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During the COVID-19 pandemic, conflicting opinions on physical distancing swept across
social media, affecting both human behavior and the spread of COVID-19. Inspired by
such phenomena, we construct a two-layer multiplex network for the coupled spread of a
disease and conflicting opinions. We model each process as a contagion. On one layer, we
consider the concurrent evolution of two opinions — pro-physical-distancing and anti-
physical-distancing — that compete with each other and have mutual immunity to each
other. The disease evolves on the other layer, and individuals are less likely (respectively,
more likely) to become infected when they adopt the pro-physical-distancing (respec-
tively, anti-physical-distancing) opinion. We develop approximations of mean-field type
by generalizing monolayer pair approximations to multilayer networks; these approxi-
mations agree well with Monte Carlo simulations for a broad range of parameters and
several network structures. Through numerical simulations, we illustrate the influence of
opinion dynamics on the spread of the disease from complex interactions both between
the two conflicting opinions and between the opinions and the disease. We find that
lengthening the duration that individuals hold an opinion may help suppress disease
transmission, and we demonstrate that increasing the cross-layer correlations or intra-
layer correlations of node degrees may lead to fewer individuals becoming infected with

the disease.

Keywords: Multilayer networks; opinion models; competing opinion dynamics; disease
dynamics; pair approximations.

AMS Subject Classification 2020: 91D30, 92D30, 37N25

1. Introduction

Since the outbreak of coronavirus disease 2019 (COVID-19), researchers in numer-

ous disciplines have used diverse approaches to analyze the spread of the disease,

forecast its subsequent spread under many scenarios, and investigated strategies

to mitigate it.3,6,19 As cases of COVID-19 escalated, collective compliance with

non-pharmaceutical intervention (NPI) measures was vital for dealing with the

COVID-19 pandemic in the absence of effective treatments and vaccines.59 As infor-

mation — some of which was accurate and some of which was not — flooded social

media,26,72 people adopted different opinions about the implementation of NPI

measures.2 These opinions affect human behavior and ultimately also the spread of

diseases. Motivated by these observations, we build a multilayer network model to

study disease spreading under the influence of the spread of competing information.

It is important to understand the influence of human behavior on the spread of

diseases because these two processes are inextricably coupled.5,67 The acquisition

of prevalence-based and/or belief-based information from publicly available sources

and/or individuals’ social neighborhoods leads to changes of disease states, disease-

state transition rates, and social contact patterns.

A common approach to studying the spread of a disease is as a dynamical sys-

tem on a network of individuals.12 This type of model emphasizes the importance
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A multilayer network model of the coevolution of a disease and opinions 2457

of social contact patterns (typically in the form of physical contacts) and the het-

erogeneity of individuals. When disease and information spread through different

venues — such as face-to-face contacts versus online social platforms like Twitter

and Facebook — it is useful to use the formalism of multilayer networks,43 as one

can encode different relationships between people in a population in different layers

of such a network. There have been many studies of spreading phenomena on mul-

tilayer networks and of how such network structures affect spreading processes.14,68

We discuss some of these in Sec. 2.1.

Past research has examined whether the spread of information can help con-

tain an epidemic (e.g. through decreased transmission rate, fewer contacts, and/or

acquired immunity) by leading to a smaller disease prevalence and/or a smaller basic

reproduction number (and hence a reduced probability of a large outbreak of the

disease).24,68 However, as has been striking during the COVID-19 pandemic,75 how

people act on information (and misinformation and disinformation) can also have

a negative impact on disease propagation; this undermines the potential benefits of

information. For example, there have been many anti-physical-distancing rallies in

which protesters flout behavioral intervention measures such as wearing masks and

practicing physical distancing. Moreover, such large gatherings can directly cause

surges in infections.25

Motivated by the mixed effects of information and opinion spreading interact-

ing with the spread of a disease, we study a model in which disease transmission

is influenced by two opposing opinions: pro-physical-distancing (which we some-

times write simply as “pro” as a shorthand) and anti-physical-distancing (which

we sometimes write as “anti”). Following Ref. 32, we consider a two-layer multi-

plex network (a particular type of multilayer network43) with interactions between

the spread of opinions and a disease. We model the simultaneous evolution of two

competing opinions on one layer of a multiplex network as a contagion process of

either susceptible–infectious–recovered (SIR)40 or susceptible–infectious–recovered–

susceptible (SIRS) form, with opinion adoption that occurs between susceptible and

infectious individuals. Similar models have been proposed for studying competing

diseases38,49 and ideas.70 A disease spreads on the other layer (a physical layer) of

the multiplex network; the connections in this physical layer encode in-person social

contacts. The disease transmission rate depends on the opinions of the individuals.

In our model, we investigate which opinion has greater influence, which we

evaluate based on the disease’s final epidemic size (i.e. the number of individuals

who catch the disease during the disease outbreak). We generate networks using

configuration-model networks21 and their extensions.48 We demonstrate complex

interactions between the two opinions and (because of ensuing behavioral changes,

which lead to changes in the network of in-person social contacts) between the

opinions and the disease. We explore how the influence of opinions is affected by

various factors, including opinion-contagion parameters and network structures.

We derive a mean-field description, in the form of a pair approximation, of our

multilayer dynamical system for the expected values of population-scale quantities,
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2458 K. Peng et al.

because it is costly to conduct direct simulations of the full stochastic model with

a large population. Many approximation methods have been developed for con-

tagion dynamics on monolayer networks (i.e. ordinary graphs),42 including edge-

based compartmental modeling,50 pair approximations,39 effective-degree approxi-

mations,46 and approximate master equations.28,29 In this paper, we use a degree-

based pair approximation17 and generalize it to our multiplex system. In a pair

approximation, one examines the various types of pairs in a system and approx-

imates higher-order structures using moment closure.44 Different pair approxima-

tions entail different choices when performing moment closure. Our approximation

scheme incorporates dynamical correlations both within and across the layers of a

multiplex network. To capture the influence of opinions on individuals’ susceptibil-

ity to a disease, we also define effective transmission rates that take the form of

time-dependent functions of the distribution of opinions in populations of interest.

We develop approximations of the effective transmission rates based on the numbers

of various types of pairs. Our numerical simulations reveal that our approximate

system is able to capture the influence of the spread of opinions on disease spread

for population-scale quantities. We find that the time evolution of the expected

numbers of individuals in different states in our pair approximation match very well

with simulations on a variety of networks with different degree distributions and

degree–degree correlations.

Our paper proceeds as follows. In Sec. 2, we discuss prior work and relevant

background information and then present our first model. In this model, opin-

ions follow an SIR process. The disease follows an extended SIR process in which

people who adopt the pro-physical-distancing opinion (respectively, anti-physical-

distancing opinion) have a reduced (respectively, increased) disease transmission

rate in comparison to a baseline. In Sec. 3, we assume that the SIR process occurs

on a fully-mixed population, yielding a description of our system in terms of a

small set of coupled ordinary differential equations (ODEs). In this ODE system,

we observe some influence of opinion dynamics on the spread of the disease, but

this framework does not include the effects of social contacts. In Sec. 4, we incorpo-

rate social contact structures between individuals to yield a dynamical system on

a network. We derive a pair approximation for this network model. In Sec. 5, we

conduct stochastic simulations of this network model to investigate the influence of

the contagion parameters and network structures on the dynamics of the system.

In Sec. 6, we generalize our dynamical system by considering an SIRS process for

opinion spreading. We conclude in Sec. 7.

2. Background and Modeling

We discuss prior work and background information in Sec. 2.1, and we present our

initial model in Sec. 2.2. In this model, we consider a two-layer multiplex network

with a disease that spreads on one layer and competing opinions that spread on the

other layer. We specify network structures in Sec. 5.
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A multilayer network model of the coevolution of a disease and opinions 2459

2.1. Background

A variety of previous work has examined the influence of social behavior on disease

transmission.24,67 We seek to do this in a way that incorporates the effects of

network structures on the spread of disease.42,60 We consider a social network of

individuals (which are represented by nodes) and in-person social contacts (which

are represented by edges) between them. The importance of such social contact

patterns on dynamical processes has long been recognized,16 and there has been

extensive research on the influence of network structures on the spread of infectious

diseases.56 There is also a large body of work on the spread of social phenomena,45

including the dissemination of information9 and the adoption of behaviors,4 which

are often modeled as contagion processes that are similar to disease spread.8,30

(See Refs. 35 and 71 for discussions of when social contagions resemble and do not

resemble contagions of infectious diseases.) In particular, interactions between peers

strongly influence the dynamics that unfold on a network.

To give further context for our work, we briefly mention prior investigations

on the coevolution of diseases with behavior, awareness, and/or opinions on multi-

layer networks.67,68 In particular, many researchers have examined how the spread

of awareness can suppress the spread of a disease. Funk et al.23 developed a co-

evolution model in which individuals acquire different levels of awareness of a disease

either by becoming infected or by communicating with their neighbors. In their

model, individuals are less susceptible to infection by a disease when they have a

higher level of awareness. Subsequently, Funk et al.22 simplified the above model

so that individuals are either aware or unaware of a disease, in analogy to the

infectious and susceptible states (i.e. “compartments”) of a traditional susceptible–

infectious–susceptible (SIS) model of disease spread.11 A similar model was pro-

posed by Granell et al.31,32 Subsequent research has generalized these ideas by

modeling the spread of a disease and information using other dyamical systems,

such as by modeling disease spread with an SIR model69 and modeling information

transmission with a threshold model33,34 or a generalized Maki–Thompson rumor

model.13 Other works have examined the influence of global information and mass

media,32,61 the relative speeds of the dynamics of information spread and disease

spread,13,66 and heterogeneous risk perceptions of disease spread.55,74 Researchers

have also incorporated time-varying networks when studying the combined spread

of disease and information, such as by coupling an activity-driven information layer

with a time-independent disease layer34 or a time-independent information layer

with an adaptive physical layer.58 Additionally, evolutionary game theory has been

used to study decision-making in the presence of government-mandated interven-

tions, socioeconomic costs, perceived infection risks, and social influence.73

During the COVID-19 pandemic, content and discussions on social media have

played a prominent role. On one hand, social media can help rapidly disseminate

transparent and accessible information about policy and scientific findings, and it

gives crucial ways to advocate guidance such as mask-wearing and physical dis-

tancing.47 On the other hand, social media also allows the pervasive spread of
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2460 K. Peng et al.

misinformation and disinformation, leading to so-called infodemics, which refer to

epidemics of information.26,72 Distortion and inaccurate information can impair

people’s mental and physical health,62 trigger anxiety and distrust, and ultimately

lead to a worse situation for disease spread due to poor compliance with prevention

measures. As information floods social media, opposing opinions about physical

distancing and other intervention methods develop and propagate rapidly to many

people.

