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During the COVID-19 pandemic, conflicting opinions on physical distancing swept across
social media, affecting both human behavior and the spread of COVID-19. Inspired by
such phenomena, we construct a two-layer multiplex network for the coupled spread of a
disease and conflicting opinions. We model each process as a contagion. On one layer, we
consider the concurrent evolution of two opinions — pro-physical-distancing and anti-
physical-distancing — that compete with each other and have mutual immunity to each
other. The disease evolves on the other layer, and individuals are less likely (respectively,
more likely) to become infected when they adopt the pro-physical-distancing (respec-
tively, anti-physical-distancing) opinion. We develop approximations of mean-field type
by generalizing monolayer pair approximations to multilayer networks; these approxi-
mations agree well with Monte Carlo simulations for a broad range of parameters and
several network structures. Through numerical simulations, we illustrate the influence of
opinion dynamics on the spread of the disease from complex interactions both between
the two conflicting opinions and between the opinions and the disease. We find that
lengthening the duration that individuals hold an opinion may help suppress disease
transmission, and we demonstrate that increasing the cross-layer correlations or intra-
layer correlations of node degrees may lead to fewer individuals becoming infected with
the disease.

Keywords: Multilayer networks; opinion models; competing opinion dynamics; disease
dynamics; pair approximations.

AMS Subject Classification 2020: 91D30, 92D30, 37N25

1. Introduction

Since the outbreak of coronavirus disease 2019 (COVID-19), researchers in numer-
ous disciplines have used diverse approaches to analyze the spread of the disease,
forecast its subsequent spread under many scenarios, and investigated strategies
to mitigate it.>%19 As cases of COVID-19 escalated, collective compliance with
non-pharmaceutical intervention (NPI) measures was vital for dealing with the
COVID-19 pandemic in the absence of effective treatments and vaccines.? As infor-
mation — some of which was accurate and some of which was not — flooded social
media,2%72 people adopted different opinions about the implementation of NPI
measures.? These opinions affect human behavior and ultimately also the spread of
diseases. Motivated by these observations, we build a multilayer network model to
study disease spreading under the influence of the spread of competing information.

It is important to understand the influence of human behavior on the spread of

d.5%7 The acquisition

diseases because these two processes are inextricably couple
of prevalence-based and/or belief-based information from publicly available sources
and/or individuals’ social neighborhoods leads to changes of disease states, disease-
state transition rates, and social contact patterns.

A common approach to studying the spread of a disease is as a dynamical sys-

tem on a network of individuals.'? This type of model emphasizes the importance
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of social contact patterns (typically in the form of physical contacts) and the het-
erogeneity of individuals. When disease and information spread through different
venues — such as face-to-face contacts versus online social platforms like T'witter
and Facebook — it is useful to use the formalism of multilayer networks,*® as one
can encode different relationships between people in a population in different layers
of such a network. There have been many studies of spreading phenomena on mul-
tilayer networks and of how such network structures affect spreading processes.!'*:%%
We discuss some of these in Sec. 2.1.

Past research has examined whether the spread of information can help con-
tain an epidemic (e.g. through decreased transmission rate, fewer contacts, and/or
acquired immunity) by leading to a smaller disease prevalence and/or a smaller basic
reproduction number (and hence a reduced probability of a large outbreak of the
disease).?458 However, as has been striking during the COVID-19 pandemic,”® how
people act on information (and misinformation and disinformation) can also have
a negative impact on disease propagation; this undermines the potential benefits of
information. For example, there have been many anti-physical-distancing rallies in
which protesters flout behavioral intervention measures such as wearing masks and
practicing physical distancing. Moreover, such large gatherings can directly cause
surges in infections.?®

Motivated by the mixed effects of information and opinion spreading interact-
ing with the spread of a disease, we study a model in which disease transmission
is influenced by two opposing opinions: pro-physical-distancing (which we some-
times write simply as “pro” as a shorthand) and anti-physical-distancing (which
we sometimes write as “anti”). Following Ref. 32, we consider a two-layer multi-
plex network (a particular type of multilayer network*®) with interactions between
the spread of opinions and a disease. We model the simultaneous evolution of two
competing opinions on one layer of a multiplex network as a contagion process of
either susceptible-infectious-recovered (SIR)%° or susceptible-infectious-recovered—
susceptible (SIRS) form, with opinion adoption that occurs between susceptible and
infectious individuals. Similar models have been proposed for studying competing
3849 and ideas.”™ A disease spreads on the other layer (a physical layer) of
the multiplex network; the connections in this physical layer encode in-person social
contacts. The disease transmission rate depends on the opinions of the individuals.

In our model, we investigate which opinion has greater influence, which we
evaluate based on the disease’s final epidemic size (i.e. the number of individuals
who catch the disease during the disease outbreak). We generate networks using
configuration-model networks?! and their extensions.*® We demonstrate complex
interactions between the two opinions and (because of ensuing behavioral changes,
which lead to changes in the network of in-person social contacts) between the
opinions and the disease. We explore how the influence of opinions is affected by
various factors, including opinion-contagion parameters and network structures.

We derive a mean-field description, in the form of a pair approximation, of our
multilayer dynamical system for the expected values of population-scale quantities,

diseases
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because it is costly to conduct direct simulations of the full stochastic model with
a large population. Many approximation methods have been developed for con-
tagion dynamics on monolayer networks (i.e. ordinary graphs),*? including edge-
based compartmental modeling,’® pair approximations,3? effective-degree approxi-
mations,*® and approximate master equations.?®2 In this paper, we use a degree-
based pair approximation'” and generalize it to our multiplex system. In a pair
approximation, one examines the various types of pairs in a system and approx-
imates higher-order structures using moment closure.** Different pair approxima-
tions entail different choices when performing moment closure. Our approximation
scheme incorporates dynamical correlations both within and across the layers of a
multiplex network. To capture the influence of opinions on individuals’ susceptibil-
ity to a disease, we also define effective transmission rates that take the form of
time-dependent functions of the distribution of opinions in populations of interest.
We develop approximations of the effective transmission rates based on the numbers
of various types of pairs. Our numerical simulations reveal that our approximate
system is able to capture the influence of the spread of opinions on disease spread
for population-scale quantities. We find that the time evolution of the expected
numbers of individuals in different states in our pair approximation match very well
with simulations on a variety of networks with different degree distributions and
degree—degree correlations.

Our paper proceeds as follows. In Sec. 2, we discuss prior work and relevant
background information and then present our first model. In this model, opin-
ions follow an SIR process. The disease follows an extended SIR process in which
people who adopt the pro-physical-distancing opinion (respectively, anti-physical-
distancing opinion) have a reduced (respectively, increased) disease transmission
rate in comparison to a baseline. In Sec. 3, we assume that the SIR process occurs
on a fully-mixed population, yielding a description of our system in terms of a
small set of coupled ordinary differential equations (ODEs). In this ODE system,
we observe some influence of opinion dynamics on the spread of the disease, but
this framework does not include the effects of social contacts. In Sec. 4, we incorpo-
rate social contact structures between individuals to yield a dynamical system on
a network. We derive a pair approximation for this network model. In Sec. 5, we
conduct stochastic simulations of this network model to investigate the influence of
the contagion parameters and network structures on the dynamics of the system.
In Sec. 6, we generalize our dynamical system by considering an SIRS process for
opinion spreading. We conclude in Sec. 7.

2. Background and Modeling

We discuss prior work and background information in Sec. 2.1, and we present our
initial model in Sec. 2.2. In this model, we consider a two-layer multiplex network
with a disease that spreads on one layer and competing opinions that spread on the
other layer. We specify network structures in Sec. 5.
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2.1. Background

A variety of previous work has examined the influence of social behavior on disease
transmission.?*57 We seek to do this in a way that incorporates the effects of
network structures on the spread of disease.*>% We consider a social network of
individuals (which are represented by nodes) and in-person social contacts (which
are represented by edges) between them. The importance of such social contact
patterns on dynamical processes has long been recognized,'® and there has been
extensive research on the influence of network structures on the spread of infectious
diseases.?® There is also a large body of work on the spread of social phenomena,*?
including the dissemination of information® and the adoption of behaviors,* which
are often modeled as contagion processes that are similar to disease spread.®3°
(See Refs. 35 and 71 for discussions of when social contagions resemble and do not
resemble contagions of infectious diseases.) In particular, interactions between peers
strongly influence the dynamics that unfold on a network.

To give further context for our work, we briefly mention prior investigations
on the coevolution of diseases with behavior, awareness, and/or opinions on multi-
layer networks.6"%® In particular, many researchers have examined how the spread
of awareness can suppress the spread of a disease. Funk et al.?3 developed a co-
evolution model in which individuals acquire different levels of awareness of a disease
either by becoming infected or by communicating with their neighbors. In their
model, individuals are less susceptible to infection by a disease when they have a
higher level of awareness. Subsequently, Funk et al.?? simplified the above model
so that individuals are either aware or unaware of a disease, in analogy to the
infectious and susceptible states (i.e. “compartments”) of a traditional susceptible—
infectious—susceptible (SIS) model of disease spread.'’ A similar model was pro-
posed by Granell et al?'? Subsequent research has generalized these ideas by
modeling the spread of a disease and information using other dyamical systems,
such as by modeling disease spread with an SIR model®® and modeling information
transmission with a threshold model®*3* or a generalized Maki-Thompson rumor
model.’® Other works have examined the influence of global information and mass
media,3?%! the relative speeds of the dynamics of information spread and disease
spread,'®% and heterogeneous risk perceptions of disease spread.®®" Researchers
have also incorporated time-varying networks when studying the combined spread
of disease and information, such as by coupling an activity-driven information layer
with a time-independent disease layer®* or a time-independent information layer
with an adaptive physical layer.’® Additionally, evolutionary game theory has been
used to study decision-making in the presence of government-mandated interven-
tions, socioeconomic costs, perceived infection risks, and social influence.”

