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Summary 

Small RNAs (sRNAs) are important gene regulators in bacteria. Many sRNAs act post-
transcriptionally by affecting translation and degradation of the target mRNAs upon base-pairing 
interactions. Here we present a general approach combining imaging and mathematical modeling 
to determine kinetic parameters at different levels of sRNA-mediated gene regulation that 
contribute to overall regulation efficacy. Our data reveal that certain sRNAs previously 
characterized as post-transcriptional regulators can regulate some targets co-transcriptionally, 
leading to a revised model that sRNA-mediated regulation can occur early in an mRNA’s lifetime, 
as soon as the sRNA binding site is transcribed. This co-transcriptional regulation is likely 
mediated by Rho-dependent termination when transcription-coupled translation is reduced upon 
sRNA binding. Our data also reveal several important kinetic steps that contribute to the 
differential regulation of mRNA targets by an sRNA. Particularly, binding of sRNA to the target 
mRNA may dictate the regulation hierarchy observed within an sRNA regulon. 
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Introduction 

To cope with changes in both natural and host environments, microbes have evolved diverse 
mechanisms to sense and respond to stress conditions. Small RNAs (sRNAs) are common 
mediators of gene regulation in bacteria, and have been observed to provide survival benefits 
during infections, biofilm formation, and exposure to toxins and antibiotics (Caldelari et al., 2013; 
Felden and Cattoir, 2018; Gerdes and Wagner, 2007; Holmqvist and Wagner, 2017; Mika and 
Hengge, 2013). In the canonical scheme of sRNA-mediated gene regulation (Figure 1A), sRNAs, 
often along with a chaperone protein, Hfq, target mRNAs via incomplete Watson-Crick base-
pairing (Gottesman and Storz, 2011). As many sRNA binding sites on target mRNAs partially 
overlap with the ribosome binding site (RBS), binding of sRNAs can affect mRNA translation. In 
addition, the stability of the mRNAs can be affected through RNase E-mediated co-degradation 
of the sRNA-mRNA complex (Carrier et al., 2018; Gottesman and Storz, 2011; Wagner and 
Romby, 2015). Previous biochemical studies suggest two mechanisms for sRNA-mediated 
degradation: (1) sRNA-mediated reduction of translation leads to a change in degradosome 
access to the target mRNA, thereby increasing the degradation rate of sRNA-bound mRNA 
(Arnold et al., 1998; Braun et al., 1998; Prévost et al., 2011; Yarchuk et al., 1992) (here referred 
to as “passive degradation”, or “translation-coupled degradation”), and (2) modulation of 
degradation through direct recruitment of the degradosome (Bandyra et al., 2012; Massé et al., 
2003; Morita et al., 2005; Prévost et al., 2011; Vanderpool and Gottesman, 2004) (here referred 
to as “active degradation”). For a particular target mRNA, distinct sRNAs may regulate at one or 
more levels of expression – translation or mRNA stability – by different molecular mechanisms 
(Carrier et al., 2018; Massé et al., 2003; Vanderpool and Gottesman, 2004; Wagner and Romby, 
2015). However, how control at each of these levels quantitatively contributes to the overall 
regulation efficacy is not well characterized. 

            One characteristic feature of sRNA regulators is their ability to regulate multiple target 
mRNAs (Beisel and Storz, 2010; Bobrovskyy et al., 2019; Nitzan et al., 2017; Papenfort and Vogel, 
2009). Previous studies have shown that the regulation of various targets by the same sRNA can 
exhibit a hierarchical pattern; i.e. certain targets are more effectively regulated than others (Jost 
et al., 2013; Levine et al., 2007). Such prioritization in regulation helps optimize stress responses 
when sRNA abundance is limited (Fang et al., 2016). However, the in vivo kinetic determinants 
that set the regulation hierarchy are largely unclear. A previous in vivo kinetic characterization of 
the sRNA target search and sRNA-mRNA co-degradation processes suggests that the in vivo 
binding affinity between specific sRNA-mRNA pairs can contribute to setting the regulatory 
hierarchy (Fei et al., 2015), whereas the in vitro binding affinity does not seem to correlate with 
the regulation hierarchy (Bobrovskyy et al., 2019). These observations suggest that in vivo target 
search and regulation kinetics may be collectively determined by complex molecular interactions 
and kinetic pathways that are difficult to fully recapitulate in vitro and therefore require in vivo 
characterization.  

          In this work, we sought to provide a comprehensive model of sRNA-mediated regulation at 
the level of translation and mRNA stability. To achieve this goal, we utilized a genetically and 
biochemically well-characterized E. coli sRNA, SgrS, as a model. SgrS is the central regulatory 
effector of the glucose-phosphate stress response. Intracellular accumulation of phosphorylated 
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glycolytic intermediates, such as the phosphorylated glucose analog a-methyl glucoside-6-
phosphate (aMG6P), along with depletion of other glycolytic intermediates, launches transcription 
of SgrS, and subsequent regulation of several mRNA targets (Richards et al., 2013). The best 
characterized targets include negatively regulated ptsG mRNA (encoding glucose transporter) 
(Vanderpool and Gottesman, 2004, 2007), manXYZ mRNA (encoding mannose transporter) 
(Rice and Vanderpool, 2011; Rice et al., 2012), purR mRNA (encoding purine biosynthesis operon 
repressor) (Bobrovskyy and Vanderpool, 2014, 2016), as well as positively regulated yigL mRNA 
(encoding a phosphatase that can dephosphorylate non-metabolizable sugars) (Bobrovskyy and 
Vanderpool, 2016; Papenfort et al., 2013). 

          By implementing a combined single-cell imaging and mathematical modeling approach, we 
determined the kinetic parameters of SgrS regulation of a subset of its target mRNAs. 
Unexpectedly, our data reveal that instead of acting exclusively on fully synthesized transcripts, 
SgrS is able to regulate some targets co-transcriptionally. We found that another sRNA, RyhB 
also acts on nascent mRNA co-transcriptionally, demonstrating that this is a feature of at least 
two sRNAs previously characterized as post-transcriptional regulators. We find that co-
transcriptional regulation by SgrS is attenuated when Rho factor activity is inhibited, indicating 
that this co-transcriptional regulation is likely due to Rho-dependent termination following sRNA-
mediated repression of translation. Finally, our data suggest several important kinetic steps that 
may determine the efficiency and differential regulation of multiple mRNA targets by an sRNA. 
Binding of sRNA to the target mRNA is likely the rate-limiting step and may dictate the regulation 
hierarchy observed within an sRNA regulon. Our approach may be used as a general platform for 
dissecting kinetic parameters and providing mechanistic details for sRNA-mediated regulation.  
 
Results  

Kinetic model and experimental measurement of sRNA-mediated regulation 

Since SgrS has been biochemically characterized as a post-transcriptional gene regulator, we 
first set up a post-transcriptional regulation model to describe this process, including regulation at 
the levels of both translation and degradation (Figure 1A). In the absence of the sRNA, this model 
includes basal levels of mRNA transcription (αm, as rate constant), translation (kx), and 
endogenous mRNA and protein degradation (βm and βp respectively). When the sRNA is 
produced, its transcription rate is defined by αs and the effective degradation rate by βs. βs 
approximates endogenous degradation as well as target-coupled degradation with all other 
mRNA targets except for the specific target mRNA of interest. The sRNA binds to an mRNA target 
with an on-rate of kon and dissociates with an off-rate of koff. Upon binding, the translation activity 
of the bound mRNA changes to kxs. The sRNA-mediated degradation is described by βms for 
translation-coupled degradation and βe for active degradation.  

