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Abstract

Single-molecule experiments that monitor time evolution of molecular observables in real time
have expanded beyond measuring transition rates toward measuring distributions of times of
various molecular events. Of particular interest is the first passage time for making a transition
from one molecular configuration (a) to another (b) and conditional first passage times such as
the transition path time, which is the first passage time from a to b conditional upon not
leaving the transition region intervening between a and b. Another experimentally accessible
(but not yet studied experimentally) observable is the conditional exit time, i.e., the time to
leave the transition region through a specified boundary. The distributions of such times
contain a wealth of mechanistic information about the transitions in question. Here we use the
first and the second (and, if desired, higher) moments of these distributions to characterize
their relative width, for the model where the experimental observable undergoes Brownian
motion in a potential of mean force. We show that, while the distributions of transition path
times are always narrower than exponential (in that the ratio of the standard deviation to the
distribution’s mean is always less than 1), distributions of first passage times and of conditional

exit times can be either narrow or broad, in some cases displaying long power-law tails. The



conditional exit time studied here provides a generalization of the transition path time that also

allows one to characterize the temporal scales of failed barrier crossing attempts.

Why it matters.

Single-molecule measurements directly visualize dynamics of proteins, DNA, and molecular
motors as they cross activation barriers and carry out their biological functions, but, in contrast
to the complexity of the molecular motion involving many atoms, single-molecule signals are
inherently low-dimensional, reporting only on a few degrees of freedom. Towards solving the
inverse problem of learning about the underlying dynamics from single-molecule signals, this
paper discusses distributions of barrier crossing timescales expected for the important model

where the time evolution of the single-molecule signal can be described as Brownian dynamics.



1. Introduction.

Learning about dynamics of molecules from experimental data is a difficult inverse
problem. Molecular trajectories occur in a 3N-dimensional space, where N is the number of
participating atoms (including those of the solvent in the case of biomolecular processes).
Experimental measurements, in contrast, typically provide a low-dimensional signal. In single-
molecule studies, this signal is the time-dependence x(t) of a single variable x (or, in some of
the state-of-the-art studies, two variables) such as the distance between two molecular groups,
oritis a list of photon arrival times. For several decades, the common approach to this inverse
problem has been to postulate a specific phenomenological model — that the trajectory x(t) is
described as one-dimensional diffusion in a potential of mean force —and to deduce the
parameters of this model (such as the diffusivity D) by fitting experimental observations. But
recent improvements in the spatial and temporal resolution of single-molecule experiments
offer an opportunity to both refine such models (e.g., by deducing more accurate potentials or
by allowing for coordinate-dependent diffusivity) and to move beyond phenomenological
models toward more accurate, data-driven ones® 2. Importantly, recent theoretical advances
(to be discussed below) show that certain details about the underlying multidimensional
dynamics are encoded in the low-dimensional signal x(t), thereby suggesting that progress
toward solving the above-mentioned inverse problem is possible.

A phenomenon of particular significance for the field of biomolecular dynamics is that of
large conformational transitions attained via the crossing of a free energy barrier (Fig. 1). More
precisely, suppose that the experimentally determined potential of mean force U(x) (defined

through the requirement that the equilibrium distribution peq(x) of the coordinate x is the
Boltzmann distribution in this potential, p.4 (x) < exp {— Z(—XT)}) has a double-well shape with
B

two wells separated by a barrier, each well corresponding to distinct molecular species. The
experimental observable then provides a natural (albeit not necessarily optimal) choice of the
reaction coordinate for the inter-well transitions, or “chemical reactions”. Biomolecular folding
is a common example of such a process. With a more general potential U(x), this picture can
also be extended to such phenomena as biomolecular binding® 4, or even to nonequilibrium

processes such as the stroke of a molecular motor> ®.



Although the theory presented below is general and does not rely on any assumptions
about the shape of U(x), for concreteness let us assume that we are dealing with biomolecular
folding. The coordinate x, then, may correspond to the molecule’s extension, as in single-
molecule force spectroscopy’, or may be related to the distance between two dyes as in
fluorescence resonance energy transfer (FRET) studies®. The potential U(x) then typically has
two wells corresponding to the molecule’s unfolded and folded states.