During the COVID-19 pandemic, content and discussions on social media have
played a prominent role. On one hand, social media can help rapidly disseminate
transparent and accessible information about policy and scientific findings, and it
gives crucial ways to advocate guidance such as mask-wearing and physical dis-
tancing.*” On the other hand, social media also allows the pervasive spread of
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misinformation and disinformation, leading to so-called infodemics, which refer to
epidemics of information.?%"? Distortion and inaccurate information can impair
people’s mental and physical health,5? trigger anxiety and distrust, and ultimately
lead to a worse situation for disease spread due to poor compliance with prevention
measures. As information floods social media, opposing opinions about physical
distancing and other intervention methods develop and propagate rapidly to many
people.

Several recent works have examined competing opinion dynamics. Johnson
et al.3% studied the evolution of anti-vaccine and pro-vaccine clusters of people on
Facebook. She et al.% examined an opinion model with continuous-valued opin-
ions to study the beliefs of different communities about the severity of disease
spread with both cooperative and antagonistic opinion spreading. Epstein et al.'®
used compartmental models to study the fear of infection and the fear of vaccines.
Johnston and Pell?” examined the fear of infection and frustration with physical
distancing.

2.2. Our model

We study the spread of a disease and two competing opinions on a two-layer multi-
plex network with one physical layer (where the disease spreads) and one informa-
tion layer (where opinions spread). We assume that all individuals are present in
both layers, and we ignore demographic processes such as birth, death, and migra-
tion. We model each layer as an undirected, unweighted, simple graph; we couple
the two layers to each other by connecting nodes that correspond to the same
individual. The edges within a layer are called “intra-layer edges”; they encode
in-person contacts in the physical layer and information-exchange channels (espe-
cially on social media) in the information layer. An individual can have different
neighboring individuals (i.e. adjacent nodes) in the two layers, and their number
of neighbors (i.e. their degree) can also be different in the two layers. In Sec. 5,
we give further details about the network structure and we explore the influence
of inter-layer and intra-layer structure on opinion and disease dynamics. In Secs.
2-5, we use SIR dynamics*® for each process and associate nodes in the physical
layer with individuals’ health states and nodes in the information layer with their
opinions about physical distancing. In Sec. 6, we extend our model by modeling the
spread of opinions as an SIRS process. In all versions of our model, we treat each
process as a continuous-time Markov chain. We detail how the disease-spread and
opinion-spread processes operate and interact in Secs. 2.2.1 and 2.2.2. In Table 1,
we summarize the key parameters of our model.

2.2.1. Information layer

Two competing social contagions, which model pro-physical-distancing and anti-
physical-distancing opinions, spread concurrently on the information layer. We
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Table 1. Key parameters in our model of coupled opinion spread and disease
spread. In (a), the first column gives the parameters of the opinion dynamics that
are related to pro-physical-distancing and the second column gives the parameters
that are related to anti-physical-distancing. We use the subscript “info” when
the two opinions share parameters; we indicate these parameters in the third
column. In (b), each column indicates the parameters of the disease dynamics
when individuals adopt the corresponding opinions.

(a) Parameters for dynamics (of opinion adoption) on the information layer.

Pro Anti Shared by pro and anti
Transmission rate Bpro Banti Binfo
Recovery rate Ypro Yanti Yinfo
Immunity-loss rate T
(b) Parameters for dynamics (of disease spread) on the physical layer.
Opinion
U or R; A P
Parameter o finfo
Transmission rate Bphy AantiBphy Aprofphy
Recovery rate Yphy

use P (respectively, A) to denote the pro-physical-distancing (respectively, anti-
physical-distancing) state in which individuals both adopt the associated opinion
and actively advocate the corresponding behavior. Uninformed (U) individuals are
susceptible to both opinions and transition to the P state or A state at rates of
Bpro and Banti, respectively, by communicating with neighbors in the corresponding
states. We suppose that people who adopt either behavior can become weary of
acting unusually in comparison with life without a disease epidemic, and they then
become less passionate about maintaining their current conduct. We assume that
individuals in the P state and A state transition to the recovered (Rinf,) state at
rates of Vpro and 7Yanti, respectively. After this transition occurs, these individuals
practice the same behavior as individuals in the uninformed group, but they are
resistant to future influence from neighbors. When the two opinions share the same
parameters, we use the subscript “info” (see Table 1). We make the assumption of
permanent mutual immunity>®: once an uninformed individual adopts one opinion,
it can no longer be influenced by the other opinion. Therefore, upon recovery, it
enters the Rj,s, state. Because the pro- and anti-physical-distancing opinions are
opposing opinions, it is reasonable to assume that individuals do not adopt both
behaviors simultaneously. We relax the assumption of permanent immunity in Sec.
6. In Fig. 1, we show the compartment flow diagram of the opinion dynamics.

2.2.2. Physical layer

We model the spread of a contagious disease on the physical layer as an SIR-like
process. The key difference from a standard SIR contagion is that susceptible nodes
have transmission rates that depend on their opinion states.?33! We divide sus-
ceptible nodes into three types: (1) nodes that do not hold any opinion (i.e. their
opinions are in the U state or the Ring state) experience the baseline transmis-
sion rate fpny; (2) nodes that hold the pro-physical-distancing opinion experience
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ﬂpro P Ypro

+P
U Rin.fo

+A4

Banti A Vanti

Fig. 1. Schematic illustration of the (opinion-spreading) dynamics on the information layer of
a two-layer multiplex network. There are four states in the information layer: uninformed (U),
pro-physical-distancing (P), anti-physical-distancing (A), and recovered (Rjns,). Nodes in state
U transition to state P (respectively, A) at a rate of Bpro (respectively, Banti) by communicating
with neighbors in state P (respectively, A). We use “+P” (respectively, “+A”) to emphasize that
state transitions occur under the influence of neighbors in P (respectively, A). Nodes in state P
(respectively, A) transition to state Ring, at a rate of vpro (respectively, Yanti)-

a reduced transmission rate Bphy,pro = Qprofphys; With apre < 1; and (3) nodes
that hold the anti-physical-distancing opinion experience an increased transmission
rate Bphy, anti = QantiBphy; With aang > 1. We refer to apro and angi as “influence
coeflicients”. To model the effects of competing opinions on disease spread, it seems
appropriate to study an adaptive network® in which structure coevolves with node
states. For example, individuals who hold an anti-physical-distancing opinion may
have more contacts than other people. However, it is difficult to analyze such a
model. Therefore, for simplicity, we assume that individuals who hold the anti-
physical-distancing opinion in our model have a higher risk of contracting the dis-
ease than the baseline through a higher transmission rate. We make an analogous
assumption for nodes that hold the pro-physical-distancing opinion. Infected indi-
viduals (which we assume to be the same as infectious individuals) recover at rate
Yphy- We show the compartment flow diagram of the disease dynamics in Fig. 2.

PS +I

ﬁphy Qpro

US/RS -2y 1 - Ry,

+I

A S ﬂphy Qlanti

+1

Fig. 2. Schematic illustration of the (disease-spreading) dynamics on the physical layer of a two-
layer multiplex network. There are three states in the physical layer: susceptible (S), infectious
(I), and recovered (Rppy). Based on the opinion states of the node, we further divide the S state
into PS, AS, and US/RS. Nodes in state S transition to state I through in-person social contacts
with infectious neighbors (which we emphasize with “417) at rates that we mark close to the
corresponding arrow. Nodes in state I recover at a rate of yppy -
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Opinion Dynamics

"y —— Pro-opinion infection

U S —— Anti-opinion infection
\ ---- Pro-opinion recovery

+4 Fphy Ul ---- Anti-opinion recovery

+A UR

U—-P—R

+1
PS\\f\\\\»
(}I)l'“dl)ll,\'v PI

y
/pro

]
/ antl:v— phy AI

U—-A—R

/

?/
RS +1 *’,

31)}1)' RI

Disease Dynamics

—— Disease infection
Disease recovery

S—=I—R

Fig. 3. (Color online) Schematic illustration of our model, with dynamics on both the information
layer and the physical layer. The disks indicate the possible states (i.e. compartments) of a node.
In each state, the first letter (U, P, A, or R) indicates the opinion state and the second letter (.5,
I, or R) indicates the disease state. The arrows indicate the possible state transitions.

Combining the dynamics on the two layers, we use two letters to describe the full
profile of an individual; the first one indicates a node’s opinion state, and the second
one indicates its disease state. To simplify our notation, we also drop the subscript
for the R compartment, as the order of the two letters in a state already indicates
whether we are referring to the opinion state or the disease state. There are a total
of 12 possible states (i.e. compartments). We show the complete compartment flow
diagram for our model in Fig. 3. For convenience, we use the same notation for the
state of a node and the set of nodes in a specified state throughout this paper.

3. Dynamics on a Fully-Mixed Population

We first study our model in a fully-mixed population, which yields a small set of
coupled ODEs.!! We ignore contact patterns in both the information layer and
the physical layer. Additionally, in every small time interval, we assume that each
node interacts with other nodes in the same layer uniformly at random. We refer
to this assumption as the “random-mixing assumption”. In each time interval,
we also assign each node in one layer to a counterpart node in the other layer
uniformly at random (without replacement). We refer to this assumption as the
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“random-recoupling assumption”. Throughout this paper, we use [X] = E[X]|/N
as the shorthand notation for the expectation of the random variable X divided
by the population size N. Using the law of mass action, we obtain the following
population-level dynamics:

%[IUI] o7 e 1) - Pt ),
G111 = o210 ¢ 1P~ el P,
D114 = 2510 ¢ 4] yunl] AL,
%anfou = Sorell Pl + ranl14] (3.)
Disi =2 g1 111,
D = 201 5 1) = s 11

d
EHRPhyH = Ypuy [ 1],
where we use | - | to denote cardinality and
= ([[Pllapro + [[Alloans +1 = [|A]} = [ P[])Bphy -

The first four equations describe the opinion dynamics. Uninformed nodes may
adopt the pro- or anti-physical-distancing opinions by interacting with a node in the
corresponding state. If a node adopts an opinion, it then can spread that opinion to
its neighbors. The last four equations in (3.1) describe disease dynamics as a variant
of the standard SIR model. The quantity g* is the effective transmission rate; it
depends on the relative prevalence of nodes in states P and A. To close the system,
we approximate the expectations of products with the products of expectations.
For example,

1
N U P = ([T < [|P[].-

This provides a good approximation when N is large. Henceforth, we omit | - | to
simplify our notation.