          Production of the sRNA, SgrS (from the endogenous chromosomal gene), was induced by 
exposing E. coli cells to glucose-phosphate stress using α-methylglucoside (αMG) under 
commonly used induction condition (Vanderpool and Gottesman, 2004). The target mRNAs 
(containing SgrS binding sequences) fused to the super-folder GFP (sfGFP) gene (Pédelacq et 
al., 2006) were carried on low-copy number plasmids under the control of a tetracycline promoter 
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(Ptet) (Figure 2A and Table S1). We pre-induced SgrS for 30 minutes before target mRNA 
induction, and then record time-course changes of SgrS, target mRNA and protein simultaneously 
upon mRNA induction (defined as time t = 0) (Figure 2B). Fractions of cells were fixed at different 
time points. SgrS and the target mRNAs were fluorescently labeled through fluorescence in situ 
hybridization (FISH) (Fei et al., 2015). Translation of the sfGFP fusion produced a direct 
fluorescent readout for protein levels (Figure 2B). The single-cell sRNA, mRNA, and protein levels 
were characterized by their volume-integrated fluorescent signals (Reyer et al., 2018). sRNA and 
mRNA copy numbers were further determined through reverse transcription and quantitative PCR 
(RT-qPCR)-based calibration (Figure 2C and S1). The abundance of endogenous ptsG mRNA is 
1-2 copies per cell under our growth conditions measured by RT-qPCR, compared to a few 
hundred copies of the ptsG-sfGFP fusion mRNA expressed from the plasmid, suggesting that the 
contribution of the endogenous mRNAs to our measurement is negligible. As the copy numbers 
of the RNAs were in the range of tens to hundreds per cell, we described the time-dependent 
changes in sRNA, mRNA, and protein deterministically by mass action equations (Figure 1B). 

   We chose to pre-induce the sRNA for two reasons. First, by capturing the sRNA-mediated 
changes in the production of new proteins, we can more accurately measure regulation at the 
translational level. sRNA-mediated regulation generally occurs within minutes (Fender et al., 2010; 
Levine et al., 2007; Vanderpool and Gottesman, 2004). However, many proteins, including the 
reporter sfGFP, have long lifetimes in E.coli, which are essentially determined by rate of dilution 
due to cell division (Maurizi, 1992). Therefore, the fluorescent signal from already existing proteins 
in the cell can overwhelm any protein level changes caused by sRNAs. Second, and more 
importantly, we were interested in the timing of sRNA-mediated regulation of target mRNAs and 
more specifically, whether sRNAs can act on the newly synthesized mRNAs co-transcriptionally. 
In the case of pre-induced mRNA, the mature mRNAs outcompete the nascent mRNAs owing to 
their relative abundances, which may make any effect at the transcriptional level undetectable.   

   For each sRNA-mRNA pair, we measured the time-course changes of sRNA, mRNA and 
protein levels in four genetic backgrounds: wild-type (WT), ΔsgrS, rne701, and rne701 ΔsgrS. 
Time-dependent changes in mRNA and protein were recorded in the absence of SgrS for the 
determination of αm and kx of each target mRNA. By comparing the fusion mRNA and protein 
levels in the ΔsgrS strain in the presence of αMG with the corresponding levels in the WT strain 
in the absence of αMG, we noticed that the presence of αMG alone (i.e., without ensuing 
production of SgrS) reduced the induction of the mRNA fusion (Table S2). One possible 
explanation for this effect is that the presence of the non-metabolizable αMG stresses the cell and 
reduces transcriptional activity in general. Therefore, to quantify the regulation by the sRNA 
specifically, we use the ΔsgrS and rne701 ΔsgrS grown in the presence of αMG as our “-sRNA” 
condition to determine αm and kx of the target mRNA in the WT and rne701 backgrounds, 
respectively.  

          Comparison of the kinetic behaviors in the WT vs. rne701 strain allowed us to separate the 
effect of sRNA-mediated passive and active degradation. The rne701 allele encodes a truncated 
RNase E protein lacking part of the C-terminal unstructured region (Urban and Vogel, 2007), 
including RhlB, enolase, PNPase and Hfq binding sites (Bandyra et al., 2012, 2018; Hui et al., 
2014; Mohanty and Kushner, 2016). The rne701 mutant still retains its catalytic function but has 
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an impaired ability to interact with Hfq (Morita et al., 2004, 2005; Urban and Vogel, 2007). 
Consistent with previous reports (Fei et al., 2015; Sedlyarova et al., 2016), βm of the fusion 
mRNAs, measured using rifampicin pulse-chase experiments, did not show any difference 
between the WT and rne mutant background (Figure S2A). This result suggests that rne701 has 
a minor effect on endogenous mRNA degradation, and that accessibility to the translated mRNA 
is unlikely to be affected by the partial truncation of the C-terminal region of RNase E. Our model 
therefore assumes that SgrS-mediated mRNA degradation in the rne701 background is primarily 
through translation-coupled degradation.  

           Finally, additional parameters were experimentally measured to further constrain our 
model. We measured βs by first inducing SgrS and then washing away the inducer (Figure S2C). 
βs was slightly slower in the rne701 background, suggesting that active co-degradation with target 
mRNAs contributes to the ensemble sRNA turnover, consistent with previous results (Fei et al., 
2015). We approximated sfGFP protein half-life using the cell doubling time (~90 min) under our 
experimental condition (Figure S2D). The six-minute folding time of sfGFP was accounted for in 
the model by building in a six-minute delay between mRNA and protein production (i.e., the protein 
present at t = 12 minutes is translated by the mRNA present at t = 6 minutes). αs was determined 
by measuring the time-dependent production of SgrS upon induction.  

Simulation predicts that SgrS may regulate ptsG co-transcriptionally 

Under the assumption that SgrS regulates ptsG-sfGFP mRNA post-transcriptionally, we fixed the 
αm and kx values obtained from the ΔsgrS and rne701 ΔsgrS strains and fit the rest of the 
parameters based on the measurements of the WT and rne701 strain in the presence of αMG, 
including βe, βms, kxs, kon, and koff. However, the optimized parameters of the post-transcriptional 
regulation model did not accurately describe the experimental data, specifically the amplitude of 
sRNA-induced repression (Figure 3A). We therefore considered an alternative model that 
included the possibility that SgrS could regulate its targets co-transcriptionally, rather than 
exclusively post-transcriptionally.  

  Initially, we modeled co-transcriptional regulation by allowing αm to change in the 
presence of sRNA (denoted αms). This model fit the data well (Figure S3A). The resulting αms (0.87 
± 0.05 molecules•s-1) was smaller than αm (1.9 ± 0.3 molecules•s-1), i.e., transcription was slower 
in the presence of the sRNA. Since the FISH probes for the target mRNA specifically bind to the 
sfGFP coding region in the mRNA fusion downstream of the sRNA binding site, we infer that 
generation of the full-length mRNA, and therefore the fluorescent signal, was reduced upon sRNA 
binding, or sRNA-mediated regulation may occur during transcription. In addition, the reduction in 
αm, was more pronounced in the WT rne background (αms = 0.46 αm) compared to in the rne701 
background (αms = 0.98 αm), suggesting that a fully assembled degradosome contributes to the 
strength of co-transcriptional regulation.   

SgrS decreases the abundance ratio of downstream to upstream regions relative to the 
SgrS binding site on the target mRNA 
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Since, according to our model, co-transcriptional regulation by SgrS reduces the production of 
full-length ptsG-sfGFP mRNA, we reasoned that this may be reflected by a decrease in the 
abundance of downstream (from the SgrS binding site) relative to upstream regions on the ptsG-
sfGFP mRNA (henceforth referred to as the “D/U ratio”). To experimentally measure the D/U ratio, 
we devised a RT-qPCR assay, using two sets of primers: one amplifying the region upstream of 
the SgrS binding site, and the other amplifying the downstream region (Figure 4A). To evaluate 
the D/U ratio change specifically contributed by the co-transcriptional regulation, we compared 
RT-qPCR results on extracted RNA from cells at 1 and 15 min after mRNA induction (Figure 4B). 
At 1 min after induction (D/Ut=1), since the cellular level of mRNA is low (Figure 2C), the fraction 
of nascent mRNAs, i.e., the mRNAs still being transcribed, compared to fully synthesized mRNAs, 
should be relatively high. We therefore considered this pool of ptsG-sfGFP mRNAs as relatively 
enriched in nascent mRNAs and expected that effects at the co-transcriptional level would be 
enhanced in this sample. At 15 min after induction (D/Ut=15), ptsG-sfGFP mRNA levels reach 
steady-state, with a high cellular abundance (Figure 2C); thus, the fraction of nascent mRNAs 
should be minimal compared to fully synthesized mRNAs. We therefore reasoned that effects at 
the co-transcriptional level are largely buried by effects at the post-transcriptional level at this time 
point.  

