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Abstract Cyclical ground deformation, associated seismicity, and elevated degassing are important 
precursors to explosive eruptions at silicic volcanoes. Regular intervals for elevated activity (6-30 hr) have 
been observed at volcanoes such as Mount Pinatubo in the Philippines and Soufriere Hills in Montserrat. 
Here, we explore a hypothesis originally proposed by Michaut et al. (2013, https:/ /doi.org/10.1038/ 
ngeol928) where porositywaves containing magmatic gas are responsible for the observed periodic 
behavior. We use two-phase theory to construct a model where volatile-rich, bubbly, viscous magma rises 
and decompresses. We conduct numerical experiments where magma gas waves with various frequencies 
are imposed at the baseof the model volcanic conduit. We numerically verify the results of Michaut 
et al. (2013, https://doi.org/10.1038/ngeo1928) and then expand on the model byallowing magma viscosity 
to vary as a function of dissolved water and crystal content. Numerical experiments show that gas 
exsolution tends to damp the growth of porositywaves during decompression. The instability and resultant 
growth or decayof gaswave amplitude depends strongly on the gas densitygradient and the ratio of the 
characteristicmagma extraction rate to the characteristicmagma degassing rate (Damk:ohler number, Da). 
We find thatslow degassing can lead to a previously unrecognized filteringeffect, where low-frequency gas 
waves maygrow in amplitude. These waves mayset the periodicity of the eruptive precursors, such as 
those observed at Soufriere Hills Volcano. We demonstrate that degassed, crystal-rich magma is susceptible 
to the growth of gas waves which may result in the periodic behavior. 

 

1. Introduction 
Periodic cycles of ground deformation, seismicity, and rapid dome-building eruptions have been observed 
at silicic volcanoes and are considered to be precursors of explosive eruptions. For example, both Mount 
Pinatubo in the Philippines and Soufriere Hills in Montserrat experienced periodic cycles of ground defor- 
mation and seismicity in 1991 and 1996-1997, respectively, with periods of about 10 hr at both volcanoes 
(Denlinger & Hoblitt, 1999; Lensky et al., 2008; Mori et al., 1996; Voight et al., 1999). Following the major 
eruption of 1991, Pinatubo experienced an increase in low-frequency seismicity, developing cyclic behav- 
ior with periods of 7-10hr. AtSoufriere Hills Volcano, the periodic activity was observed prior to episodes 
of rapid dome-building and major eruptive events. For examples of low-frequency seismicity observed at 
Pinatubo and Soufriere Hills Volcano, see Figure 1. 

Several mechanisms for controlling thisphenomenon have been proposed, including the stick-slip behavior 
of a crystalline plugatop the magma conduit (Anderson et al., 2010; Girina, 2013; Lensky et al., 2008; Mori 
et al., 1996; Voight et al., 1999). Periodic behavior has also been observed at other silicic volcanoes such as 
Volcan Santiaguito in Guatemala, where it is interpreted that magma flow, gas exsolution, and segregation 
pressurize a shallow region of the volcanic system beneath the vent(Johnson et al., 2014) or Sakurajima in 
Japan where the crystal-rich plug hypothesis remains the preferred explanation (Yokoo et al., 2013). As an 
alternative explanation for the cyclical occurrence of low-frequency seismicity, Michaut et al. (2013) pro- 
posed that porosity waves rising in the magma column are responsible for periodic behavior. The origin 
of porosity waves in the magma column could be the result of bubble accumulation during convection or 
heterogeneity in the magma chamber (Murphy et al., 1998; Parmigiani et al., 2016). Magma gas waves are 
effectively subjected to a band-pass filter during their ascent because of competition between gas expan- 
sion and compaction of the magma. Specifically, short wavelength gas waves are compressed by magma 
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Figure 1. Cycles of high-intensityseismicity observed at two different silicic volcanoes. Real-time seismic amplitude 
measurements (RSAM) data are shown for Mount Pinatubo in the Philippines prior to the 1991 eruption and Soufriere 
Hills in Montserrat in 1997. At Pinatubo, elevated seismic activity was observed with a periodicity of7-10hr. At 
Soufriere Hills, periodic low-frequency seismicity was observed with periods of +6 hr. Data wereextracted from Mori 
et al. (1996)and Voight et al. (1999). 

 
 

compaction. Conversely, moderately longwavelength wavesgrow as gasexpansion overcomes magma com- 
paction. Very long waves do not grow as fast becausegas escapes through overlying permeable magma more 
readily as it expands. Ultimately, the moderately longgas waves have the fastest growing amplitudes and are 
selected-or pass through the filter-eventually inducing the cyclical ground deformation that is observed. 

Volatiles dissolved in magma, primarily dominated by water, play a crucial role in volcanic eruptions 
(Aiuppa et al., 2017; Huppert & Woods, 2002; Owen et al., 2013). Depressurization of volatile saturated 
melt results in the exsolution of volatile components, which increases the buoyancy of the magma column, 
thereby enhancing magma ascent (Eichelberger, 1995; Gardner, 2009; Gardner et al., 1995; Gonnermann 
& Manga, 2007; Huppert & Woods, 2002; Masso! & Jaupart, 1999; Owen et al., 2013; Pistone et al., 2015). 
Additionally, increases in magma viscosity associated with degassing inhibit bubble coalescence and poten- 
tially limit volcanic degassing (Melnik & Sparks, 1999; Ruprecht & Bachmann, 2010; Sable et al., 2006), 
which can be further enhanced by degassing-induced crystallization. On the other hand, increasing gas 
exsolution rates or decreasing velocity of magma ascent may allow significant bubble coalescence and lead 
to permeable magma and more efficient volcanic degassing. Volcanic conduit models commonly assume 
that magma ascent is sufficiently slow such that the diffusion of volatile components into gas bubbles is 
not rate limiting and the gas and magma are in equilibrium (e.g., Melnik & Sparks, 1999). However, with 
magma ascent and volatile content varying, equilibrium may not always be maintained between gas bub- 
bles and magma (Lyakhovsky et al., 1996; Mangan & Sisson, 2000; Navan et al., 1998). Recent, improved 
steady-state models for volcanic conduitsconsider the effects of magma degassing(Aravena & Vitturi, 2018; 
Aravena et al., 2017) but do not directly address effects that may arise from time-dependent variations in 
volatile exsolution. Although previous studies examine the effects of developing permeability in depres- 
surized volatile-rich magma (Klug & Cashman, 1996; Saar & Manga, 1999) and changes in eruption style 
associated with changes in vesicularity and volatile content (Burton et al., 2007; Eichelberger et al., 1986; 
Woods & Koyaguchi, 1994; Wylie et al., 1999), it remains unclear how the rate of volatile exsolution and 
variations in local viscosity would affect the growth of porosity waves proposed by Michaut et al. (2013). 

In this manuscript, we construct a theoretical model with the goal of elucidating how volatile release dur- 
ing magma ascent may play a role in exciting or dampening long period oscillations in volcanic processes 
(e.g., ground deformation). This conceptual model extends the theory of Michaut et al. (2013) to include 
disequilibrium degassing and its effect on volatile transport and local variations in magma viscosity. We 
use numerical models to examine how a range of volatile exsolution rates affect the growth of magma 
gas waves over a large range of wavelengths. We compare new numerical results to the results of Michaut 
et al. (2013) and identify an additional mechanism for gas wave selection that arises due to gas exsolution 
during magmatic ascent. 
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2. Theory 
2.1. The Conceptual Model 

We begin with a conceptual model wherein porosity waves containing compressible gas rise in a magma 
column. Upon arrival at the surface, porosity waves induce pore overpressurization resulting in episodic 
disturbances. We extend the theory of Michaut et al. (2013) to include dissolved water in melt exsolving to 
the gas phase and the associated effects on vesicularity, buoyancy, and melt viscosity. The magma column is 
assumed to be isothermal, due to the large heat capacity of magma (Bercovici & Michaut, 2010) but may be 
out of chemical equilibrium; for example, during depressurization, the magma may become supersaturated 
in water,which is exsolved intothegas phase. As water is released by the melt, the magma viscosity increases 
considerably (Giordano et al., 2008; Gonnermann & Manga, 2007; Hess & Dingwell, 1996). However, we do 
not consider melt density variations caused by changes in volatile content, which are on the order of a few 
percent (see and references therein Gonnermann & Manga, 2007). 

Crystals are present throughout the eruption and contribute to rheological stiffening of the magma,and here 
are considered as passive cargo in the melt. If the crystal cargo does not reach a critical threshold, the form 
of the equations in theoretical model is not greatly affected. Thus, we neglect crystallization during magma 
ascent.Small amounts ofcrystallization («10%byvolume) mayoccur for continuous depressurizationover 
relevant time scales (3-4MPa hr- 1) for the effusively erupting silicic magma modeled in this study (Befus 
& Andrews, 2018). Other anhydrous phases such as pyroxenes will also crystallize during magma decom- 
pression. Therefore, crystallization of «10% by volume is a lower bound estimate. The potential dynamic 
effect of crystallization within our theoretical framework is discussed in detail later. Crystals carried by the 
ascending magma do not exchange dissolved water with the magma or gas phase (Barmin et al., 2002). 

In previous studies (e.g., Mori et al., 1996; Yokoo et al., 2013) of ultra-low-frequency periodicity, cyclic 
behavior is often related to the geometry of the conduit, a stiffened magma in the form of a crystal-rich 
plug and the associated friction between them. Thus, it should be expected that, in events sensitive to 
the shallow volcano plumbing geometry such as dome collapse, reshaping of the conduit from explosive 
events or erosion via viscous dissipation near conduit walls will lead to significant variations in cycle fre- 
quency. However, once ultra-low-frequency periodic behavior is established, significant variations in cycle 
frequency are not observed. To examine the physics of the system that are insensitive to conduit geometry, 
we neglect conduit wall drag and focus on changesin the propertiesof the magma-gas mixture due to water 
exsolution from the melt during ascent. The ascending magma-gas mixture behaves as a shear-thinning, 
non-Newtonian fluid that rises in the conduit as a stiff,columnar plug rather than traditional Poiseuille flow 
appropriate todescribe Newtonian fluidsin a pipe(Gonnermann & Manga, 2007; Jellinek & Bercovici, 2011). 
Given the shear-thinning natureof the mixture close to the walls and the modest magma ascent rate(e.g., 
~0.01 ms-1 during effusive periods of dome building at both Pinatubo and Soufriere Hills Volcano; see 
Cassidy et al., 2018 and references therein), the effect of wall friction only partially mitigates the buoyancy 
forces acting on the magma in the center of the column (Michaut et al., 2009). 1n this study, we seek to 
understand a process by which porositywaves growor decay as a function of their wavelength. However, we 
acknowledge that toconstruct a full conduit model where magma ascent accelerates significantly,triggering 
a change in eruptive behavior, wall drag is an essential portion of the physics that should be considered. 

Vesicularity at the base of the conduit may vary owing to convection in the underlying magma chamber, 
which promotes bubble accumulation in the crystal poor, top of the underlying magma chamber (Parmi- 
giani et al., 2016). The dissolved water content in magma at the base of the conduit may vary slightly due 
to heterogeneity within magma chamber, episodic recharge, or uneven degassing from variations in tem- 
perature during convective mixing in the porous magma chamber mush (Caricchi & Bluntly, 2015; Caricchi 
et al., 2014; Cashman et al., 2017; Murphy et al.,1998). 

A summary of parameters and calculated scaling quantities tested in numerical models are given in Table 1, 
and a schematic of the conceptual model model is shown in Figure 2. 

