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Scientific Significance Statement

Human activities release vast amounts of reactive nitrogen, profoundly influencing the functioning of marine ecosystems. On
the inner shelf, where these effects are most pronounced, sediments have emerged as potential hotspots of reactive nitrogen
removal—and they are therefore increasingly thought to play a key role in the ocean nitrogen cycle. Despite their potential
importance, shelf sediments are still overlooked in global models of ocean nitrogen and carbon cycles, limiting model accu-
racy and predictive power. Through analysis of recent work, we identified unresolved questions and controversies, and pro-
pose a three-pronged approach to improve our mechanistic understanding and modeling of nitrogen removal on the
continental shelf and in the global ocean.

Abstract
The marine nitrogen cycle is a main driver of ocean productivity and affects global climate. Despite decades of
study, we still have an incomplete understanding of the role of the marine nitrogen cycle in the Earth system.
While marine sediments play a major role in nitrogen cycling in the ocean, magnitudes and mechanisms are
largely unconstrained. Recent research suggests that permeable sandy sediments on the highly energetic and
dynamic continental shelf are key components of the marine nitrogen cycle, but data to quantify their contri-
bution are lacking. Here, we use insights from measurements and modeling studies to substantiate the hypothe-
sis that shelf sediments are an overlooked driver of the marine nitrogen cycle. Specifically, we propose that
permeable shelf sediments are sites for intense nitrogen conversions and suggest a three-pronged approach to
address unresolved controversies.

The continental shelves play a disproportionate role in
global biogeochemical cycling. While they occupy only 8% of
the ocean’s area (Hall 2002), they account for approximately
20% of marine primary production (Jahnke 2010). The inner

shelf (< 50 m depth) alone is the site of about 48% of the
global flux of organic carbon to the seafloor (Dunne
et al. 2007). Recent investigations emphasize that shelf sedi-
ments act as bioreactors that can efficiently convert carbon
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and nutrients (Seitzinger et al. 2006; Jahnke 2010; Bauer
et al. 2013; Huettel et al. 2014). However, most prior research
has focused on organic matter and nutrient cycling in the
water column of the shelf, leaving the role of their sediments
largely unconstrained. Many ocean carbon and nutrient
cycling models and budgets do not adequately include shelf
sediments, leaving out a substantial component of the marine
nitrogen cycle.

One distinctive characteristic of the shallow shelf is the
abundance of highly permeable sands that cover at least 50%
of continental shelves globally (Emery 1968; Hall 2002).
Despite the prevalence of permeable sands, most research on
shelf sediments to date has been conducted in fine-grained
deposits. Fine-grained sediments may have a higher content
of organic matter and reactants—the fuel for mineralization
processes—while surficial sands typically contain low standing
stocks of these substances. Sands were therefore thought to be
“geochemical deserts.” Yet, there is an emerging consensus:
the high permeability of well-sorted sands permits rapid pore-
water exchange that transports organic matter into the seabed
where it is swiftly processed and nitrogen subsequently
remobilized. Permeable sediments may thus be hotspots of
biogeochemical activity and undervalued in present models of
the marine and global nitrogen cycles.

In the ocean, reactive nitrogen (Box 1) limits marine pri-
mary productivity and subsequent trophic level production.
Furthermore, nitrogen availability is essential for carbon diox-
ide uptake and sequestration in the deep ocean via the biolog-
ical pump. On the continental shelf, terrestrial runoff and
atmospheric deposition are the major sources of reactive
nitrogen from anthropogenic sources, with rivers delivering
40–66 Tg N yr�1 and atmospheric deposition adding 8.5 Tg N
yr�1 (Voss et al. 2013). The open ocean laterally transports
another 450–600 Tg N yr�1, while nitrogen-fixing organisms
in shelf waters contribute about 17 Tg N yr�1. These numbers
have high uncertainties, and recent discoveries of major
marine microbial nitrogen fixers have prompted yet more
questions concerning the magnitudes of nitrogen sources and
sinks, and factors controlling process rates (Zehr and
Capone 2020). Given that the marine nitrogen and carbon
cycles are inextricably linked, our limited grasp of the first
obscures our conception of the second, undermining our
ability to predict future climate change (Gruber and
Galloway 2008). As humans fundamentally alter the nitrogen
cycle, better understanding its role in the earth system is
essential to prevent further deterioration of the marine and
global environment.

