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ABSTRACT

Extended phase-space isokinetic methods in their deterministic [Minary et al., Phys. Rev. Lett. 93,
150201 (2004)] and stochastic forms [Leimkuhler et al., Mol. Phys. 111, 3579 (2013)] have proved
tremendously successful in allowing multiple time-scale molecular dynamics simulations to be per-
formed with very large time steps. These methods work by coupling the physical degrees of freedom
to a set of Nosé-Hoover chain or Nosé-Hoover Langevin thermostats via an isokinetic constraint,
which has the effect of avoiding resonance artifacts that plague multiple time-step algorithms. In
this paper, we introduce a new resonance-free approach that achieves the same gains in time step
but without the imposition of isokinetic constraints or the introduction of extended phase-space
variables. Rather, we modify the physical Hamiltonian that effects the same regulation of resonances
achieved by the isokinetic constraints. In so doing, we show that sampling errors can be controlled
and performance improvements are possible within a simpler Hamiltonian framework. The method
is demonstrated in simulations of the structure of liquid water and, in conjunction with enhanced
sampling, in generation of the Ramachandran free-energy surface of the solvated alanine dipeptide.
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1. Introduction - . _—
characteristic temporal fluctuations of such contributions

Multiple time-scale (MTS) integration [1-3] is an effec-
tive way of improving the efficiency of Molecular Dynam-
ics (MD) simulations. In classical MD, MTS algorithms
allow the most expensive computations, such as the eval-
uation of long-range van der Waals and electrostatic
components of a force field, to be done less frequently
than other components. This is possible because the

are much smaller than those of both non-bonded inter-
actions at short distances and bonded intramolecular
forces. If the main goal of a simulation is to estimate free-
energy differences or other ensemble averages, then the
maximum benefit one can obtain from MTS integration
occurs when the largest step size and the correlation time
of the system dynamics (i.e. the sampling period required
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2 C.R. A. ABREU AND M. E. TUCKERMAN

to obtain a series of uncorrelated configurations) have
the same value. Although this is theoretically feasible in
many situations, the full power of MTS integration has
only recently been fully realised. The reason for this was
the discovery of resonance artifacts [4-6], which limit the
maximum attainable step size in a MTS run.

Various strategies to overcome the limitations of reso-
nances have been proposed. One of the strategies, known
as the mollified impulse method [7,8], relies on altering
the slow part of the potential energy function. This is
done by evaluating the corresponding forces at filtered
positions, averaged along auxiliary trajectories which are,
in turn, dictated by the fast part of the potential. A related
method employs a generalised Langevin equation with a
colored-noise kernel designed to mollify high-frequency
components of the fast motion [9]. In another success-
ful approach, the dynamics is altered via the introduction
of a set of isokinetic constraints that couple the physi-
cal phase-space variables to a set of auxiliary variables in
an extended-system approach [10-13]. The basic recipe
consists in pairing the velocity of each physical degree
of freedom in the system with a set of extended-space
velocities, with a thermostat individually attached to each
one of them. The combined kinetic energy of each physi-
cal and corresponding extra velocities is then constrained
to be constant. In this way, the magnitude of any veloc-
ity can never exceed a certain value and, as a conse-
quence, the likelihood of resonance and instability in the
simulated dynamics decreases significantly. This proce-
dure is not meant to reproduce the Maxwell-Boltzmann
distribution of velocities of a canonical ensemble, how-
ever, it does generate the correct distribution of coor-
dinates [10-13]. The method was originally formulated
[10-12] with deterministic thermostats [14] and subse-
quently reformulated [13] with stochastic ones [15,16]. In
the latter case, it is known as the SIN(R) method, standing
for Stochastic Isokinetic Nosé-Hoover (RESPA) [13].

In the present paper, we introduce a new resonance-
free approach that samples the same velocity distribution
of the massive isokinetic framework without imposing
constraints or introducing extended phase-space veloc-
ities apart from those used for standard thermostatting
schemes such as Nosé-Hoover dynamics [17,18]. The
method consists in replacing the kinetic energy term in
the system Hamiltonian by a new momentum-dependent
function whose main purpose is to restrict the velocities
within a finite range, which we refer to here as regu-
lation. The potential energy part of the Hamiltonian is
kept unchanged. A consequence of the proposed reg-
ulation approach is that the velocity of an atom is no
longer proportional to its momentum. We present two
alternative thermostatting approaches, one based on the
generalised equipartition theorem [19], which involves

velocity-momentum products, and one based on a par-
ticular form entailing squared velocities [20]. The well-
known canonical equipartitioning is a limiting case in
both approaches.

After the theoretical argument for the proposed
framework is introduced, the remainder of the paper
is structured as follows. A detailed phase-space analy-
sis [21,22] is carried out in order to demonstrate that
the Boltzmann-Gibbs distribution of coordinates is cor-
rectly sampled with massive Nosé-Hoover [17,18] ther-
mostats as well as with their stochastic extensions known
as Nosé-Hoover-Langevin (NHL) thermostats [15,16].
Following this analysis, we propose a middle-type inte-
gration scheme [23,24], in which the thermostat action
takes place in the middle of the innermost loop, for
multiple time-scale (MTS) integration of the regulated
equations of motion. We then present a formulation of
regulated dynamics for enhanced sampling and free-
energy landscape determination within the frameworks
of Temperature-Accelerated MD [25]/ driven Adiabatic
Free Energy Dynamics [26,27], and its metadynamics-
based extension known as Unified Free Energy Dynamics
[28,29]. Finally, we carry out numerical calculations to
verify the efficacy of regulation in avoiding resonance
artifacts and its accuracy in the computation of config-
urational averages even when very large time steps are
employed. For this demonstration, we simulate a fully-
flexible water system with outer time steps At < 90 fsand
obtain free energy surfaces for dihedral angles of alanine
dipeptide in aqueous solution with At < 120 fs using the
enhanced sampling-based formulation.

In the appendix, we determine the probability den-
sities and corresponding moments involved in the reg-
ulated ensemble and demonstrate that the regulated
version of the massive NHL method not only reproduces
the isokinetic ensemble but is also closely related to the
SIN(R) method [13] in terms of dynamics.

2. Theory
2.1. Molecular dynamics in the canonical ensemble

For a classical system with coordinates r € RY/, where
Ny is the number of degrees of freedom, we are often
interested in computing canonical-ensemble averages of
a purely configurational property, A(r), as

(A) = % / A(r) e YO/KT gy (1)

where T is the temperature, k is the Boltzmann constant,
U(r) is a potential energy function, and Z is the configu-
rational partition function. This is usually accomplished



by defining a standard Hamiltonian

Hr,p)=U@) + ) ()
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and exploring the phase space by means of some canon-
ical (constant NVT) dynamics method. In this expres-
sion, p; is a momentum conjugate to r;, and m; is the
mass associated with a degree of freedom i. This proce-
dure samples the canonical probability density p(r, p)
e HrP/KT yp to small systematic deviations introduced
by the numerical temporal discretisation [30-33]. As a
result, coordinates are sampled with the desired probabil-
ities and, at the same time, each momentum p; fluctuates
according to a normal distribution whose mean is zero
and standard deviation is /m;kT.