2.2. Basic Equations 

The one-dimensionalcontinuity equations for magma and gas are 
 

(1) 
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Table 1 
Symbology, the Full Range of Parameter Values, and Calculated Scaling Quantities Tested in Numerical Models 

Variable Description Value Dimensions 

[·]' Superscript indicating dimensionless quantity (-) (-) 

z Vertical spatial coordinate (-) m 
 Time (-) s 

Pm Magma density 2,500 kgm-3 

Pg Gas density (-) kgm-3 

Po Reference gas density,(z = 0) (200,500) kgm-3 

,t, Gasfraction (-) (-) 

<Po Reference gas fraction, (z = 0) (0.1, 0.3) (-) 

Tc Characteristicbubble radius (10-5' 10-3) m 

<Pc Gas fraction characteristic bubble radius (10-5, 10-3) m 

Tb Bubble radius rc(,t,l,t,c)l/3 m 
 

Wm Vertical magma velocity (-) ms-1 
 

Wg Vertical gas velocity (-) ms-1 

Pg Gas pressure (-) Pa 

cg Sound speed ofgas (650,1,000) ms-1 

r Mass transfer (-) kgm-3s-l 

{} Crystal fraction of magma (0, 0.5) (-) 
 

{JP Packing volume fraction of crystals (0.6, 0.9) (-) 

b Einstein coefficient for dilute suspensions 2.5 (-) 

X1 Massfraction of water dissolved in liquid, (z = 0) S(po/Pm)" (-) 

r Volatile weakening constantfor liquid (0, 100) (-) 

µr Shear viscosity of water-free liquid (107, 10IO) Pas 

µm Shear liquid viscosity (-) Pas 

µg Shear viscosity of gas 10-5 Pas 

µm Shear magma viscosity (-) Pas 

C Pore geometry constant 4/3 (-) 
k(,t,) Magma permeability (-) m2 

ko 
s 

Reference permeability of magma 
Saturation coefficient for volatile in magma 

10-12 

4.11x10-6 

m2 
Pa-n 

n Gas pressure exponent for water solubility 1/2 (-) 
w Magma injection velocity,(z = 0) (0.01, 0.1) ms-1 

CJ Magma-gas dragcoefficient (j E [D, St]) (-) (Pas)m-2 

Co Darcy dragcoefficient µg!k0 (Pas)m-2 

est Stokesdragcoefficient (3µ1,t,lf3)/(rc/ ,t, /3)2 (Pas)m-2 

iij,O Reference compaction length for Darcy or Stokesdrag (Cµ-::!/cJ)l/2 m 

ta Characteristic advective time scale iiJ,o/W s 

tR Characteristic degassing time scale (10,105) s 

Da Darnkiihler number taftR (-) 

s Scaled watersaturation of magma sCtp:!, (-) 

Xo Basal volatile content,(z = 0) S(po/Pm)" (-) 

aJ Magma-gas segregation parameter WcJ/(pmg) (-) 

PJ Gas compressibility parameter Ci/giij,O (-) 

C Analytical growth rate for linearized governing equations (-) s-1 

q Numerical growth rate for full governing equations (-) s-1 

Note. Variations in model parameters are noted in text within figures and accompanying captions. 



AGU Journal of Geophysical Research: Solid Earth 10.1029/2020JB019755 
ADVANCl>fG tARTH 
DSMCll!SCRNa 

JORDAN ET AL. Sof28 

 

 

 
 
 
 
s 

\ I 

l 

s 

I 

I 

I 

I 

 
Periodic dome building and eruptive precursors 

 
 
 
 
 

Ground deformation I
 

I 
I 

I 
I 

I 
 

I 

Water exsolution I
 

and gas depressurization  I 

I 
I 

I 
I 

 
 
 

Magma and gas ascend conduit I 

I 

 
 
 
 

0
p,.. 
.(.'.!.).. 
p,.. 

0 

:e:s:. 
it 

Magma 
chamber W, </>o, Po, Xo 

 
 
 
 

Figure 2. A schematic diagram for the conceptual model of a silicic volcano and corresponding simplified model 
domain. In the conceptual model, magma chamber recharge and convection may lead to small variations in gas 
fraction and dissolved water in magma.The magma and gas mixture enters the domain with initial vertical velocity,W, 
gasdensity Po, gas fraction <J,0, and weight percent of water dissolved in the melt portion of the magma mixture, X0. 

The magma flows upward as a plug in the conduit, owing to the shear-thinning propertiesof the melt, crystal, and gas 
mixture (Gonnermann & Manga, 2007). Thus, in the conceptual model for effusive periods of eruption, we neglect 
conduit wall drag. As the magma and gas ascend, decompression leads to gasexpansion and volatileexsolution. In the 
shallow subsurface and lava-dome portion of the volcanic system, variations in gas content and overpressure lead to 
ground deformation and the periodic real-time seismic amplitude measurements (RSAM) signals observed in Figure 1. 

 
 

  (2) 

where, </> is the  porosity, t is the time, z is the vertical coordinate, Pi is the density, and wi is the velocity 
of phase iE [m,g), in which m and g denote the magma and gas phases, respectively. The magma phase 
is comprised of liquid melt and solid crystals that travel together at velocity wm. The density of crystals 
and melt are assumed equal, (Pm = Pcrystal = Puquld), and all crystallizations are assumed to occur in the 
magma chamber (i.e., ascent-driven crystallization is neglected). This implies that the crystalline portion 
of the magma, B, is constant. The right-hand sides of Equations 1 and 2 represent mass transfer due to gas 
exsolution and are discussed in detail below. 

The gas pressure, Pg,obeys the ideal gas law 
 

 
 

where 

(3) 
 
 
 

(4) 
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m  1az    3 m az
  az 

apm a[4 awm] a<J, 

 
is the isothermal sound speed in which R is the ideal gas constant, T is temperature, and M is the molar 
mass of the gas. Equations 1 and 2 are similar to those presented in Michaut et al. (2013) with the addition 
of a mass transfer term (r). 

Conservation of mass for the water dissolved in the liquid component of the magma is 
apm(l - </>)(1 - JJ)X1 apm(l - </>)(1- .9)X1wm  (5) 

at + az =-r, 

where X1 is the mass fraction of water dissolved in the liquid portion of the magma and .9 is the crystal 
fraction in the magma. 

The force balance equations for gas and magma are respectively 
 

 
 

-(1-</>)- 
az 

- (1- <f,)p g+ - -µ (1-</>)- -c.aw+  aP- = o, 

(6) 
 
 

(7) 
 

where Pm is the magma pressure, µm is magma viscosity, and g is gravitational acceleration (Michaut 
et al., 2013).The term c1 represents the interaction force between phasesand is discussed in detailbelow. We 
alsoadopt the convention ax= xm -xg foranyquantity x. In Equation 7, conduit wall drag is neglected. Fol- 
lowing Michaut et al. (2009), we assume thatvariations in velocity along the vertical coordinate z are small 
compared to the variations in velocity across the width of the conduit. In the results presented here, wall 
friction would only partially offseta small portion of the buoyancy force acting on the magma. For details, 
see Michaut et al. (2009). 

After Bercovici and Ricard (2003), the pressure difference in a viscously compacting magma matrix 
(neglecting surface tension) is 

  (8) 

where 9 ~ 1 is a constant associated with poregeometry which is taken to be 4/3 forspherical pores(e.g., 
Yarushina & Podladchikov, 2015). The relationship (Equation 8) is akin to the bulk viscosity formulation of 
McKenzie (1984). The interaction forcebetween the gas and magma matrix is characterized by the dragcoef- 
ficient c1E [c81, c0] for either Stokes' or Darcy drag. Consequences of different flow regimes on the selection 
of drag coefficient are discussed below after we introduce descriptions of volatile dependent melt viscosity 
and mass transfer from the liquid portion of the magma to the gas phase (i.e., degassing). The weighted dif- 
ference of the force balance equations ((1- </>) x (6) minus</> x (7)) is combined with Equation 8 yielding, 

 
            (9) 

The magma viscosity is modeled assuming a suspension of rigid crystals in melt, following Krieger and 
Dougherty (1959) 

µm = µi( 1 -  )-bBP, (10) 
 

where b is the Einstein coefficient for dilute suspensions and ,9P is the maximum packing volume fraction 
of crystals. The Einstein coefficient has a theoretical value of b = 2.5(Jeffrey & Acrivos, 1976). For packing 
of spheresof various sizes, .9P may rangefrom ~0.6 to 0.9 for applications to volcanic systems(Costa, 2005), 
and it is assumed that .9P< 1 to avoid magma viscosity reaching infinity or taking negative and imaginary 
valuesdepending on the Einstein coefficient. 

In this theoretical model, all significant crystallizations are assumed to occur within the magma chamber 
prior to transport up the conduit. In reality, as the melt phase expels water due to depressurization, the liq- 
uidus and solidus surfaces change, resulting in the growth of microlite crystals. In the case of Pinatubo, 
previous experimental studies and detailed calculations for microlite growth suggest that the magma may 
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increase in the crystal load during ascent (Andrews & Befus, 2020; Befus & Andrews, 2018; Hammer & 
Rutherford, 2002). However, for continuous decompression rates of1-5 MPa hr 1, this effect has little influ- 
ence on Equations 5-10. By inspection of Equation 5, it is apparent that increasing crystal fraction, 8, at 
constant dissolved water content, X1, forces a change in the mass transfer term, r, in order to maintain mass 
balance. As I) increases, the liquid portion of the magma becomes more oversaturated in water, resulting 
in faster water exsolution from the magma. For details on the disequilibrium relationship governing the 
exsolution of water from the liquid, see Equation 13 below. For the equation describing magma viscosity as 
a function of crystal content, Equation 10, an increase in I) results in higher viscosity but does not signifi- 
cantly alter the form of the equation as long as the crystal content does not approach the packing density 
for crystals (i.e., B< BP). 

The viscosity of liquid, µ1, is assumed to be variable and a function of dissolved water in the liquid portion 
of the magma content according to 

 
  (11) 

where µ'r is water-free liquid viscosity. Equation 11 is a linearization of Hess and Dingwell (1996) appropri- 
ate for magma with a dissolved water content ranging between 1%and 4%. To fit both the "strong" model of 
Hess and Dingwell (1996) and the "weak" model of Shaw (1965), we allow a range ofliquid viscosity where 
y E [0,100) (Masso! & Jaupart, 1999). For the case of y = 50, the liquid viscosity changes byhalfof an order 
of magnitude with each weight percent variation in water, which is equivalent to the model of Hess and 
Dingwell (1996).The timerequired toobtain a numericalsolution to the governing equations increases expo- 
nentially with increasing y because morestrict time discretization is necessary to resolve increasingly large 
viscosity contrasts in the magma (see Sramek et al., 2010). Together, Equations 10 and 11 give a simplified 
model for the viscosity of the magma 

 

  (12) 

The full and more complex relationship for magma viscosity is described by Hess and Dingwell (1996) (see 
Giordano et al., 2008; Gonnermann & Manga, 2007; Masso! & Jaupart, 1999). We elect this simple for- 
mulation for analytical clarity. Our results later demonstrate that local changes in magma viscosity are of 
secondary importance compared to degassing for the growth of porosity waves. 

To close the system of equations, an expression for the mass transfer term, r,isrequired. We assume linear 
disequilibrium so: 

 
  (13) 

where tR is the characteristictimescalefor the kineticsof the reaction,sis the solubilityconstant for water in 
silicic magma (typically s = 4.llx 10-6 for silicic magma with unitsof p-n), and n is an exponent governing 
the gas-pressure dependence of water solubility (typically n = 1/2). We formulate Equation 13 after Kozono 
and Koyaguchi (2010) where the equilibrium gas exsolution is fitted on the basis of the solubility curve of 
water in silicic magma (Burnham & Davis, 1974). As kinetics become infinitely fast, tR  0, the system is at 
chemical equilibrium so X1= s . We assume homogeneous bubblegrowth and explore a range of tR where 
characteristic degassing proceeds on time scales of minutes to days. Such time scales are appropriate for 
andesitic to rhyolitic magma at high temperature (Bagdassarov et al., 1996; Navon et al.,1998). 

For permeable magma, we assume a Darcian drag coefficient 
 

  (14) 

where µg is gasviscosity and k(¢) is thepermeability of the magma as a function of gas fraction. We express 
permeability via the relationship, 

 
(15) 
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c. =C(SIO) = 3-</>, (17) 

 

where ko is a reference permeability for vesicular magma (Klug & Cashman, 1996; Saar & Manga, 1999). 
Thus, the Darcy drag coefficient becomes 

µg 
Co=  /co' 

 
(16) 

which is assumed constant despite the gas being compressible. At low gas fraction, bubbles are not con- 
nected, and the interaction between the gas and magma follows Stokes' law. In this case, bubbles interact 
with the liquid portion of the magma via the Hadamard-Rybczynski equation in the limit where µg « µ1 

µ, 
J , r?- 

b 
 

where rb is the characteristic radius of bubbles rising in the liquid (Batchelor & Batchelor, 2000; Michaut 
et al., 2013; Rybczynski, 1911). If the number density of bubbles remains constant, bubbles are allowed to 
grow due to gas decompression and water exsolving from the magma 

 
rb =re( 

 
</>) 1/3 

<l>e 

 
(18) 

 

Here, re is the bubble radius at a characteristicgas fraction <l>e- The dragcoefficient depends on gas fraction 
following 

 
(19) 

 
 

2.3. CharacteristicScales and Dimensionless Equations 

A characteristic length-scale commonly used in the study of deformable porous media is the "compaction 
length" (Fowler, 1985; McKenzie, 1984) 

 
(20) 

 
where 

  (21) 

Although 81,0 is constant, variations in magma viscosity maychange the compaction length locally. The true 
local compaction length is 

 

  (22) 

Because the compaction length, 81,0, scales proportionally with ct12, it may vary drastically depending 
on the type of drag and the amount of dissolved water in the magma (Klug & Cashman, 1996; Michaut 
et al., 2009;Saar & Manga, 1999). 