Most estimates of the marine nitrogen budget (Box 1) are
bracketed by large uncertainties. We posit that a substantial
fraction of this uncertainty is due to the present lack of mea-
surements and mechanistic understanding of processes occur-
ring in a largely overlooked environment: permeable shelf
sediments. A small but growing body of work has begun to
focus on nitrogen cycling in shelf sands, motivated by the

central question of whether they are sites of significant nitro-
gen removal via denitrification. Here, we synthesize recent
work on denitrification in shelf sands, highlight unresolved
controversies, and evaluate potential changes to shelf nitro-
gen cycling in the face of increasing human perturbations to
the ocean.

Changing perceptions
In general, waves and currents sort shelf sediments into a

gradient from organic-poor sand beds on the inner shelf to
fine-grained sediments richer in organic matter in the mid
and deeper shelf (McCave 2002; Fig. 1). Episodic major storm
events temporarily—yet profoundly—alter this gradient
through the mobilization of decimeter-thick surface sediment

Box 1. Marine nitrogen budget.
Nitrogen (N) exists in many chemical forms, and its
cycling is governed by several microbially mediated
transformations that convert biologically inert din-
itrogen gas (N2) to various fixed or reactive forms,
including ammonium (NH4

+), nitrite (NO2
�), and

nitrate (NO3
�). In the simplified nitrogen cycle

depicted, N2 dissolved in the water column is taken up
by microbes and fixed to organic N (N2 fixation). Organ-
isms consume and break down the organic N, releasing
NH4

+ (remineralization). Other microbes convert NH4
+

to NO2
�, and then to NO3

� (nitrification). To complete
the cycle, microbes convert nitrate back to N2 (canoni-
cal denitrification). To first order, the inventory of reac-
tive N is controlled by denitrification (defined here as
any process that results in loss of fixed nitrogen from
the biosphere; Devol 2008) and N2 fixation
(Gruber 2008). Whether the marine nitrogen budget is
balanced remains controversial (Zehr and Capone 2020):
estimates either find that losses outweigh sources
(Galloway et al. 2004; Codispoti 2007; Voss et al. 2013),
or that the budget is approximately balanced
(Gruber 2008; Wang et al. 2019).

Chua et al. Unresolved role of shelf sediments

2



layers, deep sediment oxygenation, and the redistribution of
organic matter and nutrients (Scavia et al. 2002; Osburn
et al. 2019; Paerl et al. 2020). In the last three decades, studies
focusing on transport and diagenetic reactions (i.e., physical
and chemical processes that alter sediments after deposition) in
inner shelf sands suggest they play an underappreciated role in
biogeochemical cycling. This work was stimulated by early
experiments in shallow permeable environments that revealed
the effectiveness of water flow through the interconnected pore
spaces in transporting reactants into and out of sand beds
(Webb and Theodor 1968; Thibodeaux and Boyle 1987). This
conveyor-belt like advective transport of substrates can acceler-
ate microbial decomposition processes, transforming sand beds
into biocatalytical converters, analogous to trickling bed filters
in water treatment (Huettel et al. 2014).

Advective exchange in shelf sands is driven by physical pro-
cesses operating over distances of millimeters to kilometers and
over time frames spanning seconds to years (Santos
et al. 2012b). This exchange consequently affects the cycling of
nitrogen over a wide range of spatial and temporal scales. The
largest driver of advective exchange may be the circulation
induced by the interaction of bottom flows with seabed topog-
raphy, which can drive water through the upper 5–50 cm of rip-
pled sand beds (Santos et al. 2012b). Advective transport scales
with the direction and strength of bottom currents, as well as
with ripple dimensions, resulting in a highly dynamic, four-
dimensional environment for sedimentary nitrogen cycling pro-
cesses. Key parameters governing sedimentary denitrification—
including temperature, bottom currents, sediment–water
exchange, redox oscillations, sedimentary nitrate concentra-
tions, benthic production, and organic content—may reach
highest values in the inner and mid shelf (Fig. 1). We hypothe-
size that the zone of maximum benthic denitrification is there-
fore located within the upper section (< 100 m) of the shelf.

