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ABSTRACT. Deterministic compartmental models for infectious diseases give
the mean behaviour of stochastic agent-based models. These models work
well for counterfactual studies in which a fully mixed large-scale population is
relevant. However, with finite size populations, chance variations may lead to
significant departures from the mean. In real-life applications, finite size effects
arise from the variance of individual realizations of an epidemic course about
its fluid limit. In this article, we consider the classical stochastic Susceptible-
Infected-Recovered (SIR) model, and derive a martingale formulation consist-
ing of a deterministic and a stochastic component. The deterministic part
coincides with the classical deterministic SIR model and we provide an upper
bound for the stochastic part. Through analysis of the stochastic component
depending on varying population size, we provide a theoretical explanation of
finite size effects. Our theory is supported by quantitative and direct numerical
simulations of theoretical infinitesimal variance. Case studies of coronavirus
disease 2019 (COVID-19) transmission in smaller populations illustrate that
the theory provides an envelope of possible outcomes that includes the field
data.
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1. Introduction. The COVID-19 pandemic provides the first instance in 100 years
to study the worldwide dynamics of a novel virus outbreak. Early on in the pan-
demic we observed many localized outbreaks on cruise ships, skilled nursing fa-
cilities, and through other congregating mechanisms such as conferences, parties,
and places of worship. Several groups developed models to inform public health,
the most notable being the March 16, 2020 report by Imperial College [24] that
forecast over 2 million deaths in the US and over 500,000 deaths in the UK if non-
pharaceutical interventions (NPIs) were not implemented. Within days, lockdowns
were enforced in both countries. Over a year since that time we have observed a
variety of patterns, most of which did not follow the trends predicted by the early
reports. The most obvious reason for these differences is the reduction of the re-
productive number due to NPIs. An additional important factor is the departure
from simple mixture models that results from isolating populations because of NPIs
or simply because of geography. One way to model such effects is to consider an
agent-based model within a finite population size in which the role of stochasticity
is more pronounced due to the population size. This is the focus of our work.
Mathematical modeling has an important role in studying infectious diseases on
both long and short timescales - for modern viruses such as AIDS, Severe Acute Res-
piratory Syndrome (SARS), Zika, and the novel coronavirus disease 2019 (COVID-
19). For epidemic modeling, the standard approach involves compartmental models
in which the population is divided into compartments representing individuals in
one of several states, e.g. the susceptible (S), infectious (I), recovered (R) and ex-
posed (E). This mathematical framework can lead to a variety of epidemic models,
such as SIR, SIS, SEIR, SIRS (see e.g. [45], [49], [43], [9]). Compartmental modeling
has been applied to epidemic study of COVID-19, HIV, etc [63, 50, 11, 7, 8]. These
models can have an agent-based form with the most granular being the stochas-
tic models. Between the stochastic SIR and the continuum limit are the Hawkes
and HawkesN models in which a single self-exciting point process describes virus
transmission between people [11]. Recent work has shown a theoretical connec-
tion between HawkesN and continuum compartmental models [59]. Because of the
granularity of the stochastic compartmental model, its fluid limit is often adopted
to reduce computational complexity. By the law of large numbers, stochastic com-
partment models with Markov processes can be approximated by their deterministic
ODE counterpart. The central limit effect arises under the diffusion scaling. And
the fluid-scaled model converges to a Gaussian diffusion of stochastic differential
equations about the deterministic solution. All these approximation methods re-
quire a large population size to control variances. As the population size decreases
the fluid-limit approximation acquires larger stochastic variances, and finite size
effects may arise. For example, empirical variances of realizations of stochastic
models can be at the same magnitude of the inverse of the total population size
([33, 34]). Since population scale within a relatively small community (like small
counties, cruise ships) is very likely to fall within the regime of considerable sto-
chastic deviations, quantitative study and analysis of finite size effects is relevant
to real disease statistics. To this end, we investigate stochastic variability in the
stochastic SIR model driven by independent Poisson clocks, which will be referred
to as the SIR-IPC Model. We adopt Poisson clocks, rather than time steps dis-
cretized with a fixed duration. A more realistic model should treat all events as
occurring independently, according to their own stochastic clock, rather than occur-
ring at regular intervals, and arriving according to the same schedule. Time steps
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are turned into exponentially distributed random variables with the introduction
of Poisson clocks. Moreover, independent Poisson clocks allow us to use the theory
of continuous-time Markov pure jump processes, e.g. a martingale approach (see
e.g. [20, 44, 46, 47, 48]). And this leads to a martingale formulation. In prior
literature, only the components of the martingale formulation are derived (see e.g.
[1],12], [72]), while study of the complete formulation has been lacking. Specifically,
theoretical infinitesimal variances have also been studied in e.g. [14, 49], [2], [72],
[73]. However, their main purpose is to explore ways to approximate stochastic
compartmental models with a large population size, such as fluid limit, diffusion
limit, and linear SDE approximations. With the martingale formula applicable to
all population scales, we can quantitatively analyze the finite size effects under
small populations.