The magma and gas velocities are scaled by the injection velocity of magma at the base of the conduit, W. 
The characteristicadvective timescale is, 

 
 

 
The independent and dependent variables of the system are therefore written as, 

 

 
Densities and magma viscosity are likewise recast as 

 
(23) 

 
 

(24) 
 
 

(25) 
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az g 

X - Spg , 

 
Substituting Equations 3, 24, and 25 into Equation 13 leads to the dimensionless mass transfer rate, 

 
(26) 

 

where   
sc2npn. 

g  m 

 
 

(27) 
 

The ratio of the characteristic advective time scale to the exsolution time scale is called the Damkohler 
number 

  (28) 

The variables given by Equations 24 and 25 are substituted into Equations 1-7 toobtain the dimensionless 
governing equations which, omitting primes, are 

a(l-at </)) + aaz [(1- </))wm] = -Da( 
1 

n)
 

 
 

_a(_l_-_</J_a)(t_l_-_B_)Xi_z+ !_ [(1- </))(1- 8)Xzwm]= -Da (x1- Spn), 

 
(29) 

 
 

(30) 
 
 

(31) 

 
 

a.a-µ[ ( 1-- - ¢2
) 

 
 
 
-a w-m] -(1-</))(l-p)---a.6j ..w=0. 

(32) 
 
 (33) 

 
 

where 

'az m <P az g 1'/</J) 

 
Wcj 

a.=-- 
1 Pmg' 

 
 
 
 

(34a) 
 
 

(34b) 
 

and  
 

1' (</)=) { F'st«/J) = ¢2/3 

 
 
 (35) 

J F'o(<P) = </) 
 

Thecharacteristic lengthscales may vary assuming a mixture ofsuspended bubbles rather than a permeable 
magma; however, it only changes the expression of the dragcoefficient c1. It is worth noting that changes in 
the drag coefficient do not significantly affect the governing equations (Michaut et al., 2013) or the results 
of following analysis presented in this manuscript. Scaling Equation 33, using Equations 18 and 19, results 
in a reference compaction length that depends on characteristic bubble radius 

 

  (36) 

By inspection of Equation 36, it is apparent that the reference compaction length may be vanishingly small 
if the reference bubble radius associated with freshly nucleated tiny bubbles and may be on the order of 
cm if re is taken closer to the threshold wherein bubbles connect. If the characteristic length scale is the 
latter case, for a range of liquid viscosities, µ1 = 106-109 Pas, and gasviscosity, µg = 10-5 Pas, the local 
compaction length, ol' calculated in Equation 20 may vary from centimeters to tens of meters. 

s = 
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The first dimensionless number, aj, compares the characteristic magma ascent rate to the characteristic 
segregation velocity of gas percolating through magma. In effect, ai determines the importance of com- 
paction for expelling gas from the magma, as a1 becomes large, gas segregation due to magma compaction 
diminishes. The parameter p1 is a measure of gas compression due to hydrostatic pressure changes over a 
characteristiccompaction length, wheresmall PJ occurs for highly compressible gas. 

Although changes in the drag coefficient do not significantly affect the governing equations of the mixture, 
the two dimensionless numbers are extremely sensitive to the drag coefficient and resultant compaction 
length. With increasing drag between phases, a1 increases, and thus, gas segregation decreases in impor- 
tance. Similarly, with increased drag, the compaction length shortens which results in larger p1, and the 
importance of gas compressibility diminishes. In the case of Stokes' flow cJ =est, with small bubbles such 
that rb 0, the compaction length becomes vanishingly small and Pst oo, making the gas effectively 
incompressible.The dimensionless number ast calculated witha small characteristicbubble radiusbecomes 
extremely large, signifying that gassegregation is very small. In such a regime, the magma and gas mixture 
may be approximated as an incompressible, impermeable fluid with 8si  0. 

For permeable magma, where bubbles in the liquid phase connect, the drag coefficient, cJ =c0, is lower 
in comparison to the case appropriate for suspended bubbles (i.e., cJ =c8t)· The dimensionless number, a1 
decreases for permeable magma indicating thatgassegregation from the magma issignificant. Furthermore, 
the increase in compaction length associated with lower drag results in smaller PJ which indicates that gas 
decompression upon the ascent of magma is significant. 

If long period oscillations observed at volcanoes are in fact influenced by the selection of gas-rich poros- 
ity waves in decompressing magma, gas segregation and significant gas expansion are required. Michaut 
et al. (2013) demonstrate that such gas waves comprised of suspended bubbles may be able to grow on 
the scale of several tens of meters once gas bubbles become very large (re~ 1 cm). Such waves of gas bub- 
bles in magma (and beer) have been previously described by a balance between the growth of bubbles and 
hydrodynamic self-diffusion (see Manga, 1996;Watamura et al., 2019). 

According to percolation theory, when bubble fraction of an unbounded fluid exceeds ~30%, interconnect- 
edness of the inviscid phase is pervasive and porous flow ensues (Sahimi, 1994). However, this does not 
consider the presence of crystals and deformation of bubbles. Measurements for highly crystalline magma 
from Soufriere Hills Volcano, Mount Saint Helens, USA and Medicine Lake, USA samples show a gradual 
increase in permeabilitywith increased vesicularity. The vesicle microstructure, bubblenumberdensity, and 
the resultant porosity-permability relationships depend on the deformation and decompression history of 
the magma. Bubble deformation by shearing and partial bubble collapse allows connectivity permeability 
and open-system degassing of magma with vesicularity of less than 20%(Rust & Cashman, 2004). 

Once gas bubbles connect, waves of individual gas bubbles promptly decay or are absorbed by longer wave- 
length features due to the emergence of permeability and significant magma compaction. These longer 
wavelength permeable gas waves could be the source of the main trend for low-frequency periodicspikes in 
RSAM data at Pinatubo and Soufriere Hills Volcano (Figures 1 and 2). Michaut et al. (2013) demonstrated 
that meter-scale waves of smaller,suspended bubbles(re< 1 cm) would result in much higher frequency sig- 
nals.Therefore, to explore the main trend oflow-frequency periodiceruptive precursors at silicic volcanoes, 
we focus on a model framework featuring Darcy drag as opposed to Stokes drag. Henceforth, the subscriptj 
is dropped from the drag coefficient and associated scales, so the presence of permeable magma and Darcy 
drag are assumed unless specified otherwise. 

2.4. Steady-State Solution to Dimensionless Equations 

Steady-state solutions for Equations 29-33 are obtained numerically. We assume that the mixture has com- 
pacted to an equilibrium gas fraction, </>0, in the source magma chamber, and thus, on entering the conduit, 
there is little initial compaction, and subsequent compaction or dilation is mostly in response to gas exso- 
lution and expansion during ascent. Thus, the bottom boundary condition for gas velocity is determined by 
assuming no compaction in Equation 33 and rearranging .6.w to find 

 

W'go = 1 + 
</>o(l - <l>o)(l - Po) 

a 

 
(37) 
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Figure 3. Dimensionless steady-state solutions to Equations 29-33for three Damkohler numbers and water-free 
reference case similar to the results of Michaut et al. (2013). The characteristic magma ascent velocity is fixed at W = 
0.02ms-1 (Watts et al., 2002), but the exsolution ratesare varied such that tR = HP (Navy), tR = 10" (Orange) and tR = 
10

5 s(light blue). Dotted lines in (a)-(c) showwater-free solutions for gas fraction and gas density. In these 
calculations, µr = 10

9 Pas, 8 = 0.5, 8p = 0.6, µg = 10-
5 Pas, /co = m and  =685ms- Thegasfraction at the 

12 2 1 
    

base of the conduit is ,p0 = 0.1. The initial gasdensity is defined by Po= Pg(Z = 0) = 0.08Pm· Lastly, the sensitivity of 
melt to dissolved water is parameterized by r = 100. With these parameters, the dimensionless numbers (other than Da 
which is indicated) are a= 8.15 and p = 1.08 x 103. The volatile-free compaction length is c50 = 44.35m. A 5-km 
conduit (~113c50) is assumed. 

 
In addition, we set </J = </Jo, Pg = Po, and Wm = 1, at the baseof the domain. The change in magma velocity is 
alsofound to beverysmall(AppendixC), and thus,for a second boundary condition on wm,we set awm/ az = 
O at z = 0. Additionally, a bottom boundary condition is supplied for water dissolved in the melt at the base 
of the conduit, so X1 = S p 12. 

We find steady-state solutions by initializing </J = ¢0, wm = 1, and wg = wg,o throughout the col- 
umn. We initialize the gas density and dissolved water profiles with Pg = Poexp(-bz/ p0) and X1 = 
S p 12exp (-bz/ (S p 12)) to ensure positivevalues. Aftersetting the initial and boundary conditions at the 
baseof the conduit, we numerically integrate upward. At the top boundary, there is free outflow where both 
the gas and magma pressure remain slightly elevated above atmospheric pressure. This is because we only 
track magma evolution from the baseof the column to the shallow subsurface, but not all the way to the sur- 
face. After setting the required initial and boundary conditions, the steady-state solutions are found using a 
finite volume method (see LeVeque, 2002). 

2.5. Growth Rate of Magma Gas Porosity Waves 

Michaut et al. (2013) show that porosity waves of specific wavelength are naturally selected by the compe- 
tition between magma compaction and gascompressibility for a constant viscosity magma column without 
volatile exchange between meltand gas.Gaswave selection involves a broadbandofwavefrequencies where 
porosity wave amplitudes grow. Above a cut-off frequency, porosity wave amplitudes decay. Thus, the vol- 
canic conduit acts as a low-pass filter for porosity waves. To explore the effect of degassing and variable 
magma viscosity on porosity wave selection-or filtering of porosity waves-we present time-dependent 
solutions to the governing Equations 29-33. 

We perturb steady-state solutions by introducing boundary conditions where either oscillations in gas frac- 
tion, </J, or dissolved water in the melt, X1, excite porosity waves. Oscillations are enforced at the bottom 
boundary such that 

 

B= B0 (1 +AL cos(21r/})), 
J=l 

(38a) 

where  B = </J  or B = X1, (38b) 

. Cg , 10- 

(c) (e) 

-Da=2.21 
-Da=0.221 
-Da=0.0221 
-- No water 
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Figure 4. Comparison of end-member boundary conditions for the dimensionless time-dependent model described in Equation 38c.(a-e) Adjusted gas 
fraction, ({J = 4>-4>ss, gas density, Pg, magma velocity, Wm, water dissolved in melt,X1, and melt viscosity, µ1, for case when B = 4>. (f-j) The same quantities for 
time-dependent model when B = x1. In both simulations, material properties are equivalent to Figure 3, with the exception of the dependence of the viscosity 
on dissolved water which is here r = 50. In both models, the bottom boundary oscillates with the superposition of 10 sinusoidal perturbations,/= [0.0266, 
0.0620, 0.1682, 0.2036, 0.2568, 0.2745, 0.4692, 0.5932, 0.7348, 0.8942], and equal amplitudes of A= 0.025. The gas fraction at the bottom boundary is t/>o = 0.1 
and  Po = 0.08 Pm· The volatile content at the bottom boundary oscillates around X0 = 0.0398, the Damktihler number is Da = 0.0221, and a 5-km magma 
conduit is assumed in both simulations. 

 

and B0 = </>0  or B0 = Xo = Sp at  z =0. (38c) 

Here, A is the amplitude, andf1is the frequency of the jth sinusoidal perturbation. Equations 32 and 33 are 
solved with the boundary conditions wm = 1 and Pg = Po at z = 0 (Michaut et al., 2013), after which the 
magma, gas, and volatile mass equations are updated using Equations 29-31. 