In Hamiltonian dynamics, as well as in most non-
Hamiltonian methods devised to sample the canonical
ensemble, the velocity of a particle is the derivative of H
with respect to its momentum, that is, since 7; = dH /dp;,
and v; = ;, it follows that

oH

= (3)

Vi

Therefore, in a simulation with a standard Hamiltonian
of the form given in Equation (2), in which v; = %, a
large displacement will take place whenever the abso-
lute value of some momentum increases excessively due
to the action of a large force. Time discretisation can
cause such forces to emerge due to, for instance, spuri-
ous atomic overlaps, thus causing numerical instability.
Massive isokinetic methods [10-13] manage to avoid this
problem by setting an upper bound to the kinetic energy
of every degree of freedom. Therefore, the largest single-
step displacement that a coordinate r; can undergo dur-
ing a massive isokinetic simulation is ¢;5t, where 8t is the
size of each time step — or each inner time step, in the case
of a MTS simulation - and ¢; is the speed limit imposed
on such a degree of freedom (analogous to the role played
by the speed of light in Special Relativity). A side-effect of
this strategy is that the probability distribution of veloc-
ities is no longer Gaussian but has a particular form that
depends on the number of thermostats attached to each
degree of freedom [20]. On the one hand, the details of
the velocity and momentum distributions are not partic-
ularly relevant if one is only interested in configurational
averages. On the other hand, mixing times can actually
be affected, thus altering the efficiency with which the
coordinate space is sampled. We have shown [20] that,
on average, each atom is slower within isokinetic dynam-
ics than it would be in standard canonical/thermostatted
molecular dynamics at the same temperature.
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2.2. New Hamiltonian for regulated isothermal
dynamics

Inspired by the massive isokinetic methods [10-13,34],
we propose a new approach to impose a speed limit ¢;
on each degree of freedom in a dynamical system. This
approach, which we will refer to as regulated dynamics,
consists in using the following modified Hamiltonian:

Ny

pi
Ha(r,p) = U(r) + nkT » Incosh (—) , (4)
; A/ nm,-kT

where n > 0 is an arbitrary parameter.

The new Hamiltonian shares important properties
with that of Equation (2). For instance, H, is an even
function of every p; and is, therefore, invariant to changes
in sign of p;, i.e. p; — —p;. It is also separable in coordi-
nates and momenta, which makes the marginal equilib-
rium distributions of  and p independent of each other.
Finally, the marginal distribution of each component p;
of p is independent of that of p; for i # j. Together with
the condition that e="»("P/kT _ 0 when any [p;| —
00, such separability renders valid [35] the generalised
equipartition theorem [19], which states that

aHn _

Another desirable feature of H,, is that it approaches the
standard Hamiltonian when # increases. This becomes
clear by observing the series expansion

X X2 X4 X6
nlncosh (ﬁ) = ? — Fn =+ @ + O(XS). (6)

If a constant-NVT simulation is set up with the new
Hamiltonian, the coordinate distribution that will be
sampled is proportional to e”V™/kT a5t was designed to
do, while each momentum p; will be sampled according
to a probability density given by

r (%) pi
n i) = hn >
Pu(pi) r (g) nnmikTsec < nmikT) 2

where I'(-) is the complete gamma function. This prob-
ability density, whose normalisation constant is obtained
in Appendix 1, is depicted in the top row of Figure 1 for
various integer values of #.The tendency toward a normal
distribution with increasing n is evident. The figure also
depicts, in the middle row, the relation between velocity
and momentum for the same values of #n. Such a relation,
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obtained from Equations (3) and (4), is
v; = ¢;tanh (i> , (8)
mic;

where the limiting speed ¢; is given by

¢ = .| nk—T 9)
mi

It is interesting to observe the distribution of velocities,
whose form is derived in Appendix 1 and is given by

+1 2\ 51
l—r (HT) (1 — v_’> ’ if V2 < ¢
o= T () T2 =
0 otherwise
(10)

This distribution is depicted in the bottom row of Figure
1 for the same values of n as shown previously. With
n € N, such a distribution becomes identical to that cor-
responding to massive isokinetic dynamics [20], with
parameter n substituting for the number of thermostats
attached to each degree of freedom. One important
aspect of this distribution, which will be essential in the
forthcoming discussion about thermostat algorithms, is
the special form of the kinetic energy equipartition it
implies (see Appendix 1), which is, specifically,

n
n+1

(mvi) = kT. (11)
The standard canonical-ensemble equipartitioning is
approached only as n — o0, and the result is approached
from below, meaning that particles are slower, on aver-
age, than their counterparts in a canonical ensemble at
the same temperature. We have already observed this fact
in the case of massive isokinetic dynamics methods [20],
with implications in their capability of producing uncor-
related samples for configurational property determina-
tion. With a single thermostat per degree of freedom,
for instance, the mean kinetic energy of the system is
only half the value corresponding to a standard canonical
ensemble. Following the same principle, it is straight-
forward to devise a Hamiltonian that would lead to the
standard equipartition equation regardless of the value of
n.Itis

Ny
eqp . n+1 _
Hy " (r,p) =U@) + nkTgln cosh ( ,—nzmikT%) .

(12)

However, as we will show in this article through
numerical tests (see Section 4.1), such an alternative
Hamiltonian introduces new artifacts that compromise

o o
w [N
1 L

Probability Density
o
o
L

0.1
0.0 -
-3 -2 -1 0 1 2 3
Reduced Momentum ( TsikT)
7Sy '
JE 2 {—ach
"l L n=2
S A — n=4
> —
o 0 - n==_8
o
(]
S
o
[}
_é _9 - (b)
& T T T T 1 T T
-8 -3 -4 B 1 2 3
Reduced Momentum ( *r:fkT)
>
£ 0.6 - i n=4 [|
S H n=3y 1
o 1 1
> 1 normal |
2 041 | i
< 1
3 1
o
a 0.2 1 I 1
1 1
1 1
| |
0.0 f t T 1 Y
1

Reduced Velocity (W)

Figure 1. Influence of the parameter n present in the modified
Hamiltonian 7, as defined in Equation (4) on the probability dis-
tributions and velocity-momentum relation involved in the requ-
lated dynamics ensemble. (a) The momentum probability density,
Equation (7). (b) The velocity of a degree of freedom as a function
of its momentum, Equation (8). (c) The velocity probability density,
Equation (10).

its performance in multiple time-scale simulations as
compared to the performance of Equation (4). In an
attempt to understand why this is the case, we can
compare Figures 1(b) and 2, which shows the velocity-
momentum relationship that results from Hy,* via ; =
9H®P /dp;. The straight line that appears in both figures
represents the conventional relation v; = p;/m;. Note
that all curves in Figure 1(b) collapse onto this straight
line in the region around p; = 0, where the peak of the
momentum distribution lies. In contrast, as Figure 2
shows, requiring that (mjv?) = kT regardless of the n
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Figure 2. The velocity-momentum relation corresponding to the
alternative Hamiltonian 7, defined in Equation (12), which
yields standard energy equipartition regardless of the value of
parameter n.

parameter value implies that v; will always deviate from
pi/m; when n is small (see, e.g. the curve for n = 1). For
these reasons, requiring that the standard kinetic energy
equipartitioning be satisfied is not pursued further in our
proposed methods.

In the proceeding sections, we will describe simulation
methods that aim to reproduce a canonical distribution of
the new Hamiltonian. First, we employ a massive version
of an existing thermostat algorithm and show that it sim-
ply relies on the validity of the generalised equipartition
theorem, Equation (5), as the basis for proper thermostat-
ting. Next, we devise a new algorithm that relies on the
particular equipartitioning in Equation (11) instead. A
marked difference between these two principles is that
the quantity subject to equipartitioning in Equation (5) is
unbounded due to the presence of p;, whereas its counter-
partin Equation (11) has m;c? as an upper bound. For this
reason, we will classify methods based on Equation (5)
as semi-regulated, as a way of distinguishing them from
those based on Equation (11). Finally, although it is
beyond the scope of this article, it is worth mentioning
that higher-order central moments (see Appendix 1) can
also be used for implementing thermostatting schemes,
as in, for example, the Generalised Gaussian Moment
method [36].