Several recent works have examined competing opinion dynamics. Johnson

et al.36 studied the evolution of anti-vaccine and pro-vaccine clusters of people on

Facebook. She et al.64 examined an opinion model with continuous-valued opin-

ions to study the beliefs of different communities about the severity of disease

spread with both cooperative and antagonistic opinion spreading. Epstein et al.18

used compartmental models to study the fear of infection and the fear of vaccines.

Johnston and Pell37 examined the fear of infection and frustration with physical

distancing.

2.2. Our model

We study the spread of a disease and two competing opinions on a two-layer multi-

plex network with one physical layer (where the disease spreads) and one informa-

tion layer (where opinions spread). We assume that all individuals are present in

both layers, and we ignore demographic processes such as birth, death, and migra-

tion. We model each layer as an undirected, unweighted, simple graph; we couple

the two layers to each other by connecting nodes that correspond to the same

individual. The edges within a layer are called “intra-layer edges”; they encode

in-person contacts in the physical layer and information-exchange channels (espe-

cially on social media) in the information layer. An individual can have different

neighboring individuals (i.e. adjacent nodes) in the two layers, and their number

of neighbors (i.e. their degree) can also be different in the two layers. In Sec. 5,

we give further details about the network structure and we explore the influence

of inter-layer and intra-layer structure on opinion and disease dynamics. In Secs.

2–5, we use SIR dynamics40 for each process and associate nodes in the physical

layer with individuals’ health states and nodes in the information layer with their

opinions about physical distancing. In Sec. 6, we extend our model by modeling the

spread of opinions as an SIRS process. In all versions of our model, we treat each

process as a continuous-time Markov chain. We detail how the disease-spread and

opinion-spread processes operate and interact in Secs. 2.2.1 and 2.2.2. In Table 1,

we summarize the key parameters of our model.

2.2.1. Information layer

Two competing social contagions, which model pro-physical-distancing and anti-

physical-distancing opinions, spread concurrently on the information layer. We
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A multilayer network model of the coevolution of a disease and opinions 2461

Table 1. Key parameters in our model of coupled opinion spread and disease
spread. In (a), the first column gives the parameters of the opinion dynamics that

are related to pro-physical-distancing and the second column gives the parameters
that are related to anti-physical-distancing. We use the subscript “info” when
the two opinions share parameters; we indicate these parameters in the third
column. In (b), each column indicates the parameters of the disease dynamics
when individuals adopt the corresponding opinions.

(a) Parameters for dynamics (of opinion adoption) on the information layer.

Pro Anti Shared by pro and anti

Transmission rate βpro βanti βinfo

Recovery rate γpro γanti γinfo
Immunity-loss rate τ

(b) Parameters for dynamics (of disease spread) on the physical layer.
�
�
�
�
�
�
�
�
�
�

Parameter
Opinion

U or Rinfo A P

Transmission rate βphy αantiβphy αproβphy

Recovery rate γphy

use P (respectively, A) to denote the pro-physical-distancing (respectively, anti-

physical-distancing) state in which individuals both adopt the associated opinion

and actively advocate the corresponding behavior. Uninformed (U) individuals are

susceptible to both opinions and transition to the P state or A state at rates of

βpro and βanti, respectively, by communicating with neighbors in the corresponding

states. We suppose that people who adopt either behavior can become weary of

acting unusually in comparison with life without a disease epidemic, and they then

become less passionate about maintaining their current conduct. We assume that

individuals in the P state and A state transition to the recovered (Rinfo) state at

rates of γpro and γanti, respectively. After this transition occurs, these individuals

practice the same behavior as individuals in the uninformed group, but they are

resistant to future influence from neighbors. When the two opinions share the same

parameters, we use the subscript “info” (see Table 1). We make the assumption of

permanent mutual immunity38: once an uninformed individual adopts one opinion,

it can no longer be influenced by the other opinion. Therefore, upon recovery, it

enters the Rinfo state. Because the pro- and anti-physical-distancing opinions are

opposing opinions, it is reasonable to assume that individuals do not adopt both

behaviors simultaneously. We relax the assumption of permanent immunity in Sec.

6. In Fig. 1, we show the compartment flow diagram of the opinion dynamics.

2.2.2. Physical layer

We model the spread of a contagious disease on the physical layer as an SIR-like

process. The key difference from a standard SIR contagion is that susceptible nodes

have transmission rates that depend on their opinion states.23,31 We divide sus-

ceptible nodes into three types: (1) nodes that do not hold any opinion (i.e. their

opinions are in the U state or the Rinfo state) experience the baseline transmis-

sion rate βphy; (2) nodes that hold the pro-physical-distancing opinion experience
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2462 K. Peng et al.

Fig. 1. Schematic illustration of the (opinion-spreading) dynamics on the information layer of
a two-layer multiplex network. There are four states in the information layer: uninformed (U),
pro-physical-distancing (P ), anti-physical-distancing (A), and recovered (Rinfo). Nodes in state
U transition to state P (respectively, A) at a rate of βpro (respectively, βanti) by communicating
with neighbors in state P (respectively, A). We use “+P” (respectively, “+A”) to emphasize that
state transitions occur under the influence of neighbors in P (respectively, A). Nodes in state P
(respectively, A) transition to state Rinfo at a rate of γpro (respectively, γanti).

a reduced transmission rate βphy, pro = αproβphy, with αpro ≤ 1; and (3) nodes

that hold the anti-physical-distancing opinion experience an increased transmission

rate βphy, anti = αantiβphy, with αanti ≥ 1. We refer to αpro and αanti as “influence

coefficients”. To model the effects of competing opinions on disease spread, it seems

appropriate to study an adaptive network60 in which structure coevolves with node

states. For example, individuals who hold an anti-physical-distancing opinion may

have more contacts than other people. However, it is difficult to analyze such a

model. Therefore, for simplicity, we assume that individuals who hold the anti-

physical-distancing opinion in our model have a higher risk of contracting the dis-

ease than the baseline through a higher transmission rate. We make an analogous

assumption for nodes that hold the pro-physical-distancing opinion. Infected indi-

viduals (which we assume to be the same as infectious individuals) recover at rate

γphy. We show the compartment flow diagram of the disease dynamics in Fig. 2.

Fig. 2. Schematic illustration of the (disease-spreading) dynamics on the physical layer of a two-
layer multiplex network. There are three states in the physical layer: susceptible (S), infectious
(I), and recovered (Rphy). Based on the opinion states of the node, we further divide the S state
into PS, AS, and US/RS. Nodes in state S transition to state I through in-person social contacts
with infectious neighbors (which we emphasize with “+I”) at rates that we mark close to the
corresponding arrow. Nodes in state I recover at a rate of γphy.
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βpro

βpro

βpro

βanti

βanti

β

βanti

phy

βphy

αproβphy

αantiβphyγpro

γpro

γpro

γanti

γanti

γanti

γphy

γphy

γphy

γphy

US

PS

UI

PI

UR

PRAS

AI

AR

RS

RI

RR

+I

+I

+I

+I

+P

+P

+P

+A

+A

+A

Opinion Dynamics

Disease Dynamics

Disease infection
Disease recovery

U  P  R

Pro-opinion infection
Anti-opinion infection
Pro-opinion recovery
Anti-opinion recovery

S  I  R

U  A  R

Fig. 3. (Color online) Schematic illustration of our model, with dynamics on both the information
layer and the physical layer. The disks indicate the possible states (i.e. compartments) of a node.
In each state, the first letter (U , P , A, or R) indicates the opinion state and the second letter (S,
I, or R) indicates the disease state. The arrows indicate the possible state transitions.

Combining the dynamics on the two layers, we use two letters to describe the full

profile of an individual; the first one indicates a node’s opinion state, and the second

one indicates its disease state. To simplify our notation, we also drop the subscript

for the R compartment, as the order of the two letters in a state already indicates

whether we are referring to the opinion state or the disease state. There are a total

of 12 possible states (i.e. compartments). We show the complete compartment flow

diagram for our model in Fig. 3. For convenience, we use the same notation for the

state of a node and the set of nodes in a specified state throughout this paper.

3. Dynamics on a Fully-Mixed Population

We first study our model in a fully-mixed population, which yields a small set of

coupled ODEs.11 We ignore contact patterns in both the information layer and

the physical layer. Additionally, in every small time interval, we assume that each

node interacts with other nodes in the same layer uniformly at random. We refer

to this assumption as the “random-mixing assumption”. In each time interval,

we also assign each node in one layer to a counterpart node in the other layer

uniformly at random (without replacement). We refer to this assumption as the
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“random-recoupling assumption”. Throughout this paper, we use [X ] = E[X ]/N

as the shorthand notation for the expectation of the random variable X divided

by the population size N . Using the law of mass action, we obtain the following

population-level dynamics:

d

dt
[|U |] = −

βpro

N
[|U | × |P |]−

βanti

N
[|U | × |A|] ,

d

dt
[|P |] =

βpro

N
[|U | × |P |]− γpro[|P |] ,

d

dt
[|A|] =

βanti

N
[|U | × |A|]− γanti[|A|] ,

d

dt
[|Rinfo|] = γpro[|P |] + γanti[|A|] ,

d

dt
[|S|] = −

β∗

N
[|S| × |I|] ,

d

dt
[|I|] =

β∗

N
[|S| × |I|]− γphy[|I|] ,

d

dt
[|Rphy|] = γphy[|I|] ,

(3.1)

where we use | · | to denote cardinality and

β∗ = ([|P |]αpro + [|A|]αanti + 1− [|A|]− [|P |])βphy .

The first four equations describe the opinion dynamics. Uninformed nodes may

adopt the pro- or anti-physical-distancing opinions by interacting with a node in the

corresponding state. If a node adopts an opinion, it then can spread that opinion to

its neighbors. The last four equations in (3.1) describe disease dynamics as a variant

of the standard SIR model. The quantity β∗ is the effective transmission rate; it

depends on the relative prevalence of nodes in states P and A. To close the system,

we approximate the expectations of products with the products of expectations.

