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Abstract—The construction and application of knowledge
graphs have seen a rapid increase across many disciplines in re-
cent years. Additionally, the problem of uncovering relationships
between developments in the COVID-19 pandemic and social me-
dia behavior is of great interest to researchers hoping to curb the
spread of the disease. In this paper we present a knowledge graph
constructed from COVID-19 related tweets in the Los Angeles
area, supplemented with federal and state policy announcements
and disease spread statistics. By incorporating dates, topics, and
events as entities, we construct a knowledge graph that describes
the connections between these useful information. We use natural
language processing and change point analysis to extract tweet-
topic, tweet-date, and event-date relations. Further analysis on
the constructed knowledge graph provides insight into how tweets
reflect public sentiments towards COVID-19 related topics and
how changes in these sentiments correlate with real-world events.

I. INTRODUCTION

The past decade has seen a rapid increase in Knowledge

Graph construction and analysis due to its vast industrial and

scientific applications [1]. Knowledge graphs use a directed

graph structure to store and represent semantically structured

information, granting it many unique strengths over other

methods of data representation. Researchers can analyze rela-

tions between data, manipulate and expand the database with

ease, and quickly perform navigational operations. Nodes in

the graph represent objects and often store auxiliary attributes

about them, and edges represent relations between objects.

Moreover, techniques exist to embed the structure in vector

spaces, allowing semantic analysis, knowledge classification

and conventional graph learning methods. For a detailed de-

scription of common knowledge graph practices, applications

and techniques, see [1]–[3]. A well-known knowledge graph

is the Google Knowledge Graph [4]. Other notable examples

are DBpedia [5], Freebase [6], Wikidata [7] and YAGO [8],

large open source databases of public data.
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To answer questions related to the spread of COVID-19

and the evolution of the sentiment of people in relation to

COVID-19, we construct a knowledge graph using Twitter

data from Los Angeles, as well as federal and state policy

announcements, and disease spread statistics.1 Since the onset

of the novel coronavirus pandemic, researchers from a breadth

of academic disciplines have been interested in tracking the

interaction between developments in the pandemic and social

media use. Specifically, they would like to understand the

interaction between world events, COVID-19 policy announce-

ments, and the sentiment of people. A knowledge graph is

well-suited for this task, as it can accurately represent the

content of social media data and news announcements while

preserving the underlying structure of the social network and

the relationships between entities.

Our analysis of this dataset shows that public opinions

on Twitter closely reflects real-world events suggesting that

content on social media is strongly connected to real-world

events. By topic modelling, we extract hotly discussed topics

on Twitter with associated keywords. Through sentiment anal-

ysis and change point detection, we relate temporal changes

in the sentiment in each topic with important dates of real-

world events. By incorporating COVID-19 policies, world

events, tweets, topics, and other entities into the graph, and

using edges to represent their immediate relations, one can

detect relations between any two entities through a walk in the

graph. We can use node similarity to examine how closely two

entities are related, and link prediction to predict or negate the

existence of a relation between two entities. We also classify

the topics into groups through community detection. Thus, we

are able to relate topics that are frequently mentioned at the

same time or by same group of users.

The recent work TweetsCov19 [9] also compiles Twitter

data into a knowledge graph to understand the spread of

COVID-19 with some limitations. Specifically, it does not

include topic modelling, policy data, and diseases statistics.

Additionally, our knowledge graphs contains more recent

Twitter data, reflecting newer developments in the pandemic

such as vaccines and variants. There are other knowledge

1https://github.com/dominicflocco/Twitter-COVID-19-Knowledge-Graph
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Topic 1 Topic 2 Topic 6 Topic 8 Topic 9 Topic 10 Topic 11 Topic 14 Topic 17 Topic 19

quarantine mask vaccine test china symptom case home trump lockdown
chill wear pfizer positive acre sick report stay donald another
self without dose negative chinese without number order administration italy
hair public shot result magnitude experience total nursing response whole
bore mandate second antibody lake mild confirm send rally full
vibe nose moderna site biden doctor record leave plan protest

mood damn appointment player communist fever update nurse supporter extend
ain protect recieve rapid russia morning daily safer election city

wanna store vaccinate testing america hospital million patient hoax order
whole walk available available blame update increase workout campaign lift