At present, the intricate links between biogeochemical reac-
tions within the sand and boundary layer hydrodynamics are
not well understood due to limited in situ measurements. The
tight coupling between pore-water flow and ensuing reactions
makes quantification of the latter challenging, and measure-
ment methods must consider variable environmental drivers.
Moreover, denitrification is a particularly difficult process to
measure, as its dominant end product (N2) has a high ambient
concentration in the environment. Only over the past 15 yr
have studies taken transport into account when attempting to
constrain nitrogen loss in permeable sediments (Fig. 2;
Table 1). While still small, this ground-breaking body of work
has challenged our present notions of nitrogen cycling on the
shelf by calling into question results that ignore the dynamic
contributions of the benthic environment and permeable sed-
iments. These studies include experiments that attempt to
induce realistic pore-water flows in the laboratory, novel in
situ methods (benthic chambers and aquatic eddy covariance
instruments), and model simulations of advective flow-driven
reactions. Methods to generate advective flow are percolated

cores, or sediment incubation devices pumped with water
(Rao et al. 2007; Gao et al. 2010; Santos et al. 2012a; Evrard
et al. 2013; Marchant et al. 2016), and chambers with stirred
overlying water (Eyre et al. 2008; Gihring et al. 2010), which
can be used in situ or ex situ. The eddy covariance method
was first adapted for use underwater by Berg et al. (2003) and
enables noninvasive measurements of fluxes across the
sediment–water interface. Models of permeable sediments
extend the 1D diffusive framework of traditional diagenetic
models (Box 2) to accommodate 3D advective flow. Specifi-
cally, they calculate pore-water flow fields from pressure gradi-
ents at the sediment–water interface and combine these with
a reactive transport scheme for the coupled chemical reactions
that govern nitrogen biogeochemistry (Cook et al. 2006;
Cardenas et al. 2008; Kessler et al. 2012, 2013; Azizian
et al. 2015). The results from these laboratory, nearshore, and
small-scale modeling studies imply that realistic regional
models of the nitrogen conversions in inner shelf sands
require reliable information on in situ advective transport for
calculating reaction rates. When hydrodynamic regime and
physical sediment characteristics are known, models can pro-
vide some of the pore-water transport information
(Shum 1992; Cardenas et al. 2008). However, existing models
have so far only been tested at small scales (on the scale of
sand ripples, i.e., meters) and therefore represent idealized
cases. Furthermore, validation of model results through in situ
measurements is largely missing.

Regional models of permeable sediments that include the
dynamics of key environmental drivers are computationally
demanding, and their expansion to even modest scales of tens
to hundreds of kilometers presently is prohibitive. In existing
regional and large-scale biogeochemical models (Box 2), sedi-
ments are typically represented by relatively simple parame-
terizations that can be based on stoichiometric arguments
(Fennel et al. 2006), multivariate fits to observations (Bohlen
et al. 2012), or output from diagenetic models through the
meta-model approach (Laurent et al. 2016). Only recently
have diagenetic models been coupled directly to regional bio-
geochemical models (Moriarty et al. 2018, 2020). However,
neither the meta-model approach nor the direct coupling of
diffusion-dominated diagenetic models represents permeable
sediments well. We therefore require a better mechanistic rep-
resentation of biogeochemical processing in permeable sedi-
ments, and a method to generalize these processes over the
shelf scale. To achieve these aims, we must obtain knowledge
of spatiotemporally varying parameters such as wave action,
sediment permeability, and large-, and small-scale topogra-
phy. Efforts should also be devoted to improving quantitative
approaches for scaling up.

Unresolved controversies
The recent body of work on transport and reaction in per-

