Remote Sensing of Environment 264 (2021) 112581

Contents lists available at ScienceDirect

Remote Sensing of Environment

ELSEVIER journal homepage: www.elsevier.com/locate/rse

L)

Check for

Mapping and classification of volcanic deposits using multi-sensor i
unoccupied aerial systems

Brett B. Carr ™™, Einat Lev?, Theresa Sawi®, Kristen A. Bennett®, Christopher S. Edwards ¢,
S. Adam Soule®, Silvia Vallejo Vargas', Gayatri Indah Marliyani

@ Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, USA

by.s. Geological Survey, Hawaiian Volcano Observatory, 1266 Kamehameha Ave., Suite A8, Hilo, HI 96720, USA

€ U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, USA

4 Department of Astronomy and Planetary Science, Northern Arizona University, PO Box 6010, Flagstaff, AZ 86011, USA

€ Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS #24, Woods Hole, MA 02543, USA

f Instituto Geofisico, Escuela Politécnica Nacional, Ladrén de Guevara E11-253, Quito 170525, Ecuador

8 Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada, FT UGM JL. Grafika No. 02, Yogyakarta 55281, Indonesia

ARTICLE INFO ABSTRACT

Edited by: Jing M. Chen The deposits from volcanic eruptions represent the record of activity at a volcano. Identification, classification,
and interpretation of these deposits are crucial to the understanding of volcanic processes and assessing hazards.

Keywords: However, deposits often cover large areas and can be difficult or dangerous to access, making field mapping

Thermal remote sensing hazardous and time-consuming. Remote sensing techniques are often used to map and identify the deposits of

Unoccupied aerial systems (UAS)
Lava flows

Land surface classification
Mapping of volcanic deposits

volcanic eruptions, though these techniques present their own trade-offs in terms of image resolution, wave-
length, and observation frequency. Here, we present a new approach for mapping and classifying volcanic de-
posits using a multi-sensor unoccupied aerial system (UAS) and demonstrate its application on lava and tephra
deposits associated with the 2018 eruption of Sierra Negra volcano (Galapagos Archipelago, Ecuador). We
surveyed the study area and collected visible and thermal infrared (TIR) images. We used structure-from-motion
photogrammetry to create a digital elevation model (DEM) from the visual images and calculated the solar
heating rate of the surface from temperature maps based on the TIR images. We find that the solar heating rate is
highest for tephra deposits and lowest for ‘a‘a lava, with pahoehoe lava having intermediate values. This is
consistent with the solar heating rate correlating to the density and particle size of the surface. The solar heating
rate for the lava flow also decreases with increasing distance from the vent, consistent with an increase in density
as the lava degasses. We combined the surface roughness (calculated from the DEM) and the solar heating rate of
the surface to remotely classify tephra deposits and different lava morphologies. We applied both supervised and
unsupervised machine learning algorithms. A supervised classification method can replicate the manual classi-
fication while the unsupervised method can identify major surface units with no ground truth information. These
methods allow for remote mapping and classification at high spatial resolution (< 1 m) of a variety of volcanic
deposits, with potential for application to deposits from other processes (e.g., fluvial, glacial) and deposits on
other planetary bodies.

1. Introduction understand the eruption and emplacement processes that produced the
deposits. Insight on eruption processes gained from the study of their

Characterization of the morphology and physical characteristics (e. deposits is key to interpreting the history and eruptive potential of
g., grain size, density) of volcanic deposits such as lava flows, tephra, volcanic areas, especially in cases where eruptions were not directly
and pyroclastic density currents (PDCs) is fundamental to the ability to observed. Detailed knowledge of the volcanic history of a region

* Corresponding author at: Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, USA.
E-mail addresses: bcarr@usgs.gov (B.B. Carr), einatlev@ldeo.columbia.edu (E. Lev), tsawi@ldeo.columbia.edu (T. Sawi), kbennett@usgs.gov (K.A. Bennett),
Christopher.Edwards@nau.edu (C.S. Edwards), ssoule@whoi.edu (S.A. Soule), svallejo@igepn.edu.ec (S. Vallejo Vargas), gayatri.marliyani@ugm.ac.id
(G.I. Marliyani).

https://doi.org/10.1016/j.rse.2021.112581
Received 10 June 2021; Accepted 1 July 2021
Available online 4 August 2021
0034-4257/Published by Elsevier Inc.


mailto:bcarr@usgs.gov
mailto:einatlev@ldeo.columbia.edu
mailto:tsawi@ldeo.columbia.edu
mailto:kbennett@usgs.gov
mailto:Christopher.Edwards@nau.edu
mailto:ssoule@whoi.edu
mailto:svallejo@igepn.edu.ec
mailto:gayatri.marliyani@ugm.ac.id
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2021.112581
https://doi.org/10.1016/j.rse.2021.112581
https://doi.org/10.1016/j.rse.2021.112581
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2021.112581&domain=pdf

B.B. Carr et al.

facilitates progress towards many objectives, from hazard assessment
and mitigation for future eruptions to investigations of the evolution of
planetary surfaces.

Lava flow morphology can be used to infer lava properties (e.g.,
viscosity, temperature) and emplacement dynamics (Fink and Griffiths,
1992; Griffiths, 2000). As an example, for a similar lava viscosity, ‘a‘a
morphology is indicative of a higher flow rate relative to pahoehoe
morphology. For similar flow rate, ‘a‘a indicates higher viscosity (Lip-
man and Banks, 1987; Whelley et al., 2017). Different lava flow mor-
phologies are characterized by different surface roughness. At length
scales of 1-10 m, pahoehoe lava generally has smoother texture than ‘a‘a
(Lipman and Banks, 1987; Whelley et al., 2017). Lava flows are in
general rougher than tephra deposits, which consist of smaller clasts of
ash and scoria. Depositional distinctions also exist among PDC deposits.
Debris avalanches, pyroclastic flows, and pyroclastic surges have char-
acteristic grain size distributions, morphology, or roughness relative to
each other (Charbonnier and Gertisser, 2008; Whelley et al., 2014;
Solikhin et al., 2015).

Unfortunately, volcanic deposits can be difficult and dangerous to
access and navigate on foot. In addition, deposit areas are often too
extensive or remote to be mapped effectively with limited time or
personnel. The ability to remotely describe and quantify volcanic de-
posits is thus highly valuable and numerous remote sensing techniques
utilizing ground-based, airborne, and satellite instruments have been
developed to observe a variety of volcanic processes and deposits (e.g.,
Wooster et al., 2000; Whelley et al., 2014; Solikhin et al., 2015; Ganci
et al., 2018; Pallister et al., 2019; Corradino et al., 2019). The rise of
unoccupied aerial systems (UAS) technology in recent years as a cost-
effective and efficient means to conduct airborne surveys has further
facilitated several advancements in volcanological mapping (James
et al., 2020a, and references therein).

We describe a new approach in which we classify and map lava flow
morphology and tephra deposits from a volcanic eruption by combining
data derived from UAS-mounted visual and thermal infrared (TIR)
cameras. From the collected images, we produced two separate remotely
sensed data sets describing the study area’s surface roughness and its
solar heating rate (a proxy for its thermal inertia). Such data sets are
often used to characterize surface types, albeit separately. They are
sensitive to different properties of the surface, and thus their combina-
tion allows for more accurate and consistent identification of surface
types than either quantity alone. Based on the mapped locations of the
surface types we classify; we can make interpretations about the
mechanisms of flow emplacement during the eruption. Additionally,
roughness and thermal inertia proxies are commonly calculated from
satellite data, and our technique deriving these values from UAS surveys
provides comparable datasets with an increase in spatial resolution of
more than an order of magnitude in most cases. This method has ap-
plications for using UAS to better understand the history of eruptive
processes in volcanic areas by facilitating multi-scale investigations of
volcanic deposits and improving the safety and efficiency of field
mapping.