          We measured D/Ut=1 and D/Ut=15 in the WT and ΔsgrS cells in the presence of αMG (Figure 
4C). The ratio between the D/U ratios of WT and ΔsgrS cells (reported as “D/U (+/-)” in Figure 
4C-E) reflects the change of D/U introduced by SgrS. D/Ut=15(+/-) was 0.67±0.18 (mean ± 
propagated s.d.), suggesting that the regulation by SgrS caused reduction in the abundance of 
the downstream region compared to the upstream region of the SgrS binding site on the mRNA. 
The reduced D/Ut=15 upon SgrS regulation may be explained by the directionality of RNase E 
activity, i.e., an enhanced RNase E activity on the downstream fragment with 5’ monophosphate 
(Baek et al., 2019; Jiang and Belasco, 2004; Mackie, 1998). In comparison, D/Ut=1(+/-) was 
0.35±0.03, suggesting that in the nascent-mRNA enriched pool, the regulation by SgrS led to 
significantly more reduction in the abundance of the downstream region compared to the 
upstream region, and supporting our prediction that SgrS further repressed the generation of the 
downstream portion co-transcriptionally. As a control, D/Ut=1(+/-) and D/Ut=15(+/-) remained around 
1 when inducing a non-matching sRNA, RyhB, a small RNA that is produced in response to iron 
depletion, by adding 2,2’-dipyridyl (referred to as “DIP”) into the culture (Figure 4D) (Massé and 
Gottesman, 2002). In addition, the difference between D/Ut=1(+/-) (0.28±0.08) and D/Ut=15(+/-) 
(0.44±0.14) was slightly less in the rne701 background (Figure 4C), consistent with the predicted 
trend from the simulation that the co-transcriptional regulation is stronger in the WT background.   

Co-transcriptional regulation by SgrS is dependent on Rho activity 

Though co-transcriptional regulation was stronger in WT compared to the rne701 background, it 
was nonetheless present in both backgrounds. We inferred that RNase E may play a role in co-
transcriptional regulation, however, additional factors may contribute. One mechanism that could 
underlie co-transcriptional regulation is Rho-dependent termination. As SgrS binding to mRNA 
targets leads to translational repression, reduction in the transcription-coupled translation could 
lead to increased Rho access to the mRNA followed by premature termination. To test this 
possibility, we compared the D/U ratios in the presence Bicyclomycin (BCM). BCM targets and 
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selectively inhibits Rho-dependent transcription termination (Cho et al., 1997; Kohn and Widger, 
2005). In the presence of BCM, the significant disparity between D/Ut=1(+/-) and D/Ut=15(+/-) 
disappeared, indicating that in the absence of Rho-dependent transcription termination, co-
transcriptional regulation is insignificant relative to post-transcriptional regulation (Figure 4E). We 
therefore conclude that SgrS-induced co-transcriptional regulation of ptsG-sfGFP is Rho-
dependent. 

A revised kinetic model containing co-transcriptional regulation module 

          After experimentally confirming SgrS-dependent co-transcriptional regulation, we then 
improved the kinetic model by linking sRNA binding directly to the co-transcriptional regulation 
(Figure 1C and D). In this revised model, we assumed that sRNA binds and unbinds nascent and 
mature mRNAs with the same kon and koff. In order to allow for co-transcriptional binding, mRNA 
transcription is separated into two steps: initiation (kini) and elongation (kelon). When nascent 
mRNAs are bound by sRNA during elongation, a free parameter (P) is introduced to the model, 
representing the probability of generating the full-length, mature mRNA. We allow P to differ 
between the WT and rne701 backgrounds. In addition, we applied the Bayesian information 
criterion (BIC), where a penalty is applied to the co-transcriptional model for its two added 
parameters (namely, P, in WT rne and rne701 background) (Kass and Wasserman, 1995), to 
select between co-transcriptional and post-transcriptional regulation models. The co-
transcriptional model with the lower BIC value was selected, and significantly improved the fitting 
of data for the SgrS regulation of ptsG-sfGFP (Figure 3B). Consistent with the qPCR results, P 
was lower in the WT background than in the rne701 background (Table S3).            

          To validate the co-transcriptional regulation model, we generated two data sets. In the first, 
we reduced the induction of SgrS using a lower concentration of αMG and measured αs 
experimentally. In the second, we reversed the induction order of SgrS and ptsG-sfGFP mRNA, 
presenting the condition under which newly induced sRNAs regulate pre-existing mRNA targets. 
We simulated the time courses of SgrS, ptsG-sfGFP mRNA, and sfGFP using the best set of 
parameters obtained from a model with (Figure 5A and B) or without (Figure 5C and D) co-
transcriptional regulation, respectively. In both cases, the co-transcriptional regulation model 
predicted the experimental data better.  

Co-transcriptional regulation may be a mechanism utilized by other sRNAs 

We next asked if co-transcriptional regulation might be a feature shared by other previously 
characterized post-transcriptional sRNA regulators. We applied the same imaging and modeling 
scheme to RyhB and one of its targets, sodB. We generated two fusion mRNAs, sodB130 and 
sodB130+30, containing the RyhB binding site and sfGFP gene (Table S1). sodB130+30 contains an 
additional 30 nucleotides which include a RNase E cleavage site and is more sensitive to RyhB 
regulation at the degradation level (Prévost et al., 2011). 

          The responses of sodB130 and sodB130+30 to RyhB regulation were again best captured by 
the co-transcriptional regulation model (Figures S4 and S5), suggesting that co-transcriptional 
regulation is not unique to SgrS. Consistent with the SgrS regulation, co-transcriptional regulation 
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for RyhB was also more efficient in the WT background compared to rne701. In addition, the βe 
value of the sodB130+30 was ~4.5 fold higher than that of the sodB130, in line with the addition of 
the RNase E cleavage site in sodB130+30, serving as an additional validation of our model.  

Parameters that contribute to regulation efficiency of sRNA over different targets 

We next fit the models to two other SgrS targets, manX and purR. It has been established that 
ptsG is the primary target of SgrS, manX is a secondary target, and purR is a lower-priority target 
(Bobrovskyy et al., 2019). Consistently, we observed 78%, 53% and 18% repression respectively 
for ptsG, manX and purR at the protein level at 24 minutes under the same SgrS induction 
condition (Table S3). At steady state, the model predicted the regulation efficiency to be 57%, 43% 
and 5% at the protein level, and 48%, 33% and 11% at the mRNA level for ptsG, manX and purR, 
respectively. BIC suggested that the co-transcriptional regulation model better fit manX (Figure 
S6), but the post-transcriptional model better fit purR (Figure S7), indicating that the contribution 
of co-transcriptional regulation for purR is negligible.  Comparison of the parameters for the three 
mRNA targets for SgrS and two targets for RyhB suggests features that contribute to the overall 
regulation efficiency (Figure 6A and B, Table S3). 

          Within the same sRNA regulon, a faster binding rate led to more efficient regulation. We 
found that kon changed more dramatically than koff among different targets. For SgrS, the 
difference in koff was within ~2-2.5 fold among the three targets, whereas the change in the kon 
values was up to ~40 fold between ptsG and purR, suggesting that the binding kinetics is 
dominated by kon. Interestingly, although sodB130 and sodB130+30 had the same RyhB target site, 
which led to the similar koff, sodB130+30 showed a higher kon than sodB130 (see Discussion). In 
addition, RyhB had a much higher koff for the sodB constructs compared to SgrS.   