If periodic oscillations at the base of the conduit are imposed on gas fraction </>, then the volatile content is 
held constant,X1 =Sp = X0 atz = 0. For the values of s = 4.llx 10-6 and n = 1/2, typically used for silicic 
melts, setting the dimensionless gas density, Po = 0.08 at z = 0, yields a dissolved water content of X0 = 
3.98% in the melt at the base of the conduit (as in Figure 3). Likewise, if dissolved water content oscillates 
around the equilibrium saturation value at the base, then </> = </>0 at z = 0. To limit numerical diffusion 
in the time-dependent solutions, the monotonized-central-difference flux limiter method (LeVeque, 2002) 
is used for updating the conservation of mass equations. We compare these two boundary conditions to 
explore how gas wave filtering is affected by the presence of water and ongoing exsolution in the melt. To 
this end, time-dependent models(Figure 4) must be used to extract the growth rateof magma gaswaves. We 
employ wavelike perturbations to represent magma chamber heterogeneity (as discussed in section 2.1), so 
we mayexploit Fourier series to monitor the growth and decay ofsmall porosity wavesacross a broad range 
of preprescribed frequencies. The periodic, wavelike perturbations are well suited for comparison to linear 
theory (Appendices A and B). 

To calculate the growth rate ofgas waves relative to the background steady state, we introduce an adjusted 
gas fraction 

 
(39) 

 

where <f>ssis the steady-state gas fraction (Figures 4c and 4g). Assuming wavelike perturbations,the adjusted 
gas fraction may be represented as a Fourier series 

 

N/2-1 

qJ/z)Jbcfi, 
j=-N/2 

 
(40) 

(b) 
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Figure 5. A discrete method for tracking wave growth. Panels (a) and (d) present the evolution of adjusted gas fraction, q,, presented in Figure 4 on the time 
interval [0,(t1- 6.t)], where there are N time steps of size 6.t. B indicates either oscillations in cJ, or X1at the bottom boundary. In Panels (a) and (d), ti= 112.9 
and l!.t = 0.0113. The red dashed line labeled z = indicates the midpoint of the domain. Panels (b) and (e) track gas fraction atz = though time. Panels (c) 
and (f) show the spectrum of adjusted gas fraction n at z = z.Panels (a)--{c) correspond to boundary conditions in Equations 38c where B =<J,, whereas (d)--{f) 
correspond to B = X1. In both simulations, the bottom boundary oscillates with the superposition of ten sinusoidal perturbations as in Figure 4. 

where 'PJ is the discrete Fourier transform of <pat a given height, z,in time (Figures Sa, Sb, Sd, and Se). We 
sample the time-dependent model output on an interval [O,((N - 1) x .t..t)], where there are N time steps of 
equal size .t..t. The power spectrum of cp for thejth frequency is 

 
  (41) 

where ipj is the complex conjugate of ij;,J" An example of IT at a given height, z = z,is plotted in Figures Sc 
and Sf.The power spectrum, ni, represents the portion of the signal at frequencyiJ. At a given depth, z = z, 
a higher power, nj, indicates that thesignal is stronger at frequencyfj, while a lower power indicates that 
the signal is weaker. In the context of a series of superimposed gas waves, the power spectrum allows the 
quantification of wave amplitudes as a function of their frequency. 

The growth or decay with height in the conduit for gaswaves at thejth frequency is given by 
 

q}z) = 
 

1  dITJ 
2n. dz°• 

J 

 
(42) 

 
When ni is calculated at multiple depths,dIT/dz maybe approximated to obtaina numerical measure for the 
instability of a gas wave, %(Z) (see Appendix A and Figures 6a and 6b). We calculate the root-mean-square 
envelope for the oscillations at each q/z) and take the mean of the upper and lower bounds of the envelope 
to be the main trend in instability, which we refer to as q(z) hereafter. 

 
3. Results 
As noted in Equation 38c, we consider two separate oscillating boundary conditions to induce magma gas 
waves. The methodology presented in section 2.5 and summarized in Figure 5 is used to compare the effect 
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Figure 6. Relationship between n and q(z) in the conduit. (a) Demonstration of spectrum for gas fraction throughout 
the magma column. The spectrum was generated using solutions for cp where X1 = r = 0 and B = <J,. In thiscase, the 
dimensionless governing Equations 29-33 are equivalent to equations presented in Michaut et al. (2013). As in 
Figure 4, the bottom boundary oscillates with the superposition of 10 sinusoidal perturbations with equalamplitudes of 
A= 0.025. The gas fraction at the bottom boundary oscillates around <J,0 = 0.1 and density is fixed at Po= 0.08Pm· Three 
frequencies (J = 0.0620, 0.2568, 0.4692) are highlighted to illustrate the relationship between n and q(z). (b) Calculated 
instability of gas waves q(z). Solid linesshow the mean trend of gas wave instability, q(z), throughout the magma 
column. Dotted lines represent the variance in q(z), forming an envelope that brackets oscillations in q(z)about the 
mean. For the case where f = 0.0620 (light blue), the envelope is narrower than the width of the curve representing 
q(z). Low variance in gas wave instability is typical of waves produced by low-frequency perturbations. 

 
of the boundary conditions and gas exsolution rates on gas waves ascending through the magma column. 
First, we assume basal oscillations are only in gasfraction,¢. Next, we explore basal oscillations in X1. We 
show that in either cases, the instability of gaswavesis sensitive to the steady-state water content of the melt 
in the magma column. In the caseof B = Xi, the formation of gas waves is highlysensitive to the Damkohler 
number. In either case, slow exsolution enhances the growth of low-frequency modes of gas waves relative 
to high-frequency modes. 

Consider a magma conduit where basal perturbations in gas fraction induce porosity waves. From 
Equation 38c, B = </J at z = Osimilar to Michaut et al. (2013), although Xi f. O and the assumption of local 
chemical equilibrium is relaxed. When magma enters the conduit bearingdissolved water, the amplification 
or decay of the gas porosity waves across a broad range of frequencies is affected substantially compared to 
the water-free model of Michaut et al. (2013). 

When the exsolution of water from the melt to the gas phase is included in the conduit model, the sensitivity 
of gas wave stability, that is, the frequency-dependent growth or decay of n, is apparent. Generally, the 
addition of dissolved water to the melt portion of the magma phase results in slower growth of porosity 
waves when compared to the exsolution-free model presented in Figure 6. Using material properties from 
Figure 3, the dissolved water content of melt at the base of the conduit is X0 = 3.98%. Using this value 
for X0 but retaining the same time-dependent boundary condition used to generate the results of Figure 6, 
the maximum power of long wavelength gas waves is roughly halved (Figures 7a- 7c). Meanwhile, short 
wavelength gas waves continue to decay rapidly, thereby flattening the overall trend for growth inn. Small 
perturbations in gas fraction from Equation 38c have a negligible effect in changing local dissolved water 
content,X1, and meltviscosity, µ1, which remain close to theirsteady-state profiles (as in Figures 4a and 4b). 

When the Damkohler number is decreased incrementally at constant X0, we observe a slight increase in 
gas wave growth across all nondecaying modes. The tendency toward less wave growth occurs primarily 
due to decreasing gas density gradients in the magma column. With large Damkohler number, the rapid 
exsolution of water at the baseof the conduit raises gas pressure. The smaller pressure dropover the length 
of the conduit results in lessoverall gasexpansion.Steady-state solutionsshow that fastexsolution (i.e., large 
Da) suppresses gasdensity gradients more than slowexsolution, while water-free modelsdisplay the largest 
gas density gradient(Figure 3b). Although the changes in gas density gradient with Da shown in Figure 3b 
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Figure 7. Demonstration of power spectrum, n, for adjusted gas fraction, <p, throughout the magma column as Damkohler number, Da, varies across three 
orders of magnitude. All in Figures 4 and 5, the viscosity sensitivity parameter r = 50. (a-c) The bottom boundary oscillates with the superposition of ten 
sinusoidal perturbations in cJ,where cJ,0 = 0.1 at z = 0 as in Figure 6. (d-f) In this suite of simulations, the water content of the melt oscillates around 
X0 = 0.0398 where cj,0 = 0.1 in Equation 38c with B = X1. Three smallarrows in (d) indicate the abrupt jump inn nearz = 0 when Dais large. In Panels(e) and 
(f), the exsolution of water is gradual and can be seen visualized by the smooth growth inn with z.There are 10 sinusoidal perturbations of equal amplitude 
with frequencies matching Figure 4. Red dotted lines in (d}-{f) indicate the height in the column where degassing approaches a constant rate (see section 4.2). 
For convenience of comparison to Figures 6, the same three frequencies havebeen highlighted in light blue (J = 0.0620), orange (J = 0.2568), and gray 
(f = 0.4692). However, the z-axis for n is now doubled compared with Figures 6 because small oscillations in Xi result in larger porosity waves. 

 
may appear small, they translate to large changes in gas pore pressure depending on the compressibility of 
the gas (Pg = Pg)· Due to the large drop in gas pore pressure, the moderately low-frequency modes that 
grow considerably when X1 = 0 may not increase in amplitude substantially when X1f. 0 as in Figure 7. 
Regardless, very short wavelength (or high-frequency) perturbations decay because gas expansion cannot 
compete with magma compaction. 

Porosity wave instability is only weaklysensitive to changes in melt viscosity for small perturbations in gas 
fraction. Increasing the parameter r in Equation 11 increases the sensitivity of melt viscosity to dissolved 
water, X1. Simulations where meltviscosity remainsconstantdespite variation inX1(i.e., r=0) showqualita- 
tively similar results to models where meltviscosity µ1is affected substantially bylocal changes in dissolved 
water. Increasing r results in very slight changes in moderately long wavelength porosity waves; however, 
these small changes do not recover the filtering effect demonstrated in Figure 6. In any case, the trend in gas 
wave selection as proposed by Michaut et al. (2013) is damped by the inclusion of dissolved water in melt 
whenB =</J. 

We next allow magma at the base of the column to have oscillations in dissolved water content 
(Figures 7d-7O. For thiscase,we assume that magma enters the conduit with a constant gasfraction </J = </)0. 

Oscillations at the base of the conduit proceed such that B = X1 in Equation 38c and that the background 
water content of the melt is X0 = Sp 12 = 3.98% at z = 0. Unlike results presented in Figures 7a-7c, oscil- 
lations around the steady state induce substantial variations in melt viscosity, µ1, (Figures 4a and 4b vs. 4e 
and 40 and thus local compaction length, 8 (Equation 22). A key difference between conduit models where 
B = X1 versus B = </J is that gas waves formed by degassing require significant exsolution over finite time 
and space to grow within the conduit Therefore, when B = X1 the Damki:ihler number hasa much stronger 
influence on the formation and growthselection ofgaswaves in the magma conduit thancases where B = </J. 

Degassing reduces the background gas pressure gradient in the conduit-thereby diminishing overall gas 
wave instability. However, when basal oscillations in water content push the magma-gas mixture far from 
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chemical equilibrium, gas waves form in the lower portion of the conduit from exsolution (e.g., Figure 4g). 
Here, we show that the frequency bandwidth of gas porosity waves that grow in the conduit is highly 
sensitive to Damkohler number. 

Testing a range of exsolution rates revealsa new filtering effect separatefrom the gas wave selection mecha- 
nism reported in Michautet al.(2013). When the Damkohler number issmall,sluggish exsolution favors the 
growth oflower frequency perturbations which havesufficient timefor the gas and melt to equilibrate. That 
is,water must be able to degas and regas from the melt allowing it to contribute to growth in the gasfraction 
via decompression expansion. The high-frequency modes of the volatile perturbation from Equation 38c 
oscillate too quickly for the gas and melt to equilibrate. Therefore, high-frequency modes contribute little 
to the gas fraction. The result is a well-defined trend where low-frequency porosity waves are accentuated 
with decreasing Damkohler number (compare Figures 7c and 70. On the contrary, with Damkohler num- 
ber sufficiently large, higher frequency perturbations may abruptly form owing to rapid degassing near the 
baseof the conduit but are subsequently compacted away (Figure 7d). 

Another key difference between models where B = X1 and B = <I> is  that the power spectra of adjusted gas 
fraction, n,startat zerofor all modelswhen B = Xi (because<I>= <f>o at bottom boundary z = 0) and increase 
at a rate dependingon the Damkohler number. For cases when the degassing timescale is long, higher fre- 
quencygas waves may not significantly form. When the Damkohler number is high, rapid degassing allows 
the formation ofgas waves across a much broader band of frequencies (Figure 7d). However, the very short 
wavelength gas waves cannot be sustained over long distances because gas expansion is overwhelmed by 
magma compaction (e.g., Figures 7a- 7d). In the suite of models presented in Figure 7, we find that changes 
in local meltviscosity has secondary importance to the selection ofgas waves as is also the casewhen B = <f>. 
Therefore, for purpose of discussion, we proceed with r = 50 and crystal fraction B = 0.5 unless specified 
otherwise. 