It is possible to merge independent Poisson clocks to obtain systems that are
driven by only one or two Poisson clocks. And this idea is worked out in [1],[2],
[72]. There the SIR Models are driven by two Poisson clocks, one for transitions
from S to I compartment, the other for those from I to R compartment. Here in
our model, we assume that individual events each occur at a certain Poisson rate.
These events include infectious contacts of each pair of susceptible and infected
individuals, and recovery of each infectious individuals. We also assume the absence
of vital dynamics with a deterministic population size parameter N. With the
martingale approach, we decompose the process into a deterministic component and
a stochastic component, corresponding to the infinitesimal means and variances of
the process, respectively. The deterministic component leads to a fluid-limit-type
continuum analogue, which coincides with the deterministic SIR model (rescaled
over N) as in [38]. Computer simulations show that as N decreases, the SIR-IPC
Model deviates further from the deterministic SIR model and finite size effects arise.
The stochastic component is bounded by quantities of the same order of magnitude
of 1/N. We find that the square root of the stochastic component scales as 1/v/N.
This is not a surprise, as it is expected based on the law of large numbers that the
standard deviation scales like 1/v/N. Furthermore, the smaller the population size
is, the larger the deviation of the stochastic simulations from the deterministic ones
are. We provide a theoretical estimation for this scaling, building on the analysis of
continuous-time Markov processes. Output of numerical experiments of theoretical
infinitesimal variances supports our theory.

Furthermore, we conduct numerical experiments with several sets of parameters
that mimic real world cases, including smaller US counties and a cruise ship. As the
pandemic progresses, it permeates smaller counties and rural areas [51] [61]. Since
the outbreak of COVID-19 on the Diamond Princess Cruise Ship at least 25 other
such vessels have confirmed COVID-19 cases and studies of the transmission of the
disease on cruise ship have drawn consideration attention (e.g. [6]).

The article is organized as follows. In Section 2, the stochastic SIR Model is
introduced. The martingale formulation is derived in Section 3. Based on the
martingale formulation, a deterministic and continuum analogue of the stochastic
SIR model is derived (Section 3.3). Simulations are run to compare the stochastic
SIR model to its continuum limit, illustrating the importance of finite size effects
(Section 3.4). In Section 4 the finite size effects are analyzed theoretically based
upon the martingale formulation. The theory is supported by simulations and field
data in Section 5.
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2. Stochastic SIR-IPC model.

2.1. Overview and notations. Our setting is similar to the continuous-time-
Markov-processes stochastic SIR models in [1], [59] and [72]. We assume a continu-
ous time variable ¢ € [0, 00), and a probability space (€2, F,P), and a deterministic
and fixed population size N. The classical stochastic SIR model without vital dy-
namics consists of three compartments: susceptible, infected, and recovered individ-
uals. For w € 2, we assume that at a given time ¢ the numbers of the compartments
are Sy (w,t), In(w,t), and Ry(w,t), so that N = Sy (w,t) + In(w,t) + Ry (w,t),
respectively. For simplicity of modeling, we assume that there is no vital dynamics,
that is, we view deaths as a subset of recovered individuals and humans’ natural
resistance to the disease does not introduce new susceptible people after recovery.
Below we assume that all the parameters are independent of IV, unless otherwise
specified. We assume that the initial data are deterministic and denoted as

(SN(w,O), IN(CU,O), RN(w, O)) = (SON7[ON,RON)- (1)

A Poisson clock governs the infectious contact of any pair of a susceptible and
an infectious individuals. There are in total Sy (w,t)Iy(w,t) such pairs at time ¢.
Each individual Poisson clock advances according to a Poisson process with rate
B/N. We denote this clock as the “i-clock”. Suppose that the i-clock advances at
time ¢~. At time ¢, with probability p; € [0, 1] the susceptible of the pair associated
with the clock contracts the disease and transitions to the infectious compartment
through contact.

Another Poisson clock governs the recovery of the infectious individuals. Each
infectious individual is assigned a Poisson clock, denoted as “r-clock”, which ad-
vances with rate 7. Suppose that the “r-clock” advances at time t~. At time ¢, the
infectious individual with the clock is recovered, with probability ps € [0, 1].