Consider the special case in which the transmission rate Sy, recovery rate
Ypro, and initial population proportion of the pro-physical-distancing opinion are
the same as the corresponding parameters for the anti-physical-distancing opinion.
In this case, the effective transmission rate is 5* = ([P](canti + ®pro — 2) + 1) Bphy-
Because [P] > 0, it follows that 8* > fpny if and only if qanti + apro > 2.
Therefore, the spread of opinions always leads to more infections of the disease.
If canti + pro =2, the opinion dynamics has no effect on disease spread. This
conclusion relies on the random-recoupling assumption, which implies that the
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information-layer counterpart of any physical-layer node is equally likely to be in
any given opinion state. Because individuals hold an opinion for some time, the
sign of (anti + Qpro — 2 alone does not determine whether the influence of opinions
leads to more infections or fewer infections when we consider the effects of network
structure in Sec. 5.

The epidemic threshold in a standard SIR model of disease spread is character-
ized by the basic reproduction number!!"1® Ry = 3/~, which is the mean number
of secondary infections that arise from a single infectious individual in a population
in which everyone else is susceptible. An epidemic outbreak of the disease occurs
if Ry > 1. In our model, suppose that we start with a population in which most
people are susceptible and uninformed about the disease. In this case, 8* is close to
S. In the limit in which the population becomes infinite with a vanishing fraction
of people initially holding any opinion, the epidemic threshold is the same as in the
standard SIR model and it is independent of the information layer. However, this
conclusion does not hold if too many people hold some opinion about the disease
at time 0.

Although an information contagion may not affect the epidemic threshold for
the spread of a disease, it can still have a large impact on the disease’s prevalence if
an epidemic outbreak occurs. In Fig. 4, we show an illustrative example to demon-
strate how the information layer can affect the spread of a disease. For simplicity,
we suppose that the pro- and anti-physical-distancing opinions share the same con-
tagion parameters. Figure 4(a) shows an example in which we fix the parameters
in the physical layer (on which the disease spreads) and investigate the effect of the
opinion recovery rate on the final epidemic size (i.e. the total number of people who
become infectious during the outbreak). Because we fix Sinfo = 2, the opinion con-
tagion grows into an outbreak if vi,, is less than approximately 2. Consequently, all
curves for the final epidemic size converge to the same value when 7in¢, is at least
approximately 2. To assist our exposition, we use the term “basic size” to indicate
the final epidemic size when the disease spreads independently of opinions. Because
the effective transmission rate 5* satisfies 8* > Bpny, we expect the final epidemic
size to be no smaller than the basic size.

The final epidemic size is affected by the prevalence of the nodes in states P and
A and the relative spreading speeds of the opinions and the disease. As we increase
Yinfo 10 Fig. 4(a), the final epidemic size tends to decrease, but it grows at first
before decreasing to the basic size. To understand this, we compare the spreading
dynamics on the two layers (see Figs. 4(b) and 4(c)). Increasing 7info leads to a
reduction in the number of people in compartments P and A, which reduces the
adverse influence from the information layer and results in fewer people becoming
infected. Increasing vins, also postpones the time that it takes for the physical layer
to achieve herd immunity. Specifically, it takes longer for the I compartment to
reach its maximum size. We also see that increasing vinfo from 1 to 1.5 shortens
the time difference between the opinion-prevalence peak and the disease-prevalence
peak. As the two peaks become closer to each other, we observe transient growth in



Math. Models Methods Appl. Sci. 2021.31:2455-2494. Downloaded from www.worldscientific.com

by UNIVERSITY OF CALIFORNIA @ LOS ANGELES on 04/09/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

2466 K. Peng et al.

Yifo = 0.1 Yiao = 0.5 Yo = L0 ingo = 1.5

= P == P P == P
— Riuw — Rup Rutp — Run
=
9 1
k<
2
114 g
- Ay=P=1x10"7 %505
> Ag=P=1x10"° 5
8095 - 5
‘D Ay=Py=1x10 E 0
g A Ay=Py=1x10"" o
8 0.9~ —— Ag=Py=1x10"
a (b) Information layer
©
£0.85- Yimfo = 0.1 Yiuto =05 Yuugo = 1.0 qupo = 1.5
[ = T == T P ;
“ — Rpy — Ry, Ry — Ry
A c
0.8+ TEA A AN DA 9o 1
. k]
0 0.5 1 15 2 2.5 E
~ [*]
info go.s
(a) Final epidemic size s
[$]
go

(c) Physical layer

Fig. 4. (Color online) The influence of the information layer on the physical layer depends on the
opinion recovery rates. (a) Effects of vingo on the final epidemic size for different initial conditions.
For simplicity, we suppose that the pro- and anti-physical-distancing opinions share the same
contagion parameters for all examples in the paper. That is, Banti = Bpro (Which we denote by
Binfo)s Yanti = Ypro (which we denote by 7info), and Ag = Py, where Ag = [A](0) and Py = [P](0).
In the physical layer, we uniformly randomly infect a fraction Ip = [I](0) = 1 x 1075 of the
population; the rest of the population starts in the susceptible state. The other parameters are
Bphy = 1, Yphy = 0.5, apro = 0.1, aanti = 10, and Bingo = 2. To help explain the non-monotonic
curve in panel (a), we fix Py = Ag = 1 x 10~% and examine different values of yi,fo. We show the
ensuing dynamics of the fraction of the population in the P and Rj,¢, compartments in panel (b)
and the fraction of the population in the I and Ry, compartments in panel (c).

Fig. 4(a). When we change the initial numbers of individuals in states A and P while
fixing the initial numbers of individuals in state I in Fig. 4(a), we effectively change
the relative starting times of the opinion dynamics versus the disease dynamics,
leading to differences between the curves.

4. Dynamics on a Population with Network Structure

The random-mixing assumption and random-recoupling assumption in Sec. 3 ignore
contact patterns and oversimplify the dynamics of the spread of opinions and
diseases. In real life, both in-person contacts and online interactions have intri-
cate structural patterns® that are far from homogeneous. Moreover, the random-
recoupling assumption mixes the effects of the pro- and anti-physical-distancing
opinions in a naive way and leads to features that contradict what we observe in
individual-level simulations. Consequently, it is necessary to differentiate between
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different opinion states within the susceptible population and analyze the dynamics
of the 12 compartments in Fig. 3. Starting in this section, we incorporate network
structure into our model and study the resulting dynamics in detail.

We develop a mean-field description of our dynamical system by generalizing the
degree-based pair approximation of Eames and Keeling!'” to coupled dynamics on
multilayer networks. We assume that all nodes with the same degree are statistically
equivalent, and we estimate the expected number of nodes and the expected number
of dyads (i.e. pairs of nodes that are attached to the same edge) for each degree
and each compartment*? using a closure model. We examine the dynamics of the
spread of opinions and a disease using a mean of an ensemble of networks.?%:60 We
first develop an exact ODE system that involves single, pair, and triple terms based
on the law of mass action. This system also depends on a set of time-dependent
effective transmission rates. We close the system by approximating triple terms
and the effective transmission rates using pair terms. The number of equations in
the system depends on the number of distinct degrees and is independent of the
population size.

4.1. Our dynamical system at the level of triples

Recall that we use two adjacent letters Y X to describe the state (i.e. compartment)
of an individual, where the first letter indicates the information layer and the second
letter indicates the disease layer. The two intra-layer degrees of a node are its
numbers of neighbors in the two layers. We are interested only in intra-layer degrees,
so we treat our multiplex networks as edge-colored multigraphs.*> We use Yy, Xk,
to refer to nodes in state Y X with degree k; in the information layer and degree ko
in the physical layer. We write the expected density of these nodes as [V, X,]. To
simplify our notation, we drop subscripts to indicate summation over all possible
degrees. For example, [Y Xy,| = > [Yk, X,]. For ease of notation, we use one
letter and thereby specify the state only in that layer when the context is clear. For
example, Si, refers to susceptible nodes with degree ko in the physical layer and
[Sk,] refers to the expected density of these nodes.

To track the states of the neighbors of a node, we write the expected normalized
count of the dyads of nodes with states S; and Sy as [Sy o Sz, where o denotes an
edge and the normalized count is the number of dyads divided by the population
size. The layer of a dyad is clear from the context. For example, [Uy, Sk, o I] rep-
resents the expected normalized count of dyads in the physical layer for which one
end is attached to a Uy, Si, node and the other end is attached to an infectious
node.

Given the above notation and definitions, the time evolution of the expected
density of each compartment is

d
%[Uhsb] = _[UkISkQ OI]BPhy - [Uklst © A]Banti - [UkISkQ © P]BPm’



Math. Models Methods Appl. Sci. 2021.31:2455-2494. Downloaded from www.worldscientific.com

by UNIVERSITY OF CALIFORNIA @ LOS ANGELES on 04/09/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

2468 K. Peng et al.

%[Uklsz] = [Uk, Skz © 11Bpny — [Uky ko[ Yony — [Uky Liz © AlBanti

— [Uky I, © PlBpro »
%[Ukl Ri,] = Uk, Iy [phy — [Uky iy © AlBanti — [Uky Rk, © PlBpro
%[Akl Ska] = —[Ak, Sk, © I Bphy Xanti + Uk, Sks © A]Banti — [Aky Ska | Yanti »
%[Aklsz] = [Ak, Sk, © I]Bphyanti — [Aky Ly ](Yphy + Yanti) + [Uky Ik, © A]Banti »
%[Akl Ry, = [Aky Ir, | vpny + [Uk, Riy © A]Banti — [Aky Rio ] Vanti »
%[Pkl Ska]l = —[Pr1Sks © I]Bphy@pro + [Uky Ska © PlBpro — [Pry Sk Vpro s
%[Pklsz] = [P, Sk, © I]Bphypro — [Pry Lis | (Vphy + Ypro) + [Uky Iky © P)Bpro s
%[PMRIQ] = [Py Iy [7phy + [Uky Biy © PlBpro — [Pry Ry ] Vpro »
%[Rkl Ska) = —[Rky Ska © 1]Bphy + [Aky Ska|Vanti + [Pry Sk Ypro »

d
E[Rklfkgl = [Rky Ska © 1] Bpny — [Riy Lkex [ phy + [Aky Lk [Yanti + [Pry Lk [ Ypro -
(4.1)

To illustrate the equations in (4.1), we briefly discuss one of them. In the first
equation, the expected number of Uy, S, nodes decreases as the nodes become
infectious or adopt one of the two opinions. The infection rate is proportional to
the number of infectious neighbors (or, equivalently, to the number of Uy, Sy, o I;
dyads). We do not track the opinion states of those infectious neighbors because we
assume that those opinions do not affect the transmission rate of the Uy, Sk, nodes.
The same reasoning applies to the other dyads.