meable sands has unearthed many questions about nitrogen
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Fig. 1. Hypothesized conceptual model depicting key factors that control denitrification in shelf sediments and a hypothetical zone ofmaximumbenthic denitrifica-
tion. Top: Shelf depth profile, divided into inner, mid and outer shelf regions. Rows 2–7: Hypothetical influence of key environmental factors controlling denitrification
(i.e., temperature (Nowicki 1994; Cornwell et al. 1999), sediment–water exchange (Santos et al. 2012b), redox oscillations (Aller 1994; Huettel et al. 1998; Sun
et al. 2002; Skoog and Arias-Esquivel 2009), nitrification (Seitzinger and Giblin 1996), and availability of nitrate and organic matter (Nowicki 1994; Cornwell
et al. 1999; Fulweiler and Heiss 2014)) in the different shelf regions. Purple circle: The assumed region of maximum sedimentary denitrification, which is located
where the cumulative effect of themain controls of benthic denitrification is strongest. Bottom: Cross sections of the seabed in the three shelf regions, with permeable
sands, muddy sands, and fine-grained deposits dominating the sediments of the respective regions; purple shading depicts the sedimentary denitrification zone.
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cycling in permeable sediments. Central to these inquiries is
whether significant denitrification occurs in permeable shelf
sands. The conventional view of benthic biogeochemistry
assumes that denitrification occurs primarily in fine-grained
sediment, which are rich in organic matter—the fuel for
denitrification—and low in oxygen, as opposed to permeable
sediments, which are poor in organic matter and better oxy-
genated. Indeed, a recent study on nitrogen cycling across a
wide permeability gradient on the Northeast Atlantic Shelf
(Toussaint et al. 2021) found that low permeability sediments
with a high organic matter content create a more favorable
environment for denitrifiers. However, our revised under-
standing that surface topography/flow interactions efficiently
supply reactants in permeable sediments implies that the
ensuing dynamic and enhanced interfacial area between oxic
and anoxic zones could promote nitrite and nitrate

production via nitrification, which in turn feeds denitrifica-
tion. In other words, permeable sands should act as bioreac-
tors rather than biogeochemical deserts.

At present, the handful of experimental and modeling
studies available disagree whether denitrification rates in
sands are higher or lower than in fine-grained sediments, and
hence whether sands are more efficient at processing reactive
nitrogen. For example, a study conducted in subtidal quartz
sands in the Gulf of Mexico found a near-complete conver-
sion of remineralized nitrogen to N2, indicating that these
sands are effective sites of denitrification (Gihring et al. 2010).
These results are supported by other experimental studies that
found high denitrification rates in tropical carbonate sands
(Eyre et al. 2013), and temperate silica sands from the
Wadden Sea, Northern Europe (Gao et al. 2012; Marchant
et al. 2016). In contrast, results of modeling studies have

Fig. 2. Locations of studies that have measured or modeled denitrification rates in permeable shelf sediments: (A) worldwide, (B) in the United States, (C)
in Northern Europe, and (D) in Australia. Studies at the same or similar sites are staggered for visualization. If a study reported a range of denitrification rates
and not an overall mean, then the midpoint was calculated from the range given. See Table 1 for the exact rates and method used in each study.
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Box 2. Biogeochemical models and permeable
sediments.
Biogeochemical models represent biogeochemical prop-
erties and processes using a mathematical formalism to
simulate standing stocks of these properties and the
fluxes between them. Such models can be analytical or
numerical; can represent a steady state or be time
dependent, deterministic, or stochastic; and can be spa-
tially explicit or averaged in space. All models require
constant or time-dependent input parameters in some
form including rate constants, environmental proper-
ties, and initial and boundary values.

Here, we distinguish between biogeochemical ocean
models that are primarily focused on the water column
overlying marine sediments, referred to as 3D regional
and global biogeochemical models, and models of these
sediments, referred to as diagenetic models. Among the
diagenetic models, we distinguish between spatially
explicit, time-dependent models, and space- and time-
averaged models, referred to as parameterizations.
A. 3D regional and global biogeochemical models: These

spatially explicit, time-dependent models are
coupled to hydrodynamic models that simulate
ocean circulation and describe the distribution and
transformations of biogeochemical properties in the
water column. They are subject to the same circula-
tion processes as seawater and to additional transfor-
mation processes represented by empirical
parameterizations. These models typically ignore sed-
iments or represent them relatively crudely (see C
below), although there are recent attempts to couple
a diagenetic model to a 3D regional model that also
consider sediment resuspension and transport
(Moriarty et al. 2018, 2020). Regional and global bio-
geochemical models that ignore marine sediments
are likely to significantly underestimate sediment
denitrification and thus misrepresent regional to
global nitrogen transformations/budgets.