All the Poisson clocks are exponentially distributed independent random vari-
ables and are independent with time increments. As in the classical SIR literature,
Bp1 denotes the transmission rate constant, and yps denotes recovery rate constant.
Thus the reproduction number R for our model is

Ro = @ (2)
P2

Remark 1. To facilitate the computation of the SIR-IPC model, we show the fol-
lowing equivalent description of the SIR-IPC model with merged Poisson clocks. All
the i-clocks can be merged into one master i-clock to govern the arrivals of infectious
contact. Once the master i-clock advances, with probability p; a randomly chosen
susceptible individual contracts the disease. The master i-clock advances with rate
BIn(w,t7)Sn(w,t7)/N. Likewise all the Poisson r-clocks can be merged into one
master r-clock as we do for the i-clocks. Once the master r-clock advances, one
randomly chosen infectious individual is recovered, and with probability ps devel-
ops immunity and becomes disinfected. The master r-clock advances according to a
Poisson process with rate yIn(w,¢ ™). In general, theory regarding the merging and
splitting of Poisson processes (see e.g. [21]) implies that independent Poisson clocks
can be treated as one merged Poisson process; and with probability in proportion
to the rate of each Poisson clock, the Poisson clocks compete to advance first in the
merged Poisson process. More precisely, suppose that X;(t), Xa(t), ..., Xn(t) de-
notes the number of arrivals corresponding to independent Poisson processes with
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arriving rates A1, ..., Ay, respectively. Then Zﬁ;l X, (t) has the same distribu-
tion as the number of arrivals corresponding to one Poisson process with arriving
rate Zfl\’:l An(t). Furthermore, any particular arrival of the merged process has
probability A,/ ZnN:]_ An(t) of originating from the n-th process, forn =1,2,..., N,
independent of all other arrivals and their origins. The variance of the merged
process at time ¢ can be derived as follows:

N N N N
Var (Z Xn(t)> => Var(Xo(t) =Y At =t» An. (3)

n=1 n=1 n=1 n=1

When A,, = X for all n, we have

N
Var (Z Xn(t)> = tN. (4)

2.2. Small-time-interval probabilities for compartment fractions. We de-
note the fractions of each compartment as

. o Iy Ry
(SN(wat)7lN(wvt)arN(wvt)) = < N (w7t)a N (w7t)a N (w7t)) . (5)
with the initial condition of population fractions denoted as

(SN(W,0),iN(w,0),I'N<UJ,O>) = (SON7i0N7rON> . (6)

This together with (1) implies that

Son Ion RON) )

SoN, loN, T ==, =, —
(ONaONv ON) (N,N’N

With similar idea as in e.g. [1], we derive the small-time-interval probabilities
for compartment fractions. For At a short time interval, we have

P(ASN(M’ t)) AiN(w7 t))) = (k’j)‘(SN(wv t)’ iN(wv t) = (Sa 7’))

p18NisAt + o1 (At), (k,j) = (—%, %),
_ ] poyNiAt + 0s(AY), (k,j):(O,f%), (8)

1 — p1BNisAt — poyNiAt + o3(At), (k,j) = (0,0),
0, otherwise,

where Asy(w,t) = sy(w,t + At) — sy (w,t), Aiy(w,t) = iy(w,t + At) —in(w,t)
and o;(At) are functions of At that satisfy limas— 0;(At)/At =0,1=1,2,3.

Remark 2. Although the set up of the Markov pure jump process implies (8), the
inverse is not true. For example, the set of small-time-interval equations do not
uniquely determine the rates of the Poisson clocks. For the same reason, combining
the parameters p; and 8 as one parameter leads to a different stochastic SIR model.
For one thing, the variance of a Bernoulli random variable with parameter p; is
p1(1 — p1), which is not linear with p;.

3. Main results using a martingale approach. The martingale formulation of
a Markov pure jump process characterizes the process as the sum of an integral part
involving the infinitesimal mean and a martingale part involving the infinitesimal
variance.
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3.1. Martingale formulation of the stochastic SIR-IPC model. For every
t, we define sy(t) := {sy(w,t) : w € Q}. In a similar way we can define the
stochastic processes iy (t) and ry(t)) associated with the stochastic SIR-IPC model.
As (sy(t),in(t),rn(t)) is a Markov pure jump process with state space RY, a
martingale formulation (see e.g. [20, 21, 40, 48, 62]) can be derived. We first
introduce the notion of blow-up time (see e.g. [31]).

