome or a known 
database. Genome alignment methods are used to map all the 
reads in the file to a reference genome, and pair-wise alignment 
methods are used to align the reads to known databases. 
Genome alignment techniques consume high memory because 
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the entire genome has to be loaded into memory, while pair-
wise alignments consume relatively higher time to thoroughly 
filter all the reads. However, all such traditional SA algorithms 
strictly consider the problem at hand as a permutation and 
combination-based string alignment problem and emphasize 
too much on potential mutations at individual read-level—
thereby consuming heavy amounts of resources. Therefore, 
through our research, we found the necessity to revisit the 
problem of sequence alignment for NGS data analysis 
specifically to address the issue of ndRNAs. Therefore, in [25] 
a new way of SA that produces a data structure called 
Differential Expression Vector (DEV), as shown in figure 1 
below, to identify ncRNA fragmentation. Once the DEVs for 
all the expressed ncRNAs in a given dataset are calculated using 
MoVaK alignment, our technique is to employ a wavelet-based 
approach for identifying differentially fragmented regions with 
lengths around 18-35 nt within the DEVs to automatically mine 
ndRNAs [25]. A major part of the current body of work 
includes showing how the concept of DEVs can be leveraged 
to perform automated NGS analysis and to construct robust 
real-time platforms with greater biological significance. 

 

 
Fig. 1. 1(a) An example of a DEV. 1(b) Visualization of a DEV from 1.A 
representing the gene expression of one ncRNA. 

C. Theoretical Foundation for SURFR Algorithm 

Biologically, ndRNAs (miRs, sdRNAs, tRFs) are small (18-
35nt) yet fully functional RNAs that are derived from larger 
sncRNAs. Therefore, in our theory, we hypothesized that “being 
derived into ndRNAs” is one of the characteristics/behaviors 
possessed by all the ncRNAs thus generalizing the problem 
statement. Moreover, we aimed to investigate if it is possible to 
provide a mathematical basis to understand the phenomenon of 
ncRNAs being processed into ndRNAs? In order to answer that 
question, it is important to discuss the relationship between 
ncRNA fragmentation and DEVs in a detailed manner. 

Our main idea behind the DEV concept is to capture the 
entire ‘activity’ of a given ncRNA into a single construct (i.e., 
unit/function) representing the current snapshot of its expression 
within a sample/NGS file. However, instead of considering 

expression of a ncRNA as mere “read count” or “reads per 
million count”, we use higher dimensional vectors to 
reformulate the current mathematical understanding of the 
concept of ncRNA expression. 

To elaborate, all the cellular-level activities such as 
transcription, translation, signaling, etc., happen at real-time 
speeds. Moreover, some of the transcriptomic activities occur in 
a continuous/regular basis, while some others occur as a 
response to some external stimuli. That said, it is reasonable to 
think that a NGS file is a snapshot of the current genetic 
activities within a tissue/sample within which the expressed 
ncRNAs are being processed or already processed. Although we 
do not know the exact rates at which different ncRNAs are 
processed, it is reasonable to think that the expression/presence 
of ncRNAs is directly associated to their processing 
phenomenon. Therefore, we gathered the information from all 
the genetic sequences associated to each ncRNA together into a 
1d matrix (DEV) to understand the physical process of ncRNA 
fragmentation. Such an understanding comes from the notion of  
complex Hilbert spaces representing the current state of a 
physical phenomenon. As predicted, we were successfully able 
to view the ncRNA fragmentation using DEVs which is further 
explained in the next section. 

D. Qualitative validation of our Algorithm: proof for the gene 

expression curves 

As of now, we explained a new way of quantifying the term 
“expression” as a 1d matrix as opposed to the common 
interpretation, i.e., read count or reads per million count or 
millions of individual strings. That said, in this section, we will 
reveal some exciting observations within DEVs which we used 
to layout a mathematical basis for ndRNAs. By comparing 
DEVs of the same ncRNAs from hundreds of files, we found 
that one of the direct applications of DEVs is to visualize 
ndRNAs being processed from ncRNAs. An example of the 
evidence showing DEVs for a known pre-miRNA (hsa-miR-
27a) calculated 17 different RNA-Seq samples is shown in 
Figure 2 below with the miRNA is being derived/processed 
highlighted using red start and end lines. Excitingly, miRBase 
provides experimental validation to confirm that hsa-miR-27a is 
indeed processed into two miRNA fragments, as shown in 
Figure 3, one of which is located exactly at the locations as 
shown in our DEVs Figure 2. Similar phenomenon has also been 
observed in many sncRNAs instead of just miRNAs. Such 
example showing a tRF is shown in Figure 4. 