B. Diagenetic models: Most of these models are based on
a 1D diffusive framework that represent the sediment
as horizontally homogenous layers in which particu-
late matter and pore-water solutes are explicitly rep-
resented. Advection, if accounted for at all, refers to
slow burial or is implicitly represented by large diffu-
sivities in the upper layers of the model. While these
models work well for clays and muds, they do not
appropriately represent permeable sediments because
they neglect advective flow, which is fundamental to
the latter’s biogeochemical functioning. Building on
pioneering contributions by Shum (1992, 1993,
1995), novel modeling work on permeable sediments

Continued

Box 2. Biogeochemical models and permeable
sediments.—cont’d

by Cardenas et al. (2008), Cardenas and
Wilson (2007a,b), and Meysman et al. (2007) showed
the importance of turbulence and oscillatory flows
for diagenetic modeling of sands. These models rep-
resent the 3D structure of sediments in idealized set-
tings on the scale of multiple sand ripples and are
forced by advective flows. Because they are highly
localized and computationally demanding, these per-
meable sediment models cannot presently be scaled
up to regional scales of tens to hundreds of
kilometers.

C. Sediment parameterizations: This group of approaches
does not explicitly represent sediments and the
physical transport and biogeochemical transforma-
tion processes within them. Instead, they are func-
tional relationships that assume steady state
exchange between the sediments and overlying
water column and can be approximated indepen-
dently of location if a set of input parameters is
known.

Except for the idealized and localized models of perme-
able sediments described in B, none of the above repre-
sent processes in permeable sediments well. Where
diagenetic models have been employed in conjunction
with 3D regional or global models, either as the basis
for the meta-model approach or directly coupled to the
water-column model, the 1D diffusive framework for
cohesive sediments was used.
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suggested that sands remove only a small amount of reactive
nitrogen via denitrification relative to fine-grained sediments
(Cook et al. 2006; Cardenas et al. 2008; Kessler et al. 2013;
Azizian et al. 2015). According to these studies, advective
flows can transport the remaining reactive nitrogen to the
overlying water, causing permeable sand beds to act as a net
source of reactive nitrogen.

Another well-established paradigm, the redox cascade,
states that microbial communities use electron acceptors to
oxidize organic matter following a sequence of high-to-low
energy yield. Denitrifiers were thought to only use nitrite and
nitrate as alternative electron acceptors once oxygen had been
depleted—therefore, denitrification is viewed as a strictly
anaerobic process that only occurs in a distinct horizontal sed-
iment layer below the oxygenated sediment surface layer
(i.e., upper millimeters). Moreover, oxygen was thought to
repress expression of the denitrification pathway (Bergaust
et al. 2012). Yet, several experimental studies using intertidal
and subtidal sands from the South Atlantic Bight (Rao
et al. 2007, 2008) and the Wadden Sea (Gao et al. 2010;
Marchant et al. 2017) have observed high rates of N2 produc-
tion under oxic conditions. One explanation for this so-called
aerobic denitrification is as follows. As currents remobilize the
sand bed, the shifting sediment topography varies the oxygen
penetration depths and exposes freshly buried organic matter
to anoxic and oxic conditions. In tidal systems with rapidly
fluctuating redox conditions, it may therefore be favorable to
constantly express multiple respiratory pathways to capitalize
on the variety of energy sources available—in other words,
denitrifiers may have adapted to simultaneously use oxygen
and nitrate (Gao et al. 2010; Marchant et al. 2017). Aerobic
denitrification may not be a universal phenomenon (Evrard
et al. 2013), but could also arise due to temporary anoxic
microniches in oxic sediment, as suggested for the water col-
umn (Bianchi et al. 2018).

It is also unclear whether other environmental parameters
such as bottom water nitrate concentrations are important in
driving denitrification rates in submerged sands. Denitrifica-
tion can either be fueled by nitrate from the overlying water
(direct denitrification), or nitrate produced in the sediment
(coupled nitrification–denitrification). Measurements in differ-
ent shelf environments have found that the supply of nitrate
from the overlying water may not always drive permeable sed-
iment denitrification. At certain sites, coupled nitrification–
denitrification is an important nitrogen loss pathway (South
Atlantic Bight, southeast US shelf, Rao et al. 2008; Wadden
Sea, northwest European shelf, Gao et al. 2012; German Bight,
northwest European shelf, Marchant et al. 2016); at sites
where transport predominates over reaction rates, nitrate may
pass through the system without much effect on sedimentary
denitrification (northwest Africa shelf; Sokoll et al. 2016). On
the other hand, reactive transport models suggest that in
some environments with permeable sea beds, the majority of
denitrification is fed by nitrate from overlying water (Kessler

et al. 2012, 2013). These modeling studies predict that during
periods with no bedload transport and stationary ripples,
upward pore-water flow through a “redox chimney” at ripple
peaks causes ammonium release from deeper, anoxic sedi-
ments to the overlying water, allowing it to bypass nitrifica-
tion in the surface oxic zone. Therefore, the models suggest
that the coupling between nitrification and denitrification in
stationary sand beds is weak and direct denitrification domi-
nates. Given these recent measured and modeled results, the
influence of bottom water nitrate on permeable denitrification
rates likely depends on the ambient flow regime.

