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Abstract—Concept Factorization (CF) has shown its great
advantage for both clustering and data representation and is
particularly useful for image representation. Compared with
Nonnegative Matrix Factorization (NMF), CF can be applied
to data containing negative values. However, the performance of
CF method and its extensions will degenerate a lot due to the
negative effects of outliers, and CF is an unsupervised method
that cannot incorporate label information. In this paper, we
propose a novel concept factorization method, with a novel model
built based on the Maximum Correntropy Criterion (MCC). In
order to capture the local geometry information of data, our
method integrates the robust adaptive embedding and concept
factorization into a unified framework. The label information is
utilized in adaptive learning process. Furthermore, an iterative
strategy based on the accelerated block coordinate update is
proposed. The convergence property of the proposed method is
analyzed to ensure that the algorithm converges to a reliable
solution. The experimental results on 4 real-world image datasets
show that the new method can almost always filter out the
negative effects of the outliers and outperform several state-of-
the-art image representation methods.

Index Terms—machine learning, concept factorization, max-
imum correntropy criterion, nonnegative matrix factorization,
semi-supervised learning.

I. INTRODUCTION

D IGITAL IMAGE is one of the most important data for
pattern recognition and computer vision tasks. By the

wide use of the cameras, images are much easier to be obtained
than before. With the increasing size of the image data, we
need more efficient methods to process the data. A good image
representation technique can not only decrease computation
time for some specific tasks by alleviating the effects of
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curse of dimensionality, but also improve the performance of
algorithms.

There are many methods for image representation, espe-
cially linear data representation, such as Principal Compo-
nent Analysis (PCA) [1], Independent Component Analysis
(ICA) [2], Vector Quantization (VQ) [3], Nonnegative Ma-
trix Factorization (NMF) [4], [5] and Concept Factorization
(CF) [6]. These methods model the representation as matrix
factorization problems, which use two or more matrix factors
to approximate the data. They have strong connection with
clustering problem [7], because one of the matrix factors
can be regarded as cluster prototypes to interpret the hidden
semantics and the other viewed as the coefficients.

PCA [1] is an effective unsupervised data representation
method. It attempts to learn orthogonal bases that can best
reconstruct the original data. Compared with PCA, NMF aims
at finding two nonnegative low-rank matrices to approximate
the nonnegative data matrix. The nonnegativity constraints in
NMF only allow additive combination, and NMF leads to
parts-based representation, which is similar to object repre-
sentation in human brains [8]. Different from PCA, which can
contain negative values in orthogonal bases and coefficients,
NMF has better interpretability in general. However, NMF
has some limitations. First, NMF requires nonnegativity of
the bases. Although, this requirement may be appropriate for
some kinds of data whose features are all nonnegative, such
as image and text document, it is not desirable for the data
that contain negative values, such as agriculture and economic
data. If data contain negative numbers, the data need to be pre-
processed before applying NMF, such as, by uniform shifting
the data points. However, this way, it will destroy not only
the interpretability of the data, but also the linearilty between
data. This is illustrated by the following toy example. Suppose
the data contain three samples a = [−1, 0, 1]>, b = [0, 0, 1]>

and c = [−2, 0, 3]>. It is easy to verify that c = 2a + b.
Shifting the vectors along any vector d, the three vectors are
transformed to a′ = a+d, b′ = b+d, and c′ = c+d, and we
cannot have 2a′+b′ = c′ unless d = 0. Hence, shifting data to
be nonnegative could destroy the original linearity information.
Second, because of the nonnegativity constraints on the matrix
factors, the NMF should be applied on original data space, thus
it cannot be kernelized. In order to utilize the power of kernel
methods and extend NMF to the data with negative values,
CF [6] was proposed. CF inherits all the strengths of NMF.
In addition, it addresses the limitations of NMF by modeling
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each basis as a linear combination of the data points, and also
modeling each data point as a linear combination of bases.

Label is a very important discriminative information in
machine learning tasks. If the label information is utilized
properly, it can significantly improve the performance of ma-
chine learning and pattern recognition. However, compared to
obtaining unlabeled data, it usually costs much more to acquire
labeled data. In some cases, only a few data are labeled.
Semi-supervised learning algorithms [9] were proposed to
address this problem. Nevertheless, both NMF and CF are
unsupervised learning methods, thus they could not take the
advantage of the label information.

In this paper, we proposed a novel robust semi-supervised
image representation method called MCC based robust semi-
supervised concept factorization (MRSCF). The new method
establishes the following benefits:

1) A novel maximum correntropy criterion (MCC) based
robust concept factorization model is proposed. It can
eliminate the negative effects of outliers.

2) In order to utilize the label information and data’s local
structure information, a novel MCC based robust non-
negative adaptive embedding framework is incorporated
into the model.

3) The sparsity and sum-to-one constraints are added into
the model to increase the discrimination of the learned
representations and avoid trivial solution.

4) A novel Fenchel conjugate and accelerated BCU com-
bination strategy is proposed to solve the CF model.
Different from the existing CF methods, which utilize
the multiplicative strategy to solve the problem and
only apply the convergence analysis for nonnegative
data, the proposed algorithm is amenable to the data
with no matter negative values or not, and convergence
properties hold for both kinds of data.

5) Extensive experiments are conducted on four real-world
image datasets, and seven state-of-the-art image rep-
resentation methods are compared with the proposed
method. The representation performance is evaluated
on the clustering tasks. The results demonstrate the
superiority of the new method over other compared
methods.

The rest of the paper is organized as follows. Section II
gives a brief review of some image representation methods and
Maximum Correntropy Criterion (MCC). Section III revisits
the Sparsity Induced Similarity (SIS) and proposes the MCC
based Robust Nonnegative Adaptive Embedding regularization
term and the MCC based robust semi-supervised CF model.
Section IV develops an iterative algorithm, called MRSCF, to
search the solution of the model and analyzes its convergence.
Section V illustrates the experimental results. Finally, Section
VI concludes the paper.

To facilitate the presentation of the paper, the notations are
listed in Table I.

II. RELATED WORKS

A. NMF and CF
Given n data samples {xi}ni=1 in a d-dimensional space, the

data matrix is represented as X = [x1,x2, . . . ,xn] ∈ Rd×n.

TABLE I
NOTATIONS

Notation Description
n Number of instances
d Number of features
Ai. The i−th row of the matrix A
k Dimension of representation
‖W‖1

∑
i,j |Wi,j |, sum of absolute value of all elements of W

Let k � min(n, d). NMF aims to find two nonnegative matrix
U ∈ Rd×k and H ∈ Rk×n to approximate the original
nonnegative data matrix X by solving the following problem:

min
U,H
‖X − UH‖2F , s.t. U ≥ 0, H ≥ 0, (1)

where ‖·‖F denotes the matrix Frobenius norm. Each column
of U can be regarded as the feature basis and each column of
H is the k-dimensional representation under the basis.

It is shown that the objective function in (1) is nonconvex
jointly with respect to U and H , but it is convex in one of
them with the other fixed. Usually, it is very difficult to find the
global minimum of (1). Lee et al. [4] proposed a multiplicative
strategy to search for the local minimum iteratively as follows:

U t+1
i,m = U ti,m

[X(Ht)>]i,m
[(U t)(Ht)(Ht)>]i,m

,

Ht+1
m,j = Ht

m,j

[X>(U t)]tm,j
[(Ht)>(U t)>(U t)]m,j

.

(2)

The most significant difference between NMF and other matrix
factorization methods is that the substraction is not allowed in
NMF. Therefore, NMF can learn a parts-based representation
[5]. This parts-based representation has shown its desirable
advantage in many applications, such as spectral data analysis
[10], patch alignment [11], multi-view representation [12],
document clustering [13], image representation [14], [15], and
DNA gene expression analysis [16].

Although NMF is an efficient tool to represent some kinds
of data and obtain good semantic interpretation and clustering
results, it has limitations. First, it is desirable only for non-
negative data. Second, it can only be conducted in original
feature space of the data points. For this reason, the powerful
kernel method could not be applied to NMF. To address these
limitations, Xu et al. [6] extended NMF to CF. The core idea
of CF is that each basis (cluster center) uj is constructed as
a linear combination of the data points xi

uj =
n∑
i=1

wi,jxi, (3)

where wi,j ≥ 0. Let W = [wij ] ∈ Rn×k. The CF problem is
formulated as follows:

min
W,H
‖X −XWH‖2F , s.t. W ≥ 0, H ≥ 0. (4)

Similar to NMF, if data are nonnegative, the multiplicative
strategy can also be applied to solve (4) by the iterative
updates:

W t+1
i,m = W t

i,m
[K(Ht)>]i,m

[K(W t)(Ht)(Ht)>]ti,m
,

Ht+1
m,j = Ht

m,j
[K(W t)]m,j

[(Ht)>(W t)>K(W t)]m,j
,

(5)
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where K = X>X . In (5), the variable update strategy only
involves the inner product of each samples, thus CF can be
easily kernelized.