Definition 3.1. It is possible that for a certain realization of SIR-IPC Model, the
Poisson clocks may generate time increments that add up to be finite, say time
7 and 7 < oo. In this case the corresponding stochastic process is defined only
for 0 <t < 7. By the time ¢t = 7 the Poisson clocks will have made an infinite
number of advances. We say that the stochastic process explodes, and 7 is called
the blow-up time. This is an uncommon occurrence and it is a different issue from
the process extinguishing itself, in which the infected population goes to zero in
finite time. The latter is very real and of interest for finite size epidemics.

In the previous literature (e.g. [73, 72, 1, 2, 3, 14, 34, 35]), there are works that
consider the infinitesimal mean and variance of stochastic SIR models but typically
only in the cases when the total population N increase to infinity. In contrast,
we are interested in the dynamics of the SIR-IPC model for moderate size N in
which the finite size effect matters. Thus we derive the full martingale formulation
encompassing the infinitesimal mean and variance of the SIR-IPC Model below.

Theorem 3.2. Before the possible blow-up time, (sy(t),in(t), rn(t)) can be written
as

sy(t) = SON-‘r/g w) dw +M(1)()
in(t) = zON+/g w) dw+ M (1), (9)
ry(t) = 7’0N+/g d+M ()

where ./\/l(l)( t) = MW (sy(t),in(t), rn (1)), I = 1, 2, 3, are martingales that start
at t = 0 as zeros, and Q(l)( ) = GO ((sn(t),in(t), rn(t)), I = 1, 2, 3, are the
(t

infinitesimal means for sy(t), in(t), and ry(t), respectively, and
G\ (1) = —p1 Bin () sn (2), (10)
G (8) = p1 iy (1) sn (1) — payin (1) (11)
G () = pavin (). (12)

The variances of Mg\l,) (t), 1 =1,2,3, can be characterized in the following way:

Var(Mg\l,)(t))>:/tE[V](\l,)(w)] dw, 1=1,2,3, (13)
0
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where Vj(é)(t) = VJ(\? ((sn(t),in(t), rn (%)), | = 1, 2, 3, are the infinitesimal vari-
ances for sy(t), in(t), and ry(t) respectively, and

V() = %plﬁiN(t)sN(t)v (14)
V(1) = e Bin (x (6) + yprin (), (15)
W (1) = %pﬂ’iz\/(t)- (16)

Proof of Theorem 3.2. To prove Theorem 3.2, we compute the infinitesimal means
and variances for the Markov pure jump process (sy(¢),in(t),rn(t)) for a fixed N,
using the methods in e.g., [5, 16, 22, 30, 37, 44, 52, 53, 56, 58].

As Q](\l,) (t), 1 =1, 2, 3, are the infinitesimal means for sy (t), in(t), and ry(t),
respectively, from (8) we have (10) - (12) . As Vl(\l,) (t),1=1,2,3, are the infinitesimal
variance of sy (t), in(t), and ry(¢), respectively, we have

1
= lim B [(Asn ()| (a0, in () en@))] (1)
From (17) we obtain (14). In a similar way we obtain (15), and (16). With the in-
finitesimal means and variances obtained, we apply Theorem (1.6), [20] or Theorem
3.32, [48], to obtain (9), and apply Exercise 3.8.12 of [13] to obtain (13). The proof
of Theorem 3.2 is completed. O

W (@)

3.2. Estimates of the martingale variances. Here we derive upper bounds for
variances of martingales of the martingale formulation (9).

Theorem 3.3. Before the possible blow-up time, we have the following estimates:

Var (MY (1)) <50, (18)
Var (Mﬁ)(t))) S% [son + P2y (fon + son) 1], (19)
Var (Mﬁi’)(t))) S%pﬂ (don + son) t. (20)

Proof of Theorem 3.53. Taking expectation on both sides of (9)1, we have

Elsy(t)] = son + / 'E [g}v” (w)} dw. (21)

0
This together with (10), (13) and (14) implies

Var (MY 0)) = 5 [ Elpisin syl do = £ oy ~Blsn (o). (22

As E[sn(t)] > 0, we can bound the right-hand-side of (22) from above by son /N,
and obtain (18).
From (13) and (16) we infer
1 ¢
3 .
Var (M§v>(t))) = e | Elin(w)]dw

1

¢
szv/o (ion + son) dw

IA

1 .
= NpQ’Y (loN + SoN) t. (23)
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From (23) we obtain (20).
From (13) - (16) and we obtain

Var (ME\Z,) (t))) = Var (M%P(t))) + Var (Mﬁ)(t))) . (24)
This together with (18) and (20) implies (19). O

Theorem 3.3 implies that the variances of the martingales of sy (t),in(t),rn (%)
are bounded by the initial states of each compartment, and the total population V.
Moreover, they are bounded by quantities with an equal or lower order of magnitude
than 1/N.