3. Methods

3.1. Semi-regulated Nosé-Hoover-Langevin
dynamics

In order to derive equations of motion for a regulated
NVT dynamics in the physical phase space (r,p), we
employ a massive version of the Nosé-Hoover-Langevin
(NHL) method [15,16]. This begins by extending the
phase space with Ny extra pairs of coordinates 7 € RN
and conjugate momenta p, € RY. An inertial parame-
ter Qy; is associated with each degree of freedom. The
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dynamics of the NHL method is described by a system
of stochastic differential equations (SDEs)

dr; = v;dt = ¢; tanh < pi > dt, (13a)

mic;

dp; = <p,~ _ g i p) dt, and (13b)

dpy, = (pivi —kT)dt — ypy, dt + /2y Qu,kT dW,,,
(13¢)

where F; = —0U/dr; is the force exerted on i, y is a fric-
tion constant, and dW,, denotes an infinitesimal incre-
ment of a Wiener process. Note that the velocity v; is
computed via Equation (8), which is the single differ-
ence between the regulated and standard versions of the
massive NHL method. An equation dn; = (p;;/Qy,)dt
for each i could have been included as well, but it can be
ignored in practice, as it has no influence on the dynam-
ics in the physical phase space. Nevertheless, such an
equation is important from a theoretical standpoint when
it comes to demonstrating that the physical phase space
is correctly sampled in accordance with e~ 7tn("P)/KT

The main advantage of the proposed method becomes
clear in the context of multiple time-scale (MTS) inte-
gration algorithms. We begin, however, by presenting
a single time-scale integration scheme, which can be
easily extended to MTS methods. As has been demon-
strated in recent years [23,24,37-39], middle-type inte-
gration schemes are very accurate at reproducing the
distribution of coordinates at the expense of the accuracy
in the velocity distribution. This is particularly appeal-
ing in the present context. Leimkuhler and Matthews
[40] presented a middle-type integrator for the NHL
method, which we adapt here for a massive thermostat-
ting approach based on the modified Hamiltonians
described previously.

By writing the equations of motion as x = Lyx, where
x is the vector of all extended phase-space variables and
Ly represents a Lie derivative (i.e. a non-Hamiltonian
extension of the Liouville operator), we can parti-

tion Ly = LI + Eg + Ly + Etr L'Ol]‘, where L =
Ny N
tr 'f — f Pj
Lf = Yili Figg £ ==X Qr:r Pigg

Zz 1 Vigy; dr

Egﬂ = Zi=1(Pi"i — kT)%, and Cg;l corresponds to an
Ornstein-Uhlenbeck stochastic process applied to p,,.
Superscripts ‘tr’ and ‘sc’ stand for translation and scal-
ing, respectively. The integration step of the middle-type
[23] method presented here, which derives from the usual
Trotter-Suzuki [41,42] or Strang [43] splitting solution, is

expressed as a classical propagator [44] given by

At r A At ptr
eAtﬁx ~ Ly At Atﬁba‘h e At ptr Lt (14)

P e2 re2



6 C.R. A. ABREU AND M. E. TUCKERMAN

At [se

At ptr
Pezl:

where e n. The
effects of all these propagators on each degree of freedom
i can be expressed as

At ptr At psc ou
AtLpath —e?2 ﬁPn eTLP eAt[’Pn e2

el 1= r? + v?t, (15)
tr
etﬁp 1pi = p? 4+ F,Ot, (16)
tr
et pyy = pl), + (o) — kD), (17)
0
Vs ~a
e :pi=p;e W, and (18)
oL Py = p?}i e V4 \/kaT(l —e 2rHR,., (19)

where v? = ¢; tanh( %), R, is an independent random
variate following the standard normal probability dis-
tribution, a 0 superscript denotes the initial condition
encountered by a propagator, and ¢ corresponds to the
time span of its action. Implementing these solutions is
straightforward and follows the ‘direct translation’ tech-
nique of Ref. [3], once a computer code is available for
evaluating the forces at every time step.

As done in Ref. [13], we show that the Boltzmann-
Gibbs distribution of coordinates is correctly obtained.
For this purpose, we derive the equilibrium distribution
of the method in its deterministic limit, with y = 0. We
then show that the stochastic contribution maintains the
distribution. The deterministic version of Equations (13)
is a massive Nosé-Hoover [17,18] thermostat applied
to H, as expressed in Equation (4). The system is a

non-Hamiltonian one that conserves an energy function
defined as

Ny 2

Py
Hn(r’pr U,Pn) = Hn(r)P) + Z (anl + ﬁ) .
i=1 i

(20)

A family of equations of motion devised to preserve H,
can be written in the general form [45]

o0H,
ax

x=B (21)
where x is the vector of all extended phase-space vari-
ables, B is a skew-symmetric, matrix-valued function of
x, and % is the gradient operator. By virtue of the chain
rule, the time derivative of any scalar function f(x) is
given by f = th—{( = (%)tBt(%). When f = H,, this
expression is a quadratic form that becomes identically
null whenever its defining matrix is skew-symmetric.
Hence, H,, = 0. For a massive thermostatting approach,
both B and aﬁ” can be cast in block form, with B hav-
ing a block-diagonal structure. In the case of a Nosé-

Hoover dynamics, the main-diagonal blocks defined for

each degree of freedom i are

0 1 0 0
|- 0 0 —pi
Bi=10o o o 1 and
[0 p -1 0
.
oH. Vi
= kT |- (22)
8X,‘ pn,i
| Qi

Note that the entries of aaz- are the derivatives of H,

with respect to r;, p;, n;, and j)m, respectively. The present
development will prove useful again in Section 3.2, where
we derive a different method that also preserves H,. It
follows from Equations (21) and (22) that

i"i =i, (233)
pi=Fi— 22y, (23b)
Qy;
. D,
i ==—, and 23c
1 Q (23c)
j)m = vip; — kT, (23d)

which is an ODE system that matches Equations (13)
in the deterministic limit. By contrasting Equation (23d)
with Equation (5), we realise that the method described
above is founded on the generalised equipartition
theorem.

In order to apply the phase-space analysis method
developed in Refs. [21,22], we need to determine the
phase space compressibility, which is defined as « =
Vx - . In the case of Equation (23),

Ny Ny
K=—Z%=—Zﬁi- (24)
i=1 7

i=1

A phase-space flow like Equation (21) takes place in a
manifold H, (x) = H2, where the constant Hg depends
on the initial condition. If this dynamics is ergodic and
H, is the only conserved quantity, then the partition
function of the resulting ensemble can be expressed as
[21,22]

Q=cC / S(Hn(x) - Hg)@dx, (25)

where §(-) is the Dirac delta function, ,/g is a metric
determinant, and C is the proper statistical-mechanical
prefactor, whose form is irrelevant for the present analy-
sis. For a system with a global thermostat and no external
forces, quantities related to the sum of all momenta for



each spatial dimension would be preserved. However,
this conservation law is no longer present when mas-
sive and/or stochastic thermostats are employed. Thus,
according to Refs. [21,22], we must simply substitute e ™"
for /g in Equation (25), where w is defined such that
w = k [21,22]. Therefore, it follows from Equation (24)
that

Ny
Q=cC / 8<Hn(x) - Hg) eXi-1 i dx
_c / e HnD/KT oI/ CQuKD) 4y dp dp (26)

where integration over all n; has been carried out after
replacing H,(x) using Equation (20). This result shows
that the marginal distribution in the physical phase
space is proportional to e~ ("P)/kT 1 addition, each
extended-space momentum p,, follows a normal distri-
bution whose variance is Q,,kT. As shown in Ref. [13] by
means of the Fokker-Planck equation, the latter condition
is sufficient for the complete set of stochastic equations of
motion to maintain the limiting distribution implied by
the partition function above.