Topic 28 Topic 44 Topic 49 Topic 59 Topic 70 Topic 75 Topic 88 Topic 89 Topic 91 Topic 94

still healthcare hand watch state social open happy president check
despite worker sanitizer movie united distancing school birthday biden relief

partying plan wash video governor distance close party vice vote
breaker system smell netflix mandate practice business celebrate obama bill
flock essential bottle episode florida medium read friday force stimulus

spring molina paper game magnitude guideline store easter task pass
miami click shake katie acre continue high wish patriotic senate
there frontline wipe youtube lake follow restaurant thanks penny republican

warning universal toilet porter federal physical reopen monday fight package
vaccinate nurse soap holy order maintain everything weekend former money

TABLE II
TOP KEYWORDS FOR 20 SELECTED COHERENT TOPICS FROM THE 100 TOPICS OBTAINED FROM THE ENTIRE DATASET USING NMF. SOME MEANINGFUL

WORDS ARE HIGHLIGHTED.

subset of our results, and suggests that NMF yields meaningful

topics that reflect real-world events.

NCPD uses a data tensor T ∈ R
s×m×n, where the slice at

time i is the TF-IDF matrix Ti ∈ R
m×n of all documents at

time i for each 1 ≤ i ≤ s. We divide the tweets into equal

slices (continuous over time) and fix the vocabulary for the

entire dataset to ensure each Ti has the same number of rows

(m) and columns (n), respectively. We use the TensorLy libary

[28] to run NCPD on the whole dataset with s = 306,m =
2000, u = 20 (Fig 3). We observe some transient topics (e.g.

topics 4, 5, 7, 11, and 16) that are discussed more frequently

in a short period of time.

1) Results: Overall, both topic modeling approaches pro-

vide a useful summary of the dataset. The NMF topics shown

in Table II are coherent and form a foundation for further

analysis. The NCPD results in Fig. 3 not only show the popu-

larity of recurring topics over time, but also capture localized

topics corresponding to actual events. For example, Topic 16

corresponds to Orange County lifting mask restrictions. These

results connect our dataset to real-world events and enable

further analysis.

C. Time Series Analysis

In order to gain insight into how COVID-19 topics and

social media discourse change over time, we employ time

series analysis. This also lends itself to an understanding of

the juxtaposition between real-world events, public opinion

and disease spread.

1) Sentiment Change Over Time: After each tweet in the

dataset is assigned a sentiment score, we group tweets by

date and calculate the daily average sentiment score. We

observe that sentiment around COVID-19 increases when the

the COVID-19 vaccine became widely available to the public

around April 2021, as shown in Fig 4.

2) Peak and Change Point Detection:

a) Volume of Tweets: We perform a soft clustering using

the 100 NMF topics such that each tweet belongs to at least

one topic. Then, we plot tweet volume over time for all topics

and align important events with dates at which peaks occur

through analyzing text and news events.

Figure 5 shows the volume of tweets in topic 6, (a vac-

cine topic see Table II). We find that peaks on 03/21/2020,

11/09/2020, 12/18/2020, 04/13/2021 correspond to consider-

able discussions about the development of COVID-19 vac-

cines: Pfizer declaring 90% effectiveness of its vaccine, first

COVID-19 vaccine administered in LA county, and the pro-

duction halt of Johnson & Johnson’s vaccines, respectively.

These four events are highly related to the keywords of topic

6 extracted from the NMF model. By detecting peaks in the

tweet volume of each topic, we are able to identify dates when

important events related to that topic take place.

b) Change Point Detection on Sentiment Change:

Change point detection (CPD) [29] helps detect abrupt

changes in time series data and transitions between states,

finding a number of change points τ = (τ1, ..., τm, τm+1 = n)
that minimize a cost function (which measures changes) in

an ordered sequence of data y1:n = (y1, ..., yn). We use the

Pruned Exact Linear Time (PELT) [29] to perform CPD as it

maintains low computational costs while preserving accuracy.

We adjusted the hyper-parameter of the penalty function as

follows: First, we select a random topic and find important

dates associated to that topic (using real world news data).

Then we update the hyper-parameter so that the change points

detected by PELT are approximate to the actual important

dates and use the resulting value in the model.
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series analysis. The graph structure has detectable commu-

nities, a measure of similarity between entities, allows for

link prediction. Such a graph structure may allow us to an-

swer questions of real-world importance, such as correlations

between Twitter sentiment, policy changes, and spread of

COVID-19; relationships between topics; clusters of tweets

and/or users; and identification of misinformation.
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