For example,

1

N
[|U | × |P |] ≈ [|U |]× [|P |] .

This provides a good approximation when N is large. Henceforth, we omit | · | to

simplify our notation.

Consider the special case in which the transmission rate βpro, recovery rate

γpro, and initial population proportion of the pro-physical-distancing opinion are

the same as the corresponding parameters for the anti-physical-distancing opinion.

In this case, the effective transmission rate is β∗ = ([P ](αanti + αpro − 2) + 1)βphy.

Because [P ] ≥ 0, it follows that β∗ ≥ βphy if and only if αanti + αpro ≥ 2.

Therefore, the spread of opinions always leads to more infections of the disease.

If αanti +αpro =2, the opinion dynamics has no effect on disease spread. This

conclusion relies on the random-recoupling assumption, which implies that the
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information-layer counterpart of any physical-layer node is equally likely to be in

any given opinion state. Because individuals hold an opinion for some time, the

sign of αanti + αpro − 2 alone does not determine whether the influence of opinions

leads to more infections or fewer infections when we consider the effects of network

structure in Sec. 5.

The epidemic threshold in a standard SIR model of disease spread is character-

ized by the basic reproduction number11,15 R0 = β/γ, which is the mean number

of secondary infections that arise from a single infectious individual in a population

in which everyone else is susceptible. An epidemic outbreak of the disease occurs

if R0 > 1. In our model, suppose that we start with a population in which most

people are susceptible and uninformed about the disease. In this case, β∗ is close to

β. In the limit in which the population becomes infinite with a vanishing fraction

of people initially holding any opinion, the epidemic threshold is the same as in the

standard SIR model and it is independent of the information layer. However, this

conclusion does not hold if too many people hold some opinion about the disease

at time 0.

Although an information contagion may not affect the epidemic threshold for

the spread of a disease, it can still have a large impact on the disease’s prevalence if

an epidemic outbreak occurs. In Fig. 4, we show an illustrative example to demon-

strate how the information layer can affect the spread of a disease. For simplicity,

we suppose that the pro- and anti-physical-distancing opinions share the same con-

tagion parameters. Figure 4(a) shows an example in which we fix the parameters

in the physical layer (on which the disease spreads) and investigate the effect of the

opinion recovery rate on the final epidemic size (i.e. the total number of people who

become infectious during the outbreak). Because we fix βinfo = 2, the opinion con-

tagion grows into an outbreak if γinfo is less than approximately 2. Consequently, all

curves for the final epidemic size converge to the same value when γinfo is at least

approximately 2. To assist our exposition, we use the term “basic size” to indicate

the final epidemic size when the disease spreads independently of opinions. Because

the effective transmission rate β∗ satisfies β∗ ≥ βphy, we expect the final epidemic

size to be no smaller than the basic size.

The final epidemic size is affected by the prevalence of the nodes in states P and

A and the relative spreading speeds of the opinions and the disease. As we increase

γinfo in Fig. 4(a), the final epidemic size tends to decrease, but it grows at first

before decreasing to the basic size. To understand this, we compare the spreading

dynamics on the two layers (see Figs. 4(b) and 4(c)). Increasing γinfo leads to a

reduction in the number of people in compartments P and A, which reduces the

adverse influence from the information layer and results in fewer people becoming

infected. Increasing γinfo also postpones the time that it takes for the physical layer

to achieve herd immunity. Specifically, it takes longer for the I compartment to

reach its maximum size. We also see that increasing γinfo from 1 to 1.5 shortens

the time difference between the opinion-prevalence peak and the disease-prevalence

peak. As the two peaks become closer to each other, we observe transient growth in
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Fig. 4. (Color online) The influence of the information layer on the physical layer depends on the
opinion recovery rates. (a) Effects of γinfo on the final epidemic size for different initial conditions.
For simplicity, we suppose that the pro- and anti-physical-distancing opinions share the same
contagion parameters for all examples in the paper. That is, βanti = βpro (which we denote by
βinfo), γanti = γpro (which we denote by γinfo), and A0 = P0, where A0 = [A](0) and P0 = [P ](0).
In the physical layer, we uniformly randomly infect a fraction I0 = [I](0) = 1 × 10−6 of the
population; the rest of the population starts in the susceptible state. The other parameters are
βphy = 1, γphy = 0.5, αpro = 0.1, αanti = 10, and βinfo = 2. To help explain the non-monotonic
curve in panel (a), we fix P0 = A0 = 1× 10−6 and examine different values of γinfo. We show the
ensuing dynamics of the fraction of the population in the P and Rinfo compartments in panel (b)
and the fraction of the population in the I and Rphy compartments in panel (c).

Fig. 4(a). When we change the initial numbers of individuals in states A and P while

fixing the initial numbers of individuals in state I in Fig. 4(a), we effectively change

the relative starting times of the opinion dynamics versus the disease dynamics,

leading to differences between the curves.

4. Dynamics on a Population with Network Structure

The random-mixing assumption and random-recoupling assumption in Sec. 3 ignore

contact patterns and oversimplify the dynamics of the spread of opinions and

diseases. In real life, both in-person contacts and online interactions have intri-

cate structural patterns53 that are far from homogeneous. Moreover, the random-

recoupling assumption mixes the effects of the pro- and anti-physical-distancing

opinions in a naive way and leads to features that contradict what we observe in

individual-level simulations. Consequently, it is necessary to differentiate between
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different opinion states within the susceptible population and analyze the dynamics

of the 12 compartments in Fig. 3. Starting in this section, we incorporate network

structure into our model and study the resulting dynamics in detail.

We develop a mean-field description of our dynamical system by generalizing the

degree-based pair approximation of Eames and Keeling17 to coupled dynamics on

multilayer networks. We assume that all nodes with the same degree are statistically

equivalent, and we estimate the expected number of nodes and the expected number

of dyads (i.e. pairs of nodes that are attached to the same edge) for each degree

and each compartment42 using a closure model. We examine the dynamics of the

spread of opinions and a disease using a mean of an ensemble of networks.56,60 We

first develop an exact ODE system that involves single, pair, and triple terms based

on the law of mass action. This system also depends on a set of time-dependent

effective transmission rates. We close the system by approximating triple terms

and the effective transmission rates using pair terms. The number of equations in

the system depends on the number of distinct degrees and is independent of the

population size.

4.1. Our dynamical system at the level of triples

Recall that we use two adjacent letters Y X to describe the state (i.e. compartment)

of an individual, where the first letter indicates the information layer and the second

letter indicates the disease layer. The two intra-layer degrees of a node are its

numbers of neighbors in the two layers. We are interested only in intra-layer degrees,

so we treat our multiplex networks as edge-colored multigraphs.43 We use Yk1
Xk2

to refer to nodes in state Y X with degree k1 in the information layer and degree k2
in the physical layer. We write the expected density of these nodes as [Yk1

Xk2
]. To

simplify our notation, we drop subscripts to indicate summation over all possible

degrees. For example, [Y Xk2
] =

∑

k1
[Yk1

Xk2
]. For ease of notation, we use one

letter and thereby specify the state only in that layer when the context is clear. For

example, Sk2
refers to susceptible nodes with degree k2 in the physical layer and

[Sk2
] refers to the expected density of these nodes.

To track the states of the neighbors of a node, we write the expected normalized

count of the dyads of nodes with states S1 and S2 as [S1 ◦ S2], where ◦ denotes an

edge and the normalized count is the number of dyads divided by the population

size. The layer of a dyad is clear from the context. For example, [Uk1
Sk2

◦ I] rep-

resents the expected normalized count of dyads in the physical layer for which one

end is attached to a Uk1
Sk2

node and the other end is attached to an infectious

node.

Given the above notation and definitions, the time evolution of the expected

density of each compartment is

d

dt
[Uk1

Sk2
] = −[Uk1

Sk2
◦ I]βphy − [Uk1

Sk2
◦A]βanti − [Uk1

Sk2
◦ P ]βpro ,
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d

dt
[Uk1

Ik2
] = [Uk1

Sk2
◦ I]βphy − [Uk1

Ik2
]γphy − [Uk1

Ik2
◦A]βanti

− [Uk1
Ik2

◦ P ]βpro ,

d

dt
[Uk1

Rk2
] = [Uk1

Ik2
]γphy − [Uk1

Rk2
◦A]βanti − [Uk1

Rk2
◦ P ]βpro ,

d

dt
[Ak1

Sk2
] = −[Ak1

Sk2
◦ I]βphyαanti + [Uk1

Sk2
◦A]βanti − [Ak1

Sk2
]γanti ,

d

dt
[Ak1

Ik2
] = [Ak1

Sk2
◦ I]βphyαanti − [Ak1

Ik2
](γphy + γanti) + [Uk1

Ik2
◦A]βanti ,

d

dt
[Ak1

Rk2
] = [Ak1

Ik2
]γphy + [Uk1

Rk2
◦A]βanti − [Ak1

Rk2
]γanti ,

d

dt
[Pk1

Sk2
] = −[Pk1

Sk2
◦ I]βphyαpro + [Uk1

Sk2
◦ P ]βpro − [Pk1

Sk2
]γpro ,

d

dt
[Pk1

Ik2
] = [Pk1

Sk2
◦ I]βphyαpro − [Pk1

Ik2
](γphy + γpro) + [Uk1

Ik2
◦ P ]βpro ,

d

dt
[Pk1

Rk2
] = [Pk1

Ik2
]γphy + [Uk1

Rk2
◦ P ]βpro − [Pk1

Rk2
]γpro ,

d

dt
[Rk1

Sk2
] = −[Rk1

Sk2
◦ I]βphy + [Ak1

Sk2
]γanti + [Pk1

Sk2
]γpro ,

d

dt
[Rk1

Ik2
] = [Rk1

Sk2
◦ I]βphy − [Rk1

Ik2
]γphy + [Ak1

Ik2
]γanti + [Pk1

Ik2
]γpro .

(4.1)

To illustrate the equations in (4.1), we briefly discuss one of them. In the first

equation, the expected number of Uk1
Sk2

nodes decreases as the nodes become

infectious or adopt one of the two opinions. The infection rate is proportional to

the number of infectious neighbors (or, equivalently, to the number of Uk1
Sk2

◦ Il
dyads). We do not track the opinion states of those infectious neighbors because we

assume that those opinions do not affect the transmission rate of the Uk1
Sk2

nodes.