CF has shown some merits over NMF. However, the conven-
tional CF only utilizes the global reconstruction information
without considering any other discriminative information. To
utilize local structure information of samples, Cai et al. [17]
proposed Locally Consistent Concept Factorization (LCCF)
to take advantage of samples’ local structure. For the reason
that the bases learned by CF may be relatively far away from
the original data, Liu et al. [18] proposed Local-Coordinate
CF (LCF). It assumes that each original data point should
be close to only a few anchor points. This way, the learned
bases can be made to be close to the original data points.
However, LCCF may lead to trivial solution [19]. To address
these issues, Guo et al. [20] added an orthogonality constraint
and a sparse component to the LCCF model and proposed
a Robust and Discriminative Concept Factorization (RDCF)
method. However, none of the methods mentioned above
consider how to utilize labeled data to improve the clustering
performance, i.e., they are unsupervised. In order to utilize
the labeled data, Cai et al. [21] revised the similarity matrix
of conventional graph regularization term. If two samples
share the same label, an edge is assigned a large weight to
connect them. Nonetheless, there is no theoretical guidance
about how to construct the graph regularization term and how
to select the weights. Liu et al. [22] proposed a constrained
concept factorization (CCF) that enforces the same labeled
data to have the same low-dimensional representation. All the
above mentioned methods used the Frobenius-norm as distance
measure. When data contain outliers, their performance will
degenerate a lot. Furthermore, to the best of our knowledge, all
existing CF based methods only have convergence results on
nonnegative data, and thus are not reliable to handle negative-
valued data.

B. Maximum Correntropy Criterion
Maximum Correntropy Criterion (MCC) originates from

Information Theoretic Learning (ITL) [23] and is based on
Renyi’s entropy [24]. It is used to handle non-Gaussian noise
and outliers [25]. Because of its nice robust properties, MCC
has been used in many fields, such as feature extraction [26],
[27], [28], signal processing [29], [30], [31], [32], computer
vision [33] and document clustering[34]. The correntropy is
related to Renyi’s quadratic entropy that is used to measure
similarity between two random variables in a local range. Tra-
ditional correntropy is defined to measure similarity between
two random variables x and y

Vσ(x, y) = E[kσ(x− y)], (6)

where kσ(·) is a shift invariant mercer kernel [35], σ > 0
is the kernel bandwidth to present the correlation in kernel
space, and E[·] denotes the mathematical expectation. For the
reason that the joint probability density function is hard to
be obtained in practice, the correntropy is defined by sample
estimator as follows:

V̂σ(x, y) =
1

n

n∑
i=1

kσ(xi − yi), (7)

where kσ(x) = g(x, σ) , exp(−x2/2σ2) is Gaussian kernel
and {xi, yi}ni=1 is the sample set. The maximum of (7) is
called Maximum Correntropy Criterion (MCC).

There are some other metrics that also have better outlier
robustness than traditional Frobenius norm, such as L21-norm.
We choose MCC as the robust metric mainly for two reasons.
First, MCC has nice robustness properties. It is a local measure
whose value mainly depends on the probability along x = y,
thus, it can truncate the effects of large error. However, L21-
norm is a global measure, which can also be affected by large
error outliers. It is shown in [25] that MCC is equivalent to
L2-norm distance if points are close, behaves like the L1-norm
distance as points get further apart, and eventually approaches
the L0-norm distance as points get further apart. Second, the
model based on MCC is easier to be solved. Therefore, we
choose MCC as the robust metric to construct CF model.

III. MCC BASED ROBUST SEMI-SUPERVISED CONCEPT
FACTORIZATION

In this section, we propose a novel robust semi-supervised
CF model. MCC is utilized to construct the model for dealing
with data that is contaminated by outliers. In addition, our
model incorporates label information to guide the learning
process. Local structure information of the data is preserved
through nonnegative adaptive embedding.

A. Sparsity Induced Similarity

Graph embedding is the common way to add the local
structure in machine learning methods [36], [37], [38], [39],
[40]. As shown in [41], the similarity plays an important role
on visual recognition. The traditional graph embedding terms
[17], [20] utilize Euclidean distance and Gaussian Kernel
Similarity (GKS) to measure the similarities between data
samples in CF, which ignores the subspace structure. If the
training samples are sufficient, the subspace structure can be
discovered and effectively used for image classification [42].
However, if the training samples are insufficient such as in
semi-supervised or unsupervised learning, it is impossible to
obtain the precise subspace structure. In order to address this
issue, Cheng et al. [43] proposed Sparsity Induced Similarity
(SIS), which treats the coefficients of sparse representation as
the similarities between samples. For n data samples X =
[x1,x2, . . . ,xn] ∈ Rd×n, the similarity matrix is obtained by
solving the following problem:

min
S
‖X −XS‖2F + rγ(S)

s.t. Si,i = 0, ∀i = 1, . . . , n.
(8)

Here, S is the similarity matrix, each column si of S is the
sparse representation of xi by X except xi, and rγ(S) is a
sparsity regularization term. Because of its great performance,
SIS has been used in many areas, such as visual tracking [44],
object categorization [45] and image clustering [46].

B. Adaptive Embedding to Preserve Local Structure

Let H = [h1,h2, . . . ,hn] ∈ Rc×n be the low-
dimensional representation matrix, namely, each column hi
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is a low-dimensional representation of xi. To make the low-
dimensional representation to have a similar local structure as
the original data, we look for a similarity matrix S such that
both X−XS and H−HS become small. Using SIS, one can
find the matrix S to be a solution of the following problem:

min
S

λ‖H −HS‖2F + ‖X −XS‖2F + rγ(S)

s.t. Si,i = 0, ∀i = 1, . . . , n,
(9)

where λ > 0 is a parameter balancing the H-term and X-term.
In the above model, we assume that H has been obtained. In
the follows, we treat it as a variable and learn it simultaneously
with the similarity matrix S and also basis matrix W .

C. MCC based Robust Semi-supervised CF Model

Existing CF models use squared Frobenius-norm as dis-
tance measure and are not suitable for outlier-contaminated
data. To deal with outliers, we replace by MCC the
squared Frobenius-norm in (4) and (9). In addition, the term
Tr
[
(H − Y )M(H − Y )>

]
is employed to utilize label in-

formation [47]. Here, Y is the k × n indicator matrix with
Yi,j = 1 if xj is labeled and belongs to class i and Yi,j = 0
otherwise. For example, consider 9 data samples, x1 and x3

are labeled with class 1, x4 and x5 are labeled with class
2, x7 and x9 are labeled with class 3, and the other 3 data
samples are unlabeled. Then, the indicator matrix Y based on
this example can be represented as follows:

Y =

 1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 1

 . (10)

M is the diagonal matrix with Mi,i = 1 if xi is labeled
and Mi,i = 0 otherwise. Thus, this term measures the
distance between representation and indicator matrices of the
labeled samples, and encourages them close to each other. For
example, if x is labeled with class 3, its representation will
be pulled close to [0, 0, 1]>. Furthermore, this term helps to
build the concepts by the labeled data samples, which will be
illustrated in following experiments. Combining the two goals
of (4) and (9) together and the label information, we build the
following MCC based Robust Semi-supervised CF Model:

max
W,H,S

1

2

n∑
i=1

exp

(
−‖xi −XWhi‖22

2σ2
1

)
+
α

2

{
NAE(H,S)

−Tr
[
(H − Y )M(H − Y )>

]}
− rβ(W )− rγ(S)

s.t. W ≥ 0, H ≥ 0, S ≥ 0,
c∑
i=1

Hi,j = 1, ∀j = 1, . . . , n,

Si,i = 0, ∀i = 1, . . . , n.

(11)

Here,

NAE(H,S) =
n∑
i=1

exp

(
−‖hi −Hsi‖22

2σ2
2

)
+

n∑
i=1

exp

(
−‖xi −Xsi‖22

2σ2
3

)
(12)

is called the Nonnegative Adaptive Embedding (NAE) term.
The constraint

∑c
i=1Hi,j = 1, ∀j = 1, . . . , n is used to

increase interpretability of the model and to avoid trivial
solutions. The sparsity regularization term rβ(W ) is added
in model (11) to improve the model’s discriminability and
generalization.

IV. SOLVING THE ROBUST SEMI-SUPERVISED CF MODEL

In this section, a novel iterative method is derived to solve
the problem (11). Note that the objective function of (11) is
nonconcave and also lacks block-concavity. This causes great
difficulty for a numerical approach to efficiently and reliably
find its solution. To conquer this difficulty, we first reformulate
(11) by using the Fenchel conjugate technique. Although the
reformulated problem involves more variables than the original
one, it has nice block structure and enables reliable numerical
approaches. Then, we apply the accelerated Block Coordinate
Update (BCU) [48] to solve the reformulated problem. The
problem is amenable for BCU framework, and every update
of BCU has an explicit solution [48], [49]. It is shown in [48]
that BCU has desirable convergence behavior and very nice
practical performance to solve multi-block concave problems.
Existing methods for solving CF models are derived from
multiplicative strategy, and they only conduct convergence
analysis about nonnegative data. Different from the existing
methods, the proposed algorithm and its convergence result
apply for situations that can involve both nonnegative and
negative values.