3.2. Regulated Nosé-Hoover-Langevin dynamics

We now propose a different version of the massive
NHL algorithm whose thermostatting capability relies on
the special form of the kinetic energy equipartitioning
expressed in Equation (11). Based on the developments
of Section 3.1, we begin by describing the determinis-
tic version of the method before including a Langevin-
type thermostat. The new equations of motion can be
obtained simply by modifying some entries of the matrix
B presented in Equations (21) and (22) while maintaining
its skew-symmetric and block-diagonal structures. Each
block in the main diagonal of the modified matrix is

0 1 0 0

—1 0 0 —m;v;
v;

B;; = 0 0 0 1— - (27)
G
2
0 myv; —-1+4 - 0
- Cl -

As a result, given that cf = nkT/m;, Equation (21)
becomes

ti = Vi, (28a)

pi=Fi — %mivi, (28b)

ni = (1 V—’2> Pui and (28¢)
l Cl2 erl ’
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n+1

Pni = " miv;

— kT. (28d)

Due to the skew symmetry of B, it is straightforward to
conclude that the equations above preserve the extended
energy defined in Equation (20). The phase-space com-
N py ,
pressibility they imply is ¥ = — Zi:f1 g—';’_mig—;. From

Equation (8), it follows that

| ; 1 2
%z—[l—tanhz (i)} =—<l—v—’2).
api  m mic; mi c

Therefore,

Ny

Pn ( v %
e=—S"Pu 1——1)=— e (30)
2 1
= G im1

Remarkably, this result guarantees that the modified
method will produce the same partition function given
in Equation (26) and, therefore, the same limiting distri-
bution in the physical phase space. We are now ready to
include the stochastic contributions to the equations of
motion, which then become

dr; = v;dt = ¢;tanh (L) dt, (31a)
mic;
dp; = (F,- — ﬂm,-vi) dt, and (31b)
Q;
1
dpy, = (imiv,? - kT) dt
n
— ypy; dt + /2y QukT dW,,. (31¢c)

Here we have, once again, omitted the decoupled
equation of motion of each variable n;. Numerical inte-
gration of this new system of equations can be done in a
manner similar to that of Equations (13), with only two
differences. The first lies in the action of the p;, translation
propagator, which is now expressed as

r 1
e!Com Py = DY, + [%mi(v?)z - kT] t. (32)

The second difference lies in the evaluation of the p scal-
ing propagator, whose action is determined from the
analytical solution of the differential equation

pi — _&mﬂ/i = —&mici tanh <i> . (33)
Q’?i Q’?i mici

By changing variables from p; to y; = sinh(%), the dif-

ferential equation above becomes y; = —%yi, whose
ni
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solution is a simple scaling of y;. Therefore, by changing

C

S
back from y; to p;, the action of e’“s becomes

[s¢ pO —&t
e'tr : pi = mjc; arcsinh | sinh <—l> e Wi |, (34)

mici

With these two propagators replacing their counterparts,
a single time-scale integration step can again be designed
exactly as in Equation (14).

3.3. Multiple time-scale numerical integration

To come up with numerical integrators based on the ref-
erence system propagator algorithm (RESPA) [2], we can
split the force on each degree of freedom i into a sum of
M terms as F; = Ziw:l Fl-[k]. By convention, the charac-
teristic time scale of each term increases with index k,
meaning that Flm and F,-[M] are the fastest and the slow-
est force components, respectively. Traditionally, equa-
tions of motion for constant-NVT dynamics with this
type of force splitting are integrated by using one of the
extended-dynamics schemes developed in Ref. [3]. For
instance, in the XO-RESPA (eXtended-Outer-RESPA)
scheme, thermostat-related propagators such as e2*“bah
in Equation (14), are evaluated first and last using the
largest time step. More recently, middle-type integration
[23] has also been used successfully in the context of
resonance-free, multiple time-scale methods [20,24]. In
a recursive fashion, a full time step of our middle-RESPA
integration scheme can be written as

eMEx ~ G (AL), (35)

where G belongs to a family of nested operators

defined as
st K] St\T1™ st Al
L [gk_l <_>:| e2 L if k > 1,
G (1) = "
" [
e%ﬁp e%ﬁi‘ eatﬁbath e%ﬁg Q%LP lf k =1.
(36)

Therefore, every step of size &t taken at a time scale k
entails ny substeps of size 8¢/nj taken, in turn, at the
k—1 scale. This recursion comes to an end at the fastest
time scale, k = 1, in which the coordinate moves and
the thermostatting take place. The Lie derivative El[,k] is
equal to Zf\il Fl[k]aipi, so that its corresponding expo-
nential propagator acts on each degree of freedom i as
a momentum translation akin to that in Equation (16)
but involving the component Fl[k] only. In Ref. [24], the
integrator above was applied to the SIN(R) method and
named as ‘VV-Middle-SIN(R)’.

3.4. Unified free energy dynamics

A challenge often faced in computational chemistry is
the calculation of a free energy or potential of mean
force (PMF) surface via ¢p(s) = —kT In p(s), where p(s)
is the marginal probability density for the observation of
any configuration r for which q(r) = s, with g: RY
RN representing a set of N, collective variables capa-
ble of distinguishing important free-energy basins and
saddle-point regions. Here, s € RN denotes a set of
coarse-grained variables that parameterise the marginal
probability distribution. With no loss of generality, these
variables will be considered here as dimensionless and
equally ranged. For a separable Hamiltonian and a canon-
ical ensemble, the probability density in question is
given by

Ny
p(s) = é/e_U(’)/kT 1_[ 8<qa(r) - sa) dr, (37)
= a=1

where E = [ e~V"/kTdris the configurational partition
function, and 8 (+) is the Dirac delta function, which is the
zero-variance limit of the Gaussian probability density.
Therefore,

Ka

Ko 2
27kT Ll (o)

S(qa (r) — 50,) = lim

Kg—> 00
A suitable approximation to the §-function is obtained by
assigning a large but finite value to every parameter i,
so that the problem can be restated as the determination
of a function ¢, (s) = —kT1n p,(s), where ¥ € RNv and
P« (s) is the marginal probability density of s, obtained by
integrating over r the joint probability density p (r,s) =
(1/E,) e Ur (r)/kT where

N,
U9 = UM+ S [aan —sa]”  (39)

a=1

and E, is a x-dependent normalising constant. These
equations suggest that the potential of mean force ¢ (s)
can be estimated by assigning a mass m,, and a momen-
tum ps, to each sy, thus turning s into a set of extended
phase-space dynamical variables [34,46]. The potential
energy of this extended phase-space system is defined
as in Equation (39). This enables us, in principle, to
calculate p, (s) by collecting a histogram from a constant-
NVT simulation of this extended system. In most situ-
ations, however, high free energy barriers render such
a scheme impractical and require strategies for enhanc-
ing the sampling of the s-subspace. Examples are the
driven adiabatic free energy dynamics (d-AFED) [26,27]
method, also known as temperature-accelerated molec-
ular dynamics [25] (TAMD), the extended-Lagrangian



variants [29] of the metadynamics method [47] and its
well-tempered extension [29,48], as well as the extended-
system adaptive biasing force (eABF) method [49] and
its generalised version (egABF) [50]. A particularly efhi-
cient way of generating ¢ (s) is through the unified free
energy dynamics (UFED) method [28,51], which com-
bines d-AFED/TAMD [25,27] with Metadynamics [47].
By also adding the SIN(R) method [13] to this combi-
nation, Chen and Tuckerman [34] were able to perform
UFED calculations using very large time steps without
observing resonance artifacts. Here, we replace SIN(R)
by the simpler massive Nosé-Hoover-Langevin method
in its regulated version described in Section 3.2.