          The repression at the translation level (kxs/kx) contributed positively to the regulation 
efficiency among the SgrS targets. The SgrS binding site is located in the 5’ UTR of ptsG mRNA, 
partially overlapping the RBS, and within the first 10 codons and 34 codons in the coding region 
of manX and purR respectively (Azam and Vanderpool, 2018; Bobrovskyy and Vanderpool, 2016). 
SgrS inhibits translation initiation on these mRNAs through different mechanisms. On ptsG mRNA, 
base pairing of SgrS directly blocks ribosome binding, while on manX and purR mRNAs, binding 
of SgrS guides Hfq to bind at a site close to the RBS to block ribosome binding (Azam and 
Vanderpool, 2018; Bobrovskyy and Vanderpool, 2016). Our results indicate that direct binding of 
SgrS at the RBS may be more efficient in repressing translation, and that the efficiency of 
translational regulation may decrease as the sRNA binding site moves further into the coding 
region. kxs/kx was similar among the two sodB constructs subject to RyhB regulation, consistent 
with the fact that they share the same RyhB binding site. However, even though RyhB also 
regulates sodB through directly blocking ribosome binding at the RBS (Geissmann and Touati, 
2004; Vecerek et al., 2003), the repression of translation was less efficient than for SgrS regulation 
of ptsG, suggesting that the different structures of sRNA-mRNA duplexes may affect translation 
to different extents.  

          For all target mRNAs, βms was larger than the corresponding βm, supporting the translation-
coupled degradation model in which reduced translation of the sRNA-bound mRNA leads to faster 



 9 

degradation . For the three SgrS targets, there was no correlation between βe and regulation 
efficiency. Although a higher βe was observed for purR, a much smaller kon value for purR limited 
the regulation efficiency, making it the least repressed target of SgrS. The impact of active 
degradation became more evident when comparing the two RyhB targets, in which most other 
parameters were similar. The higher βe value of the sodB130+30 contributed to a higher regulation 
efficiency of sodB130+30 (67% and 67% at protein and mRNA levels for sodB130+30 respectively 
compared to 48% and 37% for sodB130).  

          Finally, we observed a positive correlation between the strength of co-transcriptional 
regulation and the overall regulation efficiency. Co-transcriptionally bound ptsG had a lower 
probability of generating a full-length mRNA compared to manX, while purR was insignificantly 
affected by co-transcriptional regulation. Similarly, co-transcriptionally bound sodB130+30 had a 
lower probability of generating a full-length mRNA compared to sodB130.  

Discussion 

We have presented here a general approach combining imaging and modeling, which can be 
used to quantify the kinetic parameters underlying differential regulation of multiple mRNA targets 
by a single sRNA. While we focused on mRNAs that are downregulated by their corresponding 
sRNA, we expect that this approach can easily be adapted to upregulated mRNA targets. In our 
revised model, SgrS and RyhB can act on nascent transcripts as soon as their binding sites are 
released from the RNA polymerases (Figure 7A). Further tests on SgrS demonstrate that this co-
transcriptional regulation is promoted by Rho-dependent termination, but also affected by the C-
terminal region of RNase E. Our model provides the most comprehensive description of sRNA-
mediated gene regulation to date and helps dissect kinetic parameters governing hierarchical 
regulation. We find that binding of SgrS or RyhB to the mRNA target is the rate-limiting step and 
the primary determinant for setting hierarchical regulation, while regulation at transcription, 
translation and degradation levels all contribute. Given that SgrS and RyhB are representatives 
of a large class of base pairing-dependent sRNA regulators, it is possible that similar kinetic 
behavior may apply to other sRNAs in this class and their regulons.  

          While our model uses a plasmid-encoded reporter for the target mRNAs, the kinetic 
parameters we report here should reflect those for endogenous RNAs. Particularly, the 
degradation rates of the reporter mRNAs and sRNAs are consistent with reported values from 
previous studies examining endogenous RNAs (Fei et al., 2015). In addition, the kon of SgrS/ptsG-
sfGFP and SgrS/manX-sfGFP reported here are within 1-5 fold of the values for SgrS binding to 
endogenous ptsG and manX mRNAs (Fei et al., 2015). Since the stability of SgrS and RyhB, as 
well as their target binding are Hfq dependent, the close match between the kinetic parameters 
measured here and the numbers reported for endogenous RNAs suggests that the plasmid 
expression of the target mRNAs did not cause Hfq to become a limiting factor. In addition, a recent 
study reveals that sRNAs can effectively gain access to Hfq even if it is already occupied by 
mRNAs in vivo (Park et al., 2021), further arguing against Hfq becoming the limiting factor in our 
measurements.  
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Previous models of sRNA regulation were able to reproduce mRNA repression assuming 
only post-transcriptional regulation (Arbel-Goren et al., 2013, 2016; Jost et al., 2013; Lavi-Itzkovitz 
et al., 2014; Levine and Hwa, 2008; Levine et al., 2007; Mehta et al., 2008; Mitarai et al., 2009; 
Schmiedel et al., 2012). The different order of sRNA and mRNA induction may explain why co-
transcriptional regulation has not been noted in previous studies. Previous studies mostly either 
induced sRNAs in the presence of pre-existing mRNAs, or co-induced mRNAs and sRNAs 
simultaneously, whereas we pre-induced sRNAs to a certain level before inducing and tracking 
the changes of targets. Therefore, we created a time window, i.e., early induction phase, when 
the mature mRNA level was low and the ratio between the nascent mRNA and the mature mRNA 
was high. Given the high abundance of pre-induced sRNA, and assuming in our model that sRNA 
used the same binding kinetics for both nascent and mature mRNA targets, the action of sRNA 
at the co-transcriptional level was enhanced compared to the cases where mature mRNAs were 
predominant. The effect of co-transcriptional regulation may be further enhanced by the target 
being plasmid-encoded, as the sRNA may more effectively regulate mRNA co-transcriptionally 
generated from multiple transcription sites.  

          While the majority of sRNAs are categorized as post-transcriptional regulators, cases have 
been reported in which sRNAs can regulate transcription elongation, for example, by modulating 
the accessibility of the binding site of Rho factor, or by the conformational switch between 
terminator and antiterminator structures (Brantl et al., 1993; Giangrossi et al., 2010; Novick et al., 
1989; Tran et al., 2011). Interestingly, previously characterized post-transcriptional sRNA 
regulators, DsrA, ArcZ and RprA can also upregulate the target rpoS mRNA by suppressing pre-
mature Rho-dependent transcription termination, a mechanism that may be widespread in 
bacterial genes with long 5’ UTRs containing a Rho binding site (Sedlyarova et al., 2016). In 
addition, ChiX sRNA was observed to co-transcriptionally regulate the distal gene in the chiP 
cistron by inducing Rho-dependent termination within the chiP coding region, establishing a 
regulation polarity on the downstream gene within the same cistron (Bossi et al., 2012). More 
recently, the sRNA OppZ was found to regulate the transcription of oppBCDF mRNA through Rho 
by inhibiting translation, while having minimal effect on the stability of the transcript (Hoyos et al., 
2020). Our results demonstrate, using SgrS and RyhB as examples, that co-transcriptional 
regulation may be a common feature for sRNAs that can regulate at the translational level, and 
that regulation on transcription, translation and mRNA degradation by a sRNA can occur 
simultaneously. While translational repression of the mature mRNAs by sRNAs increases their 
susceptibility to ribonucleases in the cytoplasm, repression of transcription-coupled translation on 
the nascent mRNA increases the access of Rho and therefore promotes pre-mature transcription 
termination. It remains to be demonstrated whether such Rho-dependent co-transcriptional 
regulation is pervasive throughout sRNA regulons. In addition, our results indicate that the 
presence of the intact scaffold region of RNase E positively contributes to the co-transcriptional 
regulation. Future investigation is needed to pinpoint the mechanistic role of RNase E in the co-
transcriptional regulation.  

 Although our target mRNA genes are encoded by plasmids, it is very likely that SgrS and 
RyhB can act co-transcriptionally on mRNAs produced from the endogenous genes. In order for 
sRNAs to co-transcriptionally regulate chromosomally encoded targets, sRNAs should be able to 
diffuse into the nucleoid region. A previous report demonstrated that sRNAs have unbiased 
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distribution between the nucleoid and cytoplasm using a few plasmid-encoded sRNAs as 
examples (Fei and Sharma, 2018; Sheng et al., 2017). Here, using single-molecule localization 
microscopy (SMLM), we confirmed the unbiased localization for endogenously expressed SgrS 
and RyhB (Figure 7B-E). In addition, the chaperone protein, Hfq, was observed to diffuse freely 
into the nucleoid region (Park et al., 2021; Persson et al., 2013) and to bind to nascent transcripts 
(Kambara et al., 2018). It is likely that at least part of the Hfq binding to the nascent transcripts is 
mediated by sRNAs. For Rho-dependent termination to contribute to co-transcriptional regulation 
of mRNA targets, Rho utilization (Rut) sites in the endogenous mRNAs must be present. 
Interestingly, the leader sequences of ptsG and manX demonstrated sensitivity to BCM treatment 
in a study by Sedlyarova, et al. (Sedlyarova et al., 2016), consistent with the presence of Rut sites 
within these endogenous mRNAs. Although the tested targets were not found to contain Rut sites 
in a recent transcriptome mapping using cells under exponential growth (Adams et al., 2021), it 
is possible that more Rut sites can be identified in the presence of sRNAs when translation is 
repressed on the target mRNAs, as in our experimental conditions.  