The same reasoning applies to the other dyads.

We expand the right-hand side of the system (4.1) by tracking the dynamics of

node pairs, which depend on the neighbors of both nodes and thus involve triples.

Let [X ◦Y ◦Z] denote the expected normalized count of triples in which the center

node Y is adjacent to X and to Z. Analogously to the normalized count of a dyad,

we define the normalized count of a triple to be the number of triples divided by

the population size. The two edges may belong to the same layer or to different

layers; this is clear from the context. For example, Uk1
Sk2

◦Sl ◦ I refers to triples

in which the center node Sl has physical-layer neighbors with states Uk1
Sk2

and I.

Additionally, P ◦Uk1
Sk2

◦ Il refers to triples in which one edge connects Uk1
Sk2

and

P nodes in the information layer and the other edge connects Uk1
Sk2

and Il nodes

in the physical layer. We now write the evolution of the expected normalized count
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of the dyads in terms of triples terms:

d

dt
[Uk1

Sk2
◦ Il]

= [Uk1
Sk2

◦Sl ◦ I]β̂l, k2
− ([Uk1

Sk2
◦ Il] + [I ◦ Uk1

Sk2
◦ Il])βphy

− [Uk1
Sk2

◦ Il]γphy − [P ◦ Uk1
Sk2

◦ Il]βpro − [A ◦ Uk1
Sk2

◦ Il]βanti ,

d

dt
[Uk1

Sk2
◦Sl]

= −[Uk1
Sk2

◦Sl ◦ I]β̂l, k2
− [I ◦ Uk1

Sk2
◦Sl]βphy

− [P ◦ Uk1
Sk2

◦Sl]βpro − [A ◦ Uk1
Sk2

◦Sl]βanti ,

d

dt
[Uk1

Sk2
◦Al]

= −[P ◦ Uk1
Sk2

◦Al]βpro − [Uk1
Sk2

◦Al]γanti − [I ◦ Uk1
Sk2

◦Al]βphy

+([Uk1
Sk2

◦Ul ◦A]− [Uk1
Sk2

◦Al]− [A ◦ Uk1
Sk2

◦Al])βanti ,

d

dt
[Uk1

Sk2
◦Pl]

= −[A ◦ Uk1
Sk2

◦Pl]βanti − [Uk1
Sk2

◦Pl]γpro − [I ◦ Uk1
Sk2

◦Pl]βphy

+([Uk1
Sk2

◦Ul ◦ P ]− [Uk1
Sk2

◦Pl]− [P ◦ Uk1
Sk2

◦Pl])βpro ,

d

dt
[Uk1

Sk2
◦Ul]

= −([P ◦ Uk1
Sk2

◦Ul] + [Uk1
Sk2

◦Ul ◦ P ])βpro − [I ◦ Uk1
Sk2

◦Ul]βphy

− ([A ◦ Uk1
Sk2

◦Ul] + [Uk1
Sk2

◦Ul ◦A])βanti ,

d

dt
[Uk1

Ik2
◦Al]

= ([Uk1
Ik2

◦Ul ◦A]− [A ◦ Uk1
Ik2

◦Al])βanti − [P ◦ Uk1
Ik2

◦Al]βpro

+ [I ◦ Uk1
Sk2

◦Al]βphy − [Uk1
Ik2

◦Al](γphy + γanti + βanti) ,

d

dt
[Uk1

Ik2
◦Pl]

= ([Uk1
Ik2

◦Ul ◦ P ]− [P ◦ Uk1
Ik2

◦Pl])βpro − [A ◦ Uk1
Ik2

◦Pl]βanti

+ [I ◦ Uk1
Sk2

◦Pl]βphy − [Uk1
Ik2

◦Pl](βpro + γphy + γpro) ,

d

dt
[Uk1

Ik2
◦Ul]

= [I ◦ Uk1
Sk2

◦Ul]βphy − ([A ◦ Uk1
Ik2

◦Ul] + [Uk1
Ik2

◦Ul ◦A])βanti

− ([Uk1
Ik2

◦Ul ◦ P ] + [P ◦ Uk1
Ik2

◦Ul])βpro − [Uk1
Ik2

◦Ul]γphy ,
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d

dt
[Uk1

Rk2
◦Al]

= [Uk1
Ik2

◦Al]γphy − [Uk1
Rk2

◦Al]γanti − [P ◦ Uk1
Rk2

◦Al]βpro

+([Uk1
Rk2

◦Ul ◦A]− [Uk1
Rk2

◦Al]− [A ◦ Uk1
Rk2

◦Al])βanti ,

d

dt
[Uk1

Rk2
◦Pl]

= [Uk1
Ik2

◦Pl]γphy − [Uk1
Rk2

◦Pl]γpro − [A ◦ Uk1
Rk2

◦Pl]βanti

+([Uk1
Rk2

◦Ul ◦ P ]− [Uk1
Rk2

◦Pl]− [P ◦ Uk1
Rk2

◦Pl])βpro ,

d

dt
[Uk1

Rk2
◦Ul]

= [Uk1
Ik2

◦Ul]γphy − ([Uk1
Rk2

◦Ul ◦A] + [A ◦ Uk1
Rk2

◦Ul])βanti

− ([Uk1
Rk2

◦Ul ◦ P ] + [P ◦ Uk1
Rk2

◦Ul])βpro ,

d

dt
[Ak1

Sk2
◦ Il]

= [A ◦ Uk1
Sk2

◦ Il]βanti − [Ak1
Sk2

◦ Il](γphy + γanti + βphyαanti)

+ [Ak1
Sk2

◦Sl ◦ I]β̂l, k2
− [I ◦Ak1

Sk2
◦ Il]βphyαanti ,

d

dt
[Ak1

Sk2
◦Sl]

= −[Ak1
Sk2

◦Sl ◦ I]β̂l, k2
− [I ◦Ak1

Sk2
◦Sl]βphyαanti

+ [A ◦ Uk1
Sk2

◦Sl]βanti − [Ak1
Sk2

◦Sl]γanti ,

d

dt
[Pk1

Sk2
◦ Il]

= [P ◦ Uk1
Sk2

◦ Il]βpro − [Pk1
Sk2

◦ Il](γphy + γanti + βphyαpro)

+ [Pk1
Sk2

◦Sl ◦ I]β̂l, k2
− [I ◦ Pk1

Sk2
◦ Il]βphyαpro ,

d

dt
[Pk1

Sk2
◦Sl]

= −[Pk1
Sk2

◦Sl ◦ I]β̂l, k2
− [I ◦ Pk1

Sk2
◦Sl]βphyαpro

+ [P ◦ Uk1
Sk2

◦Sl]βpro − [Pk1
Sk2

◦Sl]γpro ,

d

dt
[Rk1

Sk2
◦ Il]

= [Rk1
Sk2

◦Sl ◦ I]β̂l, k2
− ([Rk1

Sk2
◦ Il] + [I ◦Rk1

Sk2
◦ Il])βphy

− [Rk1
Sk2

◦ Il]γphy + [Ak1
Sk2

◦ Il]γanti + [Pk1
Sk2

◦ Il]γpro ,

d

dt
[Rk1

Sk2
◦Sl]

= −[Rk1
Sk2

◦Sl ◦ I]β̂l, k2
− [I ◦Rk1

Sk2
◦Sl]βphy

+ [Ak1
Sk2

◦Sl]γanti + [Pk1
Sk2

◦Sl]γpro , (4.2)
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where β̂l, k2
is the expected transmission rate of the center node Sl in a triple of

the form Y Sk2
◦ Sl ◦ I.

One derives the system (4.2) using the same reasoning as in (4.1). For exam-

ple, consider the first equation in (4.2). The normalized count of the dyads

Uk1
Sk2

◦ Il decreases as Uk1
Sk2

nodes adopt one of the two opinions at rate

[P ◦Uk1
Sk2

◦ Il]βpro+[A◦Uk1
Sk2

◦ Il]βanti, is infected by Il at rate [Uk1
Sk2

◦ Il]βphy,

or is infected by infectious neighbors other than Il at rate [I ◦ Uk1
Sk2

◦ Il]βphy.

The normalized count of Uk1
Sk2

◦ Il increases as susceptible neighbors of Uk1
Sk2

are infected by their infectious neighbors at rate [Uk1
Sk2

◦Sl ◦ I]β̂l, k2
. Each dyad

in (4.2) has one node whose state we track in only one of the layers. For example,

for the dyad Uk1
Sk2

◦ Sl, we do not know the opinion state of node Sl. We need an

approximation for the disease transmission rate β̂l, k2
when node Sl is infected by

a neighbor in state I. In principle, one can track the states of both nodes on both

layers and avoid the need for this approximation. However, doing this leads to a

higher-dimensional system. We discuss the approximation of β̂l, k2
in Sec. 4.3.

In principle, one can also work out the right-hand sides for the evolution of the

expected normalized counts of the triple terms. These incorporate quadruple terms,

and if we expand those terms and keep expanding expressions for the evolution of

progressively larger network motifs (i.e. connected subgraphs), we eventually obtain

an exact dynamical system. However, it is very high-dimensional and difficult to

study. Therefore, we approximate the triple terms with pair terms on the right-hand

sides of (4.2) using the approach in Ref. 17.

4.2. Closure of the triple terms

For a given type of triple X ◦ Yk ◦Z, we assume that the neighbors of all Yk nodes

are interchangeable. Therefore, every neighbor has the same probability of being in

a given state (e.g. state X).

If both edges are in the same layer, then for nodes X and Z that are adjacent

to a center degree-k node in state Y in the same layer, it follows that

[X ◦ Yk ◦ Z] ≈ k(k − 1)[Yk]
[X ◦ Yk]

k[Yk]

[Yk ◦ Z]

k[Yk]

=
k − 1

k

[X ◦ Yk][Yk ◦ Z]

[Yk]
. (4.3)

Intuitively, nodes in state Yk have k[Yk] edges; an expected fraction [X◦Yk]
k[Yk]

of these

edges are attached to nodes in state X , and an expected fraction [Yk◦Z]
k[Yk]

of these

edges are attached to nodes in state Z. Therefore, if we choose a node in state

Yk uniformly at random, the probability that two uniformly random neighbors of

that node are in states X and Z is approximately [X◦Yk]
k[Yk]

× [Yk◦Z]
k[Yk]

when N is large.