3.3. Deterministic analogue of the stochastic SIR model. With a similar
derivation of the hydrodynamic limit of Markov pure jump processes [23, 27, 40, 39,
62, 64, 68, 69], we can find a deterministic analogue of the (renormalized) stochastic
SIR model when N increases to infinity. The analysis is based on the martingale
formulation (9), and the conclusion of Theorem 3.3, where the martingale variances
are shown to have an equal or lower order of magnitude than 1/N.

And we see that for N large, it is reasonable to set the the infinitesimal mean
vector as the generator of the deterministic flow of a deterministic analogue of the
stochastic SIR model. And by (10), (11) and (12) we obtain

5%@ = —pBi(t)s(2),

32}(;) = p1Bi(t)s(t) — p27i(t), (25)
ag—f) = poi(t),

5(0) =0, i(0) =io, 1(0)=ro,

where s(t), i(t), and r(¢), t € (0,00) are the deterministic versions of sy (t), iy (t),
and ry(t), respectively, and sg = So/N,ig = Iy/N,ro = Ro/N. We note that the
ODEs given in Egs. (25) does not explicitly include the population size parameter
N, and is independent of N. Note that the deterministic analogue of the stochastic
SIR model (25) is the same as the classical deterministic SIR model (without vital
dynamics) as in e.g. [38] rescaled by N.

3.4. Numerical simulations. We compare the stochastic and deterministic ana-
logue of the stochastic SIR model through simulations. For the stochastic case,
we use the classical Gillespie algorithm for continuous-time Markov processes (see
e.g. [25]). Roughly speaking, we first simulate the sojourn times using exponen-
tial distribution generators, and then simulate the sample paths of the embedded
discrete-time Markov process as described in Section 2.1. The algorithm ensures
that independent Poisson clocks advance randomly without a prescribed diagram.
Namely, we do not require that the i-clocks and r-clocks advance sequentially with
a pre-determined arrangement. In this way, we are able to produce a number of
sample paths corresponding to random realizations of sequences of events. The
predictive power of our simulation is strengthened by this effort of proper usage of
the algorithm.

We focus on the cases when the reproduction number Ry is near the self-sustaining
level of Ry = 1, as is typical in a scenario where public health measures trade off
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against economic and educational needs of the population!. Specifically, we con-
sider the cases when Rg = 0.95, 1.1, 1.2, and 1.3, respectively. Parameters of the
simulations are recorded in figure caption.

In all the cases, we show output of the SIR-IPC model simulations with N
taking on values 10%°, 103, 103°, and 10%, by the blue, orange, green, and red
lines, respectively, in Figs. 1b, 1d, 1f, 1h. For the case when Ry = 0.95, we infer
from (25) that the parameters and data used to create the blue, orange, green,
and red lines in Fig. 1b give rise to the same set of solution (s(t),i(¢),r(t)) to the
deterministic SIR Model. Therefore, we only display the deterministic output once
in Fig. 1a. This same arrangement also applies to other cases with different values
of R, which are displayed in Figs. lc, le, and 1g, respectively. In all the figures,
black, magenta, and cyan lines represent s(t), i(t), and r(t) associated with the
deterministic simulation, respectively.

The finite size effects are exhibited. As the population size decreases, deviations
of dynamics of the stochastic SIR, Model from its continuum equation increase. The
same simulation output is also observed over other random paths.

4. Mathematical analysis of the finite size effects. In Theorem 3.3, a global
upper bound of the same order of magnitude of 1/N is derived and the result
indicates the order of the magnitude of the martingale infinitesimal variances when
N — oo. To further understand the martingale variances when N is relatively
smaller, in this section, we analyze the finite size effects, based on the martingale
formulation, and simulations are run which support our theoretical conclusion.

4.1. Scaling property of the stochastic component. We analyze the deter-
ministic and stochastic component of the martingale formulation with varying pop-
ulation size N. We fix the initial condition of the compartment fractions and denote
them as

(son, ion, Ton) = (S0, i0, T0)- (26)
We analyze the martingale formulation of the stochastic SIR model with varying
population size N. Applying (9) and (13) to (sny(t),in(t),rn(t)) over a small time
step At, we obtain
sn(t+At) =sy(t) + 6P AL+ MWD (¢ + A1) — MY (1),
in(t+ At =in(t) + 6P )AL+ MP (t+ At — MP (1), (27)
ry(t+ At) =rn(t) + G0 A+ MDD 1+ A1) - MY 1)

By (13) and additivity of the variance in time for martingales, we have

\/Var (AM%) (t)) >~ \/E [v}f,) (t)} At, 1=1,2,3, (28)

where AME\Z,) (t) = ./\/lg\l]) (t+ At) — Mg\l,) (t), I = 1,2,3. This together with (27)
implies that the infinitesimal variances are the key to estimate the infinitesimal
standard deviation of the stochastic component, and the deviation of the trajectories
of the evolution of the model from its deterministic component.