1.1. Surface roughness of volcanic deposits

The surface roughness of volcanic deposits can be used to identify
different morphological units using remotely sensed data. Roughness is
typically calculated from a digital elevation model (DEM) that can be
produced using radar (Morris et al., 2008; Richardson and Karlstrom,
2019), light detection and ranging (LiDAR) (Mazzarini et al., 2009;
Whelley et al., 2014; Whelley et al., 2017), or photogrammetric (Bretar
et al.,, 2013) data sources that can be satellite-, airborne-, or ground-
based. However, there is no standard unit or method for calculating
roughness. Grohmann et al. (2011) evaluated several methods,
including: surface area to plan area ratio, surface normal vector
dispersion, the standard deviation of elevation, the standard deviation of
residual topography after subtracting a smoothed DEM, the standard
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deviation of slope, and the standard deviation of profile curvature. These
methods all invoke a “neighborhood” (i.e., a moving window of a given
size), where the roughness is determined by comparing the pixel values
within a region centered on the pixel for which the roughness value will
be assigned. The size of the region/moving window is determined by the
user for reasons that can include the DEM resolution and the scale of
interest (e.g., smaller window size is more sensitive to relatively minor
topographic changes whereas a larger window size will better generalize
the terrain) (Shepard et al., 2001). Of the methods evaluated, Grohmann
et al. (2011) found the standard deviation of slope to be the preferred
method for geomorphology, citing the simplicity of the calculation,
detection of both fine and regional scale relief, and consistent perfor-
mance regardless of DEM or moving window scale.

For applications of surface roughness focused only on local (as
opposed to regional) roughness features, a common technique is to first
detrend the DEM to remove background or regional slopes (Shepard
et al., 2001; Whelley et al., 2014; Whelley et al., 2017; Richardson and
Karlstrom, 2019). Roughness can then be calculated by various methods,
including the standard deviation or root-mean-square of the residual
elevations (Whelley et al., 2014), or the application of a 2D discrete
Fourier transform (Richardson and Karlstrom, 2019).

Roughness derived from LiDAR surveys has been used to classify and
map volcanic deposits including both pyroclastic deposits (Mazzarini
et al., 2009; Whelley et al., 2014) and lava flows (Morris et al., 2008;
Whelley et al., 2017). These studies applied statistical analyses either
directly to the elevation data (Morris et al., 2008; Mazzarini et al., 2009)
or to roughness values derived from residual elevations after detrending
the DEM (Whelley et al., 2014, 2017). The statistical measures allowed
for multi-component analyses that showed grain size and deposit
thickness control roughness in pyroclastic deposits (Mazzarini et al.,
2009) and identified how measurements of roughness varied depending
on both lava flow morphology and the spatial resolution at which the
roughness was calculated. Whelley et al. (2014, 2017) found that the
mean roughness value, homogeneity, and entropy calculated for a
neighborhood around each pixel to be best at distinguishing different
surface types. Using this technique, distinct mappable units in the Mt. St.
Helens pumice plain (e.g., channels, pumice lobes, debris avalanches;
Whelley et al., 2014) and the 1974 Mauna Ulu lava flow (e.g., ‘a‘a,
pahoehoe, slabby pahoehoe, overflow ‘a‘a; Whelley et al., 2017) were
identified by visually grouping areas sharing similar roughness texture
statistics.

1.2. Thermophysical properties of volcanic deposits

Different surface types or morphologies also vary in their thermo-
physical properties, such as thermal inertia, and can be identified using
TIR remote sensing (Ramsey and Fink, 1999; Price et al., 2016; Ramsey
etal., 2016; Simurda et al., 2020). Thermal inertia is a physical material
property that is related to the resistance to temperature change and is
commonly derived by modeling observations of the diurnal temperature
response of a surface (Ramsey et al., 2016; Simurda et al., 2020).
Thermal inertia (TI) is defined as:

TI = +/kpc (€8]

where k is thermal conductivity (J sim? K'l), p is density (kg m'3),
and c is the specific heat (J K! kg'l), such that the units of thermal
inertia are J m2 K! s/2. In general, lower thermal inertia (low resis-
tance to temperature change) is associated with finer-grained and/or
unconsolidated material (such as dust or sand) while higher thermal
inertia (high resistance to temperature change) corresponds to larger
particle sizes and/or densely packed grains (i.e., bedrock) (Ramsey
et al., 2016; Fergason et al., 2006; Price et al., 2016; Simurda et al.,
2020). Thermal inertia is sensitive to grain size because the number of
grain-to-grain contacts decreases with increasing particle size (as the
solid phases have significantly higher thermal conductivity than the
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Fig. 1. Location of Sierra Negra volcano. The 2018 eruption of Sierra Negra occurred along a series of fissures on the north caldera rim and north flank (A, modified
from Vasconez et al., 2018). Numbered white lines mark the fissure locations and the red areas are the lava flows. Inset in (A) shows Sierra Negra’s location (red box)
on Isla Isabela in the Galapagos Archipelago. The study area (yellow box, A) is located near the caldera rim and includes vents from fissure 1. The orthophoto of the
study area (B) was created with visual images from Flight 2 of the UAS survey and has a spatial resolution of 0.04 m. The 2018 lava flows are outlined in black.
Numbered boxes are the regions used to define the manual classification. Labels indicate surface types that were visually identified during field work and from
inspection of the UAS images. Satellite basemap in (A) courtesy of https://earthexplorer.usgs.gov/. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

pore-filling gasses). Thus, larger particles can more efficiently conduct
heat into the sub-surface as compared to smaller particles, where the
numerous grain-to-grain contacts restrict the thermal conductivity. Over
a diurnal cycle of solar heating, lower thermal inertia materials/surfaces
will heat (and cool) faster compared to high thermal inertia materials/
surfaces, ultimately reaching higher daytime temperatures and lower
nighttime temperatures.

As the material properties used by Eq. 1 are not possible to measure
remotely, an apparent thermal inertia (ATI) has been defined as

ATI = (1 —a)/(AT) ()]

where a is the albedo of the land surface over the visible/near-infrared
and short-wave infrared wavelengths and AT is the difference in
brightness temperature between day and night TIR images (Price, 1977).
ATI is inversely proportional to the temperature difference in two
thermal images acquired over the diurnal cycle (Simurda et al., 2020).
Measurements of ATI or, more generally, the heating rate between ob-
servations of a shorter duration, have been used as a proxy for thermal
inertia, and utilize data from TIR sensors on satellites (Price, 1977;
Scheidt et al., 2010; Price et al., 2016; Simurda et al., 2020) or, in our
case, a UAS.

Thermal inertia is commonly used to investigate planetary surfaces,
notably Mars, where the value can provide information on the degree of
mantling by dust and the presence of exposed bedrock (Ramsey et al.,
2016; Fergason et al., 2006). Crown and Ramsey (2017) found highly
variable thermal signals on small spatial scales for lava flows in Arsia
Mons, indicating complex relations between the rough and blocky

surface of lava flows and mantling by fine-grained material. For
terrestrial targets, the Earth’s thick and highly variable atmosphere and
vegetation complicate estimates of thermal inertia from satellite (Price,
1977; Simurda et al., 2020). However, satellite-derived ATI has been
used to investigate, for example, soil moisture (Price, 1977; Scheidt
et al.,, 2010) and tephra mantling of lava flows (Price et al., 2016;
Simurda et al., 2020). Simurda et al. (2020) have recently demonstrated
that relating grain size to heating rate or ATI observed from orbit is
influenced by sub-pixel roughness, where surfaces with different
roughness characteristics (and thus, different ATI) can be present within
a single pixel (90 m spatial resolution in Simurda et al., 2020). They
found that the highest ATI values were associated not with surfaces with
predominantly coarse-size grains as would be expected, but rather with
surfaces containing moderate-sized grains. The ATI of surfaces with
coarse grain sizes, they discovered, was lowered due to self-shadowing
and the trapping of fines by the coarse grains. In our study investi-
gating relative thermal inertia we utilize both a multi-sensor approach
and a high spatial resolution visible dataset, as recommended in
Simurda et al. (2020). Data from TIR sensors are also sensitive to density
(e.g., Eq. 1). Ramsey and Fink (1999) demonstrated this concept for
volcanic deposits, using multi-band airborne TIR imagery to quantify the
vesicularity of silicic lava flows.

1.3. Sierra Negra volcano, Ecuador

Sierra Negra volcano (1124 m a.s.1.) is one of six large basaltic shield
volcanoes that form Isla Isabela in the Galdpagos Archipelago of Ecuador
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Table 1
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UAS flight and SfM photogrammetry data. Three UAS flights were conducted at Sierra Negra on October 22, 2018 to capture the visual and TIR images used to generate
the SfM photogrammetry-derived temperature maps (Fig. 2, used to calculate solar heating rate), orthophoto (Fig. 1b), and DEM (used to calculate surface roughness).