We expand the right-hand side of the system (4.1) by tracking the dynamics of
node pairs, which depend on the neighbors of both nodes and thus involve triples.
Let [X oY o Z] denote the expected normalized count of triples in which the center
node Y is adjacent to X and to Z. Analogously to the normalized count of a dyad,
we define the normalized count of a triple to be the number of triples divided by
the population size. The two edges may belong to the same layer or to different
layers; this is clear from the context. For example, Uy, Sk, 0 S; o I refers to triples
in which the center node S; has physical-layer neighbors with states Uy, Sk, and I.
Additionally, P o Uy, Sk, o I; refers to triples in which one edge connects Uy, Sk, and
P nodes in the information layer and the other edge connects Uy, Sk, and I; nodes
in the physical layer. We now write the evolution of the expected normalized count
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of the dyads in terms of triples terms:

d
E[Ukl Sk 0 1]
= [Uk, Sk, © S1 0 1By, 1y — ([Uk, Sy © L] + [ © Uk, Sy © 1)) Boky
— [Uky Sk © IiJvpny — [P © U, Sk, © 1) Bpro — [A © Uk, Sks © It Banti »
d
7 [Uki Sk, 0 51]
= —[Uk, Sk, © S1 0 1B, 1y — [I © Uk, Sk © S1] Bpny
— [P o Uk, Sk, 0 S1]Bpro — [A © Uk, Sk, 0.S1] Banti »
d
E[Ukl Sk 0 Al
= —[P o Uk, Sk, 0 A1} Bpro — [Uky Sky © At]Yanti — [I © Uk, Sk, © A1l Bpny
+ ([Ug, Sk, 0 Uy © A] — [Ug, Sk, 0 A1) — [A 0 Uy, Sk, © A1) Banti s
d
E[Ukls/ﬁ OPZ]
= —[A o Uy, Sk, © P|Banti — [Uk, Sk, © Bi]Ypro — [I © Uk, Sky © P Bphy
+ ([Uklst olUo P] - [Uk15k2 oPl] - [P © Uk1Sk2 OPZ])BPYO y
d
7 [Uks Sy 0 U]
= —([P o Uy, Sk, U] + [Uk, Sk, 0 Ui © P)Bpro — [1 0 Uk, Sk, © Uil Bpny
— ([A o Uk, Sk, o Up] + [Uk, Sk, 0 Uy © A])Banti
d
E[Uklllm OA[]

= ([Ugy Iy 0 Uy 0 A] — [A 0 Uy, Ix, © Ai]) Banti — [P 0 Uy, I, © A] Bpro

+ [I o Ug, Sky © A1) Bpny — [Uky Ik © Ai](Yphy + Yanti + Banti) »

d
%[UkIIkQ o Pl]

= ([Uk, I, o Ui o P] — [P o Uk, Iy, © B]) Bpro — [A © Uk, Ik, © P]Banti

+[L 0 Uk, Sk, 0 Pl]ﬁphy — [Uky Ig, © Pl](ﬁpro + Yphy + VPrO) )

d
E [Ukl Ikg o Ul]

- [I o Ukl Sk2 © Ul]ﬁphy - ([A © Uk1Ik2 OUl] + [U/ﬁ-[kz olUjo A])Banti
— ([Uky Ik, o Uy o P+ [P o Ug, Iy, o Ui]) Bpro — [Uky Ik, © U] vphy »



Math. Models Methods Appl. Sci. 2021.31:2455-2494. Downloaded from www.worldscientific.com

by UNIVERSITY OF CALIFORNIA @ LOS ANGELES on 04/09/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

2470 K. Peng et al.

a4

o [Uk, R, © Al

= [Uky Ik, © Ai]vphy — [Uky Riy © Ai]Yanti — [P 0 Uk, Ry, © A1) Bpro
+ ([Ug, Riy 0 U 0 A] — [Uky Ry © Aj] — [A 0 Uk, Ry © A1) Banti »

d
% [Ulﬂ Ry, o Pl]

= [Ukl Ikz o ‘Pl]PYDhy - [Ukl ng © H]P)’pro - [A © Uk1 ng o H]Banti
+ ([Ukle2 olUo P] - [UkleQ O]Dl] - [P © UkleQ OPZ])BPYO )

d
%[Uklﬁ’kg o U]

= [Uky I, © Uil vphy — ([Uky Rk 0 Up © A] + [A 0 U, Ry, o Ut]) Banti
— ([Ug, Ri, oUy 0 P) + [P o U, Ry, o U1]) Bpro

d
7 Ak Ska 0 11)
= [A o Uk1 Sk2 o Il]ﬁanti - [Akl Sk2 o Il](7phy + Yanti + ﬁphyaanti)
4 [Apy Sky 0810 I)B1, 1y — [T © Apy Sy © 1)) Bohy Qanti »
d
77 Ak Ska © 1]
= —[Ay, Sy 081 0 I1B1 ky — [T © Ap, Sky © Si] Bphy Yanti
+[A o Uk, Sk, 0 S1]Banti — [Ak, Sk, © Si]Yanti »
d
g [Fea Sk © 1]
— [P o Uk1 Skg o Il]ﬁpro - [Pkl Sk2 OIl](PyPhy + Yanti + Bphyapro)
+ [Py, Sk, 051 0 I]Bl, ks — [ © Pi, Sk, © I1] Bohy Qpro 5
d
g [F1 Sia © S1]
= _[Pk1 SkQ o Sl o I]Bl, ko — [I o Pkl Sk2 o Sl]ﬁphyapm
+ [P o Uk, Sk, © Si]Bpro — [Pry Ska © Si]Vpro s
d
%[Rklskz o]
= [Rik, Sky 051 0 I1B1, ky — ([Riy Sky © Ii] + [I © R, Sk, © 1)) Boy
— [Rky Sks 0 It ¥phy + [Aky Ska © Ii]Yanti + [Prey Ska © 1] Vpro
d
7 £t Sz 0 51]

= —[RiySky 051 0 1)1, 1y — [I © Ri, Sk, 0 S1] Bony
+ [Ak, Sk, © Si]Yanti + [Pry Sks © Si]Vpro (4.2)
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where Bl, &, 18 the expected transmission rate of the center node S; in a triple of
the form Y Sy, o S;o 1.

One derives the system (4.2) using the same reasoning as in (4.1). For exam-
ple, consider the first equation in (4.2). The normalized count of the dyads
Uk, Sk, o I; decreases as Uy, Sk, nodes adopt one of the two opinions at rate
[PoUy, Sk, © Ii| Bpro + [Ao Uk, Sk, 0 I}] Banti, is infected by I; at rate [Ug, Sk, © I1] Bphy,
or is infected by infectious neighbors other than I; at rate [I o Uy, Sk, © Ii]Bpny-
The normalized count of Uy, Sk, o I; increases as susceptible neighbors of Uy, Sk,
are infected by their infectious neighbors at rate [Uk, Sk, 0 Si o I ]Bl k.- Each dyad
in (4.2) has one node whose state we track in only one of the layers. For example,
for the dyad Uy, Sk, o Si, we do not know the opinion state of node S;. We need an
approximation for the disease transmission rate Bl, &, when node S; is infected by
a neighbor in state I. In principle, one can track the states of both nodes on both
layers and avoid the need for this approximation. However, doing this leads to a
higher-dimensional system. We discuss the approximation of Bl, ko i Sec. 4.3.

In principle, one can also work out the right-hand sides for the evolution of the
expected normalized counts of the triple terms. These incorporate quadruple terms,
and if we expand those terms and keep expanding expressions for the evolution of
progressively larger network motifs (i.e. connected subgraphs), we eventually obtain
an exact dynamical system. However, it is very high-dimensional and difficult to
study. Therefore, we approximate the triple terms with pair terms on the right-hand
sides of (4.2) using the approach in Ref. 17.

4.2. Closure of the triple terms

For a given type of triple X oYy o Z, we assume that the neighbors of all Y; nodes
are interchangeable. Therefore, every neighbor has the same probability of being in
a given state (e.g. state X).

If both edges are in the same layer, then for nodes X and Z that are adjacent
to a center degree-k node in state Y in the same layer, it follows that

[X o Yy] [Yi 0 Z]
XoYyoZl = k(k—1)|Yi]|—————F
[ © k © ] ( )[ k] k[Yk] k[Yk]
k—1[XoY][YroZ
_ A1 X oYY 0 2] (4.3)
k (4]
Intuitively, nodes in state Y}, have k[Y;] edges; an expected fraction [f[;);’]“] of these
[YioZ]

edges are attached to nodes in state X, and an expected fraction FYh] of these

edges are attached to nodes in state Z. Therefore, if we choose a node in state

Y, uniformly at random, the probability that two uniformly random neighbors of

that node are in states X and Z is approximately [f[i,i’]"] X [:’[‘;j] when N is large.