 
 

4. Discussion 
4.1. Comparison of Numerical Models to Linear Theory 

In Michaut et al. (2013), a linearized dispersion relationship for magma gas porosity wave growth is pre- 
sented.The fullequations considered in Michautet al.(2013)are identical to Equations 29-33when Da  co, 
soX1 = S p!12and the transfer ofvolatile between phases is instantaneous.The model ofMichaut et al. (2013) 
onlyconsiders basal oscillations in gas fraction,so B = </>.The linearstability analysisconducted by Michaut 
et al. (2013)assumes zeroth order background states for</>, Pg,wg,and wm. These background states include 
a constant gas fraction,<I>= <f>o, and magma velocity, Wm = W (see Appendix Bfor details). 

The background gas density profile is imposed by the Darcy equation, (Equation 32), and equilibrated in 
Equation 31 (for X1 = Sp!12) by the time variation of the gas density(see Michaut et al. 2013, supplemen- 
tal information and Appendix B). While the choice of this background state has been criticized by Hyman 
et al. (2019), our numerical results to the full nonlinear equations are in good agreement with the linear 
solutions of Michaut et al. (2013) and confirm their relevance. Particularly, neglecting the gas density gra- 
dient in the linear stability analysis by assuming a constant gas density of the background state (Hyman 
et al., 2019) points to highly localized unstableporosity waves with wavelengths of onlyseveral compaction 
lengths. Such waves should quickly decay by magma compaction as demonstrated by the results of the full 
numerical solution. This further demonstrates the importance of maintaining a strong gasdensity gradient 
to the generation and preferential selection of magma gas waveas a function of their wavelength. 

The maximum instability max(q) of gas waves is compared to the stability analysis of Michaut et al. (2013), 
where C is wave amplitude growth rate versus frequency (Figure 8). We compare the maximum instability 
of the bottom 10%, 20%, 40%, and 80% of the domain to illustrate the increasing instability ofgas waves with 
increasing z. Instability of gas waves is enhanced with increasing z because gas expands more readily with 
decreasing pressure. The stability analysis conducted by Michaut et al. (2013) assumes background states 
that reflect the basal properties of the conduit. However, all relevant numerical solutions showsignificant 
increases in gas fraction and magma velocityduringascentof magma. As expected, the maximum calculated 
instability, max(q), most resembles the analytical amplitude growth rate, C, near the base of the conduit 
where</> </>0 and wm W. 
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Figure 8. (a) Water-free comparison of maximum calculated instability max(q), to stability analysis of Michaut 
et al. (2013), where C is wave amplitude growth rate versus frequency. Maximum calculated instability is shown over 
four intervals to illustrate increasing instability with with dimensionless height, z.in the magma column. For example, 
the range [z = 1, z = 0.lxH/c'i0] is used for calculating the max(q) profile for "bottom 10%." For a 5-km conduit and the 
material properties of Figure 4, H""113c'i0. The first compaction length is omitted from the interval used to calculate 
instantaneous growth rateto avoid boundary effects. (b) Comparison ofmax(q) including exsolution of water. 
Maximum growth is plotted above the inflection pointon the steady-state profile for x1(seesection 4.2) and C when B 

= cJ, and a basal water content of X0 = S p 12 = 0.0398 are assumed. For convenience of comparison to Figures6 and 7, 
the three frequencies f = 0.0620, f = 0.2568, and f = 0.4692 have been highlighted in Panels (a) and (b). 

 
4.2. Corner Frequency and Gas Wave Growth 

The frequency at which max(q) or C = 0 is similar to a "corner frequency" that defines the cut-off for 
a low-pass filter (i.e., which filters out modes with frequencies higher than the corner value). Above the 
corner frequency, perturbations to the steady state are attenuated by magma compaction. Perturbations at 
frequencies below the corner frequency are unstable and grow in amplitude as gas expands. For the case 
of water-free melt, B = </J and  X0 = O (Figure 8a), the corner frequency shifts slightly to the right, with 
increasing z thereby admitting higher frequency gas waves at shallower depths. 

For caseswhereX1andX0 =I= 0, someadditional considerationsare required. When dissolved water is present, 
the magma-gas mixture may remain out of equilibrium during extraction. Depending on the Damkohler 
number, Da, the magma-gas mixture will be at different stages of degassing for a given depth z. For con- 
sistency, we compare max(q) above the curved portion on the steady-state profile for X1 (where iJX,fiJz 
approaches a constant slope, as in the upper portions of Figure 3d). Although the amount of water dis- 
solved in the melts is different depending on Da, in this region, the compositional and viscosity gradients 
are roughly equal through the rest of the conduit and set by the power-law relationship between gas pres- 
sure and dissolved water content (see Figures 3c and 3d). Using the material properties and characteristic 
magma ascent rate from Figure 4 and the Damkohler numbers ofDa = 2.21, Da =0.221, and Da = 0.0221, 
we take max(q) above the dimensionless heights of z = 0.6, z = 4.2, and z = 41.4 (denoted by red dotted 
lines in Figures 7d-7f). Assuming a 5-km conduit and a characteristic compaction length of 80 = 44.4m, 
the height of the conduit is given by H = max(z)  113. 

Totest the sensitivityof the corner frequency and gas waveinstability to dissolved water content, wefirst con- 
sider the casewhere B = </J at z = 0 in Equation 38c. We calculate max(q) for each frequency excited above 
the curved portion in the steady-state profile for X1. Increasing Damkohler number demonstrates the sen- 
sitivity of gas wave instability to dissolved water and characteristic exsolution rate (Figure 8b). Moderately 
low-frequency modesare leaststableand slightly higher frequency modesare admitted by the low-pass filter 
than predicted by Michaut et al. (2013). With increasing Da, gas wave instability becomes more suppressed 
across all modes. This generally flattens the pattern of max(q) when compared to the water-free simula- 
tions (Figure 8a). The corner frequency is not strongly affected by Damkohler number although increasing 
Da allows for a slightly less stringent low-pass filter (Figure 8b). However, for simulations when B = </J, it 
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Figure 9. (a) Comparison of maximum calculated instability, max(q), to stability analysis of Michaut et al. (2013). The 
black line marked C is the wave amplitude growth versus frequenc:{ Waves were excited by oscillating the dissolved 
water content of melt around the saturated valuegiven byX0 = S pf2 = 0.0398. This plot illustrates that the calculated 
instability is sensitive to Damkohler number but not the amplitude, A, of perturbation in Equation 38c. The clustering 
of calculated max(q) for all amplitudes plotted here suggests that theimposed porosity wave perturbations are 
sufficiently small that they do not strongly excite nonlinear features of the governing equations. Therefore, the model 
results presented here are appropriate for comparison to previous linear stability analysis. In Panel (a), r = 50. 
(b) Calculated instability max(q) as a function of crystal content 8, where the packing volume fraction of crystals 
8p = 0.6. Waves were excited by the same manner as in Panel (a). Material properties of magma are the same as in 
previous Figure 4 with the exception of r = 25. Similarities between top curves in Panels(a) and (b) illustrate that wave 
growth rate is insensitive to r. The dimensional wavelength of each perturbation is the same across all simulations 
which causes the shift in dimensionless frequency. Thisis because the characteristiccompaction length, ii0, decreases 
with decreasing crystal content, 8. The compaction lengths are 1i0 =17.3 (red diamonds), /i0 =19.4 (black circles), 
1i0 = 26.3 (green triangles), and lio = 44.3(blue squares) m, respectively. For the constant characteristicdegassing time 
scaletR = 27.7 hr, the corresponding Damkohler numbers are Da = 0.0086, Da = 0.0097, Da = 0.0132, and Da = 0.0221 
in order with increasing 8. The empty black circles show max(q) calculated with a much faster characteristic degassing 
time scale tR = 16.7min and 8 = 0.3. 

 
 

is apparent that gas wave instability is dampened at a range of exsolution rates and resultant Damkohler 
numbers. 

When oscillations in gas fraction are driven bychanges in basal water content, (B = X1in Equation 38c),we 
show that the comer frequency and overall gas wave instability are quite sensitive to Damkohler number. 
This sensitivity of gas wave instability can be attributed to the characteristic reaction time scale for two pri- 
mary reasons. First, fastdegassing (i.e., high Damkohler number)suppresses the gasdensity gradient, which 
diminishes overall gas wave instability. Second, as exsolution time scales become slower, lower frequency 
modes interact byexchanging water between magma and the gas phase moreeffectively than high-frequency 
modes. Thus, we observe a far less stringent low-pass filter than predicted by Michaut et al. (2013) but 
with the relative amplification of low-frequency modes (Figure 9). Continuous exsolution throughout the 
conduit modifies the filter proposed by Michaut et al. (2013) so that gradual exsolution of gas from melt 
bolsters high-frequency modes against magma compaction. Nevertheless, low-frequency modes are fed by 
exsolution as well and experience significant expansion which results in much higher growth ratesfor long 
wavelength porosity waves. 

Importantly, the growth rateforgaswaves is unaffected in our simulations by the amplitude of oscillation, A 
in Equation 38c, for relevant values. Thisindicates that the oscillations imposed on the boundary for the full 
numerical solutions are small enough to be compared with the linearized dispersion relationship described 
in Appendix B. In the case where A = 0.025, with X0 = 3. 98%, the superposition of 10 sinusoidal perturba- 
tions would result in oscillations between~3and 5weight percent water dissolved in the melt.Significantly 
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smaller oscillations in dissolved water content are capable of exciting a range of gas porosity waves where 
low-frequency modes expand at rates much faster than their low-frequency counterparts (Figure 9). 

4.3. Effect of Crystal Content on Gas Wave Growth 

Variation of the crystal fraction, B, has two primary effects on the results we present in thisstudy. First, the 
compaction length (Equation 20) is reduced because the melt and crystal mixture is less viscous at lower 
crystal fractions (Equation 21). The shift in compaction length does not have a major impact on porosity 
wave growth alone. Second, at constant dissolved water content, the melt portion of the magma becomes 
comparatively water rich with decreasing crystal fraction. 

As crystal fraction decreases, the balance between the mass transfer term, r = Da(X1 -  Sp;), and the 
left-hand side of the equation for conservation of mass of water, (Equation 31), results in faster degassing. 
Thisfurther accentuates the tendency of water dissolved in the melt to reduce gasdecompression across the 
magma column and thus dampen oscillations. With increasing Damkohler number, simulations with low 
magma crystal content show a shift in the comer frequency toward low frequencies, meaning the low-pass 
filter for porosity waves becomes more strict (Figure 9b). However, the growth of porosity waves that do 
pass through the filter is exceedingly small and similar for a wide range of frequencies. Therefore, a narrow 
frequency range comparable to data from Figure 1 is unlikely to occur unless there is a significant crystal 
fraction and degassing in the conduit proceeds slowly (Figure 9b). 

The simulations in this manuscript treat the crystal fraction, B, as constant throughout the magma column 
during ascent. A recent numerical model for decompression-induced crystallization of Pinatubo magma 
(Befus & Andrews, 2018)suggests that magma decompressing at a rateof 3-4 MPa hr-1 result in «10%crys- 
tallization byvolumeof plagioclase microlites. Although other phasessuch as amphibole and clinopyroxene 
will crystallize, we consider their effect to be negligible for our model at the decompression rates examined 
in thisstudy. However, if significant crystallization was to occur, we expectit to enhance the growthof poros- 
ity gas waves with low frequencies disproportionately. Figure 9b shows magma with B = 0.125, B = 0.3, 
B = 0.4, and B = 0.5. If magma was with initial crystal fraction of B = 0.3 to gain ~20% crystals by vol- 
ume, the calculated growth rate quadruples for low-frequency modes that pass the filter. The growth rate 
for moderately high-frequency modes that pass the filter onlydoubles, further biasing the power of the sig- 
nal to longer wavelength features. As such,crystallization duringdegassing enhances gas wave growth, for 
low-frequency perturbations especially in cases where Damkohler number is low. Nevertheless, degassed, 
highlycrystalline magma is moreconducive to long period oscillations thancrystal poor,wateroversaturated 
magma. This suggests that the mode of magma mixing and degassing within the chamber must produce a 
crystal-rich magma to support growing porosity waves of magmatic gas. 