The defining feature of d-AFED/TAMD is an adiabatic
decoupling between the coarse-grained variables s and
the physical coordinates r, with the former moving on
a time scale much slower than the latter, so that the
former can be thermalised at a temperature Ts > T.
This becomes possible by assigning large masses, m,,
to the coarse-grained variables, such that their dynamics
becomes much slower than that of the physical coordi-
nates. A consequence of the higher temperature is a more
facile crossing of the free energy barriers, thus enabling
enhanced sampling of the s-subspace. The regulated NHL
equations of motion, as presented in Equations (31), are
still valid for the physical degrees of freedom but with
each force F; now redefined as

N,
oU i 8‘]05
F; = _3_7’1‘ - ;K(x(%{(f) - Sa)a—ri- (40)

To each coarse-grained variable s, we associate a NHL
thermostat with mass Qg, and momentum pg,, so that
equations of motion like Equations (31) can be written as

dsq = vs, df, (41a)
dps, = ka(qa(r) — so) df — Peu ms, vs, dt, and
(41b)
1
dpéa = (n ha Mg, V? - kTs) dt (41¢)
n o
e, At 2 Qe T AW, (41d)

where y; and dWg, are the counterparts of y and dW,,
in Equation (31), and vy, is given by

TS S,
nk tanh( Pso

Vnms, kT5> ' (42)

In the adiabatic limit, the physical degrees of freedom
have sufficient time to thermalise around each point in
the s-space in accordance with a conditional probability
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0k (r8) = i (7, 8)/ pic (s) [25] such that the effective force
acting on each variable s, is

- dU,
Fsa(5)=_< > = -

05y

I <%) e—Uc(n9)/KT 4,
f e~ Uk (r,8)/kT dr

d 9
= kT>—1In / e UenI/kT qp — —ai". (43)

Sa Sa

Therefore, the effective potential in the s-subspace is, in
the adiabatic limit, exactly the desired PMF. Once the adi-
abatic condition is imposed, and the motion throughout
this subspace is thermalised at temperature T, we can
collect a histogram and generate ¢, (s), up to an additive
constant, via —kTIn ,ofgdb (s). Alternatively, we can com-
pute the mean force expressed in Equation (43) at each
point of a set of N, configurations {(s1, . . ., SNv)k}kzl,...,NP
and then reconstruct the PMF by expanding it in a basis
set, e.g. radial, Fourier, etc. This approach yields results
with better statistical accuracy [28,29].

Finally, the UFED method employs a history-
dependent biasing potential constructed on-the-fly as in
the well-known Metadynamics scheme [47] but defined
as a function of the coarse-grained variables s rather
than of the physical coordinates r. Potential energy ‘hills’
in the form of Gaussian or similarly-shaped kernels are
deposited at the current position s(f) at regular time
intervals, so as to disfavor already visited regions of the
s subspace. For Gaussian hills with height h and stan-
dard deviation o, for each direction, the added biasing
potential is

Lt/7]
Upias(6) = h Y &~ Zeral @l /o ()
k=1

where 7 is the deposition period and | -] is the floor func-
tion. As shown by Chen et al. [28], adding this biasing
potential does not alter the procedure for free-energy
reconstruction using a basis set as long as the mean force
I_Jsa (s) is generated via (ky (qa(r) — sa))s.

4. Numerical results
4.1. Liquid water simulations

In this section, we present molecular dynamics simu-
lation results for liquid water at T = 300K in order to
assess whether the new equations of motion are capa-
ble of avoiding resonances and to compare them with
the SIN(R) method in terms of performance. We employ
the fully-flexible SPC-Fw model [52] with a smoothly
truncated Lennard-Jones (L]) potential defined as u(r) =
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4e(o/r)'? — (U/r)ﬂS(ﬁ), where

1 ifz<0
S(z) =41 —-1022+ 15zt —62° if0o<z<1
0 ifz>1

(45)

The switching and cutoff distances employed are, respec-
tively, r; = 11 A and r. = 12 A. Standard long-range cor-
rections [44] are applied. In the case of electrostatic
interactions, a damping parameter o = 0.2741 Al s
used for the real-space part of the Ewald sum, which
is also truncated with the same r, value employed for
the LJ interactions. The reciprocal-space part is com-
puted by the Particle Mesh Ewald (PME) method [53]
with 48 mesh points. The simulated system consists of
N = 512 water molecules confined in a periodic cubic
box whose edge length is L = 24.733 A. This gives a den-
sity of p = 1.012 g/cm?, which is the room-temperature
density reported for the water model in question [52].
The simulations were carried out using OpenMM [54]
with customised integrators and interaction potentials.
Further details can be found in Ref. [20].

We obtained reference results by performing a single-
time scale integration with the BAOAB Langevin dynam-
ics method [37,55], which is known to produce accurate
coordinate distributions. The time step size and fric-
tion coefficient were, respectively, At = 0.5fs and y =
1 ps~!. We computed average configurational properties,
including the mean potential energy and radial distribu-
tion functions, from a simulation with 2.7 ns of equilibra-
tion and 24.3 ns of production.

For the SIN(R) method and regulated dynamics, we
carried out multiple time-scale integration of the equa-
tions of motion (see Section 3.3). In most cases, the
forces were split into three time scales by using the
RESPA2 scheme [13,56,57]. For simplicity, we will refer
to them as the short, middle, and long time scales.
The forces assigned to the short time scale are the
bonded interactions, namely the bond stretching and
angle bending contributions, with a time-step size §t; =
0.5fs. The middle time scale included Lennard-Jones
and full Coulomb interactions truncated at r'" = 8 A and
smoothly switched to zero from r;n = 5A to 8 A. Here,
r—r
-
forces rather than the corresponding potential [20]. The
time step size employed in the middle scale is ¢, = 3 fs.
Finally, the slowest forces are simply defined as the dif-
ference between the non-bonded interactions described
above for the reference simulations (L] 4+ real-space
Ewald 4+ PME) and the middle-scale interactions just
described. We evaluate the methods by employing sev-
eral time-step sizes for integration in this outer time scale,

the switching function S( ) multiplies the pairwise

@ 3% 4 n=1 n=2 n=4 5
5 @ —0— =-o- -0 Semi-Regulated NHL ..+ B
E£2 L9 | = - A+ Regulated NHL 2

sl %7 —o— —o- ..o SIN(R)

.*‘_;.TE d <
5% 1% -

8

2 0% -

=3

0>

7 1% 1

Self-Diffusion Coefficient (cm?/s)

100 10! 102
Outer time step (fs)

Figure 3. Results obtained from simulations of liquid water using
the regulated dynamics methods and the SIN(R) method. Error
bars were omitted for being as small as the symbols. Lines are
simply intended as a guide for the eyes.