Flight Time®  Flight Duration Image Photos in Dense Cloud Orthophoto DEM Resolution Alignment Error”  Tpin Tmax
(minutes) Type Model Points Resolution (m) (m) (m) [®) o)
1 07:15 24 TIR 474 4,861,830 0.17 0.19 7.9 134.6
2 08:30 24 TIR 490 5,153,991 0.19 0.18 10.7 124.2
Visual 487 161,460,941 0.04 0.08 NA
3 09:45 22 TIR 443 4,895,841 0.18 0.13 13.7 134.9

2 UAS in flight at this time. Takeoff times were: 7:11 am, 8:18 am, and 9:35 am. Times are local (GMT-06).
b Control point alignment error of TIR orthophoto to Flight 2 visual orthophoto (17 control points used).
¢ Maximum and minimum temperatures for any single pixel in any single image from the specified flight- used for the linear scaling (Eq. 3).

(Fig. 1). The volcano is characterized by a large (7 x 10.5 km) summit
caldera. Sierra Negra erupts frequently, with events in 2018, 2005, and
1979 (Geist et al., 2007; Vasconez et al., 2018). Activity during recent
eruptions has been focused along fissures on the northern crater rim and
on the north flank, which fed lava flows that traveled both down the
north flank and into the caldera (Geist et al., 2007; Vasconez et al.,
2018). The 2018 eruption of Sierra Negra began on June 26. A series of
fissures (Fig. 1a) opened along and to the north of the north rim of the
summit caldera (Vasconez et al., 2018). Lava flows descended as far as 7
km down the north slope of the volcano, and one flow went into the
caldera. This phase of the eruption with multiple active fissures lasted
less than 24 h and the emplacement of lava flows was complete within
1-2 days (Vasconez et al., 2018). Following the 26 June activity, the
eruption moved downslope to the northwest. Sustained effusion from
fissure 4 (Fig. 1a) fed a large lava flow field that entered the ocean
(Vasconez et al., 2018). The eruption ended on 23 August 2018.

We visited the eruption site in October 2018, roughly four months
after the summit eruption ended. The lava flows observed for this study
(Fig. 1b) were emplaced on terrain consisting of lava flows, tephra,
craters, and fissures from previous eruptions. Pahoehoe morphology
dominated in proximity to the vents but transitioned quickly (within a
few hundred meters or less) to ‘a‘a for most of the flow length. Our study
area (Fig. 1b) is a roughly 0.5 km? region that includes two vents from
fissure 1 (to the immediate west and northeast of Region 3, Fig. 1b).
Each vent fed a lava flow that traveled downslope to the north. Multiple
flow branches and lobes break off from the main channels, and in one
place the lava has filled the floor of a crater (Region 19, Fig. 1b). Flow
thickness is generally no more than a few meters (Vasconez et al., 2018).

2. Methods
2.1. UAS surveys

We used a DJI Matrice 210 (M210) quadcopter for this study. The
M210 has two gimbal-stabilized camera mounts, on which a DJI Zen-
muse X4S visual camera and a DJI Zenmuse XT TIR camera were
mounted. The Zenmuse X4S has a 20-megapixel (MP), 1” CMOS (com-
plementary metal oxide semiconductor) sensor with a mechanical
shutter and an 8.8 mm focal length. The Zenmuse XT is a FLIR Tau 640
with an uncooled VOx Microbolometer, focal plane array of 640 x 512
pixels (0.3 MP), and a 30 hertz frame rate. The sensor is sensitive to a
7.5-13.5 pm spectral band, has a sensitivity of < 50 mK, and accuracy of
+5°C. The Zenmuse XT is sensitive to a temperature range of -25-135 °C
in the high-gain setting and to a range of -25-550 °C in the low-gain
setting. As deposits surveyed in this study were cooled from their orig-
inal emplacement, we used the high-gain setting. Equipped with these
cameras, the M210 has a maximum flight time of approximately 25 min.

The location of the survey region within the extent of recent eruptive
deposits (Fig. 1) was chosen such that multiple types of volcanic deposits
(e.g., tephra and different lava flow morphologies) would be present in
the resulting data products. The size of the region was limited by the
area that could be surveyed by the UAS in one flight and was the result of
a balance between the desired diversity of deposits and map spatial

resolution (a factor of the height above ground of the UAS flight). For
each flight, the two cameras were synched and set to capture an image
every three seconds with a slightly forward-looking viewing angle of 10°
off-nadir. We flew a series of adjacent back-and-forth swaths (i.e., a
“lawnmower” flight pattern) over the survey region at approximately
150 m above ground level. Image overlap for both the visual and TIR
images in both the flight direction and between flight lines was generally
about 75%, with flight speed adjustments and varying ground elevation
causing overlap for individual images to range from 50 to 90%.

We conducted three UAS flights with the TIR camera and measured
the temperature change of the volcanic deposits in our study area due to
solar heating. Solar heating rate is highest and the difference in heating
rate among surfaces is most pronounced in the hours immediately
following sunrise (Price, 1977). The UAS survey was conducted at Sierra
Negra on October 22, 2018, and UAS take off times were at 7:11 am,
8:18 am, and 9:35 am local time (UTC-06) (Table 1). While two flights
are sufficient to determine solar heating rate, three or more measure-
ments provide higher accuracy and data redundancy. Each flight lasted
approximately 24 min and an average of 450 images were acquired per
camera per flight (Table 1). Sunrise on this day was at 5:44 am. Ideally
when applying this technique, the first UAS flight should occur prior to
sunrise to observe conditions with no solar heating. However, on this
day fog was present at sunrise, preventing UAS flight but also limiting
solar heating of the ground. We flew the first flight immediately as the
fog cleared to minimize the effect of solar heating in our first thermal
survey.

2.2. Photogrammetric processing

We applied structure-from-motion (SfM) photogrammetry to create
DEMs and orthophotos from the images taken during UAS flights (e.g.,
James and Robson, 2012; Bemis et al., 2014; James et al., 2019). We
used Agisoft Metashape® version 1.5 for SfM processing. The location of
each image tagged by the on-board GPS of the M210 provided the spatial
information for the resulting models. The ‘high’ setting (In Metashape®,
which means the images were processed at their original size, without
downsampling) was used for both the initial alignment and generation
of the dense cloud for all models. We generated orthophotos and DEMs
for both the visual and TIR images from each flight. All products from
SfM processing with Metashape® were exported with identical spatial
resolution and boundary coordinates such that the pixel locations are
identical for calculating the solar heating rate of the surface. Meta-
shape® uses bilinear interpolation to vary the spatial resolution when
exporting DEMs and orthophotos. We selected a spatial resolution of
0.20 m for these DEMs and orthophotos, based on rounding up from the
lowest resolution temperature map of the three flights (Table 1).

2.3. Roughness

We calculated roughness from the DEM created from the visual im-
ages taken during the second of the three survey flights. This flight had
better spatial coverage compared to the other two, and the visual images
produced higher resolution DEMs and orthophotos compared to the TIR
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Classification regions. Solar heating rate (°C hr'!) and roughness values for the 31 regions used to define the manual classification and as training data for the su-
pervised machine learning classification (Fig. 6). The ‘Simplified Classification’ and ‘Refined Classification’ columns are the dominant surface type of each region for
each classification based on visual observations in the field and inspection of the orthophoto (Fig. 1b) derived from the UAS images.

Region Simplified Classification Refined Classification Heating Rate (°C hr'!) Roughness (deg)
1 Tephra Tephra 12.5 2.4
2 Tephra Tephra 13.8 1.7
3 Tephra Tephra 9.6 2.8
4 Tephra Tephra 12.2 2.3
5 Tephra Tephra 10.8 2.7
6 ‘A'a ‘A'a — Ridge 5.0 4.3
7 ‘A'a ‘A'a — Blocky 6.7 6.2
8 Pahoehoe Pahoehoe - Crust 7.9 4.5
9 Pahoehoe Pahoehoe — Crust 8.8 4.5
10 Pahoehoe Pahoehoe - Crust 9.8 4.8
11 Pahoehoe Pahoehoe - Crust 10.4 3.7
12 Pahoehoe Pahoehoe - Crust 8.5 3.8
13 Pahoehoe Pahoehoe — Crust 10.7 3.1
14 Pahoehoe Pahoehoe - Slabby 9.2 7.1
15 Pahoehoe Pahoehoe - Crust 9.6 4.5
16 Pahoehoe Pahoehoe - Slabby 8.4 7.5
17 Pahoehoe Pahoehoe - Slabby 8.5 7.9
18 Pahoehoe Pahoehoe - Slabby 6.9 6.7
19 ‘A'a ‘A'a — Ridge 6.8 4.3
20 ‘A'a ‘A'a — Ridge 6.7 3.9
21 ‘A'a ‘A'a - Ridge 6.1 2.3
22 ‘A'a ‘A'a - Ridge 5.3 3.1
23 ‘A'a ‘A'a - Blocky 4.1 6.9
24 ‘A'a ‘A'a — Blocky 4.7 5.6
25 ‘A'a ‘A'a — Blocky 6.0 6.1
26 ‘A'a ‘A'a — Blocky 4.8 4.5
27 Pahoehoe Pahoehoe - Slabby 7.0 7.3
28 ‘A'a ‘A'a — Blocky 5.5 6.0
29 ‘Aa ‘A‘a — Blocky 7.7 5.2
30 ‘A'a ‘A'a - Blocky 5.9 5.3
31 ‘Aa ‘A‘a - Blocky 5.0 4.1
images (Table 1). Following the workflow of James et al. (2020b), we
estimated that the average vertical error of the DEM is 0.15 m. This DN; = 65535 x (%) 3)
max min

suggests that the DEM is sensitive to elevation changes between neigh-
boring pixels on the order of 0.1 m. From the DEM, we calculated the
slope and aspect of the terrain. Following Grohmann et al. (2011), we
calculated surface roughness as the standard deviation of the slope
values within a 5 x 5 pixel moving window. This resulted in roughness
sensitive to variations with a lateral extent on the order of 1 m (five
pixels with 0.2 m spatial resolution).