Because there are k(k — 1) ways to choose the two neighbors, we obtain (4.3). As



Math. Models Methods Appl. Sci. 2021.31:2455-2494. Downloaded from www.worldscientific.com

by UNIVERSITY OF CALIFORNIA @ LOS ANGELES on 04/09/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

2472 K. Peng et al.

concrete examples,
1 —1[Uk, Sk, 0 Si][S1 01
l [S1] ’
ka — 1[I © Uk, Sk, |[Uk, Sk, © Si]
ko [Ukl Skz] ,
ki — 1 [A o U, Sk, |[Uky Sk, © Al
Ky [Uky Sk,
Suppose instead that the two edges that connect the center node Y7 j, Y2 1, to
nodes in states X and Z are in different layers. If the node in state X is in the
information layer and the node in state Z is in the physical layer, we obtain
X oYy, Yor,| [YikYor, o Z]
F1lY10 Yoro] koY1, Yo k]
[X oV 1, Yo 1, |[Y1 1, Yo, © Z]
Y1k, Yo k]

[Uky Sky 0510 1] &

[I ] Uk15k2 OSl] ~

[A 0 Uk, Sk, 0 Al]

(X oY1 5, Yok, 0 Z] = k1k2[Y1 5, Y 10| [

For example,

P 0 Uk, S, [Uk, Sk, © 1i]
[Uk15k2] .

One can work out approximations for the other triple terms similarly.

[POUklskz OI[] ~ [

4.3. Approximate transmission rate

To close equations (4.1)-(4.2), we need to find an approximation of 3, ,, which is
the expected transmission rate of the center node in triples of the form Y Sy, 0 Sjo 1.
We need to approximate the opinion distribution in each population of interest.
The random-recoupling assumption in Sec. 3 corresponds to setting

BlJCz ~ ([U] + [Alaanti + [Plapro + [R]) Bpny - (4.4)

However, it is possible to keep track of corresponding nodes in the two layers. A
naive approach is to weight the influence coefficients based on the densities of nodes
with different opinion states among the S; nodes. That is,

g, LS A5 4IPS £ (RS (45)

However, the approximation (4.5) ignores the fact that the S; node of interest has
both an intra-layer neighbor in state S and an intra-layer neighbor in state I.
Incorporating this neighborhood information yields the approximation

Biky = ([Sks 0 US; 0 I] + [Sk, 0 AS) 0 Iatanti

Bphy
+[Sk2 OPS[OI]O{pr0+ [Sk2 ORS[OI]) X m (46)
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We approximate the triples in (4.6) with our pair approximation:

[Sk, o UpSioI] ~ L =1 [UkSi 0 S, ][UrSi 0 1]

: [UkS1] ,
[Sky © ApSyo 1] ~ ! _z 1 [AgS; 0 f:;gﬁksl ol |
[Sky © PiSy o I] ~ ! _z 1 [PSio f;,j]s[f]ijl ol |
[Sky © RiSyoI] ~ ! _l 1 [RiS: o[i’gzgl]]gksl o1l |

[Sky, 0 Si0I) =[Sk, oUS; 0 I+ [Sk, 0 AS; o I]
+[Sk, 0o PS; o I] + [Sk, o RS o 1.

We expect the value of BAL k&, in Eq. (4.5) to be smaller than its value in Eq. (4.4).
This, in turn, leads to a smaller estimate of the disease prevalence from Eq. (4.5)
than from Eq. (4.4). Intuitively, because individuals who hold the anti-physical-
distancing opinion become infected at a higher rate, a typical susceptible individual
is less likely to have an anti-physical-distancing opinion than a member of the

population that one selects uniformly at random. Therefore, we expect that [A] >

[ﬁs ]l]. By applying analogous reasoning to individuals who hold the pro-physical-

distancing opinion, we expect that [P] < [Psf . We do not have a mathematically

rigorous understanding of how well the approximations (4.5) and (4.6) match the
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Fig. 5. (Color online) Comparison of our pair approximations (PAs) based on Egs. (4.4)—(4.6)
(the curves) with direct numerical simulations (the markers). The trajectories show the time
evolution of the infectious population. In each simulation, we generate a network with layers
that consist of 5-regular configuration-model graphs (i.e. each node has degree 5). We uniformly
randomly infect a fraction Ip = 0.01 of the nodes, and we independently and uniformly randomly
choose initial opinions such that Ag = Py = 0.005. The displayed results are means of 100
simulations. The other parameters are Bphy = Binto = 0.6, Yphy = Yinfo = 1, Qanti = 10, and
apro = 0.1.
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full stochastic system (see Sec. 2 and our code in Ref. 57). We compare the three
different pair approximations of the disease prevalence that are based on Egs. (4.4)—
(4.6) with direct numerical simulations of the full stochastic system in Fig. 5. From
this comparison, we see that the approximations (4.4) and (4.5) overestimate the
infectious population and that the approximation (4.6) matches the simulations
very well. These numerical results indicate that it is essential to track the coupling
of the nodes’ states at both ends of inter-layer edges and intra-layer edges to ensure
accurate estimation of the time evolution of disease prevalence. We use the pair
approximation (4.1, 4.2, 4.6) in our experiments in Sec. 5.

5. Computational Experiments

We now investigate our full model by simulating the stochastic system (see our code
in Ref. 57) and applying the pair approximation (4.1, 4.2, 4.6), which we henceforth
call our “PA”. We explore the influence of competing opinion contagions on the
spread of a disease for a variety of parameter values. We focus on examining differ-
ent opinion contagion parameters (see Sec. 5.1) and network structures (see Secs.
5.2 and 5.3). For ease of comparison, we consider the special case in which the pro-
and anti-physical-distancing opinions share the same contagion parameters for all
examples in our paper. Additionally, we fix the disease contagion parameters to be
Bphy = 0.6 and ypny = 1. Unless we specify otherwise, we set the opinion influence
coefficients to be apro = 0.1 and aant; = 10 to incorporate nontrivial influence of
the corresponding opinion on the spread of the disease. This asymmetry between
the pro- and anti-physical-distancing opinions affects the dynamics in an interesting
way, as we illustrate in this section. In many of the following examples, it is helpful
to separate the influence of the two opinions to gain understanding of the overall
system behavior. To do this, we suppress the influence of an opinion by setting its
influence coefficient to 1. In Sec. 5.1, we do a parameter sweep of the opinion trans-
mission parameters in the range [0, 2] to illustrate that the final epidemic size can
change non-monotonically as we increase the recovery rate of an opinion. This fea-
ture occurs in networks with a variety of degree distributions. Because of the issuing
or lifting of stay-at-home orders, people’s contact patterns in the offline world can
change a lot over the course of an epidemic (and especially a pandemic).?%76 In
Secs. 5.2 and 5.3, we show examples that illustrate that the influence of an opinion
contagion on the spread of a disease can change in important ways when we change
the intra-layer or cross-layer correlations of intra-layer degrees.

In each computational experiment, we construct a network of N = 10,000 nodes
and simulate the dynamics on it using a Gillespie algorithm,*? which is a well-known
approach for performing continuous-time simulations of Markovian processes. In all
experiments in this section, we report results as means of 200 simulations. In each
simulation, we generate a new random graph (of a few different types, which we
specify below). We uniformly randomly infect Iy = 1% of the nodes in the physical
layer, and we independently and uniformly randomly choose Ag = Py = 0.5% nodes
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as anti- or pro-physical-distancing in the information layer. We set all remaining
node states to S in the physical layer and to U in the information layer. Henceforth,
unless we state otherwise, we use these choices of initial states in our numerical
computations.

In our initial experiments, we construct each network layer from a configuration
model?! and match the nodes from the two layers uniformly at random. Specifically,
we specify degree distributions Pi,o and Pppy, which need not be the same. For
each layer, we sample a degree sequence {k;} (where ¢ € {1,..., N} indexes the
nodes) from the corresponding degree distribution; therefore, node ¢ has k; ends of
edges (i.e. stubs). We match these stubs uniformly at random to form a network.
Correspondingly, in the pair approximation, we have

[Ykl Xk2](0) = YOxOPillfO(kl)Pphy(k2) )

Vi, X£,1(0) X ZoPingo(k3)k1ks/(kinto), Z € {U, P, A, Rinso}

[Yer Xz © 2} 0) = {[Ylek2](O) X ZoPpny (ks)kaks/(kpuy) 2 €{S, I, Rpny} -

In Fig. 6, we compare typical disease prevalence curves (i.e. the time evolution of
infectious populations) when we choose different coefficients for the influence of the
opinions. The influence from the information layer changes a disease’s prevalence, its
peak value, and the time at which the peak number of infections occurs. Although
an opinion does not alter the susceptibility of individuals to infection when the
corresponding influence coefficient is 1, the spread of that opinion can still indirectly
affect the overall disease dynamics, which thus can be different from the dynamics
in a system with only one opinion. For example, in Fig. 6(a), the purple curve
with triangle markers (for which cani = 1 and apro = 0.1) has a higher disease
prevalence than the green curve with plus signs (for which apy, = 0.1 and the anti-
physical-distancing opinion is absent). The spread of the anti-physical-distancing
opinion prevents some people from adopting the pro-physical-distancing opinion,
although the anti-physical-distancing opinion has an influence coefficient of 1. We
show the dynamics on the information layer in Figs. 6(b) and 6(c).