4.4. Porosity Wave Ascent Time 

For the majority of examples presented in this study (Figures 3-9), Damkohler numbers are calculated 
assuming a characteristicmagma velocity ofW = 0.02ms-1, crystal fraction lJ = 0.5a reference compaction 
length of.50 = 44.4m, and a characteristicexsolution time scale, tR, that ranges from minutes to days. When 
Da = 2.21, Da = 0.221, and Da = 0.0221, the characteristicexsolution timescale, tR, is 16.7min, 2.67hr, and 
27.7hr, respectively. Numerical simulations show that additional frequencies are not excited by the small 
perturbations used to conduct thisstudy (Figures 5 and 9) and that Wg Wm due to the large drag between 
phases(dimensionless.6.w « 1 in Equations 32and 33). Therefore, both phasesof the mixture travel together 
with porosity wave frequencies locked in place although wave amplitudes may grow or decay. Using the 
steady-state profiles for magma and gas velocity generated in Figure 3, we find that the travel time for a 
parcel of the magma gas mixture to traverse the 5-km column is about 45hr. With these considerations,we 
explore scenarios that are the most and the least likely to produce long period oscillations (Figure 1) given 
a combination ofDamkohler number and perturbation type. 

When reaction rates are veryfast compared to the conduit residency time, the gas wave instability, max(q), 
predicted by Michaut et al. (2013), is suppressed (Figures Sb and 9). For example, when Da ~ 1, equilibrium 
where X1= Sp; is reached quickly and the gas waveselection due to the competition between gas expansion 
and magma compaction described by Michautet al. (2013)ensues with twoadditional caveats:(1) Fastexso- 
lution diminishes the gasdensity(and thereforegas pressure gradient)which lessens the gaswaveinstability, 
and (2) moderately high-frequency modes near the predicted corner frequency are bolstered against magma 
compaction by continued exsolution throughout the conduit. These new considerations act to minimize the 
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mechanical filtering effect proposed in Michaut et al. (2013) by reducing the instability of low-frequency 
modes and increasing the instability of moderately high-frequency modes. In particular, models including 
exsolution where B = <I> display less overall gas wave instability in conjunction with less filtering than their 
water-free counterparts (Figures 8a and 8b). 

In several models presented here, Da = 0.0221, which corresponds to a characteristicexsolution time scale 
that is half of the residency time of the magma gas mixture in the conduit. With this slow characteristic 
exsolution time scale, values of max(q) are systematically shifted upward indicating greater porosity wave 
growth in the column for either type of boundary condition in Equation 38c. Furthermore, perturbations 
in Xi result in extremely amplified growth of porosity waves at low frequency compared to high frequency. 
Therefore, in a casewhere B = X1, sluggish exsolution, or low Damkohler number, does not precisely act as 
a low-pass filter for porosity waves as proposed by Michaut et al. (2013). However, the biased amplification 
of low-frequency modes effectively concentrates the power of wavelike perturbations in long wavelength 
porosity waves. 

Oscillations form the wavelike perturbationsat the bottom boundarywherewm = W = 0.02 ms-1. Afterred- 
imensionalizingfrequency, the wavelength for the sinusoidal perturbations is used as a test casein thisstudy, 
l = W / f (sections 2.5-4.2 and figures therein) rangees from l =1,667m to l = 49.5 m. The wavelength of 
modes highlighted in light blue, orange, and gray in Figures 6-8 have wavelengths of l = 741.2 m, l = 172.4 
m and l = 94.3 m. Numerical simulations show that the residency time of a gas wave in a 5-km conduit is 
about 45hr. The average vertical velocity of the magma gas mixture in the column is thenw = 0.031m s-1. 

Thus, the average time between porosity wave peaks with wavelength l arrivingfrom depth to the shallow 
conduit is1= 1/w. For the superposition oflOsinusoidal perturbations tested numerically in thisstudy, the 
average arrival frequency of waves ranges from 1 ~ 27 min to 15hr. 

Comparing the resultsofournumerical analysis to the observations of Moriet al. (1996), Voight et al. (1999), 
and Wylie et al. (1999) (summarized in Figures la and lb), wefind that the amplification of porositywaves 
as a mechanism for producing long period eruptive precursors at silicic volcanoes is most likely if the 
waves are formed due to small perturbations in dissolved water content of the melt. Model results where 
B = <I> with X0 = 0.0398 show the filtering effect owing to magma compaction is minimized and the overall 
gas instability is too little to produce the main trend of the long period oscillations observed at Pinnatubo 
and Soufriere Hills. However, when B = Xi, we observe a significant amplification of porosity waves with 
decreasing Damkohler number. When Da ~ 1, high-frequency modes are not admitted by the column but 
the gas wave instability is small. When Da <1, porosity waves with wavelengths corresponding to periodic 
arrival times of~ 10 hr grow two to four times faster than those that arrive on hourly time scales (Figure 9). 

4.5. Implications for Long Period Oscillations at Silicic Volcanoes and Their Magmatic Systems 

In this manuscript, we present a conceptual model to examine the viability of porosity waves with com- 
pressible gas as a potential mechanism for exciting long period volcanic oscillations. Our theoretical model 
suggests that porosity waves with periods 10 hr or longer are amplified if the waves are excited by grad- 
ual degassing during magma ascent The mechanism for inducing long period oscillations examined in this 
manuscript requires small temporal variation in magma water saturation at the base of the conduit. The 
basalvariation in the dissolved watercontentof magma reflects heterogeneity in composition or temperature 
within the magma chamber. Therefore, the theoretical model implies that magma chamber heterogeneity 
and mixing are conducive to conditions where porositywaves mayarise with a distinct temporal pattern (as 
observed in RSAM the data showin in Figure 1). 

Recent modeling studies suggest that rapid mixing of magma may lead to long-lived magma chamber het- 
erogeneity even without addition of new batches of magma (Garg et al., 2019). Additionally, petrological 
evidence suggests that parts of the magma chamber were at much higher temperatures than the inferred 
average at Soufriere Hills Volcano. Couch et al. (2001) invoke self-mixing in the form of Rayleigh-Benard 
convection to explain the apparent co-location of minerals that cannotcoexist under equilibrium conditions. 
Other petrological studiesdetailevidence for periodic magma heatingand remobilizationwithin the magma 
chamber (Zellmer et al., 2003). Furthermore, the combination of magma heterogeneity and the tempera- 
turesensitivity for the diffusivity of water (Baker et al., 2005, and references therein) may result in uneven 
degassing and variation in water saturation for magma exiting the magma chamber. Any combination of 
the aforementioned mechanisms could account for the variation in dissolved water content in magma at the 
base of our proposed model. The numerical results show that porosity wave filtering is largely unaffected 
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by the amplitude of perturbations(Figure 9) and biased porositywave growth is expected to arise from very 
small basal variations in either gasfraction or volatile content of the magma. 

The onset of long period oscillations leading up to elevated volcanic activity may indicate the heating, 
remobilization, and mixing of magma. This could take the form of either self-mixing or magma chamber 
replenishment. At Soufriere Hills, andesite phenocrysts that erupted between December 1995 and August 
1997 have a range of textures and zonation patterns that suggest that nonuniform reheating of the magma 
occurred directly before the onset of the major eruption (Murphy et al., 1998). The nonuniform reheating 
is interpreted by Murphy et al. (1998) as remobilization of the resident magma which lead to self-mixing 
and may have eventually triggered the eruption at Soufriere Hills. The onset of regular periodic precursors 
may be a near real-time indicator that magma chamber mixing has begun. Initially, random heterogeneity 
could result in an apparent pattern where magma chamber mixing signatures of selected wavelengths are 
expressed at the surface due to the accentuation of moderately long porosity waves. 

At Pinatubo in 1991, periodic oscillations were attributed to gas vesiculation following a climactic erup- 
tion (Mori et al., 1996). Directly following the eruption the conduit was unimpeded allowing open system 
degassing. As the vent cooled, waning effusive eruption continued, and seismic activity decayed in an 
exponential fashion. Mori et al. (1996) hypothesize that conduit gradually began to seal itself. However, 
this process was not uniform allowing small portions of the volcanic plumbing to become overpressured, 
resulting in smallexplosions linked with the long period oscillations. Within our conceptual model, decom- 
pressing magma with varying dissolved water and crystal content could cool enough and reach a threshold 
where there is sufficient crystal content to support the growth of porosity waves. Once this threshold is 
reached, small variations in water could result in porosity waves of preferred wavelength and account for 
the regularity of the small explosions discussed by Mori et al. (1996). Further study would be required 
to link potential heterogeneity in melt water content with the underlying magma chamber. Alternatively, 
the cyclicity observed at Pinatubo in 1991 could be a consequence of transitioning from open-system 
degassing-after explosion-to quasi-open system degassing-after reestablishment of a cohesive magma 
column. At the very least, similar magma ascent rates at Pinatubo and Soufriere Hills (~0.01-0.06 m s-1; 

Cassidy et al., 2018), and the corresponding regular periodicity of 7-10 hr for elevated volcanic activity at 
both volcanoes is curious and warrants future comparative study. 

 
5. Summary and Conclusion 
In thisstudy, we constructed a theoretical model with the goalof understanding how volatiledegassing and 
local variations in magma viscosity within a volcanic conduit may affect long period oscillations, such as 
those observed at Pinatubo and Soufriere Hills. To this end, we compare two end-member models where 
verysmall oscillations induce magmatic gas porosity waves: 

1. Oscillations are due to small changes in gas fraction entering the conduit. 
2. Oscillations are due to small changes in water content of melt at the baseof the conduit. 

When gaswaves are generated by small changes in gas fraction entering the conduit, we find that the addi- 
tion of dissolved water in melt dampens gas wave expansion. This reduces the efficacy of the mechanical 
gas wave selection model proposed by Michaut et al. (2013). Models additionally show that local viscos- 
ity changes have only a small effect on wave stability. Despite our choice to use a simplified expression for 
magma viscosity, (Equation 12), melt viscosity varies by more than two orders of magnitude in numerical 
models. Model results with large spatial and temporal changes in magma viscosity reveal that maintain- 
ing a large gas density gradient in the magma column is the most important factor for inducing gas wave 
instability. 

When waves are generated bysmall changes in melt water content entering the baseof the conduit, we infer 
a separate mechanism for selecting gas waves that canalso contribute to the isolation oflong period oscilla- 
tions. Petrological observations suggest that themagmasource beneathSoufriere HillsVolcanowas reheated 
or remixed at the timewhen long period oscillations began in 1997, thus providing a possible mechanism for 
changes in melt water content (Murphy et al.,1998). Further study is required to make the same claim for 
Pinatubo postclimactic eruption in 1991. The rate of degassing, described by the dimensionless Damkohler 
number, affects wave growth throughout the column. When reaction rates are fast, Da~ 1, high-frequency 
modes are filtered away but gas wave instability is small. When Da< 1, porosity waves with wavelengths 
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long enough to induce long period oscillations such as those observed at Pinatubo and Soufriere Hills grow 
two to four times faster than higher frequency modes. 

Weconclude thatgradual degassing in the volcanic conduit duringascentof magma is favorable for the pref- 
erential growth of low-frequency magma gas waves. Slower degassing naturally interacts with the magma 
column on longer wavelength scales, promoting the growth of lower frequency waves. The resulting pat- 
tern ofwave growth, biased toward the waves with arrival times of several hours or more at the surface, is 
commensurate with the periodicity of cyclical degassing, dome-growth, and ground deformation observed 
at Pinatubo and Soufriere Hills Volcano (Mori et al., 1996; Voight et al., 1999; Watson et al., 2000; Wylie 
et al., 1999). Short time scale magma chamber mixing provides a viable mechanism for heterogeneity in 
melt water content required to produce long wavelength magma gas porosity waves. The similarity of peri- 
odicity at Pinatubo and Soufriere Hills Volcano hints that there is a common mechanistic source for the 
phenomenon at both volcanoes. We demonstrate that degassed, crystal-rich magma is more conducive to 
the growth of gas waves that may result in the periodic behavior and suggest that porosity waves induced 
bygradual degassing are a viable candidate for that periodic behavior. Porosity waves are a ubiquitous fea- 
ture in poroviscous materialsand may be linked with cyclical episodes of elevated volcanic activityobserved 
elsewhere. 