These controversies have practical implications in terms of
modeling denitrification at shelf and global scales, and hence
for estimating the marine nitrogen budget. The most recent
estimates of this budget find that marine nitrogen loss via
denitrification exceeds known inputs by 60–234 Tg N yr�1

(Codispoti et al. 2001; Codispoti 2007; Voss et al. 2013). This
imbalance largely owes to a high benthic denitrification rate,
which in turn is based on sparse observations of denitrifica-
tion in shelf sediments. If denitrification rates in shelf sands
are lower than in finer-grained sediments, it might explain
the apparent imbalance in the global nitrogen budget. Sub-
stantial denitrification in these sands as suggested by recent
findings, on the other hand, would further increase the imbal-
ance. If denitrification can be parameterized with easily mea-
sured factors such as water column nitrate and/or oxygen
concentrations, then models might be used to predict rates.
For example, a recent model used water column nitrate and
phosphate concentrations to estimate global patterns of deni-
trification rates (Wang et al. 2019). Yet, as summarized above,
some studies have found that nitrate and/or oxygen concen-
trations are not the primary or exclusive control of denitrifica-
tion rates in sands, confounding efforts to take this approach.
If this is truly the case, then models of nitrogen loss in shelf
sediments that commonly rely on sediment oxygen consump-
tion as a proxy for denitrification (Fennel et al. 2006) may
have to be revised. If anaerobic microenvironments exist in
the aerobic layer of permeable sediments, either in organic
particles (Jahnke 1985) or intragranular spaces in carbonate
sands (Kessler et al. 2014), approaches like Bianchi
et al. (2018)’s—which represents anaerobic microenviron-
ments in sinking particles in a globally applicable parameteri-
zation for water-column denitrification—may prove useful.
Furthermore, if denitrification rates are governed not only by
reaction kinetics but also by metabolic responses to changing
electron acceptors, then this feature should be incorporated
into reactive transport models.

Fate in a changing environment
Our understanding of permeable shelf sediment nitrogen

dynamics is rudimentary, and our knowledge of how they will
respond to climate change and other anthropogenic forcings
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is even more limited. Here, we hypothesize plausible scenarios
largely based on studies from impermeable marine sediments.

Ocean water temperatures are increasing globally as are
occurrences of extreme heat events (Bronselaer and
Zanna 2020; Chen et al. 2015; Liu et al. 2016). We anticipate

that elevated water temperature will lead to a series of physi-
cal, chemical, and biological changes that could have negative
as well as positive effects on permeable shelf sediment nitro-
gen cycling (Fig. 3).

Warming water temperatures are leading to global
decreases in water column oxygen concentrations (Breitburg
et al. 2018). Increasing hypoxia may limit coupled
nitrification–denitrification, a potential dominant pathway of
nitrogen removal in permeable shelf sediments. Second,
warming will increase stratification of the shelf water column,
ultimately lowering organic matter deposition to the perme-
able shelf seafloor (Fields et al. 2014). This decrease in organic
matter loading to the benthos may be exacerbated by
warming-induced decreases in phytoplankton size (Mor�an
et al. 2010), and overall declines in productivity (Gregg 2005;
Boyce et al. 2010; Hofmann et al. 2011). Faster metabolic rates
can lead to enhanced microbial and zooplankton grazing in
the water column (Brown et al. 2004; Sommer and
Lengfellner 2008). Thus, warming may decrease the quantity
and quality of organic matter reaching permeable shelf sedi-
ments, subsequently limiting their “bioreactor” capabilities.