5.1. Opinion contagion parameters

Recall from Sec. 3 that in a fully-mixed population with apro + Qanti > 2, the
information layer leads to a larger epidemic size than when there is no influence
from the information layer. We repeat the experiment in Fig. 4, but now we have a
network structure and we employ our PA. We again consider the scenario in which
the anti- and pro-physical-distancing opinions have the same contagion parameter
values; we denote this situation using the subscript “info”. Figure 7(a) shows final
epidemic sizes versus the recovery rate viyf, in the information layer for the following
three situations: (1) all nodes have degree 5 (i.e., we consider 5-regular graphs); (2)
all node degrees follow a Poisson distribution with mean 5; and (3) all node degrees
follow a truncated power-law distribution with P(k = z) oc 2~ 532e=2/% for 2 < 50
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Fig. 6. (Color online) Dynamics for different opinion influence coefficients. (a) Disease prevalence
curves for different influence coefficients, including when the anti-physical-distancing opinion is
absent (which we denote by “anti = None”). In (b, c¢), we show the dynamics on the information
layer when (b) both opinions are present and (¢) only the pro-physical-distancing opinion is
present. We construct each layer from a configuration model with a degree sequence that we choose
from a Poisson degree distribution with mean degree 5. The other parameters are Bpny = Binfo =
0.6, Ypny = 1, and vingo = 0.1. The curves (respectively, markers) indicate results from the PA
(respectively, from means of 200 direct simulations).

and P(k = z) = 0 for x > 50. In each situation, we generate both layers using
configuration-model networks and we independently sample degrees for each layer
from the same distribution. The mean degree is roughly 5 in all three situations. In
all three situations, the final epidemic size can be smaller than the corresponding
basic size (i.e. without opinion spread) when vingo is very small. As we increase Vinfo,
the final epidemic size first increases and surpasses the basic size before reaching a
peak; it subsequently decreases to the basic size.

To explain this non-monotonic behavior, we decompose the recovered popula-
tion at steady state into subpopulations based on their opinion states when they
become infectious and plot the relative size of each subpopulation (with a sum that
is normalized to 1) in Fig. 7(b). We use U, A, P, and R to denote the subpop-
ulations that become infectious when they are in the U, A, P, and Rj,, states,
respectively. We show results when both layers are 5-regular graphs. Our results on
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Fig. 7. (Color online) Influence of the opinion recovery rate 7inf, on disease prevalence and on
the distribution of opinion states when nodes become infectious. (a) The final epidemic size for
different values of v;,t,. The solid curves and non-circle symbols mark the final epidemic sizes when
there is influence from the information layer. The dashed curves and circles mark the basic size. We
consider three situations: (1) each layer is a 5-regular graph; (2) all node degrees follow a Poisson
distribution with mean 5; and (3) all node degrees follow a truncated power-law distribution with
P(k = 2) o< 27 132¢7%/35 for 2 < 50 and P(k = ) = 0 for z > 50. We construct each layer
from a configuration model with a degree sequence from the specified degree distribution. The
other parameters are fphy = Binfo = 0.6, Yphy = 1, Qanti = 10, and apro = 0.1. (b) We group
recovered nodes based on their opinion states when they become infectious (we use the notation
U, P, A, and R for these subpopulations) and plot the normalized size. We show results for 5-
regular configuration-model graphs. The curves (respectively, markers) indicate results from the
PA (respectively, from means of 200 direct simulations).

networks with the Poisson and truncated power-law distribution are qualitatively
the same. Because increasing opinion recovery rates results in fewer people adopt-
ing any opinion, the size of the U subpopulation increases (i.e. more people become
infected while uninformed). For the same reason, the sizes of the subpopulations
with the anti- and pro-physical-distancing opinions decrease with increasing opinion
recovery rates. The size of the R subpopulation first increases as we increase info-
This occurs because when 7inf, is very small, many people keep the same opinion (P
or A) until the disease dies out in the population. When we start to increase 7info,
more people recover from an opinion when the disease is still actively spreading.
Because people who abandon the pro-physical-distancing opinion increase their risk
of becoming infected, the overall epidemic size may increase when they become less
cautious. As 7o grows, fewer nodes adopt an opinion; this, in turn, leads to a
smaller R subpopulation and a drop in the overall epidemic size.

The non-monotonic behavior that we described above suggests that if enough
people hold the pro-physical-distancing opinion for a sufficiently long time, the
prevalence of a disease can decrease, even when the anti-physical-distancing opin-
ion has an arbitrarily large influence coefficient. When both opinions are present,
the overall influence of opinions on disease spread is not determined by the two
influence coefficients alone; instead, it arises from a complex interaction between
the dynamics of the two opinions.
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Fig. 8. (Color online) The final epidemic size minus the basic size for different values of the
opinion contagion parameters for our PA on networks with layers that consist of 5-regular
configuration-model graphs. We fix the other parameters to be Bpny = 0.6, ypny = 1, @anti = 10,
and apro = 0.1.

We plot the final epidemic size minus the basic size in Fig. 8 for different values
of the opinion transmission rates and opinion recovery rates. For fixed opinion
recovery rates, the final epidemic size does not change much as we vary the opinion
transmission rates if the information layer has an outbreak. The results in Fig. 8
are outputs of our PA on 5-regular configuration-model graphs.

5.2. Random graphs with intra-layer degree—degree correlations

Many nodes in a network having intra-layer edges to other nodes of similar
degrees (i.e. the network is assortative by degree,?%* which is often called simply
“assortative”) can have a strong impact on disease spread and other dynamical
processes.*148 Such assortative networks may have a core with large-degree nodes,
so a disease may spread faster but terminate with a smaller final epidemic size on
such a network than on a disassortative network.?»>* In this subsection, we inves-
tigate how differences in assortativity structure, which we encode in an intra-layer
degree—degree correlation matrix, can influence the dynamics of our model.

For all experiments in this subsection, we generate networks with intra-layer
degree—degree correlations using a model from Melnik et al.*® For each of the
two layers in the network, we start with a mixing matrix E that specifies the
joint distribution of degrees at both ends of an edge that we choose uniformly
at random. The number of edges that connect nodes with degrees k and k' is
Erw = Epp > (kpe)N/2, where pr = (3, %)/(Zkk, %) specifies the
degree distribution and we recall that N is the number of nodes. We first create the
required number of edges that will connect node pairs with specified combinations of
the degrees k and k’. We then generate nodes by selecting k ends of edges uniformly
at random from those that are prescribed to attach to degree-k nodes. We obtain
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networks with the desired degree—degree correlation when we finish attaching all
ends of edges to nodes.

Because we track the expected number of edges with all possible degree com-
binations explicitly and separately in the PA system, we only need to modify the
initialization step to encode the desired intra-layer degree—degree correlation. For
example, we let [Uy o B](0) = Einfo, k,1 X (1 — Py — Ag) Py, where Einfo, ,1 denotes
the number of edges that connect degree-k and degree-I nodes in the information
layer. We initialize the physical layer and the information layer independently, so
[Uk, Sk, © P](0) = [Uk, 0 PJ(0) X Pphy(k2) x (1 — Ip). We initialize the other dyads
similarly.

5.2.1. Pedagogical example: Networks whose nodes have
one of two different degrees

To illustrate the importance of intra-layer degree-degree correlations, we consider
a simple example of a network whose nodes have one of two different degrees. Its
degree distribution is P(k = k1) = p1 and P(k = k2) = p2, where p; + p2 = 1. The
mixing matrix is

k1p1

a
k
Jop () 7 (5.1)
k1p1 kopa — k1p1
SR 2R L,

(k) (k)

where a € [max{0, %}, k<1]§)>1] and (k) denotes the mean degree. We calcu-
late the assortativity coefficient rintya, which is given by the Pearson correlation
coeflicient of the degrees at the two ends of an edge that we choose uniformly at
random. Given the mixing matrix (5.1), the assortativity coefficient riniy, is linear

in a and is given by

a— kip?/ (k)

Fintra = kikapipa/ (k)2

Figure 9 shows two typical sets of curves for the final epidemic size for different
values of the intra-layer degree—degree correlation. We fix k1 = 2 and ke = 8, and we
assign 40% of the nodes to have degree 2 in Fig. 9(a) and 90% of them to have degree
2 in Fig. 9(b). We set the intra-layer degree—degree correlations to be the same in the
two layers. The blue circles indicate the influence of degree assortativity on disease
spreading when the disease spreads independently of opinions. The decreasing trend
in Fig. 9(a) and in the right part of Fig. 9(b) is consistent with the known result*>
that a disease tends to affect a smaller fraction of a population in an assortative
network than in a disassortative network when an epidemic outbreak occurs. The
increasing trend in the left part of Fig. 9(b) arises from the fact that the disease
is initially impeded from spreading because of the disassortative structure and a
denser network helps the disease to spread and persist. Similar trends also occur in
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Fig. 9. (Color online) The final epidemic size depends on the intra-layer degree-degree corre-
lations. We generate each layer independently using a generalization of a configuration-model
network with the procedure that we described in the text. Each layer consists of nodes with degrees
2 and 8, and the intra-layer degree—degree correlation is the same in the two layers. The other
parameters are Sphy = Binfo = 0.6, Yphy = 1, and 7ingo = 0.1. The curves (respectively, markers)
indicate results from our PA (respectively, from means of 200 direct simulations).
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Fig. 10. (Color online) Prevalence curves from our PA for different intra-layer degree-degree
correlations in networks with Piygo(k = 2) = Pphy(k = 2) = 0.4 and Piyo(k = 8) = Pppy(k =
8) = 0.6. We generate each layer independently using a generalization of a configuration-model
network with the procedure that we described in the text. The upper row shows the (identical)
dynamics of the fraction of individuals in the P and A states. The lower row shows the dynamics
of the population in the I state. The solid curves show results when (left) aanty; = 10 and apro = 1
and (right) aanti = 1 and apro = 0.1. The dashed curves indicate results without any opinion
contagion. The other parameters are Bny = Binto = 0.6, Ypny = 1, and Yinfo = 0.1. Curves with
the same color share all parameters except opinion influence coefficients.
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the information layer, so if outbreaks do occur on both layers, an opinion contagion
has a smaller impact when networks have a larger degree assortativity (as we see in
both panels of Fig. 9). In Fig. 10, we compare the disease prevalence curves with and
without the influence of each opinion for networks with Pineo(k = 2) = Ppny(k =
2) = 0.4. The results demonstrate that disassortative structures tend to enhance
the influence of both the pro- and anti-physical-distancing opinions. When both
opinions have nontrivial effects on the transmission of a disease, the overall effect
of the opinion dynamics on the disease dynamics is a complicated combination of
the dynamics of the opinions; in this situation, it is unclear whether an assortative
or a disassortative structure promotes the spread of the disease.