Because there are k(k − 1) ways to choose the two neighbors, we obtain (4.3). As
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concrete examples,

[Uk1
Sk2

◦Sl ◦ I] ≈
l − 1

l

[Uk1
Sk2

◦Sl][Sl ◦ I]

[Sl]
,

[I ◦ Uk1
Sk2

◦Sl] ≈
k2 − 1

k2

[I ◦ Uk1
Sk2

][Uk1
Sk2

◦Sl]

[Uk1
Sk2

]
,

[A ◦ Uk1
Sk2

◦Al] ≈
k1 − 1

k1

[A ◦ Uk1
Sk2

][Uk1
Sk2

◦Al]

[Uk1
Sk2

]
.

Suppose instead that the two edges that connect the center node Y1,k1
Y2,k2

to

nodes in states X and Z are in different layers. If the node in state X is in the

information layer and the node in state Z is in the physical layer, we obtain

[X ◦ Y1,k1
Y2,k2

◦ Z] ≈ k1k2[Y1,k1
Y2,k2

]
[X ◦ Y1,k1

Y2,k2
]

k1[Y1,k1
Y2,k2

]

[Y1,k1
Y2,k2

◦ Z]

k2[Y1,k1
Y2,k2

]

=
[X ◦ Y1,k1

Y2,k2
][Y1,k1

Y2,k2
◦ Z]

[Y1,k1
Y2,k2

]
.

For example,

[P ◦ Uk1
Sk2

◦ Il] ≈
[P ◦ Uk1

Sk2
][Uk1

Sk2
◦ Il]

[Uk1
Sk2

]
.

One can work out approximations for the other triple terms similarly.

4.3. Approximate transmission rate

To close equations (4.1)–(4.2), we need to find an approximation of β̂l, k2
, which is

the expected transmission rate of the center node in triples of the form Y Sk2
◦Sl◦I.

We need to approximate the opinion distribution in each population of interest.

The random-recoupling assumption in Sec. 3 corresponds to setting

β̂l, k2
≈ ([U ] + [A]αanti + [P ]αpro + [R])βphy . (4.4)

However, it is possible to keep track of corresponding nodes in the two layers. A

naive approach is to weight the influence coefficients based on the densities of nodes

with different opinion states among the Sl nodes. That is,

β̂l, k2
≈

[USl] + [ASl]αanti + [PSl]αpro + [RSl]

[Sl]
βphy . (4.5)

However, the approximation (4.5) ignores the fact that the Sl node of interest has

both an intra-layer neighbor in state S and an intra-layer neighbor in state I.

Incorporating this neighborhood information yields the approximation

β̂l, k2
≈

(

[Sk2
◦ USl ◦ I] + [Sk2

◦ASl ◦ I]αanti

+ [Sk2
◦ PSl ◦ I]αpro + [Sk2

◦RSl ◦ I]
)

×
βphy

[Sk2
◦ Sl ◦ I]

. (4.6)
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We approximate the triples in (4.6) with our pair approximation:

[Sk2
◦ UkSl ◦ I] ≈

l − 1

l

[UkSl ◦ Sk2
][UkSl ◦ I]

[UkSl]
,

[Sk2
◦AkSl ◦ I] ≈

l − 1

l

[AkSl ◦ Sk2
][AkSl ◦ I]

[AkSl]
,

[Sk2
◦ PkSl ◦ I] ≈

l − 1

l

[PkSl ◦ Sk2
][PkSl ◦ I]

[PkSl]
,

[Sk2
◦RkSl ◦ I] ≈

l − 1

l

[RkSl ◦ Sk2
][RkSl ◦ I]

[RkSl]
,

[Sk2
◦ Sl ◦ I] = [Sk2

◦ USl ◦ I] + [Sk2
◦ASl ◦ I]

+ [Sk2
◦ PSl ◦ I] + [Sk2

◦RSl ◦ I] .

We expect the value of β̂l, k2
in Eq. (4.5) to be smaller than its value in Eq. (4.4).

This, in turn, leads to a smaller estimate of the disease prevalence from Eq. (4.5)

than from Eq. (4.4). Intuitively, because individuals who hold the anti-physical-

distancing opinion become infected at a higher rate, a typical susceptible individual

is less likely to have an anti-physical-distancing opinion than a member of the

population that one selects uniformly at random. Therefore, we expect that [A] ≥
[ASl]
[Sl]

. By applying analogous reasoning to individuals who hold the pro-physical-

distancing opinion, we expect that [P ] ≤ [PSl]
[Sl]

. We do not have a mathematically

rigorous understanding of how well the approximations (4.5) and (4.6) match the

Fig. 5. (Color online) Comparison of our pair approximations (PAs) based on Eqs. (4.4)–(4.6)
(the curves) with direct numerical simulations (the markers). The trajectories show the time
evolution of the infectious population. In each simulation, we generate a network with layers
that consist of 5-regular configuration-model graphs (i.e. each node has degree 5). We uniformly
randomly infect a fraction I0 = 0.01 of the nodes, and we independently and uniformly randomly
choose initial opinions such that A0 = P0 = 0.005. The displayed results are means of 100
simulations. The other parameters are βphy = βinfo = 0.6, γphy = γinfo = 1, αanti = 10, and
αpro = 0.1.
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full stochastic system (see Sec. 2 and our code in Ref. 57). We compare the three

different pair approximations of the disease prevalence that are based on Eqs. (4.4)–

(4.6) with direct numerical simulations of the full stochastic system in Fig. 5. From

this comparison, we see that the approximations (4.4) and (4.5) overestimate the

infectious population and that the approximation (4.6) matches the simulations

very well. These numerical results indicate that it is essential to track the coupling

of the nodes’ states at both ends of inter-layer edges and intra-layer edges to ensure

accurate estimation of the time evolution of disease prevalence. We use the pair

approximation (4.1, 4.2, 4.6) in our experiments in Sec. 5.

5. Computational Experiments

We now investigate our full model by simulating the stochastic system (see our code

in Ref. 57) and applying the pair approximation (4.1, 4.2, 4.6), which we henceforth

call our “PA”. We explore the influence of competing opinion contagions on the

spread of a disease for a variety of parameter values. We focus on examining differ-

ent opinion contagion parameters (see Sec. 5.1) and network structures (see Secs.

5.2 and 5.3). For ease of comparison, we consider the special case in which the pro-

and anti-physical-distancing opinions share the same contagion parameters for all

examples in our paper. Additionally, we fix the disease contagion parameters to be

βphy = 0.6 and γphy = 1. Unless we specify otherwise, we set the opinion influence

coefficients to be αpro = 0.1 and αanti = 10 to incorporate nontrivial influence of

the corresponding opinion on the spread of the disease. This asymmetry between

the pro- and anti-physical-distancing opinions affects the dynamics in an interesting

way, as we illustrate in this section. In many of the following examples, it is helpful

to separate the influence of the two opinions to gain understanding of the overall

system behavior. To do this, we suppress the influence of an opinion by setting its

influence coefficient to 1. In Sec. 5.1, we do a parameter sweep of the opinion trans-

mission parameters in the range [0, 2] to illustrate that the final epidemic size can

change non-monotonically as we increase the recovery rate of an opinion. This fea-

ture occurs in networks with a variety of degree distributions. Because of the issuing

or lifting of stay-at-home orders, people’s contact patterns in the offline world can

change a lot over the course of an epidemic (and especially a pandemic).20,76 In

Secs. 5.2 and 5.3, we show examples that illustrate that the influence of an opinion

contagion on the spread of a disease can change in important ways when we change

the intra-layer or cross-layer correlations of intra-layer degrees.

In each computational experiment, we construct a network of N = 10,000 nodes

and simulate the dynamics on it using a Gillespie algorithm,42 which is a well-known

approach for performing continuous-time simulations of Markovian processes. In all

experiments in this section, we report results as means of 200 simulations. In each

simulation, we generate a new random graph (of a few different types, which we

specify below). We uniformly randomly infect I0 = 1% of the nodes in the physical

layer, and we independently and uniformly randomly choose A0 = P0 = 0.5% nodes
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as anti- or pro-physical-distancing in the information layer. We set all remaining

node states to S in the physical layer and to U in the information layer. Henceforth,

unless we state otherwise, we use these choices of initial states in our numerical

computations.

In our initial experiments, we construct each network layer from a configuration

model21 and match the nodes from the two layers uniformly at random. Specifically,

we specify degree distributions Pinfo and Pphy, which need not be the same. For

each layer, we sample a degree sequence {ki} (where i ∈ {1, . . . , N} indexes the

nodes) from the corresponding degree distribution; therefore, node i has ki ends of

edges (i.e. stubs). We match these stubs uniformly at random to form a network.

Correspondingly, in the pair approximation, we have

[Yk1
Xk2

](0) = Y0X0Pinfo(k1)Pphy(k2) ,

[Yk1
Xk2

◦ Zk3
](0) =

{

[Yk1
Xk2

](0)× Z0Pinfo(k3)k1k3/〈kinfo〉 , Z ∈ {U, P, A, Rinfo}

[Yk1
Xk2

](0)× Z0Pphy(k3)k2k3/〈kphy〉 , Z ∈ {S, I, Rphy} .

In Fig. 6, we compare typical disease prevalence curves (i.e. the time evolution of

infectious populations) when we choose different coefficients for the influence of the

opinions. The influence from the information layer changes a disease’s prevalence, its

peak value, and the time at which the peak number of infections occurs. Although

an opinion does not alter the susceptibility of individuals to infection when the

corresponding influence coefficient is 1, the spread of that opinion can still indirectly

affect the overall disease dynamics, which thus can be different from the dynamics

in a system with only one opinion. For example, in Fig. 6(a), the purple curve

with triangle markers (for which αanti = 1 and αpro = 0.1) has a higher disease

prevalence than the green curve with plus signs (for which αpro = 0.1 and the anti-

physical-distancing opinion is absent). The spread of the anti-physical-distancing

opinion prevents some people from adopting the pro-physical-distancing opinion,

although the anti-physical-distancing opinion has an influence coefficient of 1. We

show the dynamics on the information layer in Figs. 6(b) and 6(c).