A. Reformulation via Fenchel Conjugate Technique

Let
ϕ(z) = z − z ln(−z). (13)

By Fenchel conjugate (see [50] for example), it is easy to
verify that

exp(−x) = sup
z
{zx− ϕ(z)} . (14)

By setting ∂
∂z (zx − ϕ(z)) = x + ln(−z) = 0, one can find

that the maximum value of (14) is reached at z = − exp(−x).
Based on this finding, we define

OMCC
1 (W,H,p) =

1

2

n∑
i=1

(
pi
‖xi −XWhi‖22

2σ2
1

− ϕ(pi)

)
, (15a)

OMCC
2 (H,S,q) =

1

2

n∑
i=1

(
qi
‖H.i −Hsi‖22

2σ2
2

− ϕ(qi)

)
, (15b)

OMCC
3 (S, z) =

1

2

n∑
i=1

(
zi
‖xi −Xsi‖22

2σ2
3

− ϕ(zi)

)
, (15c)

f(W,H, S,p,q, z) = OMCC
1 (W,H,p) + α

{
[OMCC

2 (H,S,q)

+OMCC
3 (S, z) −1

2
Tr
[
(H − Y )M(H − Y )>

]}
. (15d)

According to the definitions of (15a)-(15d) and (14), the
problem (11) is equivalent to

max
W,H,S,p,q,z

f(W,H,S,p,q, z)− rβ(W )− rγ(S)

s.t. W ≥ 0, H ≥ 0, S ≥ 0,
c∑
i=1

Hi,j = 1, ∀j = 1, . . . , n,

Si,i = 0, ∀i = 1, . . . , n,

(16)
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where p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn), z =
(z1, z2, . . . , zn). For simplicity, throughout the rest of the
paper, we set the sparsity regularization terms to

rβ(W ) = β‖W‖1, rγ(S) = γ‖S‖1.

B. Iterative Method by Accelerated BCU
At each iteration of our algorithm, it updates one variable

at a time with the remaining ones fixed to their latest values.
Specifically, we perform the following updates:

pt+1 = argmax
p

OMCC
1 (W t, Ht,p), (17a)

qt+1 = argmax
q

OMCC
2 (Ht, St,q), (17b)

zt+1 = argmax
z

OMCC
3 (St, z), (17c)

W t+1 = argmax
W≥0

〈
∇W f(Ŵ t, Ht, St,pt+1,qt+1, zt+1) ,

W − Ŵ t
〉
− LtW

2
‖W − Ŵ t‖2F − rβ(W ), (17d)

Ht+1 = argmax
H≥0,

∑c
i=1Hi,j=1

〈
∇Hf(W t+1, Ĥt, St,pt+1,qt+1, zt+1),

H − Ĥt
〉
− LtH

2
‖H − Ĥt‖2F , (17e)

St+1 = argmax
S≥0,Si,i=0

〈
∇Sf(W t+1, Ht+1, Ŝt,pt+1,qt+1, zt+1),

S − Ŝt
〉
− LtS

2
‖S − Ŝt‖2F − rγ(S). (17f)

Here, ∇W f(·), ∇Hf(·) and ∇Sf(·) are partial gradients
with respect to W , H and S. LtW , LtH and LtS are the
Lipschitz constants of ∇W f(W,Ht, St,pt+1,qt+1, zt+1),
∇Hf(W t+1, H, St,pt+1,qt+1, zt+1) and
∇Sf(W t+1, Ht+1, S,pt+1,qt+1, zt+1) with respect to
W , H and S, and

Ŵ t = W t + ωtW (W t −W t−1),

Ĥt = Ht + ωtH(Ht −Ht−1),

Ŝt = St + ωtS(St − St−1)

(18)

are extrapolated points with the weights ωtW , ω
t
H , ω

t
S ∈ [0, 1)

which can significantly accelerate the BCU method for solving
certain multi-block optimization problem [48], [49], [51].

It is noted that the updates of all the variables are treated in
two different way. The variables W , H and S are updated by
block proximal gradient method while the others are updated
by simple block maximization, because directly maximizing
the objective of (16) with respect to W , H and S can be very
difficult. In the way shown in (17), each of the subproblems
has a closed-form solution. In the following, we will discuss
how to solve each of them explicitly.

1) Solve the subproblems of p, q and z: As mentioned at
the beginning of Section IV-A, the maximum value of (14) can
be obtained when z = − exp(−x). Therefore, the solutions for
subproblems of (17a)-(17c) can be obtained explicitly as

pt+1
i = − exp

(
−‖xi −XW

thti‖22
2σ2

1

)
∀i = 1, . . . , n, (19a)

qt+1
i = − exp

(
−‖h

t
i −Htsti‖22

2σ2
2

)
∀i = 1, . . . , n, (19b)

zt+1
i = − exp

(
−‖xi −Xsti‖22

σ2
3

)
∀i = 1, . . . , n. (19c)

From (19), it is shown that the updates to dual variables
will renew the weights to each samples’ distance metric and
improve the robustness to outliers. If one sample is outlier, the
corresponding distance is large, and the weight tends to zero.
In this way, the negative effects of outliers are eliminated.

2) Solve W -subproblem: It is noted that the W -subproblem
(17d) can be reformulated as

min
W≥0

1

2
‖W −A‖2F + λ‖W‖1, (20)

where A = Ŵ t+ 1
Lt

W
∇W f(Ŵ t, Ht, St,pt+1,qt+1, zt+1) and

λ = β
Lt

W
. The equivalence between (17d) and (20) is given in

Appendix A. The above problem has a closed-form solution
so that the W -subproblem (17d) can be solved explicitly. For
convenience, the process to obtain solution for problem (20)
is illustrated in Algorithm 1.

Algorithm 1 Proximal operator: W = Prox(A, λ)
1: Set W to zero matrix
2: for i = 1, . . . , d do
3: for j = 1, . . . , n do
4: if Aij > λ then
5: Let Wij = Aij − λ.
6: end if
7: end for
8: end for

3) Solve H-subproblem: The H-subproblem (17e) can be
formulated as

min
H≥0,

∑c
i=1Hi,j=1

1

2
‖H −B‖2F , (21)

where B = Ĥt + 1
Lt

H
∇Hf(W t+1, Ĥt, St,pt+1,qt+1, zt+1).

The problem (21) can be decomposed into n smaller indepen-
dent problems, each one involving one column of H and B
in the form of

min
h≥0,

∑c
i=1 hi=1

1

2
‖h− b‖2F . (22)

This problem is a projection onto a simplex. According to [52],
it can be exactly solved, so can the H-subproblem (17e). For
convenience, the process to obtain the solution for problem
(22) is illustrated in Algorithm 2.

Algorithm 2 Projection onto simplex: h = Proj-Sim(b) [52]
1: Sort b in the ascending order as b(1) ≤ . . . ≤ b(c), and set
i = c− 1.

2: Compute ti =
∑c

j=i+1 b(j)−1

c−i . If ti ≥ b(i) then t̂ = ti and go to
Step 4, otherwise set i ← i − 1 and redo Step 2 if i ≥ 1 or go
to Step 3 if i = 0.

3: Set t̂ =
∑c

j=1 bj−1

c
.

4: h = (b− t̂)+ as the projection of b onto ∆c.

4) Solve S-subproblem: In the similar way as done in
Section IV-B2, S-subproblem can be reformulated as

min
S≥0,Si,i=0

1

2
‖S − C‖2F + η‖S‖1, (23)

where C = Ŝt + 1
Lt

S
∇Sf(W t+1, Ht+1, Ŝt,pt+1,qt+1, zt+1)

and η = γ
Lt

S
. Because of the constraint that Si,i = 0, ∀i =
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1, . . . , n, the above problem (23) is equivalent to the following
formulation

min
S≥0

1

2

∥∥∥S − Ĉ∥∥∥2
F

+ η‖S‖1, (24)

where Ĉ equals to C except for the diagonal elements, and
Ĉi,i = 0,∀i = 1, . . . , n. The problem (24) can be solved by
Algorithm 1, and thus a closed-form solution of (23) can be
obtained.

C. Parameters Setting
It is noted that, to fully determine the updates of variables

W , H and S in (17) requires the values of Lipschitz constants
LtW , LtH , LtS and the weights ωtW , ωtH , ωtS . In the proposed
algorithm, the Lipschitz constant values are set to

LtW = ‖X>X‖2‖HtP t+1(Ht)>‖2, (25a)

LtH = ‖(W t+1)>X>XW t+1‖2‖P t+1‖2
+ α‖(I − St)Qt+1(I − St)>‖2 + ‖U‖2, (25b)

LtS = ‖(Ht+1)>Ht+1‖2‖Qt+1‖2 + ‖X>X‖2‖Zt+1‖2, (25c)

where P , Q and Z are diagonal matrices with p, q and z as
the diagonal elements. The derivations about how to obtain
the Lipschitz constants are illustrated in the appendix. For the
extrapolation weights, they are set according to [48] as

ωtW = min

ω̂t, δω
√
Lt−1
W

LtW

 , (26a)

ωtH = min

ω̂t, δω
√
Lt−1
H

LtH

 , (26b)

ωtS = min

ω̂t, δω
√
Lt−1
S

LtS

 , (26c)

where δω < 1 is predetermined and ω̂t = (τt−1 − 1)/τt with

τ0 = 1, τt =
1

2

(
1 +

√
1 + 4τ2t−1

)
. (27)

Summarizing all the discussions in this subsection together,
we have an iterative method toward finding a solution to
(11), and its pseudo-code is illustrated in Algorithm 3, called
MRSCF. Note that in Line 14, we reset the iterate if a decrease
of the objective is detected. As demonstrated in [53], [54],
maintaining monotonicity of the objective can significantly
improve the performance of BCU.

D. Computational Complexity

We give the computational complexity per iteration of Algo-
rithm 3. The analysis is based on general case without consid-
ering the special structure of the data matrix X . If X has cer-
tain structure, e.g., sparsity, the computational complexity can
be lower. We assume the cluster number is k < min(d, n). The
main cost of Algorithm 3 lies in the update of p, q, z, W , H
and S. The costs of updating p, q and z by (19) are O(ndk),
O(n2k) and O(n2d) respectively. For updating W , H and S,
the main cost is the computation of ∇W f , ∇Hf and ∇Sf . For
computation of the partial gradient ∇W f in (34), we can first
compute XW and HPH> and XPH>, then XWHPH>,
finally multiply X> to XWHPH> − XPH>. In this way,

Algorithm 3 MCC based Robust Semi-supervised Concept
Factorization (MRSCF)

1: Input: Data matrix X ∈ Rd×n, indicator matrix Y , parameters
α, β and γ.