 
Fig. 2. DEVs and corresponding SURFR-identified miRs originating from 

known pre-miRNA (hsa-miR-27a) from 17 different samples showing the 
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mature miRNA fragment being derived from the same positions as 
validated by miRBase shown in Fig 3. 

 
Fig. 3. Experimental evidence from miRBase for hsa-miR-27a. 

 
Fig. 4. DEVs of same tRNAs from eight different samples showing a tRF 
being derived. 

To further evaluate that the validity of DEVs in terms of 
observing the differences in ncRNAs being processed, we 
performed our analysis on more RNA-Seq samples expecting to 
find such patterns across 1) the same ncRNAs in different cell 
types/conditions, 2) same ncRNAs in same cell type/condition, 
since ndRNA formation depends upon various factors as 
previously mentioned. Therefore, we chose some publicly 
available datasets from the NCBI’s SRA database [38] to 
perform our tests. Figure 5 below shows the striking similarity 
between the DEVs for a misc_RNA in mcf-7 cells belonging to 
a study with Accession identifier: DRX048619, collected from 
5 different samples over a period of 12 weeks. We can clearly 
notice that, even though the overall expression levels are varying 
across the samples and across multiple weeks, the gene 
expression patterns look very similar to each other—which was 
also apparent for many other ncRNAs from the same analysis. 
Next, in Figure 6, DEVs for the same snoRNA, SNORD96A, 
from both the same and different cell types are compared to each 
other where, SRR4217151 and SRR4217150  correspond to 
adenocarcinoma, and our DEVs clearly show that SNORD96A 
does not undergo any processing and is expressed as a full length 
snoRNA. The other four DEVs in Figure 6 correspond to 
prostate cancers where, SRR3400536 and SRR3400539 
correspond to the same type, and SRR11061161 and 
SRR10186659 are from different prostate cancers. Overall, 
apparent differences in SNORD96A processing and ncRNA 
expression patterns are clearly depicted in the DEV array 
(Figure 6)—thus providing the basis for our method. 

 
Fig. 5. Comparison of DEVs for 60 samples of same ncRNA across same cell 
type and condition. 

 
Fig. 6. DEVs for the same ncRNA across different cell types and conditions. 

IV. SURFR PLATFORM 

SURFR is an interactive web application platform that we 
developed using the SURFR algorithm specifically to help 
experts perform automated and visual ncRNA fragmentation 
analysis to learn and explore new ndRNA functions. Most 
importantly, through our work we want to provide a 
standardized ndRNA mining procedure. In this section, the 
features of our web application along with some instructions on 
how to use these resources are provided. 

A. Features of our Application 

Our application is a combination of two portals SURFR, and 
SURFR-ULTRA designed explicitly to mine novel and 
annotated ndRNAs. Both are currently available online at 
salts.soc.southalabama.edu/surfr. Importantly, these resources 
have been carefully engineered to be capable of handling many 
of the issues with NGS data analysis including size, structure, 
format. Notable features are as follows: 

Flexible Data Transfer: Our tool provides users with 
multiple options to transfer data. A total of 10 files can be 
transferred per each job to be analyzed simultaneously. Users 
have an option to upload their own files in the raw FASTA/ 
FASTQ format, or they also have an option to analyze any of the 
publicly-available files in the NCBI’s SRA database by simply 
entering the SRA file identifier. If needed, users can also mix-
and-match between the two options. 

Multiple Organisms: As previously noted, we extended our 
method to identify ndRNAs from a total of 440 organisms 
including eukaryotes, plants, fungi, protist, and bacteria 
databases which are readily available in NCBI. 

Interactive Results: Since the concept of ndRNAs is 
relatively new, SURFR is designed for users to explore and 
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interact with the results. Several filters can be applied to the 
results to view ndRNAs of interest. Most importantly, 
interactive visualizations are also included for each ndRNA to 
reflect gene expression patterns at a single nt level. Figure 7 
provides an overview of our dashboard, and Figure 6 provides 
an example of the visual differential expression analysis portal 
of our application. 