The intra-layer degree—degree correlations in the two layers need not be the
same. Figure 11 shows heat maps of the final epidemic size from our PA for different
values of the two degree—degree correlations, which we vary independently in each
layer. The issuance of a stay-at-home order may lead to a physical layer with many
small-degree nodes, and such an order is not likely to affect the information layer
(which may describe online contacts). Therefore, we also consider the case with
Pinto(k = 2) = 0.4 and Ppuy(k = 2) = 0.9. We show the results for this case in the
third row of Fig. 11. In this example, the physical-layer network structures have
a stronger influence on the disease dynamics than the information-layer network
structures.

5.3. Random graphs with cross-layer correlations
of intra-layer degrees

We also investigate the influence of cross-layer correlations of intra-layer degrees
on the dynamics. We refer to such correlations as “inter-layer degree—degree corre-
lations”. People who are active on social-media platforms may also have frequent
offline social contacts, and vice versa.! Let C' denote the inter-layer degree-degree
correlation matrix, so Cy, i, is the probability that a node that we choose uniformly
at random has degree k; in the information layer and degree ko in the physical layer.
We say that these nodes are “of type (ki, k2)”. An uncorrelated model corresponds
t0 Chy, ks = Pinto(k1)Pphy(k2). We uniformly randomly pair N x Cj, i, degree-k;
nodes from the information layer with the same number of degree-ks nodes from
the physical layer to construct a network with N nodes and a specified inter-layer
degree—degree correlation.

As with the situation in Sec. 5.2, a PA can deal with inter-layer degree-degree
correlations properly as long as we build them into the initial conditions. The
modification of the PA is straightforward. For example, we write

[Uklskz](o) = Ckl kz(l — Ap — PO)(]- - IO) y

Chi ks

(U Sk © 1)(0) = Sk, o 1](0) x =225

X(l—Ao—P()).

We use similar formulas for the other pairs.
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Fig. 11. (Color online) Heat maps of the final epidemic size from our PA as we vary the assor-
tativities in the two layers. The three columns have parameter values of (left) apro = 0.1 and
Qanti = 10, (center) apro = 0.1 and aangi = 1, and (right) apro = 1, and aangi = 10. The other
parameters are Bpny = Binfo = 0.6, Yphy = 1, and 7ipro = 0.1.

5.3.1. Pedagogical example: Networks whose nodes have
one of two different degrees

We again suppose that nodes have one of two different degrees in each layer. These
degrees are Kinfo, 1, Kinfo,2, Kphy,1, and kphy, 2, where Piyto(k = kinfo,1) = ¢1 and
Pony (k = kpny, 1) = g2. The correlation matrix C is

a g —a

(5.2)
G2—a l—q—q+a

where a € [min{0, ¢1 + g2 — 1}, min{q1, ¢2}]. The Pearson correlation coefficient is

(kinfo7 1= kinfo, 2)(kphy7 1= kphy, 2)(0' —q1 (Zz)
Tinter = ’
OinfoOphy

where oing, and opny denote the standard deviations of the degrees in the two layers.



Math. Models Methods Appl. Sci. 2021.31:2455-2494. Downloaded from www.worldscientific.com

by UNIVERSITY OF CALIFORNIA @ LOS ANGELES on 04/09/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

A multilayer network model of the coevolution of a disease and opinions 2483

(anti, pro) = (1, 1)  (anti, pro) = (1, 0.1)  (anti, pro) = (10, 0.1)  (anti, pro) = (10, 1)

— PA — PA PA —— PA
o Simu o Simu Simu % Simu
0.9 0.52
k —%
M 05 * S % S ¥ ¥
Qo8 I
N 5 0.48
o o
1S £ 0.46
$o7 3
o 2044
g g 0.42
ir 0.6 i
0.4
05 M 0.38
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Pearson correlation coefficient Pearson correlation coefficient
(a) Tintra = —0.25 (b) Tintra = 1

Fig. 12. (Color online) The final epidemic size depends on the inter-layer degree—degree corre-
lation. Both layers have nodes of degrees 2 and 8, and we set Piys0(k = 2) = Pppy(k = 2) = 0.5.
We generate each layer using the procedure in Sec. 5.2. We couple the two layers following the
approach in Sec. 5.3. We set the intra-layer degree-degree correlation of both layers to be (a)
—0.25 and (b) 1. The other parameters are Bpny = Binfo = 0.6, Yphy = 1, and 7vingo = 0.1. The
curves (respectively, markers) show results from our PA (respectively, from means of 200 direct
simulations).

Figure 12 shows the dependence of the final epidemic size on the inter-layer
degree—degree correlations. Each of the two layers has nodes of degrees 2 and 8,
and we set Pingo(k = 2) = Ppny(k = 2) = 0.5. We generate each layer independently
with a generalization of a configuration-model network following the procedure in
Sec. 5.2. We suppose either that both intra-layer degree-degree correlations are
—0.25 or that both intra-layer degree-degree correlations are 1, and we couple the
two layers as described above.®* The pro-physical-distancing opinion has a larger
influence when the two layers are more positively correlated. (See the red curves
with square markers.) However, the anti-physical-distancing opinion’s influence can
either decrease or increase as we increase the inter-layer degree—degree correlation.
(See the purple curves with asterisk markers.)

To understand the trends in Fig. 12, we again decompose the population based
on their opinion states (see Fig. 13). Recall that U, A, P, and R denote the sub-
populations that become infectious when they are in the U, A, P, and R, states,
respectively. Additionally, we decompose the U and A subpopulations based on
node degrees and plot the fraction of the population in each group in Fig. 14. We
examine the effects of negative intra-layer degree-degree correlations in Figs. 13(a)
and 14(a,c), and we examine the effects of positive intra-layer degree—degree corre-
lations (which we will discuss first) in Figs. 13(b) and 14(b,d). In our discussion, it
is instructive to consider the case of two independent layers (i.e. apro = Qtanti = 1).

2A layer with an intralayer degree—degree correlation of 1 has more than one component.



Math. Models Methods Appl. Sci. 2021.31:2455-2494. Downloaded from www.worldscientific.com

by UNIVERSITY OF CALIFORNIA @ LOS ANGELES on 04/09/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

2484 K. Peng et al.

The inter-layer degree—degree correlation changes the opinion distributions, but the
final epidemic size stays the same. We investigate the influence of opinions and how
such influence depends on the inter-layer degree—degree correlation.

We first examine the case in which the intra-layer degree—degree correlation
is 1 and node opinions do not affect the spread of the disease. A positive inter-
layer degree—degree correlation encourages the coupling of large-degree nodes in the
two layers; these nodes have larger probabilities than small-degree nodes both of
becoming infected and of forming an opinion. Therefore, as we increase the inter-
layer degree—degree correlation, fewer nodes are uninformed when they catch the
disease. Figure 14(b) shows the decomposition of the U subpopulation based on
the degrees of its nodes. Because the degree-2 nodes are adjacent only to other
degree-2 nodes in each layer, they are rarely infectious and rarely form an opinion.
Therefore, the Y subpopulation consists primarily of nodes of types (2, 8) and (8, 8).
As we increase the inter-layer degree—degree correlation, there are more (8, 8)-type
nodes and fewer (2, 8)-type nodes in the network. Because Ug-nodes (i.e. nodes
that are uninformed and have degree 8 in the information layer) have a larger
probability of forming an opinion than Us-nodes, fewer nodes become infected while
still uninformed as we increase the correlation.

If we perturb the influence coefficients canti and apyr, from 1, the opinions on the
information layer directly affect the A and P subpopulations, respectively, through
modified infection risks. These modified risks then influence the speed of disease
spread and affect the other subpopulations. Therefore, the information layer has
a larger effect on the disease dynamics when more people become infected while
holding some opinion. Based on our discussion above, we expect that increasing
the inter-layer degree—-degree correlation amplifies the influence of opinion spread
on disease dynamics.

We now examine the case in which either the pro-physical-distancing opinion or
the anti-physical-distancing opinion has a nontrivial influence on disease dynam-
ics. For simplicity, we suppose that only one opinion is effective. When a0 < 1,
the spread of the pro-physical-distancing opinion protects people who adopt that
opinion because it suppresses the spread of the disease. In Fig. 13(b), we see that the
U subpopulation tends to decrease faster and that the P and A subpopulations tend
to increase slower in this situation than when the disease spreads independently of
opinions. Therefore, the final epidemic size decreases as we increase the inter-layer
degree-degree correlation. When a,ni > 1, the anti-physical-distancing opinion
accelerates the spread of the disease. Therefore, more people become infected before
their opinions change; this, in turn, leads to a larger U/ subpopulation and smaller
A, P, and R subpopulations. The growing gap between the dashed purple curve
and the dashed blue curve (i.e. between the I subpopulations for different param-
eter values) in Fig. 13(b) illustrates the increase in the epidemic size as we increase
the inter-layer degree—degree correlation.

The situation is more intricate when the intra-layer degree—degree correlation
is —0.25 in each layer. Because the intra-layer edges now can connect degree-2
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Fig. 13. (Color online) Decomposition of the opinion states of nodes that eventually become
infectious and recover. We group the recovered population based on their opinion states when they
become infectious. Recall that the associated subpopulations are U, P, A, and R. The vertical axis
indicates the fraction of the population in each of these subpopulations. We plot the subpopulation
sizes versus the inter-layer degree—degree correlation from our PA. The intra-layer degree—degree
correlation is (a) —0.25 and (b) 1. The other parameters are Bpny = Binfo = 0.6, Ypny = 1, and
Yinfo = 0.1.

nodes to degree-8 nodes, the former are more likely both to become infectious and
to adopt an opinion than when the intra-layer degree—degree correlations are 1.
Therefore, when canti = pro = 1, nodes of types (8, 2) and (2, 2) constitute a larger
proportion of the U subpopulation in Fig. 14(a) than in Fig. 14(b). As we increase
the inter-layer degree—degree correlation, the U subpopulation has progressively
more nodes with degree 2 in the physical layer because there are gradually fewer
(8, 2)-type nodes and gradually more (2, 2)-type nodes and it is more difficult for
the (2, 2)-type nodes to form an opinion. Consequently, the decreasing trend in the
U subpopulation (see the dashed blue curve) in Fig. 13(a) is less drastic than in
Fig. 13(b).