2: Output: Clustering indicator matrix (representation matrix) H .
3: Initialize W 0 ∈ Rn×k+ , H0 ∈ Rk×n+ , S0 ∈ Rn×n+ , choose a

positive number δω < 1, and set t = 0.
4: while Not convergent do
5: Update pt+1,qt+1, zt+1 ←(19).
6: Compute LtW , L

t
H , L

t
S and ωtW , ω

t
H , ω

t
S according to (25) and

(26) respectively.
7: Let Ŵ t = W t + ωtW (W t −W t−1).
8: Let Ĥt = Ht + ωtH(Ht −Ht−1).
9: Let Ŝk = St + ωtS(St − St−1).

10: Update W t+1 ← solving problem (20) according to Alg. 1.
11: Update Ht+1 ← solving problem (21) according to Alg. 2.
12: Update St+1 ← solving problem (23) according to Alg. 1.
13: if f(W t+1, Ht+1, St+1,pt+1,qt+1,qt+1) − rβ(W t+1) −

rγ(St+1)) ≤ f(W t, Ht, St,pt+1,qt+1,qt+1) − rβ(W t) −
rγ(St)) then

14: Set Ŵ t = W t, Ĥt = Ht, Ŝt = St and back to Step 10.
15: end if
16: Let t← t+ 1.
17: end while

it takes about 3ndk+ nk2. In the same way, the computation
of ∇Hf in (36) takes about 3ndk + 2n2k. The computation
of ∇Sf in (38) takes about 3n2d + nk2. Therefore, the per-
iteration computational complexity is O(ndk + n2d) since
k < min(d, n), and the algorithm is scalable to dimension
of the data.

E. Convergence results

In this section, we analyze the convergence of Algorithm 3.
For ease of description, we denote

V = (W,H,S,p,q, z)

and

F (V ) = f(W,H,S,p,q, z)− β‖W‖1 − γ‖S‖1.

We first show the boundedness of the iterates and then apply
the convergence results in [48].

Lemma 1 (Boundedness of iterate sequence). Let
{V t = (pt,qt, zt,W t, St, Ht)} be the sequence generated
from Algorithm 3. If β and γ are both positive, then {V t} is
bounded.

Proof. From (19a), it follows that −1 ≤ pti < 0, and thus
{pt} is bounded. Similarly, {qt} and {zt} are both bounded.
In addition, from the conditions Ht ≥ 0 and

∑c
i=1H

t
i,j = 1,

we have 0 ≤ Hi,j ≤ 1. Hence {Ht} is bounded. Furthermore,
since F (V t+1) ≥ F (V t), ∀t, both {W t} and {St} must
be bounded because otherwise F (V t) can approach to −∞.
Therefore, we complete the proof.

Theorem 1 (Global iterate sequence convergence). Let
{V t = (pt,qt, zt,W t, St, Ht)} be the sequence generated
from Algorithm 3. Then V t converges to a critical point V̄
of the problem (16).
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Proof. For a set X , denote ιX as the indicator function on X .
Let

Φ(V ) = F (V )− ιW(W )− ιH(H)− ιS(S),

where

W = {W : W ≥ 0}, H = {H : H ≥ 0,

c∑
i=1

Hi,j = 1,∀j},

and
S = {S : S ≥ 0, Si,i = 0,∀i}.

Then the problem (16) is equivalent to maxV Φ(V ).
Below we show the result by verifying all conditions

required by Theorem 2.8 of [48]. First, note that Φ is the
sum of a real analytic function and a semialgebraic function.
Hence, it satisfies the Kurdyka-Lojasiewicz inequality [55],
[56]. Secondly, it is easy to see ϕ′′(z) = − 1

z , where ϕ
is defined in (13). From the proof of Lemma 1, we have
−1 ≤ pti < 0, and thus F is strongly concave with respect
to p with modulus 1 on the box ×ni=1[−1, 0). Similarly, F
is strongly concave with respect to q and z with modulus 1.
Thirdly, the smooth part of F is Lipschitz differentiable about
W , S, and H , as we derive in the appendix. Finally, from
Lemma 1, we have that {V t} is bounded, and thus it must
have a finite cluster point. Therefore, all conditions required
by Theorem 2.8 of [48] are satisfied, and the result directly
follows.

F. Why MRSCF Model Works Better

Two Semi-supervised CF methods are compared to MRSCF
in the experiments. One is Semi-supervised Locally Consistent
Concept Factorization (SemiLCCF) method [17] and the other
is Constrained Concept Factorization (CCF) method [22]. The
objective function of LCCF method is

OSemiLCCF =
1

2
‖X −XWH‖2F +

λ

2
Tr(HLH>), (28)

where L is the precomputed graph Laplacian. The label infor-
mation is incorporated into the graph structure by modifying
the weight matrix. In MRSCF model (11), if we let all
bandwidth parameters σ1, σ2, σ3 → ∞ and β, γ = 0, its
objective function becomes

OMRSCF =− 1

2
‖X −XWH‖2F −

α

2
{Tr(H(I − S)(I − S)>H>)

− ‖X −XS‖2F − Tr[(H − Y )>M(H − Y )>]}.
(29)

The matrix (I − S)(I − S)> in the second term of (29) is
used to save the local structure information. Compared with
graph Laplacian in SemiLCCF model, it is not precomputed
but adaptively learned from data’s nonnegative sparse repre-
sentation and label information, which is more discriminative
than precomputed graph Laplacian [42]. Secondly, because of
the Frobenius norm adopted in LCCF to measure the quality
of data reconstruction, it is very sensitive to outliers in the
data. Furthermore, since SemiLCCF only has nonnegativity
constraints W ≥ 0, H ≥ 0, the graph regularization in
SemiLCCF model is not lower-bounded. Suppose (W ∗, H∗)
is the obtained solution, given δ > 1, it is easy to verify that

(δW ∗, 1δH
∗) can lead to smaller objective value. Consequent-

ly, this will lead W ∗ →∞ and H∗ → 0, which is meaningless
and referred to the scale transfer problem [19]. While, in
MRSCF model, the constraint,

∑c
i=1Hi,j = 1, ∀j = 1, . . . , n,

has been added in the model and the scale transfer problem is
fixed.

The objective function of CCF method is

OCCF =
1

2
‖X −XWZA‖2F , (30)

where A is a constraint matrix to incorporate the label
information. If labeled samples belong to the same class,
they are constrained to have the same representations, which
can be easily clustered into the same class. This kind of
constraint could be too strict, because the samples belonging
to the same class do not necessarily have exactly the same
representations. Compared with CCF model, MRSCF method
utilizes a softer way to incorporate the label information. The
labeled samples belonging to the same class will learn strong
weight connections in S by the second and forth terms of (29).
These connections will benefit the other unlabeled samples to
learn the connections between them and labeled data by the
third term of (29), and the label information can help to learn
better concepts in the first term of (29). It is also noted that the
objective function of CCF is constructed by Frobenius norm,
which is sensitive to outliers in the data. Finally, compared
with MRSCF method, CCF only utilizes the data’s reconstruc-
tion information. It lacks the discriminative local structure
information. Therefore, it can explain why MRSCF method
can achieve superior performance in clustering problem in the
following experiments.

V. EXPERIMENTS

In this section, the experimental results are illustrated. The
effectiveness of the proposed MRSCF method is evaluated
through image clustering and compared with seven other
related methods on four datasets. The compared methods not
only include standard CF and NMF methods, but also include
semi-supervised methods. They are listed as follows:

1) CF: Concept Factorization [6];
2) NMF: Nonnegative Matrix Factorization [4];
3) SemiGNMF: Semi-supervised Graph Regularized Non-

negative Matrix Factorization [21];
4) SemiLCCF: Semi-supervised Locally Consistent Con-

cept Factorization [17];
5) CCF: Constrained Concept Factorization [22];
6) LCF: Local-Coordinate Concept Factorization [18];
7) RDCF: Robust and Discriminative Concept Factoriza-

tion [20].
Both SemiGNMF and SemiLCCF methods incorporate the
label information by modifying the weight matrix of the graph.

A. Datasets

In the experiments, four benchmark datasets are used, whose
statistics are shown in Table II. Yale, WarpAR and Orl are face
datasets, each instance of which demonstrates a single gray
face image. All the images contain faces with different lighting

周楠
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周楠
Line

周楠
Line

周楠
Line
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conditions, facial expressions and with/without occlusions.
MNIST is a handwritten digit dataset, and each instance
demonstrates a single gray handwritten digit image. The whole
MNIST dataset contains 70, 000 samples. We can of course
use the whole dataset. But for simplicity and to save time,
we randomly select 500 samples with each digit have 50
samples from the first 10, 000 training samples to generate
a small subset of MNIST dataset. To test the robustness of the
proposed method, we add dummy images with the same size
as original image into the datasets as outliers. Each pixel of
dummy image is randomly set to 0 or 255. The examples of
dummy images are show in Figure 1 and numbers of outliers
for each datasets are illustrated in Table II.