5.1. Opinion contagion parameters

Recall from Sec. 3 that in a fully-mixed population with αpro + αanti > 2, the

information layer leads to a larger epidemic size than when there is no influence

from the information layer. We repeat the experiment in Fig. 4, but now we have a

network structure and we employ our PA. We again consider the scenario in which

the anti- and pro-physical-distancing opinions have the same contagion parameter

values; we denote this situation using the subscript “info”. Figure 7(a) shows final

epidemic sizes versus the recovery rate γinfo in the information layer for the following

three situations: (1) all nodes have degree 5 (i.e., we consider 5-regular graphs); (2)

all node degrees follow a Poisson distribution with mean 5; and (3) all node degrees

follow a truncated power-law distribution with P(k = x) ∝ x−1.32e−x/35 for x ≤ 50
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Fig. 6. (Color online) Dynamics for different opinion influence coefficients. (a) Disease prevalence
curves for different influence coefficients, including when the anti-physical-distancing opinion is
absent (which we denote by “anti = None”). In (b, c), we show the dynamics on the information
layer when (b) both opinions are present and (c) only the pro-physical-distancing opinion is
present. We construct each layer from a configuration model with a degree sequence that we choose
from a Poisson degree distribution with mean degree 5. The other parameters are βphy = βinfo =
0.6, γphy = 1, and γinfo = 0.1. The curves (respectively, markers) indicate results from the PA
(respectively, from means of 200 direct simulations).

and P(k = x) = 0 for x > 50. In each situation, we generate both layers using

configuration-model networks and we independently sample degrees for each layer

from the same distribution. The mean degree is roughly 5 in all three situations. In

all three situations, the final epidemic size can be smaller than the corresponding

basic size (i.e. without opinion spread) when γinfo is very small. As we increase γinfo,

the final epidemic size first increases and surpasses the basic size before reaching a

peak; it subsequently decreases to the basic size.

To explain this non-monotonic behavior, we decompose the recovered popula-

tion at steady state into subpopulations based on their opinion states when they

become infectious and plot the relative size of each subpopulation (with a sum that

is normalized to 1) in Fig. 7(b). We use U , A, P , and R to denote the subpop-

ulations that become infectious when they are in the U , A, P , and Rinfo states,

respectively. We show results when both layers are 5-regular graphs. Our results on
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(a) Final epidemic size (b) Decomposition of opinion states

Fig. 7. (Color online) Influence of the opinion recovery rate γinfo on disease prevalence and on
the distribution of opinion states when nodes become infectious. (a) The final epidemic size for
different values of γinfo. The solid curves and non-circle symbols mark the final epidemic sizes when
there is influence from the information layer. The dashed curves and circles mark the basic size. We
consider three situations: (1) each layer is a 5-regular graph; (2) all node degrees follow a Poisson
distribution with mean 5; and (3) all node degrees follow a truncated power-law distribution with
P(k = x) ∝ x−1.32e−x/35 for x ≤ 50 and P(k = x) = 0 for x > 50. We construct each layer
from a configuration model with a degree sequence from the specified degree distribution. The
other parameters are βphy = βinfo = 0.6, γphy = 1, αanti = 10, and αpro = 0.1. (b) We group
recovered nodes based on their opinion states when they become infectious (we use the notation
U , P, A, and R for these subpopulations) and plot the normalized size. We show results for 5-
regular configuration-model graphs. The curves (respectively, markers) indicate results from the
PA (respectively, from means of 200 direct simulations).

networks with the Poisson and truncated power-law distribution are qualitatively

the same. Because increasing opinion recovery rates results in fewer people adopt-

ing any opinion, the size of the U subpopulation increases (i.e. more people become

infected while uninformed). For the same reason, the sizes of the subpopulations

with the anti- and pro-physical-distancing opinions decrease with increasing opinion

recovery rates. The size of the R subpopulation first increases as we increase γinfo.

This occurs because when γinfo is very small, many people keep the same opinion (P

or A) until the disease dies out in the population. When we start to increase γinfo,

more people recover from an opinion when the disease is still actively spreading.

Because people who abandon the pro-physical-distancing opinion increase their risk

of becoming infected, the overall epidemic size may increase when they become less

cautious. As γinfo grows, fewer nodes adopt an opinion; this, in turn, leads to a

smaller R subpopulation and a drop in the overall epidemic size.

The non-monotonic behavior that we described above suggests that if enough

people hold the pro-physical-distancing opinion for a sufficiently long time, the

prevalence of a disease can decrease, even when the anti-physical-distancing opin-

ion has an arbitrarily large influence coefficient. When both opinions are present,

the overall influence of opinions on disease spread is not determined by the two

influence coefficients alone; instead, it arises from a complex interaction between

the dynamics of the two opinions.
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Fig. 8. (Color online) The final epidemic size minus the basic size for different values of the
opinion contagion parameters for our PA on networks with layers that consist of 5-regular
configuration-model graphs. We fix the other parameters to be βphy = 0.6, γphy = 1, αanti = 10,
and αpro = 0.1.

We plot the final epidemic size minus the basic size in Fig. 8 for different values

of the opinion transmission rates and opinion recovery rates. For fixed opinion

recovery rates, the final epidemic size does not change much as we vary the opinion

transmission rates if the information layer has an outbreak. The results in Fig. 8

are outputs of our PA on 5-regular configuration-model graphs.

5.2. Random graphs with intra-layer degree–degree correlations

Many nodes in a network having intra-layer edges to other nodes of similar

degrees (i.e. the network is assortative by degree,52,54 which is often called simply

“assortative”) can have a strong impact on disease spread and other dynamical

processes.41,48 Such assortative networks may have a core with large-degree nodes,

so a disease may spread faster but terminate with a smaller final epidemic size on

such a network than on a disassortative network.51,54 In this subsection, we inves-

tigate how differences in assortativity structure, which we encode in an intra-layer

degree–degree correlation matrix, can influence the dynamics of our model.

For all experiments in this subsection, we generate networks with intra-layer

degree–degree correlations using a model from Melnik et al.48 For each of the

two layers in the network, we start with a mixing matrix E that specifies the

joint distribution of degrees at both ends of an edge that we choose uniformly

at random. The number of edges that connect nodes with degrees k and k′ is

Ek, k′ = Ek,k′

∑

k(kpk)N/2, where pk =
(
∑

k′

Ek, k′

k

)

/
(
∑

k, k′

Ek, k′

k

)

specifies the

degree distribution and we recall that N is the number of nodes. We first create the

required number of edges that will connect node pairs with specified combinations of

the degrees k and k′. We then generate nodes by selecting k ends of edges uniformly

at random from those that are prescribed to attach to degree-k nodes. We obtain
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networks with the desired degree–degree correlation when we finish attaching all

ends of edges to nodes.

Because we track the expected number of edges with all possible degree com-

binations explicitly and separately in the PA system, we only need to modify the

initialization step to encode the desired intra-layer degree–degree correlation. For

example, we let [Uk ◦ Pl](0) = Einfo, k, l × (1 − P0 − A0)P0, where Einfo, k, l denotes

the number of edges that connect degree-k and degree-l nodes in the information

layer. We initialize the physical layer and the information layer independently, so

[Uk1
Sk2

◦Pl](0) = [Uk1
◦ Pl](0)× Pphy(k2)× (1− I0). We initialize the other dyads

similarly.

5.2.1. Pedagogical example: Networks whose nodes have

one of two different degrees

To illustrate the importance of intra-layer degree–degree correlations, we consider

a simple example of a network whose nodes have one of two different degrees. Its

degree distribution is P(k = k1) = p1 and P(k = k2) = p2, where p1 + p2 = 1. The

mixing matrix is

E =

⎡

⎢

⎢

⎢

⎣

a
k1p1
〈k〉

− a

k1p1
〈k〉

− a
k2p2 − k1p1

〈k〉
+ a

⎤

⎥

⎥

⎥

⎦

, (5.1)

where a ∈
[

max
{

0, k1p1−k2p2

〈k〉

}

, k1p1

〈k〉

]

and 〈k〉 denotes the mean degree. We calcu-

late the assortativity coefficient rintra, which is given by the Pearson correlation

coefficient of the degrees at the two ends of an edge that we choose uniformly at

random. Given the mixing matrix (5.1), the assortativity coefficient rintra is linear

in a and is given by

rintra =
a− k21p

2
1/〈k〉

2

k1k2p1p2/〈k〉2
.

Figure 9 shows two typical sets of curves for the final epidemic size for different

values of the intra-layer degree–degree correlation. We fix k1 = 2 and k2 = 8, and we

assign 40% of the nodes to have degree 2 in Fig. 9(a) and 90% of them to have degree

2 in Fig. 9(b). We set the intra-layer degree–degree correlations to be the same in the

two layers. The blue circles indicate the influence of degree assortativity on disease

spreading when the disease spreads independently of opinions. The decreasing trend

in Fig. 9(a) and in the right part of Fig. 9(b) is consistent with the known result41,51

that a disease tends to affect a smaller fraction of a population in an assortative

network than in a disassortative network when an epidemic outbreak occurs. The

increasing trend in the left part of Fig. 9(b) arises from the fact that the disease

is initially impeded from spreading because of the disassortative structure and a

denser network helps the disease to spread and persist. Similar trends also occur in
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Fig. 9. (Color online) The final epidemic size depends on the intra-layer degree–degree corre-
lations. We generate each layer independently using a generalization of a configuration-model
network with the procedure that we described in the text. Each layer consists of nodes with degrees
2 and 8, and the intra-layer degree–degree correlation is the same in the two layers. The other
parameters are βphy = βinfo = 0.6, γphy = 1, and γinfo = 0.1. The curves (respectively, markers)
indicate results from our PA (respectively, from means of 200 direct simulations).

Fig. 10. (Color online) Prevalence curves from our PA for different intra-layer degree–degree
correlations in networks with Pinfo(k = 2) = Pphy(k = 2) = 0.4 and Pinfo(k = 8) = Pphy(k =
8) = 0.6. We generate each layer independently using a generalization of a configuration-model
network with the procedure that we described in the text. The upper row shows the (identical)
dynamics of the fraction of individuals in the P and A states. The lower row shows the dynamics
of the population in the I state. The solid curves show results when (left) αanti = 10 and αpro = 1
and (right) αanti = 1 and αpro = 0.1. The dashed curves indicate results without any opinion
contagion. The other parameters are βphy = βinfo = 0.6, γphy = 1, and γinfo = 0.1. Curves with
the same color share all parameters except opinion influence coefficients.
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the information layer, so if outbreaks do occur on both layers, an opinion contagion

has a smaller impact when networks have a larger degree assortativity (as we see in

both panels of Fig. 9). In Fig. 10, we compare the disease prevalence curves with and

without the influence of each opinion for networks with Pinfo(k = 2) = Pphy(k =

2) = 0.4. The results demonstrate that disassortative structures tend to enhance

the influence of both the pro- and anti-physical-distancing opinions. When both

opinions have nontrivial effects on the transmission of a disease, the overall effect

of the opinion dynamics on the disease dynamics is a complicated combination of

the dynamics of the opinions; in this situation, it is unclear whether an assortative

or a disassortative structure promotes the spread of the disease.