2.4. Solar heating rate maps

Agisoft Metashape® is only compatible with integer digital number
(DN) images. When the radiometric JPEG (joint photographic experts
group) images from the Zenmuse XT are loaded into Metashape®, the
temperature values are automatically converted to a single-band gray-
scale 8-bit DN (DN values from 0 to 255). To create a photogrammetric
model that we can correlate to temperature values, the images captured
by the TIR camera must be uniformly converted to DN. We first used the
ResearchIR® software from FLIR to convert all images to a tagged image
format (TIF) file that could be read by Matlab® (among other software
platforms). For each group of TIR images that would be used to create
one photogrammetric model in Metashape® (in this case all the images
captured during a single flight), we performed a linear scaling of the
temperature values over the entire image set and converted to a 16-bit
DN (DN values from 0 to 65,535). This conversion gives a DN value of
0 to the lowest temperature recorded in a pixel in any image in the set
(Tmin) and a DN value of 65,535 to the highest pixel temperature found
in any image (Tmqyx). The temperature for any pixel i in any image in the
set (T is then assigned a DN value by

and DN; is then rounded to the nearest integer. As the range between the
maximum and minimum temperature in an image set for this study is <
130 °C (Table 1), each 16-bit DN value represents a step of < 0.002 °C.
Given that the TIR camera has a sensitivity of < 50 mK (< 0.05 °C), the
temperature scaling preserves the precision of the original
measurement.

The linearly scaled DN images were loaded into Metashape® and
processed as described in Section 2.2. We provided spatial reference
using control points (markers) in Metashape® to align the temperature
maps to the Flight 2 visual orthophoto. The control points were locations
identifiable in both the visual and TIR orthophotos, and we used co-
ordinates for the points derived from the visual orthophoto to ensure as
precise an alignment of the temperature maps as possible. Using 17
controls points, we achieved sub-spatial resolution alignment accuracy
(< 0.2 m) for all three temperature maps (Table 1). It is also possible
(and common) to use a mapping GPS unit to survey control points and
provide spatial reference for this type of UAS survey (James et al., 2019).
However, we do not do this here because 1) distributing and measuring
control points before the UAS survey was not ideal as it would have
involved doing so in the dark (pre-sunrise) or leaving the control point
markers in the field overnight and 2) this allows us to present a method
that can be utilized in cases were surveying control points via GPS is
similarly not feasible or impossible.

To produce the final temperature maps, we first exported the
orthophoto created in Metashape® from the scaled images. Next, in
Matlab®, we converted the 16-bit DNs back to temperature using the
inverse of Eq. (3) (i.e., solving for T; when knowing DN; rather than
solving for DN; knowing T;, as shown). Both the sensor measurement
error and the SfM processing impact the accuracy of the temperature
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T B) Flight 2 (08:30)

Fig. 2. Temperature Maps. The sequence of temperature maps (times are local, GMT-06) produced from the UAS TIR camera survey show differential heating of the
land surface. The 2018 lava flows are outlined in red. Arrows highlight high temperature thermal anomalies associated with areas still releasing heat from the
original eruption. The yellow arrow in (C) is the location of the highest temperature in any of the maps (115.3 °C). Data missing in the northeast corner of (A) and (C)
is due to variations in the spatial coverage of the UAS flights. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

maps. To generate an orthophoto from TIR images, Metashape® effec-
tively averages the DN for a location as it appears in multiple individual
images to produce a single value for the orthophoto. This will smooth
details such as local maxima and minima but also minimize the effect of
outlying values due to sensor measurement error (+ 5 °C for the Zen-
muse XT). For terrain with broadly uniform or gradual changes in sur-
face temperature (such as our study area), the result is a temperature

Fig. 3. Solar heating rate of Sierra Negra surfaces.
The solar heating rate calculated from the three
temperature maps shows high rates (yellow) in
tephra-dominated surfaces and low rates (purple) for
‘a‘a lava. The basemap is a hillshade of the Flight 2
DEM. Areas with no solar heating rate data have a
slope above 20° or were in shadow and were ignored
to minimize the effect of surface reflectivity and
preferential heating of a sloped surface facing to-
wards or away from the rising sun. The blue line
running down each flow branch is the profile line for
Fig. 5. Numbered boxes are the regions used to define
the manual classification. The 2018 lava flows are
outlined in black. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)

map with relative errors no larger than the measurement error in the
images.

The solar heating rate for the surveyed region was calculated by
fitting a linear best-fit line through the three temperature values for each
pixel from the three temperature maps. We chose units for the solar
heating rate of °C hr! for this study. To account for issues related to the
surface reflectivity and preferential heating of a sloped surface facing
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Fig. 4. Roughness of Sierra Negra surfaces. The sur-
face roughness of the study area shows that the
smoothest surfaces (lighter red) are tephra deposits
and the roughest surfaces (darker red) are found near
fissures and cliffs. Within the lava flow (black
outline), the smoothest surfaces are pahoehoe crust
and the roughest are slabby pahoehoe. The blue line
running down each flow branch is the profile line for
Fig. 5. Numbered boxes are the regions used to define
the manual classification. (For interpretation of the
references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 5. Lava flow profiles. Downflow profiles of the elevation (A and B) and solar heating rate and roughness (C and D) are shown for the west (A and C) and east (B
and D) flow branches in the study area. The profile line is shown in Figs. 3 and 4. Solar heating rate and roughness are plotted as 5 m running averages (25 pixels) to
improve visualization by reducing noise and assigning a running average value to ‘no data’ locations. Solar heating rate shows a general decreasing trend downflow,
with the lowest values associated with small breaks in slope (see at ~125 and ~ 225 m in the west profile and ~ 250 m in the east profile). Roughness does not show
a strong trend downflow but is lowest near the vent where solar heating rate is highest (< 100 m downflow), associated with pahoehoe crust surfaces.
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Fig. 6. Solar heating rate vs. Roughness for 31 training areas. The average solar
heating rate and roughness for the 31 regions create a regime diagram for
different surfaces. The gray lines in the diagram show the boundaries for each
surface type used to define the simplified (thicker lines) and refined manual
classifications. The colour of the dot for each region corresponds to the ground
truthed surface type (see Fig. 1b). The ground truth surface type and the
average solar heating rate and roughness for each region were used to as the
training dataset for the supervised machine learning classification.

Fig. 7. Simplified classification. Surface types at Sierra Negra classified into three categories (tephra, pahoehoe lava, and ‘a

machine learning (b), and unsupervised machine learning (c) methods.
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towards or away from the rising sun, we masked all pixels with a slope
above 20 degrees. We also mask all pixels that are in shadow in the
visual orthophoto (Fig. 1b) to account for decreased solar heating in
these areas. The error in the solar heating rate is controlled by the
variance of the temperature measurement error for each pixel in each
map (a uniform error across all measurements does not affect solar
heating rate). A two-point AT with a + 5 °C measurement error could
have an error as high as +£10 °C, or 4 °C hr! for the 2.5 h of our mea-
surements. Our use of a third temperature measurement to calculate
solar heating rate reduces the effect of individual measurement errors.
As the measurement error for each pixel in each map cannot be known to
directly quantify the error, we assume the solar heating rate error to be
<4°Chrl.