Fig. 1. The examples of dummy image added in the datasets

TABLE II
THE DATASETS DETAIL

Dataset ] Instances(n) ] Features(d) ] Classes(C) ] Outliers
Yale 165 1024 15 33

WarpAR 130 1024 10 26
Orl 400 1024 40 80

MNIST 500 784 10 100

B. Experimental Settings

Some parameters need to be set and explained in advance.
In the clustering experiments, in order to efficiently test the
clustering performance of the proposed method, we conduct
the clustering experiment many times with variations of cluster
number k. The cluster number ranges from 2 to 10. For each
cluster number k, we repeat 10 times to randomly select k
clusters from the dataset and run the test, and we calculate
the average and variance over the 10 test runs as the final
scores. Since the clustering results of each method depend
on the initialization, each test run consists of 10 subruns
with different random initializations and the best result is
reported. For all the compared methods except CCF, the
cluster label can be generated from H in two ways. One is
applying K-Means to the representation H , and the other is
setting the cluster label of instance i as c = argmaxiHi,j .
Both ways are applied, and the best performance of each
compared method is illustrated. According to [20], RDCF and
MRSCF methods just use the latter one to generate cluster
label. For each test, 30% of the samples are labeled for semi-
supervised learning and the others for testing. The local struc-
ture trade-off parameters of LCCF, GNMF, RDCF, MRSCF
methods and the sparsity induced regularization parameters
of MRSCF method are set by the “grid-search” strategy from
set {0.001, 0.01, 0.1, 1, 10, 100, 500, 1000}. According to [20],
the orthogonal preserving regularization parameter of RDCF
is set to 10000. For LCF method, according to [22], the
regularization parameter is set by the “grid-search” strategy

from set {1, 2, 4, 8, 16, 32, 64}. For fairness, all the methods
run to 100 iterations. According to [33], the kernel size σ
of MCC is set as a function of the average reconstruction
error, σ1 =

√
θ
2n‖X −XWH‖2F , σ2 =

√
θ
2n‖H −HS‖

2
F ,

σ3 =
√

θ
2n‖X −XS‖

2
F , where θ is a constant to control the

noise. We set θ = 1 throughout the paper.
Two metrics are used to evaluate the clustering performance

[6]: clustering accuracy (ACC) and normalized mutual infor-
mation (NMI), which are defined below. The ACC is computed
by

ACC =

∑n
i=1 δ(qi,map(pi))

n
, (31)

where pi and qi are the predicted and true labels of the ith
instance, and δ(·) is the indicator function where δ(a, b) = 1
if a = b and δ(a, b) = 0 otherwise. map(·) is a permutation
mapping function, which is realized by Kuhn-munkres algo-
rithm [57]. NMI is defined to measure the similarity of two
label vectors P and Q:

NMI(P,Q) =
I(P,Q)√
H(P )H(Q)

, (32)

where I(P,Q) is the mutual information of P and Q, and
H(P ) and H(Q) are the entropies of P and Q [58]. Higher
value of ACC (NMI) indicates better clustering result.

C. Clustering Results

The clustering results of different methods are presented
in Figures 2-5 and Tables III-VI. Figures 2-5 illustrate the
clustering results of ACC and NMI versus the number of
clusters of different methods on the Yale, Orl, WarpAR and
MNIST datasets respectively. The corresponding details of
Figures 2-5 and the standard deviation are provided in Tables
III-VI respectively. From the figures and tables, we see that
the proposed MRSCF method consistently outperforms over
all the other compared methods on all four tested datasets. On
the Yale dataset, compared with the second best method CCF
and RDCF, the proposed MRSCF method achieves more than
20% improvement in ACC and 16% improvement in NMI
on the average values. One possible reason is that MRSCF
method can better utilize the label information compared with
CCF method, and because of MCC, MRSCF method can better
handle outlier-contaminated data. Although RDCF is also a
robust CF method, it can only handle the situation that image
contains noise on pixels but no outliers. Furthermore, RDCF
does not utilize the label information. On the Orl dataset,
compared with the second best method, MRSCF can achieve
9% improvement in ACC and 6% improvement in NMI on
average value. It is also noted that the unsupervised RDCF
method is even better than three semi-supervised methods. It
may be because the outliers seriously effect the performance
of semi-supervised methods. Therefore, it is necessary to con-
sider the robustness of the semi-supervised learning methods.
On the WarpAR dataset, compared with the second best RDCF
method, the proposed MRSCF method can achieve more than
22% improvement in ACC and 12% improvement in NMI on
average values. On the MNIST dataset, compared with the
second best CCF method, the proposed MRSCF method can
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TABLE III
CLUSTERING RESULTS ON THE YALE DATABASE

k
Accuracy(%)

CF NMF SemiGNMF SemiLCCF CCF LCF RDCF MRSCF
2 70.45 ± 16.79 70.00 ± 16.66 74.09 ± 16.27 73.64 ± 15.32 80.45 ± 14.94 77.73 ± 18.68 79.09 ± 17.51 90.91 ± 8.38
3 56.60 ± 12.14 54.85 ± 9.04 58.48 ± 12.28 55.45 ± 7.43 57.58 ± 7.42 63.64 ± 10.50 63.94 ± 11.69 79.70 ± 7.43
4 50.23 ± 9.98 49.77 ± 11.61 50.23 ± 9.06 47.95 ± 4.60 56.36 ± 14.37 53.86 ± 6.35 61.36 ± 11.23 81.36 ± 7.23
5 47.64 ± 10.02 47.45 ± 13.15 44.73 ± 7.05 43.64 ± 11.06 56.73 ± 9.95 54.36 ± 13.71 52.55 ± 12.05 72.36 ± 7.17
6 45.61 ± 8.72 48.33 ± 7.59 42.27 ± 7.31 41.36 ± 9.61 51.82 ± 11.61 48.03 ± 7.55 50.15 ± 8.90 73.64 ± 7.08
7 45.84 ± 4.76 48.05 ± 4.07 40.39 ± 4.70 47.92 ± 6.96 53.64 ± 6.42 50.52 ± 5.94 51.95 ± 6.60 73.77 ± 4.78
8 44.55 ± 6.60 45.57 ± 6.36 40.00 ± 5.63 43.33 ± 8.23 49.77 ± 6.62 47.50 ± 7.74 48.18 ± 7.03 71.25 ± 6.57
9 40.81 ± 2.31 44.14 ± 2.79 37.68 ± 5.61 38.69 ± 5.38 44.75 ± 5.11 42.83 ± 4.52 47.98 ± 6.21 69.29 ± 5.70
10 40.00 ± 4.32 45.00 ± 4.57 36.91 ± 4.67 40.55 ± 3.45 46.82 ± 3.57 42.73 ± 6.18 44.82 ± 4.95 70.27 ± 4.65

Avg. 49.08 50.35 47.20 49.50 55.32 53.47 55.56 75.84

k
Normalized Mutual Information(%)

CF NMF SemiGNMF SemiLCCF CCF LCF RDCF MRSCF
2 28.55 ± 36.59 25.44 ± 34.79 30.54 ± 34.31 28.77 ± 33.85 42.45 ± 35.00 42.02 ± 39.73 42.92 ± 42.31 66.20 ± 29.73
3 21.90 ± 18.18 25.20 ± 19.20 28.34 ± 20.19 25.57 ± 16.45 34.95 ± 16.01 36.55 ± 11.50 34.69 ± 18.50 51.28 ± 14.24
4 30.66 ± 14.56 29.60 ± 21.15 26.89 ± 14.41 26.62 ± 11.37 33.36 ± 20.22 35.32 ± 9.12 41.42 ± 16.70 60.30 ± 15.83
5 32.24 ± 13.29 30.65 ± 14.78 28.40 ± 11.42 28.67 ± 15.64 45.34 ± 13.07 35.64 ± 17.76 34.14 ± 15.98 53.52 ± 9.50
6 34.87 ± 11.95 39.57 ± 10.71 31.45 ± 10.35 31.20 ± 12.89 42.49 ± 13.91 35.18 ± 8.47 40.12 ± 13.60 59.65 ± 8.87
7 39.07 ± 5.38 40.67 ± 4.51 34.40 ±6.37 39.28 ± 9.25 47.38 ± 6.97 42.20 ± 5.78 45.06 ± 8.68 61.66 ± 6.88
8 37.97 ± 8.30 41.73 ± 7.63 36.52 ± 9.15 37.07 ± 11.37 47.24 ± 5.98 41.34 ± 8.50 42.73 ± 9.03 59.91 ± 7.13
9 38.55 ± 2.66 41.76 ± 3.68 34.68 ± 6.07 35.54 ± 6.04 43.12 ± 4.56 40.31 ± 5.21 45.15 ± 6.30 59.58 ± 6.46
10 39.03 ± 3.87 43.14 ± 5.12 34.61 ± 5.39 38.84 ± 4.02 47.00 ± 3.87 41.02 ± 6.23 43.87 ± 3.72 61.84 ± 5.35

Avg. 33.64 35.31 31.76 32.39 42.59 38.84 41.12 59.33
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Fig. 2. Clustering performance on Yale database. (a) The clustering accuracy (ACC) versus number of clusters. (b) The normalized mutual information (NMI)
versus number of clusters.

achieve almost 15% improvement in ACC and 9% in NMI on
average values.