 

Appendix A: Discrete Growth of Magma Gas Waves 

Consider a linear function, x(z,t), that varies with a spatial coordinate and time. A Fourier series for the 
function may be written 

 
N 

x<z, t) = Li/z)cos(col- kjz) , 
j=l 

 
(Al) 

 
where coi is the jth angular frequency of a sinusoidal perturbation prescribed at the boundary, z = 0, and the 
angular wavenumber is given by kf We assume the relation 

 
  (A2) 

where Cj is the growth rate of the jth perturbation with the vertical coordinate z and B is a constant. We 
define 

 
  (A3) 

The power of the signal, x, at the jth frequency is 
 
 

 
where Aj is the complex conjugate of Ai" 

(A4) 

The growth rate across all excited frequencies are found bydifferentiatingP along the spatial coordinate so 
 

  (AS) 

Additionally, the phase shift and wave number of x(z,t) can be found using the imaginary and real parts 
ofA1 

 
(A6) 

 
and  

k- = -1t a_n 1( --I-m- (A)) . 
1 z Re(Aj) 

 
 

(A7) 
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Figure Al. Simple benchmark calculation for a periodic function of a single frequency x(z, t) = ,:r1cos(mt- kz) where 
growth rate variesas a function of z. In thisexample, m = 4,r and k = 3,r.(a) Demonstration of evolution of x(z. t) over 
N time samples in the interval tE [O,(1- M)] foreach of the nz grid points in a model domain. Black dashed line 
shows the numerical calculation for signal shift. The shift of the signal is prescribed by wavenumber k and the angular 
frequency mat the bottom boundary. Note two fullcycles in x throughout the model domain indicating that linear 
frequency,/= 2, is equal to two. (b) Black line: analytical growth rate derived from inserting xa,(Z) into Equation AS. 
Red dashed line: approximate growth rate calculated using the solution grid from (a). 

 
To relate numerical model output to the lineargrowth rate, the model output is treated as a time seriessam- 
pled at n1 evenly spaced time steps. A Fourier transform is used on x(z,t) to obtain i(z,co). The numerical 
power of x at a given depth is 

  (A8) 

for the jth frequency of a sinusoidal perturbation prescribed at the boundary, z = 0. Equation A8 is the 
numerical analogue to Equation A4. The power of the signal n for each frequency is calculated at each 
grid-block z, which results in nz power spectra for each frequency. The numerical growth or decay of the 
signal, qj, is found bydifferencing nj throughout the model grid to obtain an approximation for the gradient 
of the power with depth. Once (dP /dz) is approximated using n, numerical growth may be constructed 
using q  C. The phase shift and wavenumber for a given frequency may also be obtained numerically by 
using ii anditscomplex conjugate. Figure Al shows a linear benchmark calculation demonstrating the 
recovery of model growth rate for a single frequency. 

 
Appendix B: Linearized Dispersion Relationship 
Wecompare numericalsolutionsof Equations 29-33 with a dispersion relationship forsimplified, linearized 
governingequations. We usethe dispersion relationship to obtaina growth rateforgaswaves, C, as a function 
offrequency. For the linear stability analysis presented in section4, we assume isoviscous,water-free magma 
and a Darcian drag coefficient. Using the characteristicscales presented in section 2.3, the dimensionless 
governing equations are 
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for 9 = 4/3 (Table 1). 

The zeroth order background state forEquations 81-84 are given in Michaut et al. (2013) as 
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For details describing the derivation of zeroth order equations, see Michaut et al. (2013) supplementary 
materials. Next, we assumesmall wavelike perturbations in gas fraction, gas density along with magma and 
gas velocityof the magma, so 
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Here, the superscript (1) indicates a perturbation to the governing equations, w is the angular fre- 
quency of the perturbation, k is the wave number of the perturbation, and the constant e « 1. Inserting 
Equations811-814 and 87-810 into the governing Equations81-84,wewriteexpressions for the first-order 
perturbations in e 
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This linear system of equations may be written in matrix form, Mx = 0, wherex =(¢<1>,pf,w11l, w >). The 
characteristic polynomial of this system of linear equations leads to a dispersion relation for w = 21r f as a 

P 
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Figure Bl. The two solutions to the dispersion relationship found by obtaining the characteristic polynomial of the 
linear system of Equations Bl5-Bl8. 

 

function of wavenumber k = 2,r/ A (where ,1, is linear wavelength andf isfrequency). We provide a short 
MATLAB script for symbolically solving this dispersion relationship (see Acknowledgements). The curve C 
in Figures 8 and 9 is obtained from 

  (B19) 

The second degree dispersion relationship has two solutions (j E [1, 2)). However, we find that the first root 
is dominant forfrequencies where wavesgrow and plot solutions for C1 in section 4 and drop the subscript. 
The lowest negativevaluesat high frequency in Figures8 and 9 are likely affected by C2 (Figure Bl). 

 
Appendix C: Boundary Conditions and Linearization of Steady-State Equations 
atz= O 
The initial and boundary conditions for the numerical solutions are selected based on simplified, linearized 
solutions to the governing equations. We assume that the source magma chamber beneath the bottom 
boundary (i.e., z< 0) has not begun to degas and had time to compact to an equilibrium gas fraction, </>0. 

Upon entering the conduit (i.e., z 0), compaction adjusts to changes in gas fraction caused by magma 
degassing and gas expansion during ascent and decompression. Under these assumptions, it is natural to 
assume that magma compaction issmall(awmliJz,;::0,,) at the conduitinlet.Classical one-dimensional models 
using similar theory for melt migration generally assume an arbitrary and hence unequilibrated fluid frac- 
tion at the bottom boundary (see McKenzie, 1984; Ribe, 1985). In such a case, compaction occurs abruptly 
after injection above z = 0, toward the equilibrium </>, forming a compacting boundary layer, in which case 
the assumption that iJwmliJz is verysmall would not be applicable. 

To demonstrate that iJwml oz,;::0,,nearz =0, we linearize the dimensionless governing equations. Following 
Michaut et al. (2013), we assume that </>0 « 1 and S « 1. We also assume that the initial dimensionless gas 
density is much less than the magma p0 « 1. We neglect the effect ofcrystal fraction and assumeequilibrium 
(X1= Sp;) for the steady-state solution near the base of the column. Additionally, we assume Darcian drag 
and that theexponent governing the gas-pressuredependence of water solubility is n = 1/2.Thesteady-state 
solutions are assumed to be linear with the vertical coordinate, z, and thus take the form 
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where a, b, c, and d are constant coefficients (not to be confused with the Einstein or drag coefficients). 
The leading factor in Equation C4 is the initial gas velocity, w8,0, described by Equation 37 in section 2.4. 
This quantity is obtained by assuming no compaction in Equation 33. At steady state, the dimensionless 
governing equations, (Equations 29-32), are recast as 

  (CS) 

  (C6) 

  (C7) 

Here, Equation CS is obtained by taking the difference between Equations 29 and 31 and neglecting the 
effectsof crystal fraction (dropping the (1-B) factor). Equation C6 arises from the sum of Equations 29 and 
30. Lastly, Equation C7 is Equation 32 assuming Darcian dragso that T/</J) = </Jin Equation 35. Employing 
Stokes drag, T/</J) = ¢213, in Equation C7 makes separation between the magma and gas phases more 
difficultbut does not alter our assumption that compaction will besmall near z = 0 for relevant model cases. 

Equations Cl-C4 are inserted into Equations CS-C7 yielding three equations that are zeroth order in z, 
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and one equation that is first order in z associated with Equation C7, given by 

(ClO) 

 

</J o(1-  </Jo) (1- Po) )) O=a c-d 
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Equations C8-Cl 1 can be used to solvefor the constantcoefficients a, b, c,and d. Weassume that the dimen- 
sionless numbercomparing characteristicmagma ascent rate tocharacteristicgassegregation isgreater than 
one, a 1. Assuming small S that the density of gas is much less than magma and low initial gas fraction 
(i.e., (1- Spt)  1(,1 -  p0)  1, and (1-</)0)  1), the coefficients are 

 
(C12) 

 
 

  (CB) 

c  a, (C14) 
 

  (ClS) 

For the range of parameters relevant to this study(Table 1), the coefficients a, b, c, and d are small (~10-3 or 
less). In all numerical experiments explored in thismanuscript, weset ilwm/ oz = 0 basedon the observation 
that c« 1. 

 
Data Availability Statement 

The MATLAB code for computing the results and generating all figurescan be found at https://zenodo.org/ 
record/3910768#.XvaVpZNKgSs. 

https://zenodo.org/record/3910768#.XvaVpZNKg5s
https://zenodo.org/record/3910768#.XvaVpZNKg5s


AGU Journal of Geophysical Research: Solid Earth 10.1029/2020JB019755 
ADVANCl>fG tARTH 
DSMCll!SCRNa 

JORDAN ET AL. 27of28 

 

 

 
 

Acknowledgments 
J. S. J. and D. B.were supported by 
NSF grant EAR-1645057. C. M. has 
received financial support of the 
IDEXLyon Project of the Universityof 
Lyonin the frame of the Programme 
InvestissementsdAvenir 
(ANR-16-IDEX-0005). The authors 
would like to acknowledge helpful 
reviews by Benjamin Andrews, Alvaro 
Aravena, and an anonymous reviewer 
which significantly improved the 
quality of this manuscript. 

References 
Aiuppa, A, Bitetto, M., Francofonte, V., Velasquez, G., Parra, C. B., Giudice, G., et al. (2017). A COrgas precursor to the March 2015 

Villarrica volcanoeruption. Geochemistry, Geophysics, Geosystems, 18, 2120-2132. https://doi.org/10.1002/2017GC006892 
Anderson, K., Lisowski, M., & Segall, P.(2010). Cyclic ground tilt associated with the 2()()4..2008 eruption of Mount St. Helens. Journal of 

Geophysical Research, 115,Bl1201. https://doi.org/10.1029/2009JB007102 
Andrews, B. J., & Befus, K. S.(2020). Supersaturation nucleation and growth ofplagioclase: A numerical model of 

decompression-induced crystallization. Contributions to Minerology and Petrology, 175(3), 1-20. 
Aravena, A., & Vitturi, M. d. M. (2018). Mamma (magma ascent mathematical modeling and analysis). https://vhub.org/resources/ 

mamma 
Aravena, A., Vitturi, M.d., Cioni, R.,& Neri, A. (2017). Stability of volcanicconduits duringexplosive eruptions. Journal of Vo/canology 

and Geothermal Research,339, 52 2. 
Bagdassarov, N., Dingwell, D. B., & Wilding, M.(1996). Rhyolite magma degassing: An experimental studyof melt vesiculation. Bulletin 

ofvolcanology,57(8), 587 1. 
Baker, D.R., Freda, C., Brooker, R. A.,&Scarlato, P.(2005). Volatile diffusion in silicate meltsand its effects on melt inclusions. Annalsof 

Geophysics, 48(4-5), 699-717. 
Barrnin, A., Melnik,0., &Sparks, R. (2002). Periodicbehavior in lava dome eruptions. Earth and Planetary Science Letters,199(1-2), 

173-184. 
Batchelor, C. K., & Batchelor, G.(2000). An introduction to fluid dynamics. Cambridge, UK: Cambridge University Press. 
Befus, K. S., & Andrews, B. J. (2018). Crystal nucleation and growth produced by continuous decompression of Pinatubo magma. 

Contributions to Minerology and Petrology,173(11), 92 
Bercovici, D., & Michaut, C. (2010).1\vo-phasedynamicsof volcaniceruptions: Compaction, compression and the conditions for 

choking. Geophysical Journal International, 182(,2), 843-864. 
Bercovici, D., & Ricard, Y.(2003). Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary 

formation. Geophysical Journal International, 152(,3), 581-596. 
Burnham, C. W., & Davis, N.(1974). The role of HzO in silicate melts; 11, Thermodynamic and phase relations in the system NaA1Si3O 

8-H2O to 10 kilobars, 700 degrees to 1100degrees C. American Journal of Science,274(8), 902-940. 
Burton, M., Mader, H., & Polacci, M. (2007). The roleof gaspercolation in quiescentdegassingof persistently active basaltic volcanoes. 