The solar heating rate values in the resulting map are best used as a
measure of the relative thermal inertia of the different surface types in
the study area. In addition to the properties of the surface, the solar
heating rate is sensitive to numerous factors including ambient air
temperature, cloud cover, season, and latitude. Thus, solar heating rate
values are not directly comparable between different locations or
different days, even for similar or identical surfaces. For future studies, a
quantitative determination of ATI (Eq. 2) could be made possible
through a more sophisticated methodology that includes estimating al-
bedo. Albedo can be determined using either satellite-derived reflec-
tivity data (e.g. Price et al., 2016; Simurda et al., 2020) or via UAS using
a radiometrically calibrated sensor and a calibration target. We
refrained from attempting this for this study as 1) we were interested in
developing a simplified workflow that did not require extensive access
to the survey area (e.g., for ground truth, ground control points, cali-
bration targets, etc.), and 2) the highest spatial resolution satellite-

‘a lava) based on manual (a), supervised
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Fig. 7. (continued).

derived reflectance data is 90 m, which would cause sub-pixel mixing
errors (Simurda et al., 2020) if applied to our 0.2-m spatial resolution
data.

We also consider the contributions of sub-pixel roughness on the
solar heating rate. As noted previously, Simurda et al. (2020) found that
ATI does not perfectly correlate with particle size. Coarse sized particles
did not yield the highest ATI because they produced sub-pixel shadows
and trapped fine particles. At the scale investigated in our study (0.2 m),
tephra of various sizes and small blocks of lava represent the fine, me-
dium, and coarse particle sizes that influence sub-pixel roughness. Sub-
pixel roughness due to variations in these particle sizes will not impact
our lava classification methods because we do not anticipate widespread
sub-pixel (less than 0.2 m) mixing of tephra, pahoehoe lava, and ‘a‘a lava
(see next section for additional details on our classification scheme).
Additionally, if these variations are more prevalent than we expect, their
effects will be accounted for in the classification technique. The classi-
fications are based on variations in solar heating rate and roughness.
Therefore, any significant variations in solar heating rate due to sub-
pixel roughness will be included in our classification scheme.

2.5. Classification

We classified surfaces based on their roughness and solar heating
rate using manual and machine learning techniques. We applied a
simplified (n = 3) and refined (n = 5) classification of surface types that
are most prevalent in the study area, based on field observations. In the
simplified classification, these surfaces were tephra, pahoehoe lava, and
‘a‘a lava. In the refined classification, these surfaces were tephra,
pahoehoe with intact crust, slabby pahoehoe, blocky ‘a‘a, and ‘a‘a with
visible surface ridges. The four categories of lava correlate roughly to the

down flow progression of lava morphology which we observed (Fig. 1b)
and the progression of lava morphologies described by Lipman and
Banks (1987). Pahoehoe with intact crust is located closest to the vent
(pahoehoe, Lipman and Banks, 1987). Slabby pahoehoe occurs where
the crust was fractured before the lava transitioned to ‘a‘a (slabby ‘a‘a or
pahoehoe, Lipman and Banks, 1987). The ‘a‘a with visible surface ridges
(scoriaceous ‘a‘a, Lipman and Banks, 1987) is found in breakout lobes
and some channelized portions of the flow (Fig. 1b) and has smaller
surface clast sizes compared to the blocky ‘a‘a, (blocky ‘a‘a, Lipman and
Banks, 1987). We observed blocky ‘a‘a downflow of the pahoehoe-‘a‘a
transition and in the main channel of the eastern flow branch (Fig. 1b).

For the manual classification method, we first identified 31 ‘training’
areas that contain only one of the surface types. We then calculated the
average roughness and solar heating rate for each of these areas (Table 2
and boxes in Fig. 1b). These average values define regions in roughness-
solar heating rate space, which provide the ranges of roughness and
solar heating rate values associated with each surface type. We used
these ranges to classify each pixel in the study area. As these regions
represent a single surface type, the variation of roughness and solar
heating rate values for the pixels within the regions provides a means to
assess the significance of differences between the region averages. In
general, solar heating rate is more uniform within a region compared to
roughness. The standard deviation of the pixel values for each region
suggests that differences in the average value between regions of 1 °C hr”
! for solar heating rate and 2 for roughness represent clear distinctions in
surface characteristics.

We experimented with supervised and unsupervised machine
learning methods for per-pixel classification of surface types, then tested
the performance of these methods by comparing them to the manually
classified maps. Supervised machine learning techniques have proven
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successful at efficiently mapping volcanic deposits in remote imagery (e.
g., Li et al., 2017; Corradino et al., 2019). Similar to previous works (e.
g., Waske et al., 2009; Kereszturi et al., 2018),

we used a random forest algorithm trained on the manually identi-
fied training areas to classify each pixel in the image as one of the three
(or five) surface types. We carry out this step using the scipy.
ensemble.RandomForestClassifier Python package (Pedregosa
et al., 2011).

We also explored unsupervised machine learning, used to recognize
patterns within large datasets without training data. Unsupervised
methods are thus beneficial for classifications in regions where field
observations may not be possible, or where previous knowledge of the
existing surface deposits may be limited. We used a k-means algorithm
to identify discrete clusters of pixels grouped in roughness-solar heating
rate space, which we then interpreted as different surface types. We
chose to use three (or five) clusters to match the manual simplified and
refined classifications. We performed the k-means clustering using the
scipy.cluster.KMeans Python package (Pedregosa et al., 2011).

3. Results

The three temperature maps generated from the UAS TIR images
show surfaces heating at different rates as solar input increases within
the sequence (Fig. 2). In the latest image (Fig. 2c, most solar input), the
lava flows appear notably cooler than the surrounding terrain. Small,
high-temperature thermal anomalies (white arrows, Fig. 2) indicate that
in areas where the lava ponded or was emplaced at a greater thickness,
the flow was still cooling four months after the eruption. The highest
temperature observed in any of the maps is 115.3 °C (yellow arrow,
Fig. 2¢), located along a crack in the lava flow surface in an area where
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lava ponded in a crater.

The solar heating rate of the land surface in the study area shows
several consistent patterns (Fig. 3). The highest solar heating rates are
found where tephra is the dominant surface type (compare Fig. 3 to
Fig. 1b). Variations in the solar heating rate of tephra are primarily
related to the slope and aspect of the surface- flat and/or east-facing
(sun-facing) slopes have generally higher solar heating rate than
steeper and/or west-facing slopes. The effect of slope on the solar
heating rate in tephra deposits can be seen in Fig. 3 near Region 4 where
solar heating rate decreases smoothly to the south as the slope increases
towards the caldera rim. The lowest solar heating rate found in tephra
deposits is in Region 3 (Fig. 3), near a vent from the 2018 eruption. The
solar heating rate generally decreases down the length of the lava flows
as flow morphology transitions from initially pahoehoe near the vent to
‘a‘a. The highest solar heating rates on the lava flow surface are found
near the vent where intact pahoehoe crust is present (Fig. 1b; Fig. 3). The
lowest solar heating rate within the flow is located where the lava flows
over a ‘step’ where the slope is greater (Region 23, Fig. 3).

The meter-scale surface roughness of the study area (Fig. 4) shows
that tephra surfaces are the smoothest. The roughest lava flow surface is
fractured pahoehoe crust near the transition to ‘a‘a (Regions 16 and 17,
Fig. 4), with intact pahoehoe crust and ridged ‘a’a both appearing
smoother (Regions 13 and 6, Fig. 4). Directly comparing the roughness
and solar heating rate along two flow profiles (Fig. 5) shows the general
decrease in solar heating rate with distance downflow.

We calculated the average solar heating rate and roughness for the
31 regions shown in Figs. 3 and 4 (Table 2) and plot them against each
other in Fig. 6. These regional average values define the training data for
the supervised machine learning classification. The gray lines in Fig. 6
indicate the boundaries between surface types used to define the manual
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Fig. 8. Refined classification. Surface types at Sierra Negra classified into five categories (tephra, pahoehoe crust, slabby pahoehoe, blocky ‘a‘a, and ridged ‘a‘a) based
on manual (a), supervised machine learning (b), and unsupervised machine learning (c) methods.

classification. In general, lava is distinguished from tephra by roughness.
In the case where an ‘a‘a region has a roughness similar to tephra (due to
a scoriaceous texture with tightly packed, smaller blocks that created a
relatively smooth surface), it is distinguished by its slower solar heating
rate (Region 21, Fig. 6). Pahoehoe and ‘a‘a lava morphologies are pri-
marily separated by the solar heating rate (Fig. ©6). In the refined clas-
sification (five surface types), the distinction between morphologies of
‘a‘a (blocky and ridge) and pahoehoe (crust and slabby) is based on the
roughness (Fig. 6); there is no discernable difference in the solar heating
rate for these lava morphologies. The proximity of many regions to the
boundary lines indicates that there is a gradual, rather than a sharp,
distinction between morphologies in these data. This proximity will also
cause some misclassification of surfaces, as the difference in roughness
and solar heating rate values between regions are less than the vari-
ability in the values of the pixels within the regions, as defined by the
standard deviation of pixel values in the region (Supplemental Fig. S1).