D. Clustering with Different Outlier Levels

In order to illustrate the robustness of the proposed method,
the clustering experiments are conducted on Yale dataset with
different outlier levels. The outlier levels are changed from 0%
to 50% with increment 10%. The results are presented in Table
VII and Figure 7. At each outlier level, the experiments are
repeated 10 times on randomly selected 10 classes from the
dataset. The average and variance over 10 runs are reported
as the final scores. From the table and figures, it is noted
that the performances of compared methods except MRSCF
degenerate if data contain outliers, and the proposed MRSCF
method can obtain the best clustering results in each outlier
level. Even without outliers, MRSCF can still achieve the best

scores, and much better than the CCF method. The reason
may be that the proposed adaptive embedding framework can
better introduce the label information. It is interesting to note
that MCC metric is suitable not only for outliers contaminated
data, but also for clean data. It is also noted that some scores
of the compared methods are not monotonically decreasing
with outlier level. For example, the CCF method gives higher
accuracy at outlier level 30% than at 20%. We display the
concepts of the CCF method with 20% and 30% outlier levels
in Figure 6. From the figure, we see that the concepts under
30% outlier level contain more meaningless ones than those
under 20% outlier level. However, the first and sixth concepts
under 20% outlier level belong to the same person, and that
leads to confusion in clustering task and worse performance
than 30% outlier level results.
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TABLE IV
CLUSTERING RESULTS ON THE ORL DATABASE

k
Accuracy(%)

CF NMF SemiGNMF SemiLCCF CCF LCF RDCF MRSCF
2 78.00 ± 14.70 76.00 ± 16.25 83.50 ± 16.13 84.00 ± 15.78 79.50 ± 13.31 82.00 ± 19.26 90.00 ± 16.58 95.00 ± 5.48
3 58.67 ± 12.75 67.33 ± 14.74 80.33 ± 16.09 81.67 ± 14.85 77.33 ± 14.97 76.00 ± 11.91 84.67 ± 14.66 89.00 ± 7.90
4 60.00 ± 12.40 65.25 ± 13.30 74.50 ± 12.24 73.25 ± 15.13 54.75 ± 8.47 68.25 ± 14.41 82.75 ± 13.94 90.00 ± 5.81
5 48.60 ± 8.53 59.40 ± 13.30 69.40 ± 12.90 65.40 ± 10.85 59.00 ± 11.91 58.20 ± 12.50 81.00 ± 11.36 90.60 ± 6.33
6 52.00 ± 10.56 54.17 ± 12.85 57.33 ± 12.07 59.83 ± 11.51 56.33 ± 7.52 52.50 ± 12.83 77.00 ± 9.27 89.33 ± 3.74
7 48.71 ± 9.42 57.57 ± 11.07 66.00 ± 11.26 66.86 ± 8.54 57.71 ± 9.98 56.86 ± 9.56 81.14 ± 9.58 89.29 ± 2.95
8 43.25 ± 7.65 50.25 ± 10.78 55.75 ± 9.70 61.38 ± 11.34 49.25 ± 6.78 53.38 ± 6.10 75.12 ± 9.69 84.75 ± 5.88
9 42.44 ± 5.98 50.22 ± 8.59 56.44 ± 11.67 56.89 ± 8.50 51.78 ± 9.64 50.67 ± 7.73 74.78 ± 5.86 86.11 ± 4.31
10 41.20 ± 8.73 47.80 ± 6.32 56.00 ± 7.85 54.20 ± 4.94 51.90 ± 7.08 45.20 ± 6.06 73.50 ± 7.42 87.00 ± 2.65

Avg. 52.54 58.66 67.00 67.05 59.73 64.34 80.00 89.01

k
Normalized Mutual Information(%)

CF NMF SemiGNMF SemiLCCF CCF LCF RDCF MRSCF
2 38.16 ± 35.74 35.56 ± 32.13 53.33 ± 38.95 52.58 ± 36.52 44.46 ± 40.19 53.74 ± 42.69 74.10 ± 38.17 79.24 ± 20.56
3 36.74 ± 23.06 46.93 ± 22.36 65.55 ± 25.15 64.42 ± 24.42 62.97 ± 17.39 60.47 ± 14.36 70.65 ± 21.26 75.69 ± 15.67
4 42.50 ± 16.95 50.59 ± 18.68 69.32 ± 15.01 64.38 ± 17.47 39.69 ± 16.14 53.17 ± 19.09 76.36 ± 18.63 81.23 ± 10.06
5 35.39 ± 12.09 49.88 ± 17.60 65.29 ± 12.76 58.54 ± 12.80 47.33 ± 13.84 46.67 ± 14.11 77.25 ± 11.32 84.84 ± 9.85
6 42.42 ± 13.04 47.86 ± 14.58 57.13 ± 14.27 58.69 ± 13.00 48.57 ± 10.94 44.48 ± 12.31 74.45 ± 10.67 83.91 ± 5.41
7 45.57 ± 12.83 58.09 ± 10.80 69.33 ± 8.92 67.78 ± 8.59 57.54 ± 9.90 54.42 ± 8.28 77.37 ± 7.03 84.89 ± 3.08
8 40.74 ± 7.62 51.09 ± 12.09 60.33 ± 8.64 62.58 ± 12.48 50.23 ± 7.58 53.19 ± 7.23 75.24 ± 8.74 80.13 ± 6.94
9 45.08 ± 8.41 55.70 ± 11.05 60.91 ± 11.06 61.34 ± 8.36 53.78 ± 10.44 56.04 ± 9.36 75.96 ± 5.95 82.28 ± 5.93
10 45.58 ± 10.72 55.59 ± 6.92 64.37 ± 8.21 60.62 ± 5.21 56.00 ± 7.87 50.19 ± 7.41 75.14 ± 5.08 84.56 ± 2.57

Avg. 41.35 50.14 62.84 61.21 51.17 51.37 75.16 81.86
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Fig. 3. Clustering performance on Orl database. (a) The clustering accuracy (ACC) versus number of clusters. (b) The normalized mutual information (NMI)
versus number of clusters.

Fig. 6. 11 (k + 1) concepts (XW ) obtained by CCF with 20% (first row)
and 30% (second row) outliers in each row respectively.

E. Results with 10% Samples Labeled

To illustrate the utilization of the labeled samples, an
experiment is conducted on MNIST dataset with only 10%
samples labeled, and the proposed MRSCF is compared with
the semi-supervised methods SemiGNMF, SemiLCCF and
CCF. The results are illustrated under the situations with
k ∈ {2, 4, 6, 8, 10}. The other parameters are set as the same
as those in Section V-B. The results are reported in Table VIII.

The proposed MRSCF method still gives the best clustering
results in both ACC and NMI metrics.

TABLE VIII
CLUSTERING RESULTS ON THE MNIST DATABASE WITH 10% SAMPLES

LABELED

k
Accuracy(%)

SemiGNMF SemiLCCF CCF MRSCF
2 91.90 ± 12.16 93.40 ± 12.60 90.10 ± 14.01 95.40 ± 5.92
4 71.15 ± 12.20 70.15 ± 12.04 69.80 ± 8.19 84.10 ± 7.47
6 58.43 ± 11.03 55.40 ± 9.31 62.13 ± 5.93 81.17 ± 2.93
8 53.50 ± 5.37 48.60 ± 4.62 55.85 ± 6.41 75.35 ± 4.13

10 49.98 ± 2.14 46.20 ± 4.61 50.38 ± 2.42 68.96 ± 1.95

k
Normalized Mutual Information(%)

SemiGNMF SemiLCCF CCF MRSCF
2 73.66 ± 31.21 78.63 ± 29.26 67.75 ± 31.04 79.46 ± 20.51
4 60.48 ± 11.00 54.17 ± 11.58 51.31 ± 8.74 63.60 ± 11.07
6 55.07 ± 7.53 46.92 ± 6.69 53.79 ± 4.99 65.40 ± 4.25
8 52.72 ± 2.84 42.36 ± 5.55 49.56 ± 4.55 60.57 ± 4.34

10 51.72 ± 1.37 43.43 ± 3.02 49.86 ± 1.35 58.90 ± 2.38
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TABLE V
CLUSTERING RESULTS ON THE WARPAR DATABASE

k
Accuracy(%)

CF NMF SemiGNMF SemiLCCF CCF LCF RDCF MRSCF
2 64.23 ± 12.29 62.69 ± 17.03 72.31 ± 10.71 71.15 ± 11.05 66.54 ± 13.22 76.15 ± 12.85 72.69 ± 15.23 84.62 ± 8.43
3 49.23 ± 11.79 46.67 ± 10.81 52.05 ± 8.35 49.23 ± 7.68 52.82 ± 12.47 51.54 ± 10.97 58.21 ± 10.45 74.87 ± 7.41
4 42.88 ± 7.35 41.15 ± 5.91 45.00 ± 8.78 41.35 ± 6.62 47.69 ± 8.89 49.23 ± 8.95 47.50 ± 7.60 71.35 ± 8.49
5 34.62 ± 5.97 38.77 ± 4.45 40.46 ± 6.95 42.77 ± 7.40 43.08 ± 7.69 41.08 ± 7.63 41.69 ± 8.82 65.38 ± 5.89
6 33.85 ± 4.87 35.51 ± 6.49 38.85 ± 4.41 39.74 ± 3.72 41.79 ± 6.10 37.18 ± 5.19 39.74 ± 4.76 67.44 ± 4.37
7 32.53 ± 3.12 30.44 ± 3.07 35.82 ± 3.08 34.07 ± 3.68 37.91 ± 3.16 33.63 ± 3.15 37.25 ± 3.91 60.33 ± 4.73
8 30.29 ± 3.66 30.10 ± 3.80 32.69 ± 4.1 31.83 ± 4.09 35.77 ± 4.51 32.60 ± 2.17 35.10 ± 2.92 60.38 ± 6.39
9 28.63 ± 2.17 26.67 ± 2.19 29.06 ± 1.79 28.55 ± 1.92 34.79 ± 2.29 35.56 ± 2.74 32.05 ± 1.92 57.86 ± 3.67
10 25.38 ± 1.75 25.69 ± 3.41 26.38 ± 2.38 25.46 ± 1.21 33.46 ± 2.80 29.69 ± 2.13 31.15 ± 2.07 53.08 ± 4.14