          Our model reveals several kinetic steps that can determine the overall regulation efficiency. 
The binding kinetics between the sRNA and mRNA are the primary determinant of regulation 
efficiency. While koff differs substantially between different sRNAs, within the regulon of a given 
sRNA, kon changes more dramatically compared to koff, and contributes to setting the regulation 
priority among different mRNAs. At a constant kon, the strength of translational regulation (kxs/kx), 
sRNA-induced RNase E-mediated active degradation (βe), and regulation efficiency at the co-
transcriptional level (P) all positively contribute to the overall regulation efficiency (Figure 6B). 
However, a kon above 105 M-1S-1 is generally needed to repress the target by more than 50% 
regardless of the rates or efficiencies at other steps (Figure 6B), suggesting that binding of the 
sRNA to the target mRNA might be the rate-limiting step. This is consistent with the observation 
that purR, which has a very low kon, has the lowest regulation efficiency among SgrS regulon 
despite a higher βe.  

          The in vivo koff value we measured here is of the same order of magnitude compared to the 
in vitro value using short sRNA-mRNA pair in a recent study (Małecka and Woodson, 2021), 
suggesting that the restructuring of the target mRNA and abortive annealing of the sRNA-mRNA 
pair could contribute to the fast sRNA dissociation rate in vivo (Małecka and Woodson, 2021). In 
addition, other factors in vivo such as competitive ribosome binding may also trigger fast sRNA 
dissociation. The in vivo kon value, on the other hand, is 1-2 orders of magnitude smaller than the 
in vitro measured value (Małecka and Woodson, 2021).  With a kon of 105 M-1S-1, it takes a single 
sRNA ~170 min, and a hundred copies of sRNA ~1.7 min to find a target mRNA. The generally 
slow binding rates of sRNAs requires high sRNA abundance for efficient gene regulation. The in 
vivo binding kinetics are not correlated with the in vitro predicted hybridization thermodynamics 
(Table S1) (Markham and Zuker, 2005), suggesting that more factors in vivo can affect the sRNA 
target search process. A recent RIL-seq (RNA Interaction by Ligation and sequencing) based 
study found a positive correlation between the Hfq occupancy of the target mRNA and sRNA-
target interaction frequency, indicating that the binding efficiency of Hfq may affect the sRNA 
binding kinetics and therefore regulation efficiency of the target mRNA (Faigenbaum-Romm et al., 
2020). In addition, the accessibility of the sRNA target site on the mRNA and the requirement for 
structural rearrangements could also contribute to the differential sRNA binding kinetics among 
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different targets. Interestingly, when comparing different sRNA-mRNA pairs, we found a positive 
correlation between kon and the basal translation rate of the mRNA (kx) (Figure 6C), as noted 
previously (Lavi-Itzkovitz et al., 2014). Specifically, a higher kon observed for sodB130+30 compared 
to sodB130 is possibly due to its higher kx. This correlation implies a potential positive role of 
translating ribosomes in promoting sRNA binding.  From a functional point-of-view, it is logical to 
have a higher regulation efficiency on the most translated targets under stress conditions to 
achieve the most effective response. One possible mechanism by which the ribosome can 
facilitate sRNA binding is through unwinding the secondary structures at the sRNA binding site 
(Hoekzema et al., 2019), while other potential mechanisms are yet to be uncovered.  

          Finally, assuming an sRNA follows the same binding kinetics for nascent and mature mRNA 
targets, our model indicates that the relative contributions of regulation at co-transcriptional and 
post-transcriptional levels depends on the number of potential Rut sites on the mRNA and the 
relative abundance of nascent and mature mRNAs. Therefore, it is conceivable that during the 
initial phase of stress, due to the relatively higher abundance of mature mRNAs, the contribution 
of post-transcriptional regulation might dominate, whereas in the later phase of the stress, when 
most target mRNAs undergo sRNA-mediated degradation, co-transcriptional regulation might 
become dominant. This shift of sRNA action from mature mRNAs to newly transcribed mRNAs 
would be beneficial to achieving timely and efficient regulation upon stress.  
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Figure legends 
 
Figure 1. Model of sRNA-mediated regulation in vivo. (A) Kinetic model describing sRNA-
mediated, post-transcriptional regulation. (B) ODE for post-transcriptional regulation model. (C) 
Kinetic model for co-transcriptional regulation. (D) ODE for co-transcriptional regulation model. 
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Parameters are described in the text. Dashed blue and red boxes enclose the pathways in the 
absence and presence of sRNA respectively. 

Figure 2. Illustration of experimental setup and representative results. (A) Illustration of the 
target mRNA, including the SgrS binding site region from the endogenous mRNA target and a 
coding region for sfGFP reporter. (B) Representative images of SgrS (red), ptsG-sfGFP mRNA 
(green) and sfGFP signal (blue) in the absence (upper) or presence (lower) of sRNA induction. 
(C) Measured sRNA, mRNA, and protein levels from images in (B). Points with error bars 
represent standard deviation (s.d.) from 2-3 biological replicates, with each replicate containing 
~500-1000 cells. 

Figure 3. Fitting of SgrS regulation of ptsG expression with post-transcriptional and co-
transcriptional regulation models. Time-dependent changes of SgrS, ptsG-sfGFP mRNA, and 
sfGFP levels in the presence or absence of SgrS, and in the WT rne background or rne701 
background, fit with (A) post-transcriptional regulation model using one-step transcription module, 
or (B) co-transcriptional regulation model with two-step transcription module. Points with error 
bars represent s.d. of experimental data from 2-3 biological replicates, each containing ~500-
1000 cells. Black lines represent best fits. Shaded, colored regions represent predicted error of 
the fitting, calculated by sampling one hundred sets of kinetic parameters from the posterior 
distribution and plotting the associated curves over the observed data.  

Figure 4. RT-qPCR measurement of the D/U ratio. (A) Schematic illustration of the qPCR primer 
binding sites relative to SgrS binding site on the mRNA. (B) Schematic illustration of total RNAs 
extracted at different time points of mRNA induction, which contain different ratios of nascent 
mRNAs to fully transcribed mRNAs. (C) Reduction in the D/U ratio of ptsG-sfGFP mRNA affected 
by SgrS (D/U(+/-), defined by the ratio of D/U(+) (in the presence of SgrS) to D/U(-) (in the absence 
of the SgrS). (D) D/U(+/-) of ptsG-sfGFP mRNA is unaffected by RyhB. (E) D/U(+/-) of ptsG-sfGFP 
mRNA affected by SgrS with addition of Bicyclomycin (BCM). 50 μg/mL BCM was added 15 
minutes before the time of cell collection, i.e. at t = -14 min relative to mRNA induction for cells 
collected at t=1 min, and t = 0 relative to mRNA induction for cells collected at t = 15 min. For 
each data set, the s,d, of D/U(-) and D/U(+) were calculated respectively from 3-8 biological 
replicates. The reported error bars for D/U(+/-) were propagated s.d., calculated using standard 
error propagation formulas. Significance values from two-sample t-tests are reported above error 
bars. 

Figure 5. Co-transcriptional regulation model outperforms the co-transcriptional model in 
predicting the kinetics of sRNA regulation. (A) Simulated prediction (black curve with shaded, 
colored region) using co-transcriptional regulation model for validation dataset with (A) reduced 
αMG concentration for SgrS induction, and (B) pre-induced mRNA, overlaid with experimental 
data (points with error bars representing s,d, from 2-3 biological replicates, each containing ~500-
1000 cells). Simulated prediction using post-transcriptional regulation model for validation dataset 
with (C) reduced αMG concentration for SgrS induction, and (D) pre-induced mRNA.  