The intra-layer degree–degree correlations in the two layers need not be the

same. Figure 11 shows heat maps of the final epidemic size from our PA for different

values of the two degree–degree correlations, which we vary independently in each

layer. The issuance of a stay-at-home order may lead to a physical layer with many

small-degree nodes, and such an order is not likely to affect the information layer

(which may describe online contacts). Therefore, we also consider the case with

Pinfo(k = 2) = 0.4 and Pphy(k = 2) = 0.9. We show the results for this case in the

third row of Fig. 11. In this example, the physical-layer network structures have

a stronger influence on the disease dynamics than the information-layer network

structures.

5.3. Random graphs with cross-layer correlations

of intra-layer degrees

We also investigate the influence of cross-layer correlations of intra-layer degrees

on the dynamics. We refer to such correlations as “inter-layer degree–degree corre-

lations”. People who are active on social-media platforms may also have frequent

offline social contacts, and vice versa.1 Let C denote the inter-layer degree–degree

correlation matrix, so Ck1, k2
is the probability that a node that we choose uniformly

at random has degree k1 in the information layer and degree k2 in the physical layer.

We say that these nodes are “of type (k1, k2)”. An uncorrelated model corresponds

to Ck1, k2
= Pinfo(k1)Pphy(k2). We uniformly randomly pair N × Ck1, k2

degree-k1
nodes from the information layer with the same number of degree-k2 nodes from

the physical layer to construct a network with N nodes and a specified inter-layer

degree–degree correlation.

As with the situation in Sec. 5.2, a PA can deal with inter-layer degree–degree

correlations properly as long as we build them into the initial conditions. The

modification of the PA is straightforward. For example, we write

[Uk1
Sk2

](0) = Ck1 k2
(1−A0 − P0)(1− I0) ,

[Uk1
Sk2

◦ Il](0) = [Sk2
◦ Il](0)×

Ck1 k2

Pphy(k2)
× (1 −A0 − P0) .

We use similar formulas for the other pairs.
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(a) Pinfo(k = 2) = Pphy(k = 2) = 0.4

(b) Pinfo(k = 2) = Pphy(k = 2) = 0.9

(c) Pinfo(k = 2) = 0.4, Pphy(k = 2) = 0.9

Fig. 11. (Color online) Heat maps of the final epidemic size from our PA as we vary the assor-
tativities in the two layers. The three columns have parameter values of (left) αpro = 0.1 and
αanti = 10, (center) αpro = 0.1 and αanti = 1, and (right) αpro = 1, and αanti = 10. The other
parameters are βphy = βinfo = 0.6, γphy = 1, and γinfo = 0.1.

5.3.1. Pedagogical example: Networks whose nodes have

one of two different degrees

We again suppose that nodes have one of two different degrees in each layer. These

degrees are kinfo, 1, kinfo, 2, kphy, 1, and kphy, 2, where Pinfo(k = kinfo, 1) = q1 and

Pphy(k = kphy, 1) = q2. The correlation matrix C is
[

a q1 − a

q2 − a 1− q1 − q2 + a

]

, (5.2)

where a ∈ [min{0, q1 + q2 − 1}, min{q1, q2}]. The Pearson correlation coefficient is

rinter =
(kinfo, 1 − kinfo, 2)(kphy, 1 − kphy, 2)(a− q1q2)

σinfoσphy
,

where σinfo and σphy denote the standard deviations of the degrees in the two layers.
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Fig. 12. (Color online) The final epidemic size depends on the inter-layer degree–degree corre-
lation. Both layers have nodes of degrees 2 and 8, and we set Pinfo(k = 2) = Pphy(k = 2) = 0.5.
We generate each layer using the procedure in Sec. 5.2. We couple the two layers following the
approach in Sec. 5.3. We set the intra-layer degree–degree correlation of both layers to be (a)
−0.25 and (b) 1. The other parameters are βphy = βinfo = 0.6, γphy = 1, and γinfo = 0.1. The
curves (respectively, markers) show results from our PA (respectively, from means of 200 direct
simulations).

Figure 12 shows the dependence of the final epidemic size on the inter-layer

degree–degree correlations. Each of the two layers has nodes of degrees 2 and 8,

and we set Pinfo(k = 2) = Pphy(k = 2) = 0.5. We generate each layer independently

with a generalization of a configuration-model network following the procedure in

Sec. 5.2. We suppose either that both intra-layer degree–degree correlations are

−0.25 or that both intra-layer degree–degree correlations are 1, and we couple the

two layers as described above.a The pro-physical-distancing opinion has a larger

influence when the two layers are more positively correlated. (See the red curves

with square markers.) However, the anti-physical-distancing opinion’s influence can

either decrease or increase as we increase the inter-layer degree–degree correlation.

(See the purple curves with asterisk markers.)

To understand the trends in Fig. 12, we again decompose the population based

on their opinion states (see Fig. 13). Recall that U , A, P , and R denote the sub-

populations that become infectious when they are in the U , A, P , and Rinfo states,

respectively. Additionally, we decompose the U and A subpopulations based on

node degrees and plot the fraction of the population in each group in Fig. 14. We

examine the effects of negative intra-layer degree–degree correlations in Figs. 13(a)

and 14(a,c), and we examine the effects of positive intra-layer degree–degree corre-

lations (which we will discuss first) in Figs. 13(b) and 14(b,d). In our discussion, it

is instructive to consider the case of two independent layers (i.e. αpro = αanti = 1).

aA layer with an intralayer degree–degree correlation of 1 has more than one component.
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The inter-layer degree–degree correlation changes the opinion distributions, but the

final epidemic size stays the same. We investigate the influence of opinions and how

such influence depends on the inter-layer degree–degree correlation.

We first examine the case in which the intra-layer degree–degree correlation

is 1 and node opinions do not affect the spread of the disease. A positive inter-

layer degree–degree correlation encourages the coupling of large-degree nodes in the

two layers; these nodes have larger probabilities than small-degree nodes both of

becoming infected and of forming an opinion. Therefore, as we increase the inter-

layer degree–degree correlation, fewer nodes are uninformed when they catch the

disease. Figure 14(b) shows the decomposition of the U subpopulation based on

the degrees of its nodes. Because the degree-2 nodes are adjacent only to other

degree-2 nodes in each layer, they are rarely infectious and rarely form an opinion.

Therefore, the U subpopulation consists primarily of nodes of types (2, 8) and (8, 8).

As we increase the inter-layer degree–degree correlation, there are more (8, 8)-type

nodes and fewer (2, 8)-type nodes in the network. Because U8-nodes (i.e. nodes

that are uninformed and have degree 8 in the information layer) have a larger

probability of forming an opinion than U2-nodes, fewer nodes become infected while

still uninformed as we increase the correlation.

If we perturb the influence coefficients αanti and αpro from 1, the opinions on the

information layer directly affect the A and P subpopulations, respectively, through

modified infection risks. These modified risks then influence the speed of disease

spread and affect the other subpopulations. Therefore, the information layer has

a larger effect on the disease dynamics when more people become infected while

holding some opinion. Based on our discussion above, we expect that increasing

the inter-layer degree–degree correlation amplifies the influence of opinion spread

on disease dynamics.

We now examine the case in which either the pro-physical-distancing opinion or

the anti-physical-distancing opinion has a nontrivial influence on disease dynam-

ics. For simplicity, we suppose that only one opinion is effective. When αpro < 1,

the spread of the pro-physical-distancing opinion protects people who adopt that

opinion because it suppresses the spread of the disease. In Fig. 13(b), we see that the

U subpopulation tends to decrease faster and that the P and A subpopulations tend

to increase slower in this situation than when the disease spreads independently of

opinions. Therefore, the final epidemic size decreases as we increase the inter-layer

degree–degree correlation. When αanti > 1, the anti-physical-distancing opinion

accelerates the spread of the disease. Therefore, more people become infected before

their opinions change; this, in turn, leads to a larger U subpopulation and smaller

A, P , and R subpopulations. The growing gap between the dashed purple curve

and the dashed blue curve (i.e. between the U subpopulations for different param-

eter values) in Fig. 13(b) illustrates the increase in the epidemic size as we increase

the inter-layer degree–degree correlation.

The situation is more intricate when the intra-layer degree–degree correlation

is −0.25 in each layer. Because the intra-layer edges now can connect degree-2
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Fig. 13. (Color online) Decomposition of the opinion states of nodes that eventually become
infectious and recover. We group the recovered population based on their opinion states when they
become infectious. Recall that the associated subpopulations are U , P, A, and R. The vertical axis
indicates the fraction of the population in each of these subpopulations. We plot the subpopulation
sizes versus the inter-layer degree–degree correlation from our PA. The intra-layer degree–degree
correlation is (a) −0.25 and (b) 1. The other parameters are βphy = βinfo = 0.6, γphy = 1, and
γinfo = 0.1.

nodes to degree-8 nodes, the former are more likely both to become infectious and

to adopt an opinion than when the intra-layer degree–degree correlations are 1.

Therefore, when αanti = αpro = 1, nodes of types (8, 2) and (2, 2) constitute a larger

proportion of the U subpopulation in Fig. 14(a) than in Fig. 14(b). As we increase

the inter-layer degree–degree correlation, the U subpopulation has progressively

more nodes with degree 2 in the physical layer because there are gradually fewer

(8, 2)-type nodes and gradually more (2, 2)-type nodes and it is more difficult for

the (2, 2)-type nodes to form an opinion. Consequently, the decreasing trend in the

U subpopulation (see the dashed blue curve) in Fig. 13(a) is less drastic than in

Fig. 13(b).

When αanti > 1, the A subpopulation in Fig. 13(a) (see the purple curve with

asterisk markers) has qualitatively different dynamics than in Fig. 13(b). This dif-

ference arises from the influence of opinions on degree-2 nodes in the physical layer.