Changes in the timing and magnitude of freshwater inputs
to shelf systems may increase stratification but will surely
deliver more anthropogenic nutrients. Given the anticipated
escalations in extreme precipitation events, we predict that
extreme biogeochemical events on shelf environments may
follow (Lu et al. 2020). Ensuing larger oscillations in the con-
centrations of reactive nitrogen, organic matter, and oxygen
have the potential to boost sandy shelf sediment denitrifica-
tion through enhancing spatial and temporal redox gradients
and substrate supply. Predicted future changes in wind speeds
and the severity of storm events (Young and Ribal 2019) simi-
larly have the potential to enhance nitrogen cycling through
increased mixing. Stronger winds result in higher waves,
deeper mixing, and enhanced redistribution of dissolved oxy-
gen, nutrients, organic matter, and sediments. Water column
mixing induced by storm events could stimulate primary pro-
ductivity, even on oligotrophic shelves (Chen et al. 2021).

Fig. 3. Hypothesized scenarios depicting how environmental changes
caused by human activities could alter denitrification rates in shelf sedi-
ments. (A) Present situation. (B) Warming increases water column stratifi-
cation, which reduces mixing and reoxygenation of the water column
and may therefore lower rates of coupled nitrification–denitrification.
Warming has also been linked to smaller phytoplankton cells and
increased bacterial and zooplankton grazing, which may alter organic
matter deposition to sediments and ultimately lower rates of benthic
denitrification. (C) Increased freshwater inputs enhance terrestrial nutrient
release to the ocean, stimulating phytoplankton production, and organic
matter deposition, thereby increasing rates of sedimentary denitrification.
(D) Increased wind speeds and storm severity temporarily enhance
mixing and reoxygenation of the water column and promote sediment
erosion/redeposition, stimulating coupled sediment nitrification–denitrifi-
cation. Many other scenarios are possible. O2, dissolved oxygen; OM,
organic matter.
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These examples outline some hypothetical scenarios that may
be caused by the changing global climate, but a plethora of
other developments is possible, some of which may be
beyond our current imagination.

Predicting the future of continental shelf nitrogen cycling
thus is challenging given the lack of data, but also due to the
large ecological variety of shelf environments. One unifying
framework for approaching studies of future change on conti-
nental shelves might be binning them by residence time, as
Fennel and Testa (2019) suggest. In doing so, we can highlight
areas that may be under threat from certain variables.

Moving forward
Evidence is mounting that permeable sediments on conti-

nental shelves play a larger role in global biogeochemical
cycling than previously thought. However, many global nitro-
gen budgets still do not even include sediments. To predict
future changes in global biogeochemical cycles, we must
resolve major uncertainties surrounding the nitrogen removal
capacity of continental shelf sediments. These predictions are
required now more than ever, given that reactive nitrogen
from human inputs exceeds that from natural nitrogen fixa-
tion (Voss et al. 2013). This perturbation directly and indi-
rectly contributes to climate change (Pinder et al. 2012),
coastal eutrophication, harmful algal blooms, spreading of
hypoxic zones (Diaz and Rosenberg 2008), and threatens
coastal economies and important fisheries. Furthermore, it
may alter the capacity of shelf sediments to process nitrogen.

As our activities continue to push the nitrogen cycle out of
balance, pinning down the “ever faster moving target”
(Gruber 2016) of the marine nitrogen budget is becoming
increasingly challenging. To date, few studies have incorpo-
rated both transport and reaction in shelf sediments. More-
over, our sparse collection of studies (Fig. 2) has virtually all
focused on temperate shelves; far more work is required in
tropical carbonate sands and Arctic shelves.

We suggest three questions to focus future research on
shelf sediments, and in particular, permeable shelf sediments:

1. How do anthropogenic influences (nitrogen loading,
warming, acidification, oxygen decrease, and sea level rise)
impact denitrification?

2. How does denitrification vary with spatial and temporal
dynamics (at different latitudes and climates; upwelling
shelves vs. river-dominated shelves; seasonal vs. episodic
storm events)?