The range of roughness and solar heating rate values used for the
manual classification are: tephra (roughness < 3; solar heating rate >
6.85); pahoehoe (roughness > 3; solar heating rate > 6.85); ‘aa (any
roughness; solar heating rate < 6.85); pahoehoe-crust (3 < roughness <
5.5; solar heating rate > 6.85); pahoehoe-slabby (roughness > 5.5; solar
heating rate > 6.85); ‘a‘a-ridge (roughness < 4.4; solar heating rate <
6.85); ‘a‘a-blocky (roughness > 4.4; solar heating rate < 6.85).

The results of the manual classification applied to every pixel in the
study area (Fig. 7a and 8a) show good qualitative agreement with our
field observations (Fig. 1b). For the simplified classification (three sur-
face types), the eastern flow branch shows a clear transition from
pahoehoe to ‘a‘a lava approximately 200 m downflow from the vent (red
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to blue change between Regions 17 and 23, Fig. 7a). The transition to
‘a‘a in the western flow branch is less defined and a large pahoehoe
component is present downflow near Region 29. In addition to the 2018
eruption deposits, this classification also identifies an older ‘a‘a lava flow
to the west (Region 7, Fig. 7a). Some surface area outside of the lava
flows is classified as pahoehoe (red areas around Region 5, Fig. 7a) and
is mostly associated with changes in slope (i.e., ridges, fissures, and
other rock outcroppings that increase roughness) in tephra-dominated
regions (yellow). Very little area outside of the lava flows is classified
as ‘a‘a. Some areas of smooth pahoehoe crust are also classified as tephra
because of their lower roughness (yellow area near Region 11, Fig. 7a).

The refined classification (Fig. 8a) is considerably noisier than the
simplified classification (Fig. 7a) and does not show any clear pattern in
the presence of lava morphologies in the flow. Slabby pahoehoe is
particularly poorly classified. Due to the 0.2 m spatial resolution of the
input maps, the refined classification is better at identifying the edges
and surfaces of individual pahoehoe crust blocks (areas surrounding
Regions 14 and 16, Fig. 8a) than the broad region of slabby pahoehoe
morphology (Fig. 1b). Similarly, for ‘a‘a, the refined classification is
better at identifying individual ridges (Region 6, Fig. 8a) or levees (to
the west of Region 24, Fig. 8a) than it is broad areas of the flow surface
where ridged or blocky morphology is present.

For three surface categories, machine learning methods, both su-
pervised and unsupervised, can efficiently replicate the manual classi-
fication (Fig. 7). Because it was trained on the 31 manually classified
regions, the supervised (random forest) method very closely resembles
the manual method (compare Fig. 7a and b). The unsupervised (k-
means) method identifies tephra and ‘a‘a lava with minimal
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misclassification compared to the manual and supervised machine
learning method (compare Regions 5 and 29 in Fig. 7a and c). However,
the unsupervised method is unable to broadly identify pahoehoe lava.
The near-vent pahoehoe-dominated region of the lava flow is absent,
with pahoehoe-classified pixels limited to the edges of crust blocks
(Fig. 7¢).

Results from the refined machine learning classifications are mixed.
Supervised machine learning can differentiate between the manually
defined surface types, with the map having similar appearance to the
manual classification (Fig. 8a and b). However, the refined supervised
classification is worse at distinguishing tephra and pahoehoe compared
to the simplified supervised classification (Figs. 7b and 8b). The unsu-
pervised method, with no training data to guide it, deviates from our
visually defined categories (Fig. 8c). The ‘a‘a lava (dark blue, Fig. 8c)
remains a single surface type and appears similarly to the ‘a‘a regions in
the simplified classifications (Fig. 7). Tephra is split into two categories
(yellow and red, Fig. 8c) with the difference appearing to be based on
the slope and aspect of the surface. These two tephra categories also
include most of what we visually identified as intact pahoehoe crust
(Regions 10 and 11, Fig. 8c). Light blue pixels correlate with extremely
high roughness at sharp edges but are relatively few in number
compared to other categories and difficult to identify in Fig. 8c. How-
ever, slabby pahoehoe is identified with reasonable accuracy (Regions
14, 16, and 17, Fig. 8c). In general, the refined unsupervised classifi-
cation is poor and not able to identify categories that correspond to
visually distinct surface morphologies.

The patterns discussed above are represented quantitatively in the
confusion matrices in Fig. 9. In these plots, the ‘true label’ is the manual
classification and the ‘predicted label’ is the machine learning classifi-
cation. The number in each square is the fraction of the pixels in a ‘true’
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category that are found in a given ‘predicted’ category. For example, in
Fig. 9a, 93% of pahoehoe pixels in the manual classification were also
classified as pahoehoe by the supervised random forest method. For the
simplified classification, the supervised method classifies all categories
with greater than 90% accuracy (Fig. 9a). The unsupervised method’s
difficulty in classifying pahoehoe is clearly shown (Fig. 9b), with only
21% of manually classified pahoehoe pixels correctly predicted,
compared to 92% and 83% accuracy for tephra and ‘a‘a, respectively.
For the refined classification, the supervised method classifies all cate-
gories with 84-88% accuracy except for slabby pahoehoe, which is 61%
(Fig. 9¢). The confusion matrix for the unsupervised refined classifica-
tion (Fig. 9d) confirms the patterns observed in the classification map
(Fig. 8c), where both the blocky ‘a‘a (99%) and ridged ‘a‘a (79%) were
classified as blocky ‘a‘a, and tephra was split nearly evenly into two
categories (54% and 46%). The unsupervised method is superior to the
supervised method in classifying slabby pahoehoe however, doing so
with 74% accuracy.

4. Discussion
4.1. Using solar heating rate and roughness to describe volcanic deposits

Roughness and solar heating rate describe inherently different sur-
face properties. Roughness, as a measurement of the surface texture, is
better at distinguishing morphological differences in volcanic deposits.
This is shown by the separate morphologies of pahoehoe (crust and
slabby) and ‘a‘a (ridge and blocky) lava in the refined classification
having essentially no difference in solar heating rate but variable
roughness (Fig. 6). Solar heating rate, which is inversely related to
thermal inertia (Eq. 1; Eq. 2), is a measurement of physical properties of
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the deposit. In this study that primarily refers to the grain size and
density. However, solar heating rate also includes the effects of sub-pixel
roughness: roughness that is below the scale of the measured roughness
that was discussed above. We have determined that solar heating rate is
an excellent method for discriminating between the major depositional
types (i.e., tephra, pahoehoe, and ‘a‘a) in the study area (Fig. 3; Fig. 6).

Tephra is generally distinct from the lava due to its smaller grain size
compared to the blocks and crust of the lava flow (Fig. 3; Fig. 6).
Similarly, Price et al. (2016) also found that tephra had lower ATI (i.e.,
higher solar heating rate) compared to lava. While solar heating rate
should be sensitive to variations in the clast size of tephra deposits, we
did not visually observe in the field any significant clast size variations
in regions where gradients in the tephra solar heating rate are visible
(near Regions 4 and 5, Fig. 3). We thus attribute these gradients to the
influence of the slope and aspect of the surface, which likely overwhelms
minor variations in tephra clast size. One possible exception to this is
observed when comparing Region 3 (near vents from the 2018 eruption)
to Region 4 (200 m to the east) (Fig. 3; Fig. 6; Table 2). Both regions have
similar slope and aspect, yet the near-vent Region 3 has the lowest solar
heating rate (and highest roughness) of any tephra region (Fig. 6;
Table 2). We observed relatively larger clasts of tephra and spatter
surrounding the vents, so clast size is a possible explanation in this case
for the difference in solar heating rate. We do not have quantitative clast
sizes for the tephra studied in this area.