Avg. 37.96 37.52 41.40 40.46 43.76 42.92 43.93 66.15

k
Normalized Mutual Information(%)

CF NMF SemiGNMF SemiLCCF CCF LCF RDCF MRSCF
2 14.27 ± 15.05 15.64 ± 25.97 21.58 ± 18.87 20.15 ± 19.47 16.34 ± 16.55 30.69 ± 29.63 26.04 ± 23.57 45.91 ± 24.82
3 17.61 ± 15.09 16.47 ± 17.60 22.18 ± 14.64 17.20 ± 12.88 23.39 ± 22.45 19.42 ± 18.22 29.54 ± 14.27 44.33 ± 14.64
4 17.09 ± 9.97 15.75 ± 9.42 23.64 ± 9.60 17.92 ± 10.31 23.99 ± 13.18 25.76 ± 10.04 27.02 ± 10.85 47.93 ± 11.73
5 15.52 ± 7.01 20.82 ± 6.42 27.47 ± 9.21 26.38 ± 9.36 25.87 ± 9.93 21.72 ± 10.79 26.58 ± 10.17 44.97 ± 7.37
6 18.91 ± 6.20 23.91 ± 7.36 27.45 ± 5.85 28.27 ± 6.13 29.03 ± 7.13 23.58 ± 5.66 29.05 ± 3.91 50.86 ± 6.27
7 23.33 ± 5.02 23.18 ± 5.23 29.21 ± 4.70 27.62 ± 4.94 29.40 ± 4.76 24.12 ± 3.77 31.79 ± 4.80 45.52 ± 5.48
8 23.12 ± 4.07 26.42 ± 4.46 27.43 ± 5.55 26.97 ± 4.47 29.92 ± 5.34 25.49 ± 3.00 30.73 ± 4.24 48.65 ± 6.13
9 25.02 ± 4.11 24.94 ± 3.46 28.04 ± 1.66 26.98 ± 2.62 31.31 ± 3.33 31.07 ± 2.81 31.84 ± 2.55 47.89 ± 4.08
10 23.38 ± 2.27 27.20 ± 3.56 25.45 ± 2.44 25.18 ± 2.24 32.43 ± 3.19 26.62 ± 2.45 30.88 ± 1.98 45.57 ± 3.56

Avg. 19.81 21.59 25.83 24.07 26.85 25.39 29.27 46.85
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Fig. 4. Clustering performance on WarpAR database. (a) The clustering accuracy (ACC) versus number of clusters. (b) The normalized mutual information
(NMI) versus number of clusters.

F. The Concepts of Different Methods

To better visualize the effectiveness of the proposed method,
10 concepts obtained from Yale dataset of different concept
factorization based methods are shown in Figure 8. From
the figure, it is noted that the concepts of F -norm based
methods CF, LCCF, CCF, LCF and RDCF are seriously
affected by outliers, while the proposed MRSCF method can
obtain the clean concepts. The reason could be that MRSCF
method utilizes MCC to construct the model, thus it can
eliminate the negative effects of outliers. Furthermore, the
concepts obtained by MRSCF are more discriminative than
other compared methods. That is because MRSCF introduces
nonegative adaptive embedding term and label information.
Therefore, the proposed MRSCF method can obtain better
clustering results than other compared methods.

G. Sensitivity of Parameters

To further study the proposed MRSCF method, the sen-
sitivity of model parameters on the clustering performances
are analyzed. We present the clustering results under different
parameters on Orl dataset. Since the MRSCF method involves
three parameters, we fix one and consider the effects of other
two by grid search. Fig. 9 plot the ACC and NMI values given
by MRSCF for different combination of two parameters. It is
note that the proposed method is sensitive with parameter α
but not sensitive with γ and β. Therefore, in the application,
we only need to focus on the tuning of parameter α.

H. Convergence Study

To intuitively show the convergence property of the pro-
posed MRSCF algorithm, the convergence curves of MRSCF
on four datasets are illustrated in Fig. 10. Each convergence
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TABLE VI
CLUSTERING RESULTS ON THE MNIST DATABASE

k
Accuracy(%)

CF NMF SemiGNMF SemiLCCF CCF LCF RDCF MRSCF
2 86.60 ± 15.63 84.90 ± 17.05 94.20 ± 7.12 94.40 ± 7.76 92.30 ± 8.66 90.00 ± 12.92 84.00 ± 22.27 97.20 ± 1.78
3 67.40 ± 13.08 64.20 ± 9.82 78.60 ± 16.68 84.20 ± 10.94 81.80 ± 10.90 77.76 ± 12.23 63.40 ± 4.88 88.80 ± 2.06
4 67.40 ± 10.37 66.65 ± 10.90 70.15 ± 9.00 71.95 ± 8.63 72.10 ± 8.90 64.75 ± 5.05 65.15 ± 9.77 88.50 ± 2.70
5 55.28 ± 6.82 54.96 ± 9.17 71.16 ± 13.25 64.36 ± 10.98 67.20 ± 13.11 59.52 ± 7.06 61.44 ± 8.94 84.56 ± 3.71
6 57.43 ± 6.63 57.97 ± 5.94 60.50 ± 6.90 57.50 ± 4.61 63.00 ± 5.63 52.70 ± 4.72 61.67 ± 6.97 84.30 ± 2.79
7 54.89 ± 6.53 52.91 ± 4.85 57.51 ± 4.90 51.37 ± 2.65 63.49 ± 5.62 53.60 ± 4.52 57.51 ± 5.79 81.86 ± 3.07
8 54.45 ± 5.50 53.78 ± 4.97 55.25 ± 5.98 49.90 ± 3.60 62.53 ± 4.42 58.98 ± 3.87 56.17 ± 4.63 79.45 ± 1.75
9 52.27 ± 2.96 50.76 ± 2.81 51.33 ± 3.43 47.67 ± 4.63 60.44 ± 3.78 50.98 ± 3.16 55.16 ± 3.66 76.27 ± 1.55

10 47.76 ± 1.39 47.90 ± 3.09 50.10 ± 3.08 47.02 ± 3.69 56.80 ± 3.77 47.26 ± 1.94 53.34 ± 2.28 75.62 ± 1.69
Avg. 60.39 59.34 65.42 63.15 68.85 61.73 61.98 84.06

k
Normalized Mutual Information(%)

CF NMF SemiGNMF SemiLCCF CCF LCF RDCF MRSCF
2 58.70 ± 34.05 55.97 ± 35.73 76.67 ± 21.36 77.09 ± 23.79 69.73 ± 28.13 65.04 ± 26.93 63.80 ± 41.38 83.99 ± 9.38
3 38.41 ± 17.37 36.48 ± 10.79 66.40 ± 16.75 66.95 ± 16.22 57.47 ± 16.25 53.98 ± 16.43 43.02 ± 9.04 65.50 ± 4.96
4 51.26 ± 11.52 51.48 ± 8.99 63.38 ± 8.76 57.75 ± 10.29 60.12 ± 9.68 47.61 ± 7.02 55.16 ± 10.17 70.13 ± 5.68
5 42.65 ± 9.26 41.61 ± 11.19 62.79 ± 12.65 53.14 ± 10.64 56.01 ± 12.90 43.71 ± 7.57 49.53 ± 7.39 65.93 ± 6.85
6 46.33 ± 8.27 47.83 ± 6.61 56.90 ± 5.23 48.79 ± 6.28 54.33 ± 4.92 42.54 ± 3.24 55.56 ± 4.63 67.52 ± 4.69
7 47.50 ± 5.45 46.71 ± 4.62 55.23 ± 4.05 45.52 ± 4.45 55.86 ± 6.38 45.68 ± 5.56 53.47 ± 4.66 65.44 ± 5.01
8 49.32 ± 4.17 49.05 ± 3.67 53.77 ± 4.57 44.32 ± 5.55 58.46 ± 3.31 44.55 ± 3.82 53.84 ± 4.37 63.87 ± 2.22
9 48.35 ± 3.24 47.06 ± 2.92 53.36 ± 4.94 43.24 ± 4.91 54.93 ± 2.93 47.50 ± 2.72 52.62 ± 3.40 60.36 ± 1.89

10 45.46 ± 1.96 46.12 ± 1.54 50.90 ± 1.79 44.40 ± 3.48 55.04 ± 2.54 44.66 ± 2.08 51.99 ± 2.83 60.09 ± 2.42
Avg. 47.55 46.92 59.93 53.43 57.99 48.36 53.22 66.98
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Fig. 5. Clustering performance on MNIST database. (a) The clustering accuracy (ACC) versus number of clusters. (b) The normalized mutual information
(NMI) versus number of clusters.

curve shows a variation of the objective value in (11). It is clear
that the objective value increases step-by-step and converges
rapidly.

VI. CONCLUSION AND FUTURE WORK

Based on MCC, we have proposed a novel MCC based
robust semi-supervised CF model. Because of MCC which
is a local measure, this model is particularly suitable for
situations where data contain large outliers. We have also given
an MCC based framework to simultaneously introduce local
structure information and label information. Different from the
other existing CF methods, which utilize the multiplicative
strategy to solve the model, an accelerated block coordinate
update iterative algorithm is derived to solve the proposed
model. The convergence property of the proposed algorithm
has been shown. Experimental studies on outlier-contaminated

datasets have shown the superiority of the proposed method
over several state-of-the-art methods. Our better experimental
results attribute to two main factors. The first one is the MCC
metric that is used in our model. It is a local measure and
can truncate large outliers. Therefore, it is more robust than
global metrics such as the Frobenius norm and `2,1-norm. The
second factor is the adaptive and softer way, by which our
method MRSCF incorporates the label information.