3. What are the present magnitudes and major trends of
denitrification?

We propose a three-pronged approach to resolve these
questions. First and foremost, we must increase the temporal
and spatial resolution of in situ measurements in the inner
shelf. These field observations are critical to providing a win-
dow into the rates, timing, and location of biogeochemical

processes in shelf environments and developing parameteriza-
tions for models. Novel in situ measurement techniques cur-
rently being developed for dynamic shelf sediments include
aquatic eddy covariance instruments (Johnson et al. 2011;
Huettel et al. 2020) and underwater mass spectrometers (Bell
et al. 2012; Chua et al. 2021). The former can measure
sediment-water fluxes of oxygen and nitrate in real time with
no disturbances of sediment, light, or hydrodynamics. The lat-
ter can resolve multiple dissolved gas species simultaneously
at high temporal resolution in the bottom water and within
the sediment. Second, it is crucial to conduct laboratory
experiments that investigate the transport-driven nitrogen
cycling reactions in shelf sediments of different permeabilities
under controlled conditions. These studies (Kessler et al. 2012;
Marchant et al. 2017) will help us identify the key drivers of
nitrogen cycling in permeable and fine-grained sediments,
informing the design of field campaigns and providing valida-
tion for mechanistic models. Finally, we should further refine
diagenetic models that incorporate the complex advective
flow in sands (Cook et al. 2006; Cardenas et al. 2008; Kessler
et al. 2013) and pursue modeling approaches that can extrap-
olate field measurements and small-scale model simulations
to the shelf scale.

Because the inner shelf is such a dynamic environment,
obtaining accurate field observations is a particularly challeng-
ing task—while measurement platforms such as gliders and
moorings are increasingly being developed for the water col-
umn (Chai et al. 2020), we lack similar efforts to design tech-
nology to study marine sediments. Consequently, we must
develop standardized sampling schemes and technology for
simultaneously measuring hydrodynamic patterns and bio-
geochemical variables (e.g., solute/particle concentrations and
fluxes) in sediments in diverse shelf environments and at mul-
tiple time scales. Lab and field observations, as well as data
from small-scale models, are necessary to determine which
factors are key to nitrogen cycling in shelf sediments. To make
sense of these observations and data, critical parameters such
as sediment type, permeability, bottom current dynamics, and
flushing rate should be reported alongside rate data. We
expect that the magnitudes and distribution patterns of key
parameters affecting benthic denitrification on the shelf
(Fig. 1) will change, which may alter the depth and the areal
extent of the zone of maximum benthic denitrification.
Predicting these changes is challenging, as the complexity of
potential coastal ocean changes generates a spectrum of differ-
ent scenarios.

Developing small-scale diagenetic models will allow us to
obtain mechanistic insights into the biogeochemical function-
ing of permeable sediments, especially when combined with
laboratory experiments that explore the impacts of likely
drivers over a range of controlled conditions. For large-scale
models, one can compare the biogeochemical processing that
occurs due to advective pumping of reactants in permeable
sediments to subgrid-scale processes in geophysical models of
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atmosphere and ocean (e.g., cloud condensation, turbulent
diffusion). Some processes cannot be explicitly resolved on
large scales and thus must be parameterized. While it is possi-
ble to represent turbulent and oscillatory advective flow in
permeable sediments through direct Large-Eddy Simulation
modeling, doing so at scales of tens to thousands of kilome-
ters will remain intractable for the foreseeable future. We
advocate for a meta-model approach where tested process-
based, small-scale models are used to derive parameterizations
that can be used in large-scale models. The challenge, then, is
to determine which factors best explain spatiotemporal varia-
tions in sediment biogeochemical processing and can be used
as the input variables for such parameterizations. Some obvi-
ous candidates are water depth, wave action, bottom currents,
sediment permeability, and large- and small-scale topography,
but there are likely others that remain to be explored. Accu-
rately representing dynamic biogeochemical inner shelf pro-
cesses at the global scale poses considerable challenges—but
doing so may reduce one of the largest sources of uncertainty
in the global nitrogen budget.

Understanding and quantifying nitrogen cycling on the shelf
are indispensable for designing global carbon and nutrient
models and budgets. Accelerating human-induced changes to
coastal and marine systems emphasize the urgency to develop
adaptive models that permit a dynamic assessment of the con-
sequences of the environmental changes for shelf and marine
ecosystems. To develop these models, we require data from the
inner shelf that, at present, are unavailable. Given our growing
recognition of the importance of shelf sediments in global
nitrogen cycling, we require a concerted effort to develop sensor
systems for these environments. Improved measurement
methods are fundamental to determining the role of continen-
tal shelf sediments in marine nitrogen cycling and predicting
how it may change in the Anthropocene. In turn, obtaining a
better knowledge of nitrogen cycling will advance our under-
standing of carbon cycling, and ultimately global climate.
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