The downflow decrease in solar heating rate that we observe at Si-
erra Negra is likely a result of increasing density of the lava (decreasing
vesicularity) due to degassing as it flowed downslope. This pattern is
well-described for other lava flows (e.g., Lipman and Banks, 1987). Lava
density may also explain the solar heating rate and roughness we
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observe for the slabby pahoehoe (Fig. 6). While the slabby pahoehoe
represents the roughest surface of the Sierra Negra lava flows (Fig. 4),
the solar heating rate does not have correspondingly low values indic-
ative of such large blocks. Rather, slabby pahoehoe has intermediate
solar heating rate between the pahoehoe crust and ‘a‘a morphologies, a
result of the higher vesicularity of this material compared to the ‘a‘a
downflow (Fig. 3; Fig. 5d; Fig. 6). This intermediate solar heating rate
could also be influenced by sub-pixel roughness. As demonstrated in
Simurda et al. (2020), if the scale of the slabs in the slabby pahoehoe are
such that they introduce small (sub-pixel) shadows, this could raise the
solar heating rate slightly. The precise relative effects of density and
particle size on the solar heating rate for a material cannot be separated
in this study.

The conditions that existed during lava flow emplacement can be
interpreted based on where different lava flow morphologies are
located. The pahoehoe to ‘a‘a transition for both the east and west flows
is located near an increase in slope (Fig. 5; Fig. 7). The steeper slope
would have increased flow velocity and thus the strain rate within the
lava, promoting the transition to ‘a‘a as the lava viscosity also increased
with distance from the vent due to degassing and cooling. The ridged
‘a‘a, with higher heating rate and lower roughness (i.e., lower density
and/or smaller blocks) compared to the blocky ‘a‘a, is preferentially
located in flow lobes away from the main channel (Regions 6, 21, and
22, Fig. 8). This suggests the ridged ‘a'a regions were emplaced with
lower viscosity earlier in the eruption, whereas the blocky ‘a‘a
morphology in the main channel is likely due to dense, higher viscosity
lava emplaced as the eruption rate decreased and the flow came to a
stop.
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Fig. 9. Confusion matrices for machine learning classifications. Each matrix element displays the fraction of manually classified pixels (“true label”) found in a given
machine-learning-predicted category (“predicted label). Dark colours on the diagonals indicate overall accurate predictions. For example, in (A), 100% of “‘a‘a”
pixels in the manual classification were predicted to be “*a‘a” by the supervised random forest method (A: three-category (supervised) random forest; B: three-
category (unsupervised) k-means; C: five-category random forest; D: five-category k-means).

4.2. Classification accuracy

Investigation of the areas of apparent misclassification demonstrates
the capabilities (or limitations) of our classification methods and iden-
tifies localities with complex deposits. For example, all classification
methods we applied successfully identified an older lava flow as having
‘a'a morphology (Region 7, Fig. 7). This indicates our classification by
roughness and solar heating rate does not distinguish between similar
deposits of different ages (at least for age differences on the scale of
decades). This is advantageous for mapping flow field morphology and
extent surrounding a vent (or vents) but can be a hindrance for mapping
a specific flow within a flow field if its extent is not known. Many sur-
faces outside of the 2018 flows which are classified as pahoehoe are also
not necessarily misclassified but are locations where older pahoehoe
surfaces are exposed within the tephra deposits (Fig. 7). Segments of
pahoehoe crust are often misclassified as tephra (yellow areas near
Regions 11 and 13, Fig. 7), but in areas near the vent, the classification is
correctly identifying tephra mantling the pahoehoe crust (southwest of
Region 11, Fig. 7). A section of ‘a‘a lava in the northern part of the
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western flow segment (Region 29, Fig. 7) is misclassified as pahoehoe
due to a higher solar heating rate than is typical for ‘a‘a (Fig. 3; Fig. 6).
From the visual UAS images, block sizes in the flow appear smaller in
this location and this is the likely cause of the increased solar heating
rate. Interestingly, this area corresponds to a part of the 2018 lava flow
that flowed over an ‘a‘a flow from a previous eruption, suggesting that
the roughness of the substrate over which lava flows may affect the
block size of the lava. This is expected, since small-scale bed roughness
impacts the flow advance rate and thus the balance between shearing
and cooling timescales and the resulting flow morphology (Rumpf et al.,
2018).

Both the manual and machine learning classifications highlight dif-
ferences in how field identification of units differs from per pixel clas-
sification in remote sensing data. For example, it is straightforward to
visually identify the pahoehoe sections of the lava flow, yet all classifi-
cation methods had difficultly identifying both pahoehoe and the crust
and slabby sub-morphologies (Fig. 9). The low accuracy of the unsu-
pervised machine learning methods demonstrates that pahoehoe is not
identifiable as a single cohesive unit compared to other features in the
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Fig. 10. Effect of reduced spatial resolution on classification. The manual refined classification (Fig. 8a) resampled to 2 m (A) and 20 m (B) spatial resolution. At 2 m
resolution, the dominant morphology for different segments of the lava flow is potentially easier to identify compared to the original 0.2 m resolution. A resolution of
20 m is too coarse to clearly identify the flow margins and classification errors are more prominent.

study area (Fig. 7c; Fig. 9¢). Similarly, while ‘a‘a is broadly identifiable
as a distinctive unit by all classification methods (Fig. 7), the differences
in roughness and solar heating rate between the visually identified
blocky and ridged surface morphologies are not significant to the un-
supervised machine learning method (Figs. 8c and 9d). Including the
visual orthophoto as an additional component of the classification may
be a means to improve pixel-by-pixel classification of lava flow
morphology, as the properties of visual images may more directly
correlate to how deposits are manually identified in the field (Soule
et al., 2019).

Overall, the supervised method classifies lava surface types with an
accuracy of 96% and 82% for the simplified and refined classifications,
respectively, demonstrating its usefulness as an efficient and semi-
automated mapping tool. The unsupervised machine learning method
delivers a 61% and 55% accurate classification when compared to the
manual simplified and refined classification maps, respectively. The
unsupervised method’s loss in per-pixel accuracy relative to supervised
method makes it inadequate for mapping the different lava flow mor-
phologies targeted in this study. However, Fig. 7c shows how the un-
supervised k-means clustering can distinguish between tephra and the
lava flow as a whole, independent of a priori knowledge about the de-
posits. The overall efficient mapping abilities of the unsupervised ma-
chine learning method is thus useful in cases where identification of
major surface types without training data is desired. The manual and
supervised machine learning classification techniques are best suited for
applications looking to identify and map a specific deposit (or suite of
deposits), as these methods allow the user to define the values of
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roughness and solar heating rate that apply to the surface(s) of interest.

4.3. Effects of spatial resolution on classification

A key factor that may account for the difference in visually identified
units (Fig. 1b) and the classification techniques (Figs. 7 and 8) is the
spatial resolution of the data. Whereas the eye can generalize across
broad sections of terrain, our classification methods cannot and are
limited to the 0.2 m resolution of the DEM and temperature maps. This is
especially evident in the noisy appearance of the refined classification
(Fig. 8), which identifies lava flow morphology varying on the order of
meters rather than the 10s-100s of meters scale variations that we
identified in the field (Fig. 1b). The 31 training regions (Table 2; Fig. 6)
represent a classification based on a larger spatial resolution. The vari-
ations within each region are averaged out and result in a clear
distinction between the intact crust and slabby pahoehoe (Fig. 6) that is
not seen in the classification maps (Fig. 8).

To test the effect of spatial resolution on the classification result, we
resampled the manual refined classifications to a resolution of 2 m and
20 m (one and two orders of magnitude larger than the 0.2 m UAS
dataset). The resampled pixel classification was determined by the most
common surface category (i.e., the mode) among the 0.2 m resolution
pixels contained within the new, larger pixel (Fig. 10). The 2 m
resampled classification map (Fig. 10a) shows a reduction of noise
within the lava morphologies compared to the original classification
(Fig. 8a). The slabby pahoehoe region is more clearly identifiable (Re-
gions 16 and 17, Fig. 10a), but pahoehoe crust is less distinct due to the
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Fig. 10. (continued).

prevalence of smooth crust surfaces that were misclassified as tephra
(Regions 10 and 11, Fig. 10a). It is easier to see that the main eastern
channel has a dominantly blocky ‘a‘a morphology (vicinity of Region 24,
Fig. 10a), whereas the western branch of this channel is dominantly
ridged ‘a‘a (vicinity of Region 22, Fig. 10a). Downflow trends become
harder to distinguish as the resolution approaches the width of the lava
flow (Regions 22 and 28, Fig. 10b). Fig. 10 suggests that the ideal spatial
resolution to use for classification in this context should be approxi-
mately an order of magnitude smaller than the scale of the identified
units. If a unit has dimensions of 10s of meters (e.g., a 50 m wide lava
flow), the spatial resolution should be on the order of a few meters to
identify it clearly. This will reduce issues related to both classification on
too fine a scale as described here and sub-pixel mixing of surface types
when spatial resolution exceeds the scale of the features of interest (i.e.,
the failure of the surface uniformity assumption) as described by
Simurda et al. (2020).