LAs a specific example we note that the dynamic reproductive number has been estimated
weekly in Los Angeles County using a Bayesian SEIR model applied to hospital demand data -
during the period July 2020-April 2021 it remained within a 25% window of one [10].
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FIGURE 1. Plots of infected compartment fractions iy(t) for the
stochastic SIR and s(t),i(t), and r(¢) for deterministic SIR. For
both models, p; = 0.5, po = 0.5, v =1, T = 23, sg = son = 0.96,
ig = igy = 0.04, 79 = rony = 0, and In Figs. 1b and 1a, 1d and Ic,
1f and le, and 1h and 1g, § = 0.95,1.1,1.2, 1.3, respectively. For
the SIR-IPC model displayed in Figs. 1b, 1d, 1f, and 1h, N = 102,
103, 103, 10* in every panel.
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We perform estimates at the first time step. At time zero, from (14) - (16) we
infer

1 .

Vi (0) =  P1ioso, (29)
1 . .

V](\?) (0) = v (p1Bioso + p2yio) (30)
.

Vi (0) = Spavio, (31)

which implies that the infinitesimal variances for the attractiveness are each in-
versely proportional to N:

1
Y (0) =123 (32)

This together with (28) implies that at the first time step we have
1
Var (ME@ (At)) x 1l =123 (33)

From (33) and (27) we infer that at the first time step a smaller value of N
leads to a larger deviation of the trajectory of (sy(w,t),in(w,t),ry(w,t)) from
its deterministic component, and the hotspots develop temporal transience in the
simulations. This explains the finite size effects at the first time step. This suggests
that smaller value of N leading to a larger deviation remains to be true at an
arbitrary later time, namely,

VY ) >V (1), for 0O< N < Nandt>0,1=123 (34)

which leads to a theory of the finite size effects at an arbitrary later time.

Next we estimate the right-hand-side of formulas (14) - (16), so that we can
estimate V](\l,) (t),l = 1,2,3, at later times for ¢ > 0. In the prior literature of
stochastic partial differential equations (see e.g. [12, 17, 57, 67, 71]), usually It
calculus is applied, as the infinitesimal variances are multiplied by Wiener processes,
and the population or number of particles is required to be large, which does not
fit with the cases on which our focus here.

We conjecture that formulas (29) - (31) can be written for an arbitrary ¢ > 0
with the same leading order:

1 .

WY (1) o ~P1Pioso, (35)
1 . .

V& (1) o v (p1Bioso + p27io) , (36)
1 ,

VN (1) ox Spavio. (37)

If our conjecture above is true, then we can fix a time period [T, T3], and take
average of both sides of (35) - (37) over the time period [T1, T3], and obtain

1
VZ(\}) X Nplﬂioso, (38)
N , ,
N XN (p1Bioso + p2vio) (39)
1 .
VY o < pavio, (40)

N
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where VZ(\l,), Il = 1,2,3 denotes the time average of the infinitesimal variance over
this time period:

— T,
0 1 0]
= t)ydt, 1=1,2,3. 41
VN Tg*Tl T VN() ’ )< ( )
Here we slightly abuse the notation and omit the dependence of the time average
over 17 and T5.

4.2. Numerical simulations. To check the validity of (34), we perform direct
simulations of the infinitesimal standard deviations, namely

o0ty =\/VQ (1),1=1,2,3. (42)
Example output can be found in Figure. 2.

Figs. 2a, 2c¢, and 2e show results of U](\l,) (t), I = 1,2,3, in the case with Ry =
0.95 < 1. The blue, orange, green and red lines show results with the same realiza-
tions from simulations with the corresponding colors in Fig. 1b, respectively. Figs.
2b, 2d, and 2f show results of O'g\l[) (t), Il =1,2,3, in the case with Ry = 1.3 > 1.
The blue, orange, green and red lines show results with the same realizations from
simulations with the corresponding colors in Fig. 1h, respectively.

The output of the simulations supports the validity of (34). The same simulation
results are also observed over other random paths.