8t3 = At. It is worth noting that only two time scales,
comprising, respectively, bonded and non-bonded inter-
actions are used when At < 3fs. Following Ref. [13],
a high friction constant y = 0.1fs™! was used for the
stochastic part and a characteristic time 7. = 10 fs was
employed for the Nosé-Hoover part of each thermo-
stat. From this parameter we obtain Q; = Q; = kT1:C2
for SIN(R) and Q, = nle’C2 for the regulated dynam-
ics methods. Here, the n factor employed to compute Q,
is intended to allow an equitable comparison between
methods that rely on different numbers of thermostats
per degrees of freedom (see Appendix 2).

Figure 3 contains results of configurational and
dynamical properties obtained for the water model
in question. In Figure 3(a), we analyse the perfor-
mance of the regulated NHL methods in reproduc-
ing the mean potential energy per molecule obtained
from the reference BAOAB simulation with At = 0.5fs
and a single time scale, which is (U)ret /N = —42.794 +
0.006 kJ/mol. We also compare the performance of the
regulated dynamics methods with that of SIN(R). For
this, we employed outer time steps of 1, 3, 6, 9, 15, 30,
45, and 90 fs. The total time in each simulation was 9 ns,
with 1.8 ns of equilibration and 7.2 ns of production, dur-
ing which the potential energy was sampled at every 90 fs.



We tested the methods with three different integer values
for parameter », which in SIN(R) translates as the num-
ber L of parallel thermostats per degree of freedom (see
Appendix 2). The results are presented in the form of rela-
tive deviations ((U) — (U)™f) /(U)™f as a function of the
outer time step. The horizontal axis is plotted on a loga-
rithmic scale for the sake of visual clarity. Error bars were
computed via autocorrelation analysis [58], but they are
omitted from Figure 3(a) as they have roughly the same
size as the symbols.

As can be seen in Figure 3(a), all three methods exhibit
very small deviations from the reference value, especially
with At < 15fs. Beyond this step size, average energies
begin to diverge from the reference value as At increases.
Nevertheless, even for the largest employed time steps,
the maximum observed deviations are around 1% for
the semi-regulated NHL method and around 3% for the
regulated NHL and SIN(R) methods. In fact, the regu-
lated NHL and SIN(R) methods behave very similarly,
with both exhibiting a positive divergence from the ref-
erence value as At increases. This is consistent with
the fact that these methods are closely connected when
n = L and completely equivalent when n =L =1, as
shown in Appendix 2. In the case of the semi-regulated
NHL method, the divergence is negative when n < 2 but
becomes positive for larger n values. In fact, both reg-
ulated variants become equivalent to the massive NHL
method in its standard form as n — oo. Overall, the reg-
ulated NHL method exhibits the best performance when
At < 15fs, but the semi-regulated version exhibits the
smallest divergence for larger At values. The divergence
observed as At increases can be understood as an artifact
due to the time discretisation, whose extension depends
on the particular set of equations of motion. Different
forms of backward error analysis, which involve concepts
such as shadow Hamiltonians and shadow work, have
been employed recently to understand and to alleviate
these artifacts in the case of single time-scale integrators
[30,31,33,39,59]. Extending these concepts for studying
multiple time-scale methods is an interesting topic for
future investigation.

Figure 3(b) contains values of self-diffusion coeffi-
cients (Dg) obtained by using the Einstein relation and
considering the mean-square displacements (MSD) of
oxygen atoms for increasing lag times. The slope of the
MSD curve was computed by fitting the values corre-
sponding to lag times from 1.8 ns up to 5.4 ns. The Dg
value obtained in Ref. [52] for the SPC-Fw model using
a global thermostat was 2.32 x 107> cm?/s. It is known
that massive thermostatting with a strong coupling has a
marked damping effect on diffusion [60], which means
that the values shown in Figure 3(b) are not supposed
to reproduce the result of Ref. [52]. They are intended
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to provide a basis for comparison between the methods
in terms of dynamical behaviour, which has an impact
in the mixing necessary for configurational sampling.
In any case, we can see that all methods are able to
keep the value of Ds approximately constant regardless
of the outer time step size employed. For all methods,
diffusivity improves as n increases, which is consistent
with Equation (11) and the fact that the mean kinetic
energy of each degree of freedom also increases with #.
Finally, these results empirically validate the compari-
son in Appendix 2, showing that our proposed regula-
tion mechanism achieves, in a mathematically simpler
and computationally more efficient manner, the same
dynamical effect of the isokinetic constraints employed
in SIN(R).

A more stringent test for configurational property cal-
culation consists in comparing radial distribution func-
tions (RDFs). New simulations were used to compute
the oxygen-oxygen, oxygen-hydrogen, and hydrogen-
hydrogen RDFs by storing atomic positions every 900 fs
and binning interatomic distances from 1.2 A to 5A in
100 bins. This time, the thermostat inertial parameter is
independent of n and computed as Q, = kT7?, witht =
10 fs. Results obtained from all methods in three selected
cases are shown in Figure 4 for comparison. In the case
of the reference BAOAB method [37,55] with a single
time step size At = 0.5 fs, only a subset of the 100 points
obtained for each RDF curve is presented. The criterion
for inclusion is that, for any two consecutive points in
a depicted sequence, the dimensionless squared distance
[Ar/(1 A)]? + (ARDF)? is never smaller than 0.01. For
the multiple time-scale methods, we employed natural
cubic spline interpolation in order to present the curves
in Figure 4 as continuous functions denoted by lines in
different colors (depending on the method) and styles
(depending on the element pair).

All radial distribution curves in Figure 4 are very
close to their corresponding reference results. In Figure
4(a), with results for At = 6fs and n = 1, the curves
obtained from all MTS methods are visually indistin-
guishable from each other. For At =30fs and n = 2,
depicted in Figure 4(b), it is only possible to observe a
subtle difference in the first peak of the H-H distribu-
tion (dotted lines). Finally, deviations become noticeable
in Figure 4(c), which shows the results obtained with
At =90fs and n = 4. SIN(R) seems to deviate more
from the reference results than do the regulated dynamics
methods.

Going beyond the qualitative analysis of Figure 4, we
can also compare the radial distribution functions in a
quantitative and more comprehensive way. For this, we
employ the L1-error { = nib it lgi — gFl, where ny, is
the number of bins, g; is the RDF evaluated for a bin 4,
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Figure 4. Radial distributions functions for oxygen-oxygen (O-
0), oxygen-hydrogen (0-H), and hydrogen-hydrogen (H-H) inter-
molecular pairs for the fully-flexible SPC-Fw [52] water model at
p =1.012g/cm?and T = 300K.

and g is the particular g; value obtained from the single
time-step simulation used as a reference. In Figure 5, ¢ is
plotted against At for all simulated cases, with parts (a),
(b), and (c) corresponding to oxygen-oxygen, oxygen-
hydrogen, and hydrogen-hydrogen pairs, respectively. A
significant increase in ¢ is seen in Figure 5 whenever At
shifts from 1 to 3 fs, which are the cases with forces split
into two time scales only. The distinction between these
two cases is the number of substeps between consecu-
tive impulses of non-bonded interactions, during which
only bonded forces are updated. The shift from At = 3 to
At = 6 fs marks the inclusion of a third time scale, when
the non-bonded forces are split into short- and long-
range contributions. As Figure 5 shows, such splitting has
virtually no influence on the obtained RDFs. In fact, only
small changes occur as At increases from 3 fs up to 15 fs.
This behaviour is observed for all element pairs and for
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Figure 5. Means absolute deviations from reference radial dis-
tributions functions for oxygen-oxygen (0-0), oxygen-hydrogen
(O-H), and hydrogen-hydrogen (H-H) intermolecular pairs for the
fully-flexible SPC-Fw [52] water model at p = 1.012g/cm? and
T =300K.

all simulation methods. Therefore, the occurrence of a
sharp initial departure of each RDF from its counterpart
derived from a single time-step simulation is intrinsic to
the employed force splitting and update frequencies.