Figure 6. Kinetic parameters that contribute to regulation efficiency of sRNA over different 
targets. (A) Parameters of sRNA regulation over different mRNA targets. Error bars represents 
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s.d. from 2-3 biological replicates, each containing ~500-1000 cells. p-values for two-sample t-
tests are provided for pairwise comparisons.  * indicates p<0.0001. (B) Protein-level repression 
heatmap, calculated by screening across the listed parameters. Repression level of 1 represents 
complete repression of protein expression; 0 means no repression. For the left panel, 𝛽e = 1.0x10-
3S-1, and P = 0.32. For middle panel, kxs/kx = 0.5 and P = 0.32. For right panel, kxs/kx = 0.5 and 𝛽e 
= 1.0x10-3S-1. For all simulations, kinit, kx, koff, 𝛽m, 𝛽ms, 𝛽s, and 𝛼s are set to the measured or MAP 
values for ptsG (Tables S2 and S3). (C) kon vs. kx for all mRNA targets. Error bars represent s,d 
of calculated MAP values (Table S2 and S3). 

Figure 7. Model for co-transcriptional regulation by sRNAs. (A) sRNAs can freely diffuse in 
into the nucleoid region of bacterial cells and bind to the target mRNAs as soon as the sRNA 
binding site is transcribed. Binding of sRNA affect transcriptional-coupled translation and increase 
the binding of Rho, thereby terminating transcription. Recruitment of RNase E through its C-
terminal scaffold region positively contributes to the efficiency of co-transcriptional regulation. 
Representative SMLM images of SgrS in the absence of ptsG-sfGFP mRNA induction (30 min 
after sRNA induction, before mRNA induced) (B), and in the presence ptsG-sfGFP mRNA 
induction (54 min after sRNA induction, 24 min after mRNA induction) (C). Representative SMLM 
images of RyhB in the absence (D) and presence (E) of sodB130-sfGFP induction. Red spots are 
sRNA signals detected by SMLM imaging. Blue area represents DAPI-stained nucleoid region. 
(F) Enrichment of for SgrS and RyhB in the absence and presence of the target mRNA in the 
nucleoid and cytoplasm regions. Error bars represents s.d. from 2-3 biological replicates, each 
containing ~100 cells.  
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STAR Materials and methods 
 
RESOURCE AVAILABILITY 
 
Lead contact 
 
Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the lead contact, Jingyi Fei (jingyifei@uchicago.edu). 
 
Materials availability 
 
All strains and plasmids in this study are available from the lead contact upon request. 
 
Data and code availability 
 

• All data has been deposited at Mendeley Data and are publicly available as of the date 
of publication. The DOIs are listed in the key resources table. 

• All original code has been deposited at Zenodo and is publicly available as of the date of 
publication. DOIs are listed in the key resource table. 

• Any additional information required to reanalyze the data reported in this paper is 
available from the lead contact upon request. 

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Bacterial strains, plasmids  

DB166 was made via P1 transduction by moving lacIq, tetR, specR cassette from JH111 (Rice 
and Vanderpool, 2011) into DJ480. ΔryhB∷cat was moved to DB166 from EM1453 (Jacques et 
al., 2006) via P1 transduction to create DB186. rne701-FLAG-cat was moved into strains DB166 
and JH111 (Rice and Vanderpool, 2011) by P1 transduction from TM528 (Morita et al., 2004) to 
create XM100 and XM101 respectively. The ryhB::tet allele in strain XM221 was created by using 
primers OXM211 and OXM212 with homology to RyhB to amplify the tetracycline resistance 
cassette.  The PCR product was recombined into the chromosome of XM100 using λ red functions 
provided by pSIM6 (Datta et al., 2006). 

      All cell strains used in this work are listed in Key Resources Table, and primers used for PCR 
are listed in Supplementary Table S5. 

METHOD DETAILS 

Plasmid construction 

Target mRNAs are all encoded by pSMART plasmid and under Ptet promoter. Target mRNA 
reporters carry the small RNA binding sequence from the endogenous mRNAs, and a sfGFP gene 
(Supplementary Table S1). pSMART_ptsG-10aa-sfGFP (“10aa” refers to the first 10 codons) was 
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generated from pZEMB8 (Bobrovskyy et al., 2019) using site directed mutagenesis and the 
pSMART LCKan Blunt Cloning Kit (Lucigen, 40821-2). Briefly, the lac promoter of pZEMB8 was 
switched to a tet promoter to reduce leaky expression, using primers (JZ25 and JZ26) that include 
5’ overhangs containing the tetracycline promoter sequence. The fragment containing the entire 
promoter, gene of interest, and terminator was generated by PCR using primers EH1 and EH2 
and ligated into the pSMART vector, following manufacturer’s instructions. pSMART_manX-
34aa_sfGFP was generated following the same method as pSMART_ptsG-10aa_sfGFP, with 
pZEMB10 (Bobrovskyy and Vanderpool, 2016) serving as the template for the manX-34aa-sfGFP 
region, and primers JZ26 and EH3 containing the tetracycline promoter sequence. 
pSMART_ptsG-10aa-sfGFP was further used to generate pSMART_purR-32aa-sfGFP and 
pSMART_sodB430-sfGFP using Gibson Assembly. sodB430 contains RyhB binding site on sodB 
mRNA and additional 363 nucleotides in the coding region. pSMART_sodB130-sfGFP and 
pSMART_sodB130+30-sfGFP were generated from pSMART_sodB430-sfGFP by using primers 
(EH390/EH391 and EH440/441) that amplify the entire plasmid, excluding the regions that were 
not desired in sodB130-sfGFP or sodB130+30-sfGFP. The PCR products were then phosphorylated 
(NEB M0201S) and ligated (NEB M0202S) before transformation. Each plasmid was confirmed 
by DNA sequencing and transformed into the various genetic backgrounds utilized in this study. 

      All plasmids used in this work are listed in Key Resources Table, and primers used for PCR 
are listed in Supplementary Table S5. 

Culture growth and induction for imaging 
For all imaging and qPCR experiments, overnight E. coli cultures were grown in LB media with 
25 ug/mL Kanamycin. Overnight cultures were diluted 100-fold in MOPS-Minimal media 
(TEKnova, M2106) supplemented with 1% glycerol and 25 µg/mL kanamycin at 37 °C. The cells 
were grown to approximately OD = 0.2-0.3, at which point SgrS or RyhB was induced by adding 
0.5% αMG or 500 µM DIP directly to the culture. The stress was present for 30 minutes before 
induction of the reporter mRNA construct using 10 ng/mL anhydrous tetracycline (aTc, Sigma-
Aldrich). The time of aTc induction marked the t=0 time point in imaging experiments. Fractions 
of cells were taken at different time points after mRNA induction for downstream sample treatment.  
  
Fluorescence in situ hybridization (FISH) 

10 FISH probes targeting the sfGFP coding region, 9 probes for SgrS and 4 probes for RyhB were 
designed using the Stellaris Probe Designer from Biosearch, and labeled as previously described 
(Fei et al., 2015). sfGFP probes were labeled Alexa Fluor 568 NHS ester (A568, Invitrogen 
A20003). SgrS and RyhB probes were labeled with Alexa Fluor 647 NHS ester (A647, Invitrogen 
A20006). The16S rRNA probe was labeled with Alexa Fluor 405 NHS ester (A405, Invitrogen 
A30000). The A405 signal serves to indicate sufficient permeabilization. FISH was performed as 
previously described (Fei et al., 2015). 10 mL of culture of cells were taken out at the 
corresponding time points and fixed with 4% formaldehyde at room temperature (RT) for 30 
minutes. Cells were then permeabilized with 70% ethanol for 1 hour at RT. After ethanol 
permeabilization, 60 µL samples were taken for each time point and cells were additionally 
permeabilized with 25 µg/mL lysozyme for 10 minutes (1 µg/mL lysozyme corresponds to 70 
units/mL). Cells were hybridized with labeled DNA probes (Supplementary Table S5) in the FISH 
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Hybridization buffer (10% dextran sulfate (Sigma D8906) and 10% formamide in 2x SSC) at 30° 
C in the dark for overnight. The concentration of the labeled probes was 15 nM per probe for 
mRNAs, 50 nM per probe for sRNAs, and 10 nM for 16S rRNA. After the hybridization, samples 
were washed three times with 10% formamide in 2x SSC and resuspended in 4x SSC.  