Earth and Planetary Science Letters, 264(1-2), 46 . 
Caricchi, L., Annen, C., Bluntly, J., Simpson, G., & Pinel, V.(2014). Frequency and magnitudeof volcanic eruptionscontrolled by magma 

injection and buoyancy. Nature Geoscience, 7(2), 126-130. 
Caricchi, L., & Blundy, J. (2015). The temporal evolution of chemical and physical properties of magmatic systems. Geological Society, 

London,Special Publications, 422(,1),1-15. 
Cashman, K. V., Sparks, R.S. J., & Bluntly, J. D.(2017). Vertically extensive and unstable magmatic systems: A unified viewof igneous 

processes. Science,355(6331), eaag3055. 
Cassidy, M., Manga,M., Cashman,K., & Bachmann,0. (2018). Controls on explosive-effusive volcanic eruptionstyles. Nature 

Communications, 9(1),2839. 
Costa, A. (2005). Viscosity of high crystal content melts: Dependence on solid fraction. Geophysical Research Letters, 32, L22308. https:/ / 

doi.org/10.1029/2005GL024303 
Couch,S.,Sparks, R., & Carroll, M. (2001). Mineral disequilibrium in lavas explained by convective self-mixing in open magma 

chambers. Nature, 411(6841), 1037-1039. 
Denlinger, R. P., & Hoblitt, R. P.(1999). Cyclic eruptive behaviorofsilicic volcanoes. Geology, 27(5), 459-462. 
Eichelberger, J.C. (1995). Silicicvolcanism: Ascent of viscous magmas from crustal reservoirs. Annual Review of Earthand Planetary 

Sciences,23(1),41-63. 
Eichelberger, J.C., Carrigan, C. R., Westrich, H. R., & Price, R.H. (1986). Non-explosive silicic volcanism. Nature, 323(6089), 598. 
Fowler, A (1985). A mathematical model of magma transport in the asthenosphere. Geophysical & Astrophysical Fluid Dynamics, 

33(1-4), 63-96. 
Gardner, J. (2009). The impactof pre-existing gas on the ascent of explosively erupted magma. Bulletin ofVolcano/ogy,71(8), 835-844. 
Gardner, J., Rutherford, M., Carey,S., & Sigurdsson, H.(1995). Experimental constraintson pre-eruptive watercontents and changing 

magma storage prior to explosive eruptions of MountSt Helens volcano. Bulletin ofVolcanology, 57(1), 1-17. 
Garg, D., Papale, P., Colucci, S., & Longo, A. (2019). Long-lived compositional heterogeneitiesin magma chambers, and implications for 

volcanic hazard. Scientific Reports, 9(1), 1-13. 
Giordano, D., Russell, J. K.,& Dingwell, D. B.(2008). Viscosity of magmatic liquids: A model. Earth and Planetary Science Letters, 

271(1-4), 121-134. 
Girina, 0. A.(2013). Chronology ofBezymianny Volcanoactjvity,1956-2010. Journal ofVo/canologyand Geothermal Research,263,22-41. 
Gonnermann, H. M., & Manga, M. (2007). The fluid mechanics inside a volcano. Annual Review of Fluid Mechanics,39, 321-356. 
Hammer, J. E.,& Rutherford, M. J. (2002). An experimental study of the kineticsofdecompression-induced crystallization in silicic melt. 

Journal of Geophysical Research, 107(Bl), ECV 8-1-ECV 8-24. https://doi.org/10.1029/2001JB000281 
Hess, K., & Dingwell, D. (1996). Viscosities of hydrousleucogranitic melts: A non-Arrhenian model. American Mineralogist,81(9-10), 

1297-1300. 
Huppert, H. E., & Woods, A. W.(2002). The role of volatiles in magma chamber dynamics. Nature, 420(6915), 493. 
Hyman, D. M., Bursik, M., & Pitman, E.(2019). Pressure-driven gas flowin viscously deformable porous media: Application to lava 

domes. Journal of Fluid Mechanics, 869, 85-109. 
Jeffrey, D. J.,& Acrivos, A. (1976). The rheological propertiesof suspensions ofrigid particles. AlChE Jou.ma/, 22(3), 417-432. 
Jellinek, A.M., & Bercovici, D.(2011). Seismic tremors and magma wagging duringexplosive volcanism. Nature, 470(7335), 522-525. 
Johnson, J.B., Lyons, J. J., Andrews, B. J., & Lees, J. (2014). Explosive dome eruptions modulated by periodic gas-driven inflation. 

Geophysical Research Letters, 41, 6689 97. https://doi.org/10.1002/2014GL061310 
Klug, C., & Cashman, K. V.(1996). Permeability development in vesiculating magmas: Implicationsfor fragmentation. Bulletin of 

Volcanology, 58(2-3), 87-100. 
Kozono, T., & Koyaguchi, T. (2010). A simple formula for calculating porosity of magma in volcanic conduits during dome-forming 

eruptions. Earth, Planetsand Space, 62(5), 483-488. 
Krieger, I. M., & Dougherty, T. J. (1959). A mechanism for non-Newtonian flowin suspensions of rigid spheres. Tronsactions of the 

Societyof Rheology, 3(1), 137-152. 

https://doi.org/10.1029/2001JB000281


AGU Journal of Geophysical Research: Solid Earth 10.1029/2020JB019755 
ADVANCl>fG tARTH 
DSMCll!SCRNa 

JORDAN ET AL. 28of28 

 

 

 
LeVeque, R. J. (2002). Finitevolume methods forhyperbolic problems (Vol. 31). Cambridge, UK: Cambridge University Press. 
Lensky, N., Sparks, R., Navon,0., &Lyakhovsky, V. (2008). Cyclic activityat Soufriere Hills Volcano, Montserrat: Degassing-induced 

pressurization and stick-slip extrusion. Geological Society, London, Specinl Publications, 307(1),169-188. 
Lyakhovsky, V., Hurwitz, S., & Navan, 0. (1996). Bubble growth in rhyolitic melts: Experimental and numerical investigation. Bulletin of 

Volcanology, 58(1), 19-32. 
Manga, M.(1996). Wavesof bubbles in basalticmagmas and lavas. Journal of Geophysical Research, 101(B8), 17,457-17,465. 
Mangan, M.,& Sisson, T.(2000).Delayed, disequilibriumdegassing in rhyolite magma: Decompression experiments and implications for 

explosive volcanism. Earth and Planetary Science Letters, 183(3-4),441-455. 
Masso!, H., & Jaupart, C.(1999).The generation of gasoverpressure in volcanic eruptions. Earthand Planetary Science Letters,166(1-2), 

57-70. 
McKenzie, D. (1984). The generation and compaction of partially molten rock. Journal of Petrology, 25(3), 713-765. 
Melnik,0., &Sparks, R.(1999). Nonlinear dynamicsof lava dome extrusion. Nature, 4()2(6757), 37. 
Michaut, C., Bercovici, D., & Sparks, R.S. J. (2009). Ascent and compaction of gas rich magma and the effects of hysteretic permeability. 

Earth and Pln.netary Science Letters, 282(1-4), 258-267. 
Michaut, C., Rkard, Y., Bercovici, D., & Sparks, R. S. J. (2013). Eruption cyclicity at silicicvolcanoes potentially caused by magmaticgas 

waves. Nature Geoscience, 6(10), 856-860. 
Mori,J., White, R. A., Harlow, D. H., Okubo, P., Power, J. A., Hoblitt, R. P.,et al. (1996). Volcanic earthquakes following the 1991 

climactic eruption of Mount Pinatubo: Strong seismicityduring a waningeruption. Fireand Mud: Eruptionsa.nd Lahars of Mount 
Pinatubo, Philippines, 339-350. 

Murphy, M. D.,Sparks, R.S. J., Barclay,J., Carroll, M. R., Lejeune, A.-M., Brewer,T.S., et al. (1998).The role of magma mixing in 
triggering the current eruption at the Soufriere HillsVolcano, Montserrat, West Indies. Geophysical Research Letters, 25(18), 3433-3436. 

Navon, 0., Chekhmir, A.,& Lyakhovsky, V. (1998). Bubble growth in highly viscous melts: Theory,experiments, and autoexplosivity of 
dome lavas. Earthand Planetary Science Letters,160(3-4), 763-776. 

Owen, J., Tuffen, H., & McGarvie, D. W.(2013). Explosive subglacial rhyoliticeruptions in Iceland are fuelled byhigh magmatic H20 and 
closed-system degassing. Geology, 41(2), 251-254. 

Parmigiani, A.,Faroughi, S., Huber, C., Bachmann,0., &Su, Y.(2016). Bubble accumulation and its role in the evolution of magma 
reservoirs in the uppercrust. Nature, 532(7600), 492-495. 

Pistone, M., Caricchi, L., Fife, J. L.,Mader, K., & Ulmer, P. (2015). In situ X-raytomographic microscopy observations of vesiculationof 
bubble-free and bubble-bearing magmas. Bulletin ofVolcanology,77(12), 108. 

Ribe, N. M.(1985). The deformation and compaction of partial molten zones. Geophysical Journal International,83(2), 487-501. 
Ruprecht, P.,& Bachmann, 0. (2010). Pre-eruptive reheating during magma mixingat Quizapu Volcano and the implications for the 

explosiveness of silicic arc volcanoes. Geology, 38(10), 919-922. 
Rust, A., & Cashman, K. V. (2004). Permeability of vesicular silicic magma: Inertial and hysteresis effects. Earthand Planetary Science 

Letters, 228(1-2), 93-107. 
Rybczynski, W.(1911). Uber die fortschreitende bewegung einerflussigen kugel in einem zahen medium. Bulletin International de 

l'Academie des Sciences de Crocovie A, 1,40-46. 
Saar, M. 0., & Manga, M.(1999). Permeability-porosity relationship in vesicular basalts. Geophysical Research Letters, 26(1), 111-114. 
Sable,J., Houghton, B., Wilson, C.,& Carey, R. (2006).Complex proximal sedimentation from Plinian plumes: The example ofTarawera 

1886. Bulletin ofVolcanology, 69(1),89-103. 
Sahimi, M.(1994). Applications of percolation theory. London, UK: CRC Press. 
Shaw, H. R. (1965). Comments on viscosity, crystal settling, and convection in granitic magmas. American Journal of Science,263(2), 

120-152. 
Sramek, 0., Ricard, Y.,& Dubuffet, F.(2010). A multiphase model of coreformation. GeophysicalJoumal International, 181(1), 198-220. 
Voight, B., Sparks, R., Miller, A.,Stewart, R.,Hoblitt, R., Clarke,A.,et al.(1999). Magma flowinstability and cyclic activityat Soufriere 

Hills volcano, Montserrat, British West Indies. Science, 283(5405), 1138-1142. 
Watamura, T., Iwatsubo, F., Sugiyama, K., Yamamoto, K., Yotsumoto, Y.,& Shiono, T. (2019). Bubblecascade in Guinness beer is caused 

bygravitycurrent instability. Scientific Reports, 9(1), 5718. 
Watson, I., Oppenheimer, C., Voight, B., Francis, P.,Clarke, A.,Stix,J., et al. (2000). The relationship between degassing and ground 

deformation at Soufriere HillsVolcano, Montserrat. Journal of Volcanology and Geothermal Research, 98(1-4), 117-126. 
Watts, R., Herd, R., Sparks, R.,& Young, S. (2002). Growth patterns and emplacement of the andesitic lavadome at Soufriere Hills 

Volcano, Montserrat. Geological Society, London,Memoirs,21(1),115-152. 
Woods, A.W.,& Koyaguchi,T.(1994).Transitions between explosive and effusiveeruptionsofsilicicmagmas. Nature,370(6491), 641-644. 
Wylie, J. J.,Voight, B., & Whitehead, J. (1999).Instability of magma flow fromvolatile-dependent viscosity. Science, 285(5435), 1883-1885. 
Yarushina, V.M., & Podladchikov, Y. Y. (2015). (De) compaction of porous viscoelastoplastic media: Model formulation. Journal of 

Geophysical Research: Solid Earth,120, 4146-4170. https://doi.org/10.1002/2014JB011258 
Yokoo, A.,Iguchi, M., Tameguri,T., & Yamamoto, K. (2013). Processes prior to outburstsof vulcanian eruption at Showa Craterof 
Sakurajima Volcano( (Special Section) Sakurajima Special Issue). Bulletin of the VolcanologicalSocietyof Japan, 58(1), 163-181. 

Zellmer, G., Sparks, R., Hawkesworth, C.,& Wiedenbeck, M. (2003). Magma emplacement and remobilization timescales beneath 
montserrat: Insights from Sr and Ba zonation in plagioclase phenocrysts. Journal of Petrology, 44(8), 1413-1431. 


	RESEARCH ARTICLE
	1. Introduction
	2. Theory
	Periodic dome building and eruptive precursors
	Water exsolution I
	Magma and gas ascend conduit I
	Magma chamber
	(9)

	-s.
	cp
	100
	0.05
	0 50 100

	B'o_

	3. Results
	(d) (e) (f)

	4. Discussion
	f
	f

	f
	101

	f
	101
	101
	5. Summary and Conclusion
	Appendix A: Discrete Growth of Magma Gas Waves


	t
	q(z)
	Appendix B: Linearized Dispersion Relationship

	-1000
	-3000
	10-2 10-2
	Appendix C: Boundary Conditions and Linearization of Steady-State Equations
	atz= O

	Data Availability Statement
	References