We find that at least three questions are worth for further
investigation in the future:

1) Compared with `2,1-norm, which is a global distance
measure, MCC is more robust with large outliers, be-
cause it is a local measure. In this way, MCC not only
can be used for CF model, but also can be explored to
other machine learning methods to overcome the large
outliers.
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TABLE VII
CLUSTERING RESULTS ON THE YALE DATABASE WITH DIFFERENT OUTLIER LEVEL

OL
Accuracy(%)

CF NMF SemiGNMF SemiLCCF CCF LCF RDCF MRSCF
0% 37.36 ± 5.34 39.09 ± 3.18 42.09 ± 3.32 43.19 ± 4.67 47.82 ± 3.60 40.82 ± 3.99 46.36 ± 3.50 70.36 ± 3.69
10% 36.55 ± 3.56 39.09 ± 3.60 39.64 ± 4.60 42.00 ± 3.37 43.73 ± 4.73 40.18 ± 5.04 38.45 ± 3.84 70.64 ± 3.23
20% 36.18 ± 3.79 38.45 ± 4.29 39.91 ± 4.31 40.09 ± 4.03 42.73 ± 2.82 41.27 ± 5.64 38.00 ± 5.44 71.00 ± 3.31
30% 36.45 ± 3.29 37.36 ± 5.00 39.91 ± 2.97 41.00 ± 3.91 44.36 ± 4.36 39.18 ± 3.71 39.45 ± 4.76 70.73 ± 3.63
40% 37.82 ± 5.15 37.00 ± 5.84 39.00 ± 4.31 40.27 ± 4.47 42.73 ± 3.86 38.64 ± 3.46 40.91 ± 4.00 70.91 ± 3.70
50% 36.09 ± 5.68 37.18 ± 3.62 39.82 ± 3.22 40.82 ± 4.27 45.18 ± 5.09 37.09 ± 3.74 39.00 ± 5.51 71.00 ± 3.67
Avg. 36.74 38.03 40.06 41.23 44.43 39.53 40.36 70.77

OL
Normalized Mutual Information(%)

CF NMF SemiGNMF SemiLCCF CCF LCF RDCF MRSCF
0% 36.48 ± 3.81 38.60 ± 3.43 39.83 ± 4.05 40.13 ± 4.39 46.67 ± 3.60 40.11 ± 5.25 45.67 ± 2.69 62.97 ± 3.80
10% 35.53 ± 4.95 37.85 ± 3.84 37.84 ± 4.53 39.43 ± 3.24 45.03 ± 3.98 39.28 ± 5.25 38.48 ± 4.12 63.39 ± 3.19
20% 33.84 ± 4.12 36.84 ± 4.59 37.99 ± 4.62 38.69 ± 3.74 42.62 ± 2.95 38.79 ± 5.56 38.77 ± 4.08 63.82 ± 3.39
30% 34.29 ± 3.56 36.53 ± 4.83 37.60 ± 3.29 38.90 ± 3.70 45.00 ± 2.73 38.00 ± 4.33 39.14 ± 4.23 63.57 ± 3.52
40% 35.77 ± 5.47 35.67 ± 5.94 36.65 ± 4.90 37.51 ± 3.76 42.46 ± 2.69 37.28 ± 3.43 40.80 ± 3.64 63.82 ± 3.57
50% 34.79 ± 4.90 35.87 ± 4.27 37.94 ± 3.62 38.79 ± 4.31 45.28 ± 3.28 35.63 ± 3.92 38.73 ± 4.03 63.80 ± 3.66
Avg. 35.12 36.89 37.98 38.41 44.51 38.18 40.26 63.56

(a) (b)

0% 10% 20% 30% 40% 50%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Ouliers

C
lu

st
er

in
g 

ac
cu

ra
cy

 (
A

C
C

)

CF
NMF
SemiGNMF
SemiLCCF
CCF
LCF
RDCF
MRSCF

0% 10% 20% 30% 40% 50%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Ouliers

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n 

(N
M

I)

CF
NMF
SemiGNMF
SemiLCCF
CCF
LCF
RDCF
MRSCF

Fig. 7. Clustering performance on MNIST database. (a) The clustering accuracy (ACC) versus percentage of outliers. (b) The normalized mutual information
(NMI) versus percentage of outliers.
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Fig. 10. The convergence curve of MRSCF method over four datasets.

2) It is interesting to consider the problem that the data
not only have outliers but also have noises, and how to
construct a model to eliminate both negative effects.

3) The robust framework for introducing label information
proposed in this paper is suitable for concept factoriza-
tion method. Whether it is also suitable for other matrix
factorization based feature learning methods, is another
interesting point.

APPENDIX A
THE EQUIVALENCE BETWEEN (17D) AND (20)

Let B = ∇W f(Ŵ t, Ht, St,pt+1,qt+1, zt+1) and L =
LtW , the objective of problem (17d) can be written as

Tr[(W − Ŵ t)>B]− L

2
Tr[(W − Ŵ t)>(W − Ŵ t)]− β‖W‖1

=Tr
[
W>B − (Ŵ t)>B

]
− L

2
Tr
[
W>W − 2W>Ŵ t + (Ŵ t)>Ŵ t

]
− β‖W‖1.

(33)
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Fig. 8. 10 concepts (XW ) obtained by CF, SemiLCCF, CCF, LCF, RDCF
and MRSCF in each row respectively when data is contaminated by dummy
images.
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Fig. 9. The clustering performances with the variations of parameters.

Eliminating the terms in (33) that are independent of W ,
problem (17d) can be reformulated as follows:

argmax
W≥0

Tr

(
W>B − L

2
W>W + LW>Ŵ t

)
− β‖W‖1

⇔ argmax
W≥0

−L
2

[
Tr

(
W>W − 2

L
W>B + 2W>Ŵ t

)
+

2β

L
‖W‖1

]
⇔ argmin

W≥0
Tr

(
W>W − 2

L
W>B + 2W>Ŵ t

)
+

2β

L
‖W‖1

⇔ argmin
W≥0

Tr

(
W>W − 2W>(Ŵ t +

1

L
B)

)
+

2β

L
‖W‖1.

Finally, the problem (17d) is equivalent to the following form:

argmin
W≥0

1

2
‖W −

(
Ŵ t +

1

L
B

)
‖2F +

β

L
‖W‖1.

APPENDIX B
LIPSCHITZ CONSTANT DERIVATION

A. The derivation of LtW
From the definition of f in (15d), ∇W f can be directly

computed as

∇W f = X>XWHPH> −X>XPH>. (34)

For any W̃ and Ŵ , we have

‖∇W f(W̃ )−∇W f(Ŵ )‖F
=‖X>XŴHPH> −X>XW̃HPH>‖F
=‖X>X(Ŵ − W̃ )HPH>‖F
≤‖X>X‖2‖Ŵ − W̃‖F ‖HPH>‖2
=(‖X>X‖2‖HPH>‖2)‖Ŵ − W̃‖F .

Therefore, the Lipchitz constant

LtW = ‖X>X‖2‖HtP t+1(Ht)>‖2. (35)

B. The derivation of LtH
The ∇Hf can be computed as

∇Hf =W>X>XWHP −W>X>XP
+ αH(I − S)Q(I − S)> − αHM + YM.

(36)

For any H̃ and Ĥ , we can obtain that

‖∇Hf(H̃)−∇Hf(Ĥ)‖F
=‖W>X>XWĤP + αĤ(I − S)Q(I − S)> − αĤM
−W>X>XWH̃P − αH̃(I − S)Q(I − S)> + αH̃M‖F
≤‖W>X>XW (Ĥ − H̃)P‖F + α‖(Ĥ − H̃)(I − S)Q(I − S)>‖F

+ α‖(Ĥ − H̃)M‖F
≤
[
‖W>X>XW‖2‖P‖2 + α(‖(I − S)Q(I − S)>‖2 + ‖M‖2)

]
∗

‖Ĥ − H̃‖F .

Therefore, the Lipchitz constant

LtH =‖(W t+1)>X>XW t+1‖2‖P t+1‖2
+ α‖(I − St)Qt+1(I − St)>‖2 + ‖M‖2.

(37)

C. The derivation of LtS
The ∇Sf can be computed as

∇Sf = α(H>HSQ+X>XSZ −H>HQ−X>XZ). (38)

For any S̃ and Ŝ, we have

‖∇Sf(S̃)−∇Hf(Ŝ)‖F
=α‖H>HŜQ+X>XŜZ −H>HS̃Q−X>XS̃Z‖F
≤α‖H>H(Ŝ − S̃)Q‖F + α‖X>X(Ŝ − S̃)Z‖F
≤α‖H>H‖2‖Ŝ − S̃‖F ‖Q‖2 + α‖X>X‖2‖Ŝ − S̃‖F ‖Z‖2
=α(‖H>H‖2‖Q‖2 + ‖X>X‖2‖Z‖2)‖Ŝ − S̃‖F .

Therefore, the Lipchitz constant is

LtS = ‖(Ht+1)>Ht+1‖2‖Qt+1‖2 + ‖X>X‖2‖Zt+1‖2. (39)
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