While we do not examine this in detail here, we also acknowledge
that varying the spatial resolution of the input data (i.e., the UAS-
derived DEM and temperature maps) changes the scale of feature to
which the surface roughness is sensitive and the detail of variation in the
solar heating rate. This potentially alters what the resulting classifica-
tion map can show. The desired goals of the mapping and classification,
and the spatial resolution required to achieve those goals, are important
considerations when designing the initial UAS survey.

4.4. Application to other types of volcanic deposits

Surface solar heating rate and roughness can be used to classify many
types of deposits in addition to those discussed so far. We conducted a
similar UAS survey to the one described here at Sinabung Volcano
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(North Sumatra, Indonesia) (Supplementary Table S1). Starting in late
2013, an effusive eruption at Sinabung emplaced a 3 km long andesite
lava flow and generated hundreds to thousands of PDCs caused by both
lava dome collapse and Vulcanian-style explosions (Nakada et al.,
2019). The deposits from the eruption cover approximately 10 km?
(Pallister et al., 2019). We flew our dual-sensor UAS over a region of the
northeastern part of the PDC deposits measuring approximately 2 km
north-south and 1 km east-west. We captured TIR images during three
flights before (335 TIR images), during (306 TIR images), and after (370
TIR images) sunrise (05:30, 06:30, 07:30 local time, GMT + 07) on July
6, 2018 (Supplementary Table S1). We created three thermal maps with
1-m spatial resolution (Supplementary Fig. S2), from which we calcu-
lated the solar heating rate (Fig. 11a). We used 323 visual images
captured during two flights on July 8, 2018 to create an orthophoto and
DEM.

Compared to the solar heating rate at Sierra Negra, the solar heating
rate at Sinabung is minimal and broadly uniform (note the scale of Fig. 3
for Sierra Negra is from 0 to 15 °C hr'! whereas the scale of Fig. 11a is
from 0 to 3 °C hr'l). The most notable feature in Fig. 11a is an area of
relatively high solar heating rate in the center of the image. This area
does not correlate with any variation in roughness or slope, which are all
broadly homogenous at 1-m resolution for this region (Supplementary
Fig. S3). We suggest that the higher heating rate in this location is due to
a smaller average grain size. As a possible explanation for why smaller
grain sizes are found in this area, we observe that the high heating rate
correlates to a slight topographic high (Fig. 11b). This broad ridge is
significant enough to affect the pattern of new drainage channels
eroding into the pyroclastic deposits (note that channels are larger and
denser to the north and west of the high heating rate area compared to
the area visible in the orthophoto immediately to the northwest in
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Fig. 11. Solar heating rate of pyroclastic deposits at Sinabung
Volcano. The solar heating rate calculated for a region of PDC
deposits at Sinabung Volcano (A) is generally uniform with
minimal change across the scene except for a high-rate
anomaly in the middle of the scene. The source region for
the PDCs is located to the northwest, 2 km beyond the extent
of the scene. The basemap is an orthophoto produced from
visual images taken by a UAS. Comparing the solar heating
rate and elevation along a profile line (black line, A) shows
that the higher solar heating rate corresponds to a slight
topographic high (B).
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Fig. 11a). It is possible that this topographic high could have diverted
more coarse-grained pyroclastic flows and led to the preferential
deposition of finer-grained material in this area.

Near-zero solar heating rates are common near a river running north-
to-south along the east side of Fig. 11a. Though it may not explain
similarly low solar heating rate in other locations, these low values are
potentially due to higher water content in the deposits near the river,
which increases the thermal inertia (decreases solar heating rate) in
materials. This reinforces the potential of UAS-derived solar heating rate
to detect moisture content of surfaces, as was measured using satellite-
derived ATI by Scheidt et al. (2010).

Ongoing activity at Sinabung prevented the ability to ground truth
the region surveyed and any grain size variations that may exist are not
obvious in visual inspection of the UAS images or the 0.5 m orthophoto
we created. Additionally, understanding of the solar heating rate pat-
terns observed would benefit from more data coverage to the north and
west, but this was not possible due to the range of the UAS and safety
considerations. We captured a portion of the lava flow in our data (far
west center of Fig. 11a), but not enough to draw any conclusions related
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to the block size or density of the lava. Still, this application demon-
strates two useful benefits of measuring surface solar heating rate for
volcanic deposits. First, solar heating rate is more sensitive to grain size
variations than roughness when spatial resolution exceeds the grain size.
Second, measuring solar heating rate enables at least qualitative
description of grain size variations in pyroclastic deposits while an
eruption is ongoing and before it is safe to access on foot for direct
sampling and measurement.

4.5. Further applications

Combining high-spatial resolution roughness and solar heating rate
measurements represents a powerful technique for investigating volca-
nic deposits. As these quantities measure fundamentally different
properties of a surface, classification and description of different surface
types is improved by using both quantities compared to using either
alone. A specific advantage to using solar heating rate to improve clas-
sification of volcanic surfaces is the sensitivity of solar heating rate to
sub pixel size variations in the grain or block size of deposits. In contrast,
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roughness-based determinations of grain size can only be done at the
scale of the spatial resolution of the DEM, which limited the ability of
previous studies using only topographic data (Mazzarini et al., 2009;
Whelley et al., 2014) to describe pyroclastic deposits.

Although our study focuses on roughness and solar heating rate
applied to volcanic deposits, the methods we present here can be applied
to any surface type and using satellite datasets. This may be of use for
analysis of depositional processes in fluvial, landslide, or glacial envi-
ronments as well as terrestrial analogue applications for studies of other
planetary surfaces. Investigations of surface roughness of volcanic de-
posits on other planets have primarily utilized orbital LiDAR or other
radar datasets (e.g., Lawrence et al., 2013; Jawin et al., 2014). This
study illuminates the benefit of using high spatial resolution visible
datasets to create a DEM and constrain surface roughness at higher
spatial resolution than orbital LiDAR. With the rapid increase of UAS
utilization in the field, methods such as the one presented here pave the
way to efficient mapping and classification and more data-driven ap-
plications in volcanology and earth and planetary sciences in general.

5. Conclusions

We have presented a new approach to fine-scale classification of
volcanic surfaces in a basaltic flow field utilizing visual and TIR imagery
collected by UAS to derive surface roughness and solar heating rate.
Solar heating rate excels at identifying differences in physical properties
of deposits such as grain size and density, whereas roughness is better at
identifying variations in surface morphology. We used these quantities
in tandem to classify and map different volcanic deposits manually and
using machine learning techniques. For lava flows from the 2018
eruption of Sierra Negra volcano, we observe that the solar heating rate
of the lava flow surface decreases downflow, indicative of increasing
flow degassing and increasing lava density during a transition from
pahoehoe morphology near-vent to ‘a‘a further downflow.

Our simplified (three category) manual classification of the study
area relied primarily on solar heating rate to differentiate between
tephra, pahoehoe lava, and ‘a‘a lava. For our refined (five category)
manual classification, roughness was the main value separating
pahoehoe crust from slabby pahoehoe and ridged ‘a‘a from blocky ‘a‘a.
The manual classification broadly agreed with the location of surface
types we visually identified in the field. The supervised machine
learning method matches the manual classifications with an accuracy
greater than 80%, showing its ability to map known deposit types. The
unsupervised machine learning method was not able to match the sur-
face types we identified well enough to be useful for mapping (accuracy
~60%), though it successfully separated tephra from the lava flow
without initial ground truth information. When applied in appropriate
cases, classification via machine learning can improve on the capability
of manual classification.

Many advantages exist for using UAS to measure solar heating rate
and roughness at high spatial resolution. The use of UAS enables data
collection on short time-scales and at specific times. In contrast, to
determine ATI from satellite it can be necessary to wait weeks or longer
for the satellite to capture a cloud-free day-night pair of images. The
high spatial resolution of our UAS data (0.2 m) also allowed us to avoid
issues related to sub-pixel mixing of surface types that occur when using
coarser resolution satellite data. We used the location of the classified
surface morphologies to identify the pahoehoe-to-‘a‘a transition, main
flow channel, and breakout flow lobes. This enabled us to infer condi-
tions related to emplacement of the lava flow. Unlike roughness, solar
heating rate can be used to observe variations in grain size at sub-pixel
scales. Our approach can be applied in a variety of depositional envi-
ronments and used for planetary analog studies to provide insight on
surface process on earth and other planetary bodies.
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