Nodes that adopt the anti-physical-distancing opinion now have a larger infection

risk than when αanti = 1, so we expect more nodes to become infected while holding

the anti-physical-distancing opinion. In Fig. 14(c), we see that the anti-physical-

distancing opinion leads to an increase in the numbers of nodes of types (8, 2) and

(2, 2) in the A subpopulation as we increase αanti from 1 to 10. Moreover, as we

increase αanti from 1 to 10, the increase in the number of (8, 2)-type nodes in the A

subpopulation when the inter-layer degree–degree correlation is −1 is larger than

the increase in the number of (2, 2)-type nodes in that subpopulation when the

inter-layer degree–degree correlation is 1. This phenomenon arises because degree-

8 nodes are more likely than degree-2 nodes to adopt an opinion. This, in turn,

leads to a decrease of the A subpopulation and ultimately to a decrease of the

total epidemic size as we increase the inter-layer degree–degree correlation. The
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Fig. 14. (Color online) Decomposition based on the degrees of the nodes that eventually become
infectious and recover. We decompose (a, b) the U subpopulation and (c, d) the A subpopulation
by degree. The vertical axes indicate the fraction of the population in each subpopulation. We
show the changes in subpopulation size versus the inter-layer degree–degree correlation from our
PA. The other parameters are βphy = βinfo = 0.6, γphy = 1, and γinfo = 0.1.

anti-physical-distancing opinion does not lead to a clear increase in the number

of degree-8 nodes in the A subpopulation. One plausible explanation is that the

degree-8 nodes are already very likely to become infected at the baseline trans-

mission rate of the disease. Additionally, the anti-physical-distancing opinion does

not lead to an increase in the numbers of nodes of types (8, 2) or (2, 2) when the

intra-layer degree–degree correlation is 1 (see Fig. 14(d)). We conjecture that this

is because the positive intra-layer degree–degree correlation imposes sufficiently

strong constraints so that it is difficult for nodes with degree 2 in the physical layer

to become infected even when the transmission rate is high.

6. Modeling Temporary Immunity to Opinions

In previous sections, we assumed that people who adopt a pro- or anti-physical-

distancing opinion develop immunity to both opinions after they recover. More

generally, the opinions of individuals can change back and forth.27 In this section,

we extend the opinion dynamics to an SIRS process (see Fig. 15). With conversion
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Fig. 15. Schematic illustration of the dynamics on the information layer with temporary immu-
nity to opinions. The transitions are the same as in Fig. 1, except that nodes in state Rinfo

transition to state U at rate τ .

Fig. 16. (Color online) The final epidemic size minus the basic size as we vary γinfo, βinfo, and
τ in direct simulations of our refined model. We generate each layer using a configuration-model
network with a Poisson degree distribution with a mean degree of 5. The other parameters are
βphy = 0.6, γphy = 1, αanti = 10, and αpro = 0.1. Each panel is a mean of 600 simulations.

rate τ , nodes in the Rinfo compartment return to the U compartment and again

become susceptible to the pro- and anti-physical-distancing opinions. When τ = 0,

this refined model reduces to the model in Sec. 2 (see Fig. 1).

Figure 16 shows the final epidemic size minus the basic size as we vary the

contagion parameters τ , γinfo, and βinfo in direct simulations of our refined model.

For a fixed value of τ , we obtain a heat map that is similar to the one in Fig. 8. As we

increase τ , our simulations suggest that the overall influence from the information

layer increases. For fixed values of γinfo and βinfo, the colors in the heat map become

brighter (respectively, darker) from left to right because the spread of opinions leads

to a decrease (respectively, increase) in the final epidemic size in comparison to the

basic size as we increase τ .

Consider the case βinfo = 2, where the effect of τ is particularly evident. Fig-

ure 17(a) shows the influence of τ on the final epidemic size for a few values of

γinfo. It is hard to see the trend when γinfo = 1 because of the stochasticity of

the simulations, but the behavior of the other three curves is consistent with that

of Fig. 16. As we increase τ , the expected duration that individuals stay in the

Rinfo state decreases. Consequently, as we increase τ in Fig. 17(b), the size of the

R subpopulation decreases and sizes of the other subpopulations (U , A, and P)

increase.
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(a) Final epidemic size (b) Decomposition of opinion states

(c) Fractions of the population that adopt (i)
both opinions and (ii) at least one opinion

(d) Fractions of the population that are
infected during their second or subsequent
time that they adopt an opinion (the
second and subsequent opinions need not
be the same as prior opinions)

Fig. 17. (Color online) Influence of the opinion recovery rate γinfo and the conversion rate τ on
the final epidemic size and on the opinion distribution when we consider SIRS dynamics in the
information layer. (a) The influence of τ on the final epidemic size. We decompose the recovered
population based on their opinion states when they become infected and plot the sizes of these
subpopulations in (b). In (c, d), we show additional opinion-distribution statistics; we specify
them in the subtitles. We generate each layer using a configuration model with a Poisson degree
distribution with a mean degree of 5. The curves show means of 200 direct simulations with
βphy = 0.6, γphy = 1, βinfo = 2, αpro = 0.1, and αanti = 10.

We conjecture that the overall influence (i.e. whether increasing τ leads to more

or fewer disease infections) depends on whether people tend to adopt an opinion that

departs from their earlier opinion(s). If individuals tend to adopt different opinions

over time, increasing τ makes the model with SIRS opinion dynamics exhibit behav-

ior that resembles what we observed after applying the random-recoupling assump-

tion (see Sec. 3) and leads to more people adopting the anti-physical-distancing

opinion at an earlier time. Susceptible individuals are likely to become infected when
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they adopt the anti-physical-distancing opinion, regardless of whether or not they

have previously adopted the pro-physical-distancing opinion. Consequently, increas-

ing τ leads to more disease infections. However, if people tend to adopt the same

opinion over time, susceptible individuals who adopt the pro-physical-distancing

opinion also are more likely to avoid future infections. In this case, enforcing a

faster reversion to the U state has a similar effect as decreasing γinfo, which (as we

showed in Sec. 5.1) may help suppress disease spreading. Figure 17(c) shows the

fractions of individuals who adopt (i) both opinions and (ii) at least one opinion

within the time frame of our experiments for γinfo = 0.2 and γinfo = 2. Many fewer

people adopt both opinions when γinfo = 0.2 than when γinfo = 2. Additionally,

as we increase τ , there is only a slightly increasing trend in the fraction of people

who adopt both opinions for γinfo = 0.2, in contrast to the rapid growth of the

fraction for γinfo = 2. Intuitively, a node that adopts one opinion can influence

more neighbors when γinfo is smaller. Therefore, it is more likely to adopt the same

opinion later. Suppose that a node holds an opinion when it becomes infected on

the physical layer, and suppose that this is not the first opinion that it has held

(i.e. it previously returned to the U state in the information layer). In Fig. 17(d),

we examine the counts of these individuals for both opinions as a function of τ .

Consistent with our conjecture, as we increase τ , we observe a larger increase of

the fraction of the population that holds the anti-physical-distancing opinion when

γinfo = 2 than when γinfo = 0.2.

7. Conclusions and Discussion

We studied the influence of the spread of competing opinions on the spread of a dis-

ease. We assumed that pro- and anti-physical-distancing opinions circulate within

a population and affect the spread of the disease. We developed a degree-based

pair approximation for the time evolution of the expected number of individuals in

different compartments and used it to study dynamics on heterogeneous networks

with specified inter-layer and intra-layer degree–degree correlations. We examined

different approximation schemes for the effective transmission rate of susceptible

individuals in the physical layer (on which a disease spreads). We found that the

distribution of the opinions of the nodes in a given disease state is correlated both

with their own disease states and with the disease states of their neighbors in the

physical layer.

Through extensive numerical simulations, we showed that the opinion conta-

gions in our model can either increase or decrease the disease transmission speed,

the peak infection counts, and the number of people who become infected. We

demonstrated that the overall impact of the opinion dynamics on disease preva-

lence depends not only on the opinion influence coefficients, but also on the network

structure and on how the opinions couple to the spread of the disease.

We found that lengthening the duration (through decreasing the opinion recov-

ery rate) over which people adopt opinions — whether in favor of or against physical
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distancing — may help suppress disease transmission. We also saw that physically

distancing for too short a duration may still entail a high infection risk; this is

well-known for models of infectious diseases with a fully-mixed population.7,10 We

observed that the benefit of a long opinion-adoption period is reinforced when we

let the spread of opinions follow SIRS dynamics instead of SIR dynamics. Allowing

people to become susceptible to opinions after having a previous opinion helps cre-

ate neighborhoods in a network’s information layer in which adjacent nodes tend

to adopt the same opinion over time. Consequently, people who adopt the pro-

physical-distancing opinion are more likely to adopt it again later. Although the

same phenomenon applies to the spread of the anti-physical-distancing opinion, the

difference in the influence of the two opinions on disease transmission rates leads

to an asymmetry in their influence on disease prevalence.

Our work examines both beneficial and harmful effects of the spread of opinions

on other dynamical processes (such as the spread of a disease). There are many

ways to build on our research. Although two competing opinions can have differ-

ent contagion parameters, we only showed results in which these parameters are

identical. One can also study our model when the two competing opinions spread

asymmetrically. We also assumed a unidirectional influence from the information

layer to the physical layer, but disease states can also influence opinion states,24,68

and one can incorporate such coupling. Additionally, time-dependent network struc-

tures in which node states coevolve with network structures60,63 are relevant for

behavioral changes when individuals adopt opinions about physical distancing. Such

time-dependent networks allow one to model changes in contact patterns due to

lockdowns and stay-at-home orders. One can also consider additional opinions (e.g.

opinions on vaccines) in conjunction with more complex disease dynamics due to

vaccines65 and variants.
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power of a good idea: Quantitative modeling of the spread of ideas from epidemiolog-
ical models, Physica A 364 (2006) 513–536.

9. S. Bikhchandani, D. Hirshleifer and I. Welch, A theory of fads, fashion, custom, and
cultural change as informational cascades, J. Political Econ. 100 (1992) 992–1026.

10. M. C. Bootsma and N. M. Ferguson, The effect of public health measures on the
1918 influenza pandemic in U.S. cities, Proc. Natl. Acad. Sci. USA 104 (2007) 7588–
7593.

11. F. Brauer, C. Castillo-Chavez and Z. Feng, Mathematical Models in Epidemiology,
Vol. 32 (Springer-Verlag, 2019).
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