Finally, as mentioned in Section 2.2, we investi-
gate the use of the alternative Hamiltonian defined
in Equation (12). Recall that this Hamiltonian pro-
motes speed regulation while also satisfying the standard
equipartition theorem regardless of the value of param-
eter n. In Figure 6, we show results for relative devi-
ations of the mean potential energy. Here, the inertial
parameter of the thermostat is also independent of n.
In contrast to Figure 3(a), we observe large deviations
from the reference value even for small outer time steps,
which corroborates the discussion in Section 2.2. There-
fore, use of the Hamiltonian in Equation (12) instead
of that in Equation (4) for achieving regulation is not
recommended.
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Figure 6. Results obtained from simulations of liquid water using
alternative forms for the regulated dynamics methods obtained
from the Hamiltonian 7, ", defined in Equation (12), which yields
standard kinetic energy equipartition regardless of the value of
the parameter n. Error bars were omitted for being as small as the
symbols. Lines are simply guides for the eyes.

4.2. Ramachandran free-energy surface of alanine
dipeptide in aqueous solution

In this section, we consider a more challenging applica-
tion for the regulated dynamics approach. As described in
Section 3.4, we use it in conjunction with the Unified Free
Energy Dynamics (UFED) method [28] in order to per-
form enhanced sampling and compute free energy sur-
faces with respect to a set of collective variables. Our sys-
tem of choice is an alanine dipeptide in aqueous solution,
with the backbone dihedral angles ¢ and v chosen as
the collective variables driven via the enhanced sampling.
This is a suitable benchmark for the proposed method
because of its well-studied and well-known behaviour.
As in Section 4.1, we employed the fully-flexible SPC-Fw
force field [52] for treating the explicit solvent. In the case
of the dipeptide, we tested two different members of the
AMBER (Assisted Model Building with Energy Refine-
ment) family of force fields for proteins, specifically, ff03
[61] and ff14SB [62]. Vymétal and Vondrasek [63] tested
the former and a predecessor of the later (ff99SB [64]),
among other force fields, using a conventional metady-
namics approach to perform the same type of calculation
done here. Tzanov et al. [65] also tested ff99SB along with
other force fields in a comparative study using d-AFED.
In the present study, we follow all simulation details
presented in Section 4.1, with additional ones as now
described. First, the proper dihedrals in the dipeptide
contribute to the system energy in the form of a peri-
odic torsion potential, which we assign to the short time
scale, as well as the AMBER-type scaling of non-bonded
interactions between 1-4 pairs [61], which we split into
the middle and long time scales (as with all other non-
bonded contributions). Second, we assign to the short
time scale the harmonic potential terms such as those in
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Equation (39), here involving the collective variables ¢
and ¥ and their related extended phase-space variables
s¢ and sy, respectively. This is due to the high force con-
stant « required for generation of collective-variable free
energy surface, as explained in Section 3.4. Third, the
biasing potential is approximated by a two-dimensional,
periodic cubic spline interpolation with 101 x 101 grid
points uniformly spaced in the square [—,7]%. This
spline is continuously updated by depositing a von Mises
kernel

Lt/‘L’J _ ZNV 1—cos(sg (1) —sx (k1))
a=1 2
Ubias(s:t) = h E € oo > (46)
k=1

every T = 600fs, with parameters # = 2kJ/mol and
0y = 0y = 7o rad. This biasing potential is assigned to
the middle scale because it only involves coarse-grained
variables, whose dynamics are intentionally slow in the
UFED framework and whose evaluation requires small
computational effort when compared to that of long-
ranged non-bonded interactions.

As stated in Ref. [29], the effective mass meg of
each backbone dihedral angle in alanine dipeptide is
~ 0.03Da-nm?/rad?. In a series of d-AFED/TAMD
simulations with different masses m; assigned to the
coarse-grained variables, the ratio mie; ~ 10% was found
to yield a good compromise between adiabaticity and
convergence rate [29]. Assuming that this finding carries
over to the regulated dynamics method, we set m,, =
ms, = 30 Da-nm? /rad2 in all simulations. In addition,
we set the force constants as ky = iy, = 10> kJ /mol-rad?,
which were deemed in sufficiently high to yield accu-
rate results [29]. The temperature of the extended space
variables was kept at Ts = 1500 K by independent ther-
mostats with the same characteristic time 7. and friction
constant y employed for the physical degrees of free-
dom. In order to ensure full convergence of the free
energy surfaces, each simulation was run for 36 ns.

For each employed protein force field, we carried out
simulations with outer time steps At assuming values
of 1, 3, 6, 15, 30, 60, and 120fs. Each simulation was
36 ns long. In Figure 7, we show the free energy sur-
faces obtained from radial basis function analysis of
the trajectories generated in some of these simulations.
For this analysis, the (sy,sy) space was split into 20 x
20 bins and the mean-force vector was estimated for
each bin. These are represented in Figure 7 as black
arrows. The radial basis functions are von Mises ker-
nels with o = 47 /5 rad supported at the bin centres with
weights obtained by linear least-squares regression of the
mean forces. The conformers identified in Figure 7 as
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Figure 7. Ramachandran free energy surfaces obtained from regulated UFED simulations of alanine dipeptide in aqueous solution. The
SPC-Fw [52] force field was used for the solvent and two versions of the AMBER force field were used for the solute, namely ff03 [61] (top
row) and the ff14SB [62] (bottom row). The presented results were obtained using outer time steps At equal to 1fs (left column), 30fs

(middle column), and 120 fs (right column).

Cs, ppll, ag, a1, and ap were determined by Nelder-
Mead minimisation of the computed free energy sur-
faces with the respective (¢, V) pairs as initial guesses:
(—150°,150°), (—75° 150°), (—60°, —60°), (55°,25°),
and (60°, —140°). It can be observed that, in all cases,
the sampling enhancement promoted by UFED allowed a
complete sweeping of the two-dimensional space, includ-
ing the areas with the highest free energies. All impor-
tant features of the free-energy landscape were correctly
reproduced even with outer time steps as large as 120 fs,
which can be observed by contrasting the results with
those obtained for the same model using At = 1fs.

5. Conclusion

In this paper, we have introduced the regulated dynamics
approach, which achieves the very large time step gains
in multiple time-scale molecular dynamics simulations
achievable using the SIN(R) approach [13] and its deter-
ministic variant [12] but within a Hamiltonian frame-
work. The specific modification of the Hamiltonian pro-
vides a ‘regulation’ mechanism for controlling the reso-
nance artifacts that plague multiple time-step algorithms
in a way that avoids the need to impose isokinetic con-
straints or introduce additional phase-space variables.
This new formulation not only simplifies the method,

while still achieving very large outer time steps, it also
reduces sampling errors and improves the overall perfor-
mance of the algorithm. This fact was demonstrated in
simulations of a flexible model of liquid water.