We validate our conjecture of (38) - (40) through the following numerical sim-
ulation. Fig. 3 shows the log-log plot with error bars for (38) - (40). The lines
show the theoretical scaling with slope as —1 and the z-intercepts as log(p1Bioso),
log(p1Bioso + payio), and log(pavyig), respectively, and the error bars show the true
scaling with the xz-coordinate and y-coordinate as follows:

(z.9) = (10g N, log (VD)) . 1=1,2,3, (43)
for N = 10%5,103,103°,10%, and | = 1,2,3. Here [T}, T3] are chosen as [0, 10],
[1,11], [2,12], ..., and [13, 23]. The minimum and maximum values of y = log (V](\P)7

1l =1,2,3, taken over all such intervals are set as the limits of the error bars.

Figs. 3a, 3¢, and 3e show results in the cases when Ry = 0.95 for [ = 1, 2, and 3,
respectively. The error bars with z-axis as 2.5, 3, 3.5, and 4 show results with the
same realization from simulations of the blue, orange, green, and red lines in Fig.
1b, respectively. Figs. 3b, 3d, and 3f show results in the cases when Ry = 0.13 for
Il =1, 2, and 3, respectively. The error bars with z-axis as 2.5, 3, 3.5, and 4, show
results with the same realization from simulations of the blue, orange, green, and
red lines in Fig. 1h, respectively.

The output shows that the error bars are short and fall mostly on the straight
lines representing the theory. The same simulation results are also observed over
other random paths. These results support the validity of equations (38) - (40) and
our theory for the finite size effects based on the martingale formulation.

5. Case studies of a small county and a cruise ship. In the following experi-
ments, we set parameters to mimic real world cases of a small county or a cruise ship.
And we will display plots for the fractional of compartment and the infinitesimal
standard deviations, and analyze the role of stochastic variances in each case. The
infinitesimal variances represent chance variations that leads to deviations from the
deterministic SIR model. Through simulations of infinitesimal variances as in (14)
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FIGURE 2. Examples of the infinitesimal standard deviation for
o (t), 1 = 1,2,3. In both cases, p; = 0.5, py = 0.5, 7 = 1,
T = 23, So = SoN = 096, iO = iON = 004, To = oN = 0. In
the cases with Rg = 0.95 < 1 in Figs 2a, 2¢, and 2e, § = 0.95.
And the blue, orange, green, and red lines show results with the
same realization from simulations with the corresponding colors in
Fig 1b, respectively. In the cases with Rg = 1.3 > 1 in Figs 2b,
2d, and 2f, f = 0.95. And the blue, orange, green, and red lines
show results with the same realization from simulations with the
corresponding colors in Fig 1h, respectively.
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variance from the same realization as in Figs. 1b, and 1h. We set
[T1,75] as [0,10],[1,11],[2,12],- - and [13,23]. The minimum and

maximum values of y = log (V}@), Il =1,2,3, taken over all such
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with slope —1 show the theoretical scaling with the z-intercepts as
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- (16), we can produce envelopes that encompass a majority of the random paths.
Realistically, our findings suggest that for small populations, the probabilities of
rare events, e.g. the early-die-out or early-outbreak are important.

We study the outbreak of COVID-19 in Churchill County, Nevada from July,

2020 to March, 2021 and on the Diamond Princess cruise ship from February to
March, 2020. Since early testing on the Diamond Princess was done by sampling
from the population due to limited availability of testing, there is an under-reporting
issue in the infected counts. The data of Churchill County was collected from [19]
and the reported number of confirmed cases of Princess Diamond, and the quar-
antine process were retrieved from publicly available sources including the Princess
Cruise website of the Carnival Cooperation [18] and the official website of Ministry
of Health, Labor and Welfare, Japan (Ministry of Health, Labor and Welfare, Japan
[54].
We plot the daily confirmed cases with 30 realisations from the SIR-IPC models in
fig. 4. For fig. 4a, the total population is set to be Churchill County’s population
N = 25715 and the reproduction number Ry = 1.007 using linear regression opti-
mized by a grid search. For fig. 4c the total population is set to be the total number
of passengers and crew on Diamond Princess N = 3711. Cruise ships carry a large
number of people in confined spaces with relative homogeneous mixing, amplifying
an already highly transmissible disease. Following the estimation of the dynamic
reproduction number in [60], we take an average of these estimates from Feb. 5 to
Feb. 26, resulting in Ry = 2.02. With these smaller populations, the infinitesimal
standard deviations are non-negligible in the stochastic SIR model. Public health
officials thus need to be aware of the variability of possible outcomes due to finite
size effects.

6. Discussion. Compartmental models are a powerful tool to predict and con-
trol infectious diseases. In this article, we study theoretically and quantitatively
the finite size effects arising in stochastic compartmental models, where individual
realizations of the models deviate from their mean-field limit.