Epi-fluorescence Imaging and image analysis 

Cells in 4x SSC buffer were imaged in 3D printed 2-well chambers. 1.2-1.4 µL of the sample were 
placed on the glass slide bottom of the chamber, with a 1% agarose gel pad placed on top to lay 
the cells flat. Imaging was performed on a custom inverted microscope (Nikon Ti-E with 100x NA 
1.49 CFI HP TIRF oil immersion objective) (Park et al., 2018). Multicolor Z-stack images were 
taken with 0.130 µm step size and 11 slices for each color. SgrS-A647 and RyhB-A647, mRNA-
A568, sfGFP, and 16S rRNA-A405 were imaged with a 647 nm laser (Cobolt 06-01), a 561 nm 
laser (Coherent Obis LS), a 488 nm laser (Cobolt 06-01), and a 405 nm laser (CrystaLaser, 
DL405-025-O), respectively. In addition to the multicolor z-stack images, each image had a 
corresponding differential interference contrast (DIC) image, used for segmentation and image 
analysis purposes.  

         Cells were segmented individually based on DIC images using homemade MATLAB code 
(Reyer et al., 2018). The segmented cell mask was then overlaid on each color channel stack 
individually, and the volume-integrated fluorescence intensity was calculated by adding the area-
integrated intensities of each cell for the 5 most in-focus slices (the most in-focus slice, and two 
slices above and below). The background intensities of the image and of the cells due to 
nonspecific binding of the FISH probes were subtracted from the calculated volume-integrated 
intensities. The signal contributed by probe nonspecific binding was measured using the same 
imaging conditions by calculating the volume integrated intensities of cells lacking target RNAs 
but in the presence of the FISH probes at the same concentration as for positive samples. ΔsgrS 
cells (JH111) without transformation of any mRNA-sfGFP fusion plasmids were used for 
background measurements in the sRNA, mRNA, and GFP channels. The 16S rRNA-A405 signal 
was used as an indicator of sufficiently permeabilized and labeled cells. Background A405 
fluorescence intensity distribution due to probe nonspecific binding was first determined using 
cells labeled with the same concentration of off-target A405-labeled probes. A threshold at the 
90th percentile of the background intensity distribution was then used as the 405 intensity cutoff. 
Cells with 16S rRNA -A405 intensities below this threshold (less than 10% of the total population) 
were considered not sufficiently permeabilized, and not included in further analysis.  

SMLM Imaging and image analysis 

Single molecule localization microscopy (SMLM) imaging was conducted using the same 
microscope as described above with super-resolution modality (Park et al., 2018). Fixed cells 
were immobilized on the 8-well chambered glass coverslip (Cellvis C8-11.5H-N) using poly-L-
lysine (Sigma-Aldrich P8920) and imaged in imaging buffer (50 mM Tris-HCl, 10% glucose,1% 2-
Mercapgtoethanol (Sigma-Aldrich M6250), 50 U/mL glucose oxidase (Sigma Aldrich G2133-
10KU), 404 U/mL catalase (EMD Millipore 219001) in 2X SSC, pH = 8.0). Images were acquired 
through a custom programmed data acquisition code, which programs the laser power, camera 
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exposure time, and spot detection threshold, using the Nikon NIS JOBS function. SMLM images 
were reconstructed with the IDL analysis package as previously published (Park et al., 2018).  

RT and qPCR  

Total RNA was extracted from each sample using Trizol (Thermo Fisher, 15596026) extraction. 
2 mL culture of bacterial cells were collected at the desired time point and immediately spun at 
12,000 g for 1 minute in cold. The cell pellet was homogenized in 200 µL of trizol incubated at RT 
for 5 minutes. 1/5 volume of chloroform was added to the Trizol mixture. After incubation for 2-5 
minutes at RT, the mixture was centrifuged at 12,000 g for 5 minutes. The upper phase was 
transferred to a new tube and extracted again with chloroform. The aqueous layer was collected, 
from which the RNA was then precipitated by standard ethanol precipitation. The total RNA pellet 
is resuspended in nuclease-free water, and further desalted by a P6 microspin column (Bio-Rad, 
7326221). Genomic DNA contamination in the total RNA was further removed by DNase 
treatment. 2 µL of Turbo DNase (Thermo Fisher, AM2238) was added to 2 µg of total RNA, and 
the reaction was incubated for 2 hours at 37° C. The DNase was inactivated by adding EDTA (pH 
= 8) at a final concentration of 15 mM and incubating at 75° C for 10 minutes. The reaction was 
desalted by a P6 column.   

          Each reverse transcription (RT) reaction was performed using 50 ng total RNA in 1 mM 
dNTPs (NEB N0447S), 10% DMSO (Fisher, BP231), 10 mM DTT (Sigma-Aldrich, 10197777001), 
250 nM of gene specific reverse primer (IDT), and 20-fold dilution of reverse transcriptase from 
iScript cDNA Synthesis Kit (Bio-Rad, 1708891) and incubated following manufacturer instructions. 
Each qPCR reaction was prepared using 1X SsoAdvanced Universal SYBR Green Supermix 
(Bio-Rad 1725274), 250 nM forward and reverse primers (Supplementary Table S5), and 1 µL of 
cDNA generated by the RT reaction in a final volume of 20 µL. The qPCR reactions were 
performed with CFX real-time PCR system (Bio-Rad), using pre-incubation of 95 ºC for 30 s, 
followed by 40 cycles of 95 ºC for 10 s and 60 ºC for 30 s. The reported D/U ratio (RD/U), a ratio 
between the downstream and upstream amplification of the mRNA target, was calculated as:  

𝑅$/& =
1

2(+,-.+,/)
 

where CtD and CtU are the Ct values of the downstream and upstream amplicons respectively.   

Determination of sRNA and mRNA copy numbers 

To convert the mRNA and sRNA fluorescence values to molecule copy numbers, a qPCR 
calibration curve of RNA copy number vs. Ct value was first built. ptsG-sfGFP mRNA and SgrS 
were produced using in vitro transcription. PCR using forward primers harboring the T7 promoter 
sequence were used to produce linear dsDNA transcription templates (Supplementary Table S5) 
and 1 µg template was incubated in T7 buffer (160 mM HEPES-KOH, pH 7.5, 20 mM DTT, 3 mM 
each rNTP, 20 mM MgCl2, 2 mM spermidine, 120 unites SUPERase In RNAse inhibitor) and 10 
units T7 RNA polymerase (kind gift from Yuen-Ling Chan) at 37 ºC for overnight. 4 units TURBO 
DNase was added to remove template DNA and incubated at 37 ºC for an additional 2 hours. 
RNA was extracted using standard phenol-chloroform and confirmed on a 7% Urea-PAGE gel.  
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          To build a calibration curve between Ct value and RNA copy number, RT reactions were 
performed on a series of dilutions of in vitro transcribed RNA, from 10 ng to 0.001 ng. Different 
amounts of in vitro transcribed RNA were spiked into collected cell samples, then subjected to 
the same total RNA extraction protocol as described above. Briefly, JH111 cells (ΔsgrS cells with 
the plasmid encoding the mRNA-sfGFP) were grown under the same conditions used for imaging 
and collected when cells reached OD600  = 0.2-0.3. Cells were spun down, then homogenized in 
Trizol. At this point (after adding Trizol, but before subsequently spinning down and adding 
chloroform) the in vitro transcribed RNA was added. RT was performed using iScript cDNA 
Synthesis Kit (Bio-Rad, 1708891) and qPCR was performed using SsoAdvanced Universal SYBR 
Green Supermix (Bio-Rad 1725274). A linear function was fit between the Ct values of the qPCR 
reactions and the logarithm of the input RNA copy numbers (Figure S1A). The copy number of 
the RNA was calculated using the known molecular weight of the RNA and the amount of RNA 
added to the initial RT reaction. 