In addition, we showed how to formulate regu-
lated dynamics as an enhanced sampling approach
within the d-AFED and UFED frameworks, which,
by extension, also includes its formulation with an
extended-Lagrangian version of the popular metady-
namics approach (achieved by setting T; = T). The per-
formance of the regulated dynamics scheme was then
demonstrated in simulations of the solvated alanine
dipeptide.

In future work, it will be interesting to explore the
properties of the Hamiltonian in Equation 4 including
dynamics produced by it, its quantum mechanical prop-
erties, and other mathematical aspects.
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Appendices

Appendix 1. Momentum and velocity
distributions in a canonical ensemble with the
regulating Hamiltonian

In an NVT ensemble with the regulating Hamiltonian H,,
defined in Equation (4), the probability of each momentum p;

is proportional to e "I coshlpi/v/nmikT] Thys,
on(pi) = L Sech” <L> , (A1)
Cy ~nm;kT

where C, is a normalisation constant. Because the velocity v; is
a monotonic function of p;, it is straightforward to obtain the
velocity probability density 0, (v;). Considering that, according
to Equation (8),

f(vi) = pi = mjc; arctanh (&) , (A2)

Ci

the relation between the two probability densities is given by

on () = |f' ()1 pn(f (vi)), where
dpi 2\ !
fv) = d—}; =m; (1 - V—;) . (A3)

Therefore,

) 2\ ~1 .
on(vi) = mi (1 — V—;) sech” |:arctanh (E)] . (A9
Cy lor Ci

Because sech(arctanh(y)) = (1 — yz)% and due to the maxi-
mum speed ¢;, we have that

mi Viz i e 2 2
_ —(1——2) if vy <
0n(vi) = Cn o . (A5)

0 otherwise

Finally, we can use the fact that fii 0n(vi)dv; = 1 in order
to determine an expression for the constant C,. By changing
variables from v; to z = v;/c;, we obtain

mici _ ! L ) B
G [ha-z)itdz T3V
Therefore,
(2L (L

Cy @F(g)ﬁ r(%) JanmkT'

The same change of variables can be employed to evaluate the
central moments of the velocity distribution, whose symmetry
makes null all odd-order ones. The even-order moments can
be obtained by evaluating

2my _ F(nTH) Y om 2\
(z >_7F(§)ﬁ —1Z 1-2z% dz
() ()
=g (A8)
() 7

where m is a positive integer. We, therefore, obtain the general
formula for the 2mth central moment of the distribution, which
is

r n+l r 2m+1 m /T m
(VlZm): ( 2 )2 (12 )n (7) . (A9)
r (H+ 2m+ )ﬁ m;j
Equation (11) follows directly from making m = 1.



Appendix 2. Close connection to the Stochastic
Isokinetic Nosé-Hoover method

As we mentioned in Section 2.2, a special case of our proposed
Hamiltonian, specifically, n € N, generates a canonical ensem-
ble whose velocity distribution equals that of an isokinetic
ensemble [20] with n thermostats per degree of freedom. This
already confirms a close relationship between the two method-
ologies. In this appendix, we further demonstrate that our
second proposed set of equations of motion, that based on the
special equipartition relation in Equation (11), also produces
the same dynamics as the Stochastic Isokinetic Nosé-Hoover
method [13] whenn = 1.

We first eliminate p; from Equation (28b) using Equa-
tions (9) and (29), from which we deduce that

. dp; . m,'vl-z F; P
i=——pi=(1— — = i) -
v dvip ( nkT m;  Qy, Y

We next define a new variable v; ; and a new equation of motion
for each degree of freedom i, which is

(A10)

P 2
Fvi — Q,; Mivi
1

nkT

Note that this new equation does not alter the dynamics of the
preexisting variables, meaning that each vy ; is a driven variable
[21,22]. Moreover, if v1 ;(0) = 0, it will remain zero for all time.
Otherwise, it will vary in time but never change signs, since its
rate of change vanishes when its own value approaches zero.
We now show that the same features are shared by a variable ®;
defined as

Vi = — Vi,i. (A11)

2 n 2
d; = miv; + mQUVl,i — nkT, (A12)
whose rate of change is &; = 2(mpviv; + %_HQl,iVuiq,i). From
Equations (A10)-(A12), it turns out that

Fiv; — giﬂiimiv%

nkT

which has nearly the same form as Equation (A12). Therefore,
if an initial condition is assigned for all v1; so that ®;(0) = 0,
then the dynamics will proceed in such a way that, at all times,
it satisfies

Cbi = =2 [OF (A13)

2 n 2
miVi + le,iVLi = T’lkT (A14)
This equation is an isokinetic condition. However, it is
not a constraint once v;; is not a true dynamical variable.
Moreover, we can rewrite Equations (A10) and (A11), respecti-
vely, as

F.
vi=——Jv and (A15a)
m;
Vi = — i+ v2,)vis (A15b)
where A = 1z [Fvi — v2,i(nkT — mpv})] and v,; = —g"ﬂi_, If,

in addition, we assume that the isokinetic condition actually
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holds, then we can write

>
Fivi — A7 Quiva,ivy;

Ai = — ~ - (A16)

mivi + 1 Quivy;

Finally, we also rewrite Equation (31c) by taking into account

the isokinetic condition and the fact that p,;, = —Qy,v2,i;, which
makes
Quivi; — nkT 2ykT
dvgy = M T Gy ide— | X dw,. (A17)
Qu; Qu;

By setting # = 1 and noting that =dW,,, results in the same
random process, the equations above become identical to those
of the SIN(R) method [13] with a single thermostat attached
to each degree of freedom, that is, L = 1. It only happens that,
in the SIN(R) method, Equations (A15) are written down first,
and A; is then seen as a Lagrange multiplier, determined after-
wards so as to satisfy Equation (A14), which in this case is
actually an isokinetic constraint.

It is worth using the present analysis to reinterpret previous
results. Figure 2 of Ref. [13] discusses the influence of parame-
ters Q1,; and Qy; on the ability of the SIN(R) method to sample
correctly a simple one-dimensional model. The investigation
was carried out with L = 1, which means that v; ; behaved as a
driven variable. In such a situation, the value of Qy ; is not sup-
posed to affect the sampling process, and this is exactly what
the aforementioned figure shows us.

Finally, we compare the regulated NHL dynamics of
Section 3.2 with the SIN(R) method with multiple thermostats
per degree of freedom. First, instead of defining a single vari-
able vy ; for each i, we define n such variables v, ;x and a new
isokinetic equation as

n
2 n 2
m;v; + m ; Ql,ivl’i’k = nkT. (A18)

If we use this equation to displace m;v? from Equation (31c),
we obtain

n 2
_1 Qv —nkT
Sl Quit kT
Qu; Qu;

dvy; =

(A19)

which represents a single NHL thermostat coupled to all vy ;
for 1 < k < n. Due to Equation (A18), these are still interme-
diate variables with driven dynamics. In the SIN(R) method
[13], however, massive thermostatting is employed at this level
as well. With an independent NHL thermostat attached to
each v} i, these variables start influencing the dynamics of
the remaining ones. This is what distinguishes the SIN(R)
method with L> 1 from the Regulated NHL dynamics with
n € N and n > 1. Although such a high degree of thermostat-
ting granularity seems beneficial in terms of ergodicity, it bears
a considerable computational overhead. Moreover, our results
in Section 4 suggest that it might be unnecessary in practical
situations.