We apply compound Poisson processes to classical SIR compartmental models
without vital dynamics. The result is a continuous-time Markov pure jump process,
and a martingale approach can be applied to this process. The process is expressed
as the sum of a deterministic and a stochastic component, which provides us with
a tool to study both the statistical and stochastic features of the process. The de-
terministic part coincides with the classical deterministic SIR model. By providing
a bound of the variances of the martingale, we show that the continuum mean-field
limit is indeed the deterministic SIR model. Simulations results also align with the
conclusion.

However, a small population size leads to stochastic fluctuations that deviate
from the deterministic SIR model. Quantitative and theoretical analysis of these
finite size effects have not been well-studied. We find a theoretical explanation for
the finite size effects by observing that the stochastic component of the martingale
formulation scales as the inverse of the square root of the population size. A larger
variance both in the outbreak size and its temporal behavior arises as population
size decreases. This scaling property is verified at time zero with equilibrium initial
data. Direct numerical simulations of the theoretical infinitesimal variance support
our theory as output shows that the dependence on population size remains to be
true in later times. Here we simulate with fixed initial compartment fractions and



16 XIA LI, CHUNTIAN WANG, HAO LI AND ANDREA L. BERTOZZI

0.0016

0.0016 i —— Churchill, NV ~\ —— Churchill, NV
@ 2 0.0014 [
go.0014 g [
 0.0012 CRAUET BT ] £ 0.0012
4 I
2 0.0010 ¢ g 0.0010
h-l o
2 0.0008 i @ 0.0008
£ I £
‘€ 0.0006 ! £ 0.0006
S 0.0004 S 0.0004
> >
& 0.0002 = 0.0002

0.0000{ ¥ | 0.0000

7/29/20 9/7/20 10/17/2011/26/20 1/5/21 2/14/21 3/26/21 7/29/20 9/7/20 10/17/2011/26/20 1/5/21 2/14/21 3/26/21
Time (Day) Time (Day)
(A) Churchill. Ry =1.007, N =25715 (B) Envelope of the Churchill simulated
data.
—— Diamond Princess = Diamond Princess

@ 0.175 @ 0.175 i A
g 2 A
£ 0.150 £ 0.150 L A,
@ a N
5 S
£0.125 £0.125 A
a a \
T 0.100 T 0.100 \
E E
£0.075 £0.075 \\
5 5
S 0.050 S 0.050
2 2
Z0.025 B30.025

0.000 e— 0.000

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (Days since 2/5/2020) Time (Days since 2/5/2020)

(¢) Diamond Princess. Ry = 2.02, N = (D) Envelope of the Diamond Princess sim-
3711 ulated data.

FIGURE 4. Comparison of field data (solid black line) for daily
confirmed case percentages with 30 realisations of the stochastic
SIR model for Churchill County, NV and the Diamond Princess
Cruise Ship.

vary the total population size. To the best of our knowledge, this is the first time
that simulations of theoretical infinitesimal variances for stochastic compartmental
models are implemented. In previous works only empirical variations are simulated
(see e.g. [59], [33]), and the focus was on the effects of statistical fluctuations on
the reproduction number assuming varying initial compartment fractions [4]. We
also simulate finite size effects with small populations and analyze with real data.
All the simulations support our theory. Our results exhibit the danger of fitting
data collected during an outbreak to deterministic counterparts of the stochastic
compartmental models, especially for small populations.

Finite size effects are observed in Markov processes for population dynamics in
many fields ([15, 26, 28, 29, 32, 36, 41, 42, 55, 65, 66, 70]). But there have been
few quantitative studies to date about finite size effects in epidemics. On one hand,
the methodology developed here may be broadly useful for quantitative social and
natural sciences. On the other, this work provides a mathematical and theoretical
framework that may contribute to epidemic policy for public health agencies.

So far, the analysis is purely theoretical. It remains an open problem to integrate
the real-world data to the model and gleam some indicators from the data to control
the disease. One example is that in order to control the spread, the government
should know when and where to take certain measures to reduce 3.
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From Figure 5c¢, with a smaller population, the envelope of synthetic data can
be wide. Additionally, the process with a smaller population also has more paths
that die out early in the process(see fig. 2a, 2c, 2e), and 5a. Our work provides a
good guide for authorities of smaller populations like cruise ships and small towns
to estimate risk over time in order to prepare for the outbreak. It is important to
bear in mind that the broader variations in the pandemic caused by the smaller
population would lead to a wide outcome when it comes to estimating risk. In the
past hundreds of years of human history, there have been several infectious diseases,
including SARS, MERS and HIN1. However, only few of them, e.g. COVID-19 and
1918 influenza escalated into a pandemic. It is important to understand when, why
and how a disease dies out and our next step is to quantitatively study the die-out
event and its relations to finite size population and reproduction number Ry.
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