 
Fig. 7. SURFR dashboard. (A) drop down menu for selecting individual RNA-
seq files. (B) A summary of the dataset and time taken. (C)  the “Create ncR 
Profile” button which automatically populates the derived RNA Profile section 
at the bottom of the page. (D) details about each fragment identified in the 
individual, selected small RNA-seq dataset. (E) download an excel with all the 
ndRNAs and associated information (F) The “Differential Expression Vector 
(DEV)” visualized ndRNAs within the ncRNAs with a blue highlighted area. 
The x-axis represents the position in the ncRNA selected (e.g. miR-29a) and 
the y-axis depicts the expression levels of the ncRNA at each position. (G) The 
full length host ncRNA (miR-29a) highlighting the SURFR-called ndRNA in 
yellow. (H) Portal to compare nRNA expressions across samples. (I) The 
“OmniSearch for miRNAs” window lists the top 50 Omnisearch entries 
(reported targets and PubMed publications) for an individual microRNA 
selected in the “Derived RNA Profile” window (H). (J) The “Full Length 
ncRNA Expression Analyses” button in the upper center of the results page 
redirects the user to SURF-ULTRA platform designed for full-length sncRNA 
analysis and visual differential expression analysis. 

SURFR-ULTRA and visual differential expression analysis: 

SURFR-ULTRA is an extended version of our SURFR 
platform described above. The main goal of SURFR is to 
provide users with a list of all the ndRNAs obtained after 
filtering all the DEVs. However, in SURFR, only the ndRNAs 
with high-confidence levels are provided to the users to avoid 
any false-positives. But, SURFR-ULTRA allows the users to 
further explore and compare the full-length ncRNAs including 
the ncRNAs that are being processed into ndRNAs. An example 
analysis of SURFR-ULTRA is shown in Figure 6, where, the 
DEVs of the ncRNAs from multiple files are compared to each 
other. Such a platform can provide a means to explore the 
differences between ndRNA processing and how they are 

affected by different changes/conditions within samples. 
SURFR-ULTRA is made available to the users using a link on 
the SURFR platform as shown in Fig 7 (J). 

Restorable and Comparable Sessions: 

One of the major advantages of our platform compared to 
that of the others is our concept of restorable and comparable 
data analysis sessions where each session is protected using 
state-of-the-art cryptographic algorithms. This feature helps the 
users to utilize a SURFR-generated session ID/key to retrieve 
their previously completed data analysis sessions. This feature 
also enables users to compare files from different sessions 
simply by entering multiple session IDs/keys in our data 
retrieval portal, thus aiding the domain experts share their 
findings in a simple manner. Files from a total of three different 
sessions can be compared against each other, allowing the users 
to compare up to 30 files together. 

V. CONCLUSION 

This paper presented a novel, generalizable computational 
algorithm, SURFR, to identify and visualize miRNA-like RNAs 
in a highly effective and efficient manner. SURFR was designed 
to automatically extract ndRNAs followed by an intuitive 
visualization of the processing of these ndRNAs. SURFR is 
based on (1) a new computational theory that we introduced, 
where gene expression is considered a multi-dimensional 
construct and further interpreted as a signal using our data 
structure DEV; (2) an original pair-wise sequence alignment 
strategy, MoVaK alignment; and (3) a concept known as the 
DEVs. The current version of SURFR is able to handle all 
ncRNAs from about 450 organisms, including animals, plants, 
fungus, protist, and bacterial species, which are annotated and 
readily available in NCBI. In addition, a publicly available, 
interactive NGS data analytics platform has been built for 
domain experts to conduct RNA-Seq analyses for their ndRNA 
studies. Not only are users allowed to upload their own datasets, 
but they can also simply retrieve any publicly available SRA file 
to be automatically analyzed. Using our visual differential 
expression analysis, users can now detect single nucleotide level 
expression changes within ncRNAs in individual files and 
compare up to 30 files simultaneously allowing domain experts 
to easily identify complex patterns associated with the ndRNA 
expressions of interest. 

Qualitative evidence was provided to evaluate our 
theoretical contribution by showing and discussing the proof for 
different gene expression curves. Altogether a total of three 
DEV pattern comparisons were used to illustrate ndRNA 
processing visualization: (1) same RNA same cell, (2) same 
RNA different cells, and (3) same RNA same cell but with 
different conditions. Our results show that changes in ncRNA 
processing are indeed reflected in our DEVs. Most importantly, 
by comparing DEVs from hundreds of files together, we were 
able to observe the wavelet-like behavior of the ndRNAs.  

 One potential direction of our future work is  to further 
improve our algorithm’s effectiveness by integrating deep-
learning techniques. 
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