When aune; > 1, the A subpopulation in Fig. 13(a) (see the purple curve with
asterisk markers) has qualitatively different dynamics than in Fig. 13(b). This dif-
ference arises from the influence of opinions on degree-2 nodes in the physical layer.
Nodes that adopt the anti-physical-distancing opinion now have a larger infection
risk than when a.pnt; = 1, so we expect more nodes to become infected while holding
the anti-physical-distancing opinion. In Fig. 14(c), we see that the anti-physical-
distancing opinion leads to an increase in the numbers of nodes of types (8, 2) and
(2, 2) in the A subpopulation as we increase qunti from 1 to 10. Moreover, as we
increase aant; from 1 to 10, the increase in the number of (8, 2)-type nodes in the A
subpopulation when the inter-layer degree-degree correlation is —1 is larger than
the increase in the number of (2, 2)-type nodes in that subpopulation when the
inter-layer degree—degree correlation is 1. This phenomenon arises because degree-
8 nodes are more likely than degree-2 nodes to adopt an opinion. This, in turn,
leads to a decrease of the A subpopulation and ultimately to a decrease of the
total epidemic size as we increase the inter-layer degree—degree correlation. The
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Fig. 14. (Color online) Decomposition based on the degrees of the nodes that eventually become
infectious and recover. We decompose (a, b) the U subpopulation and (c, d) the A subpopulation
by degree. The vertical axes indicate the fraction of the population in each subpopulation. We
show the changes in subpopulation size versus the inter-layer degree—degree correlation from our
PA. The other parameters are Byny = Binfo = 0.6, Yphy = 1, and 7ingo = 0.1.

anti-physical-distancing opinion does not lead to a clear increase in the number
of degree-8 nodes in the 4 subpopulation. One plausible explanation is that the
degree-8 nodes are already very likely to become infected at the baseline trans-
mission rate of the disease. Additionally, the anti-physical-distancing opinion does
not lead to an increase in the numbers of nodes of types (8, 2) or (2, 2) when the
intra-layer degree—degree correlation is 1 (see Fig. 14(d)). We conjecture that this
is because the positive intra-layer degree—degree correlation imposes sufficiently
strong constraints so that it is difficult for nodes with degree 2 in the physical layer
to become infected even when the transmission rate is high.

6. Modeling Temporary Immunity to Opinions

In previous sections, we assumed that people who adopt a pro- or anti-physical-
distancing opinion develop immunity to both opinions after they recover. More
generally, the opinions of individuals can change back and forth.2” In this section,
we extend the opinion dynamics to an SIRS process (see Fig. 15). With conversion
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Fig. 15. Schematic illustration of the dynamics on the information layer with temporary immu-
nity to opinions. The transitions are the same as in Fig. 1, except that nodes in state Rjinfo
transition to state U at rate 7.
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Fig. 16. (Color online) The final epidemic size minus the basic size as we vary %info, Binfo, and
7 in direct simulations of our refined model. We generate each layer using a configuration-model

network with a Poisson degree distribution with a mean degree of 5. The other parameters are
Bphy = 0.6, Yphy = 1, qanti = 10, and apro = 0.1. Each panel is a mean of 600 simulations.

rate 7, nodes in the Rj,f, compartment return to the U compartment and again
become susceptible to the pro- and anti-physical-distancing opinions. When 7 = 0,
this refined model reduces to the model in Sec. 2 (see Fig. 1).

Figure 16 shows the final epidemic size minus the basic size as we vary the
contagion parameters T, Vinfo, and Sing, in direct simulations of our refined model.
For a fixed value of 7, we obtain a heat map that is similar to the one in Fig. 8. As we
increase 7, our simulations suggest that the overall influence from the information
layer increases. For fixed values of into and Pinso, the colors in the heat map become
brighter (respectively, darker) from left to right because the spread of opinions leads
to a decrease (respectively, increase) in the final epidemic size in comparison to the
basic size as we increase 7.

Consider the case Binfo = 2, where the effect of 7 is particularly evident. Fig-
ure 17(a) shows the influence of 7 on the final epidemic size for a few values of
Yinfo- 1t is hard to see the trend when ~vinso = 1 because of the stochasticity of
the simulations, but the behavior of the other three curves is consistent with that
of Fig. 16. As we increase 7, the expected duration that individuals stay in the
Ringo state decreases. Consequently, as we increase 7 in Fig. 17(b), the size of the
R subpopulation decreases and sizes of the other subpopulations (U, A, and P)
increase.
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Fig. 17. (Color online) Influence of the opinion recovery rate 7info and the conversion rate 7 on
the final epidemic size and on the opinion distribution when we consider SIRS dynamics in the
information layer. (a) The influence of 7 on the final epidemic size. We decompose the recovered
population based on their opinion states when they become infected and plot the sizes of these
subpopulations in (b). In (c, d), we show additional opinion-distribution statistics; we specify
them in the subtitles. We generate each layer using a configuration model with a Poisson degree
distribution with a mean degree of 5. The curves show means of 200 direct simulations with
Bphy = 0.6, Yphy = 1, Binto = 2, Qpro = 0.1, and aane; = 10.

We conjecture that the overall influence (i.e. whether increasing 7 leads to more
or fewer disease infections) depends on whether people tend to adopt an opinion that
departs from their earlier opinion(s). If individuals tend to adopt different opinions
over time, increasing 7 makes the model with SIRS opinion dynamics exhibit behav-
ior that resembles what we observed after applying the random-recoupling assump-
tion (see Sec. 3) and leads to more people adopting the anti-physical-distancing
opinion at an earlier time. Susceptible individuals are likely to become infected when
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they adopt the anti-physical-distancing opinion, regardless of whether or not they
have previously adopted the pro-physical-distancing opinion. Consequently, increas-
ing 7 leads to more disease infections. However, if people tend to adopt the same
opinion over time, susceptible individuals who adopt the pro-physical-distancing
opinion also are more likely to avoid future infections. In this case, enforcing a
faster reversion to the U state has a similar effect as decreasing 7ino, which (as we
showed in Sec. 5.1) may help suppress disease spreading. Figure 17(c) shows the
fractions of individuals who adopt (i) both opinions and (ii) at least one opinion
within the time frame of our experiments for yinto = 0.2 and Yinto = 2. Many fewer
people adopt both opinions when ~inro = 0.2 than when 7y, = 2. Additionally,
as we increase 7, there is only a slightly increasing trend in the fraction of people
who adopt both opinions for i, = 0.2, in contrast to the rapid growth of the
fraction for inso = 2. Intuitively, a node that adopts one opinion can influence
more neighbors when i, is smaller. Therefore, it is more likely to adopt the same
opinion later. Suppose that a node holds an opinion when it becomes infected on
the physical layer, and suppose that this is not the first opinion that it has held
(i.e. it previously returned to the U state in the information layer). In Fig. 17(d),
we examine the counts of these individuals for both opinions as a function of 7.
Consistent with our conjecture, as we increase 7, we observe a larger increase of
the fraction of the population that holds the anti-physical-distancing opinion when
Yinfo = 2 than when ~i,¢, = 0.2.

7. Conclusions and Discussion

We studied the influence of the spread of competing opinions on the spread of a dis-
ease. We assumed that pro- and anti-physical-distancing opinions circulate within
a population and affect the spread of the disease. We developed a degree-based
pair approximation for the time evolution of the expected number of individuals in
different compartments and used it to study dynamics on heterogeneous networks
with specified inter-layer and intra-layer degree—degree correlations. We examined
different approximation schemes for the effective transmission rate of susceptible
individuals in the physical layer (on which a disease spreads). We found that the
distribution of the opinions of the nodes in a given disease state is correlated both
with their own disease states and with the disease states of their neighbors in the
physical layer.

Through extensive numerical simulations, we showed that the opinion conta-
gions in our model can either increase or decrease the disease transmission speed,
the peak infection counts, and the number of people who become infected. We
demonstrated that the overall impact of the opinion dynamics on disease preva-
lence depends not only on the opinion influence coefficients, but also on the network
structure and on how the opinions couple to the spread of the disease.

We found that lengthening the duration (through decreasing the opinion recov-
ery rate) over which people adopt opinions — whether in favor of or against physical
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distancing — may help suppress disease transmission. We also saw that physically
distancing for too short a duration may still entail a high infection risk; this is
well-known for models of infectious diseases with a fully-mixed population.”!® We
observed that the benefit of a long opinion-adoption period is reinforced when we
let the spread of opinions follow SIRS dynamics instead of SIR dynamics. Allowing
people to become susceptible to opinions after having a previous opinion helps cre-
ate neighborhoods in a network’s information layer in which adjacent nodes tend
to adopt the same opinion over time. Consequently, people who adopt the pro-
physical-distancing opinion are more likely to adopt it again later. Although the
same phenomenon applies to the spread of the anti-physical-distancing opinion, the
difference in the influence of the two opinions on disease transmission rates leads
to an asymmetry in their influence on disease prevalence.

Our work examines both beneficial and harmful effects of the spread of opinions
on other dynamical processes (such as the spread of a disease). There are many
ways to build on our research. Although two competing opinions can have differ-
ent contagion parameters, we only showed results in which these parameters are
identical. One can also study our model when the two competing opinions spread
asymmetrically. We also assumed a unidirectional influence from the information
layer to the physical layer, but disease states can also influence opinion states,?4®
and one can incorporate such coupling. Additionally, time-dependent network struc-

60,63 are relevant for

tures in which node states coevolve with network structures
behavioral changes when individuals adopt opinions about physical distancing. Such
time-dependent networks allow one to model changes in contact patterns due to
lockdowns and stay-at-home orders. One can also consider additional opinions (e.g.
opinions on vaccines) in conjunction with more complex disease dynamics due to

65

vaccines® and variants.
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