          To relate RNA copy number and arbitrary fluorescence values, cell samples with different 
RNA expression levels were subjected to RNA extraction, RT-qPCR, and fluorescence 
measurement, as described above. Based on the Ct value vs. RNA copy number calibration curve 
built above, sfGFP fusion mRNA and SgrS copy numbers were calculated for the extracted RNA 
of each sample, and further converted into copy number per cell based on the cell numbers 
measured by OD600 for each sample. RNA copy number per cell was then plotted against the 
volume-integrated cell fluorescent intensities for each corresponding sample and fit with a linear 
function (Figure S1B). Fluorescent intensities of the cells from the imaging experiments were 
compared to this calibration curve of fluorescent intensity vs. RNA copy number to extract RNA 
copy number per cell. For RyhB, the conversion factor between SgrS fluorescence values and 
copy number was multiplied by 4/9, as only 4 FISH probes were used to label RyhB compared to 
9 for SgrS, which was used to create the calibration curve. We assume a linear relationship 
between number of probes and fluorescent intensity.   

Simulation, fitting, and model selection 

We used Markov Chain Monte Carlo (MCMC) simulation to explore the parameter spaces of our 
kinetic models as defined by their ordinary differential equations (ODEs). Specifically, we utilized 
the emcee package (Foreman-Mackey et al., 2013), which is a Python implementation of the 
Goodman-Weare Affine Invariant Ensemble Sampler (Goodman and Weare, 2010), and 
integrated the ODEs with the LSODA solver (Petzold, 1983; Virtanen et al., 2020). In this 
approach, an ensemble of parameter sets evolves to sample a Bayesian posterior distribution, 
which is the product of a prior distribution and a likelihood function. Assuming Gaussian and 
independent errors, the logarithm of the likelihood (log-likelihood) function takes the form: 

𝐿 = ln𝑝(𝑦|𝑥, 𝜃) = 	;<−
1
2
;>

(𝑦?,@ − 𝑓B𝑥?,@C𝜃)	)D
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where 𝑚 is the molecular species (mRNA, sRNA, and protein in the WT and rne701 strain, for a 
total of 6), 𝑛 is the time point (7 in our case, 𝑡 = 0, 1, 3, 6, 12, 18 and 24 min), 𝑦?,@ is the 
experimental value for molecular species 𝑚 at time tn, (in units of copy number for sRNA and 
mRNA, and arbitrary fluorescent unit for protein), 𝑓B𝑥?,@C𝜃) is the simulated value for molecular 
species 𝑚  at time 𝑡@  given the parameter value set 𝜃 , 𝜎?,@D  is the experimental variance for 
molecular species m at time point 𝑡@. The six-minute folding time of sfGFP is directly accounted 
for in the fitting process by introducing a six minute time delay in protein observation, meaning 
that the protein fluorescent signal is assumed to have been produced by mRNA transcribed six 
minutes earlier (e.g. yWT-Protein,t=12 corresponds to yWT-mRNA,t=6). The log-posterior distribution is the 
sum of the log-prior distribution and log-likelihood function.    

          We fit parameters by running simulations in a two-step process. First, mRNA transcription 
and translation rates were fit using the –sRNA experimental data, i.e. the data acquired from the 
cell samples in the absence of sRNA. The best fit parameter values and their associated errors 
were used as prior distributions for transcription and translation rates in the second step, where 
the rest of the parameters were determined by fitting to the +sRNA experimental data, acquired 
from cell samples in the presence of sRNA.  For the co-transcriptional regulation model using the 
one-step transcription module, the –sRNA simulations explored a 3-dimensional parameter space: 
[𝛼m, kx, 𝛽m]; and the +sRNA simulations explored a 9-dimensional parameter space: [kon, koff, kxr, 
𝛽 e, 𝛽ms, kx_wt, kx_rne, 𝛼ms_wt, 𝛼ms_rne], where kxr is the ratio kxs/kx. For the post-transcriptional 
regulation model using the one-step transcription module, 𝛼ms_wt and 𝛼ms_rne were set to 𝛼m_wt and 
𝛼m_rne, respectively. For the co-transcriptional regulation model using the two-step transcription 
module, the –sRNA simulations explored a 3-dimensional space: [kinit, kx, 𝛽m]. The elongation rate, 
kelon was assumed to be a constant for each mRNA, determined by dividing a constant elongation 
speed (50 nucleotides per second (Young and Bremer, 1976)) by the length of the mRNA. The 
+sRNA simulations explored a 9-dimensional space [kon, koff, kxr,	𝛽e, 𝛽ms, kx_wt, kx_rne, Pwt, Prne], 
where Pwt and Prne represent the probability of generating full length mRNA in WT rne and rne701 
backgrounds, respectively. For the post-transcriptional regulation model using the two-step 
transcription module, Pwt and Prne were set to 1. For –sRNA simulations in 3 dimensions, 50 
walkers, representing 50 parameter sets, each evolved for 10000 steps, which we found to be a 
sufficient number of steps for the log posterior to level off. For +sRNA simulations in 9 dimensions, 
100 walkers each evolved for 10000 steps. Initial positions for the walkers were chosen at random 
from the bounded interval of possible values defined by its prior distribution. We used the default 
settings for the emcee sampler, such that the each move is a “stretch” move, with stretch 
parameter, a = 2, giving an average acceptance fraction equal to  0.44 (Foreman-Mackey et al., 
2013; Goodman and Weare, 2010). 

          For –sRNA fitting, the prior distributions for the free parameters were uniform distributions 
(Table S4). For the +sRNA fitting, the prior distributions of the parameters determined from the –
sRNA fitting were normal distributions centered on their –sRNA maximum a posteriori (MAP) 
values, and the prior distributions for the remaining parameters were uniform distributions. After 
the parameter fitting, the posterior probability distributions of the fitted parameters were 
determined, along with their MAP values and associated errors. For experimentally determined 
variables, the widths of the normal distributions were determined by their experimental errors. For 
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the remaining free parameters, the widths of the uniform distributions were set empirically, either 
by observing physical constraints (e.g., kon is constrained by the diffusion limit) or by logical 
constraints (e.g., kxr cannot be below 0 or above kx).  

          Each experimental replicate was fit separately. 𝜎?,@D  was the same across all replicates. A 
single set of parameter values was chosen to be the best fit for the combined samples by selecting 
the point estimate of the MAP parameter values for the best walker for each replicate, then 
averaging over the replicates. One replicate in a –sRNA simulation was one experimental dataset 
containing mRNA and associated protein values, with datasets for WT and rne701 backgrounds 
fit separately. One replicate in a +sRNA simulation was a combination of one experimental dataset 
in the WT background, and one in the rne701 background. The reported parameter values and 
their associated errors were the mean and standard deviations of the MAP values from all 
simulations, respectively. All simulations were performed with custom software written in Python, 
and parallelization was implemented using emcee. We utilize both CPU and GPU functions to 
maximize the efficiency of our simulations. All codes for all simulations are available publicly on 
GitHub: (https://github.com/JingyiFeiLab/Regulation_Kinetics). 

 The Bayesian information criterion (BIC) was used for model selection between post-
transcriptional and co-transcriptional regulation models. The BIC is defined as: 

BIC = 	𝑘	ln(𝑛) − 	2ln	(𝐿O) 

where 𝐿O	 is the maximized likelihood value of the model, 𝑘 is the number of parameters (𝑘	= 7 for 
post-transcriptional model, 𝑘 = 9 for co-transcriptional model, accounting for the added variables 
Pwt and Prne), 𝑛 is the number of data points or observations (𝑛 = 42 in our case, representing 7 
time points x 3 molecules x 2 rne backgrounds). For each target, the minimized BIC was 
calculated for both the post- and co-transcriptional models, and the model which produced the 
lowest BIC was selected. 

QUANTIFICATION AND STATISTICAL ANALYSIS 
 
All imaging data was quantified by custom written MATLAB code. The significance values 
reported in Figures 4 and 6 were calculated by two sampled t-tests. Statistical details are found 
in the figure legends.  
 
Supplemental Information 
 
Table S5. List of all oligonucleotides used in this study. Related to STAR Methods 
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