There are several timescales of interest in this case. If the barrier height is much greater
than the thermal energy kzT then the typical time for a transition between the two wells is
much longer than the equilibration time within each well, and it is meaningful to define such
equilibration timescales, 74 and T, for each well. In the field of protein folding, the latter
timescales, usually referred to as the “reconfiguration” times®'2, have attracted considerable
experimental attention, particularly for the unfolded state. It can be measured, e.g., using
single-molecule fluorescence correlation spectroscopy!318,

Reconfiguration timescale is a dynamical characteristic of thermal fluctuations around in
a (meta)stable thermodynamic state. To understand the kinetics of transitions between such
states, one needs information about the dynamics of barrier crossing. If we choose some point
a within the folded state and a point b within the unfolded state, then the first passage time
trp(a = b) to go from a to b provides a measure of the overall time required to accomplish the
transition. In general, this time of course will depend on the choice of the points a and b, but if
these points are separated by a barrier that is much higher than kzT then the average value of
this time is insensitive to the choice of the initial and final points. Indeed, typical trajectories
originating from a or b will relax into the adjacent free energy well on a timescale which is
much shorter than the escape time from the well, and the much longer escape time from the
well will provide a dominant contribution to the mean first passage time. In this limit, the
inverse mean first passage time defines the rate (coefficient) k for the transition (see, e.g.,
refs.192%), Moreover, for a double-well free energy landscape the distribution of this time is
close to exponential, as expected for first-order chemical kinetics.

To obtain further mechanistic insight into the dynamics of inter-well transitions, one can

dissect a trajectory that takes the system from a to b into pieces where the system dwells in



the initial state and where it is caught mid-way between the initial and the final state. The latter
are arguably most interesting as they determine the transition “mechanism”. To make this idea
precise, we call the interval (a, b) the “transition region”. Typically, its boundaries are chosen
to contain the free energy barrier (Fig. 1). Consider now a typical trajectory that crosses a at
t = 0 and eventually arrives, for the first time, at b (Fig. 1). In most cases it will not stay
continuously within the interval (a, b) but rather escape it to the left well region (—o0, a). It
may further reenter the transition region and loop back into the left well multiple times. Finally,
it will enter the transition region for the last time and proceed to cross the point b thereby
exiting the transition region toward the right well region (b, +). Thus the first-passage path
from a to b generally consists of “internal loops” entering and exiting the transition region
through the same boundary (red in Fig. 1), “external loops” where the system dwells inside the
well region (—o0, a) (black in Fig. 1), and a “transition path” where the system traverses the
transition region from one boundary to the other?" 22 (green in Fig. 1).

The dynamics in the transition region, then, can be characterized by:
(1) The return time tg(a — a), which is the temporal duration of failed attempts to cross the
transition region (the red trajectory pieces in Fig. 1). This is the time that the system starting at
the boundary a will take to return to this boundary conditional upon staying within the barrier
regionfor0 <t < tz(a—a).
(2) The transition path time t;p(a — b), which is the temporal duration of successful attempts
to cross the barrier (the green trajectory piece in Fig. 1). It is the time that the system starting
at the boundary a will take to reach the other boundary b conditional upon staying within the
barrier regionfor 0 <t < trp(a — b).

The transition path time has received considerable theoretical® 2°3” and experimental®
38-44 gttention in the last decade, while the return time, to our knowledge, has not yet been
studied experimentally. As will be seen below, both of these times, as well as the first passage
time, are limiting cases of the more general conditional exit time*> %6, which is the time to exit
the transition region through a given boundary (a or b) having started from a given point x,

within the transition region.



The purpose of this study is two-fold. First, we propose that the more general yet
experimentally accessible conditional exit time offers additional information about barrier
crossing dynamics, particularly about failed barrier crossing attempts not captured by the
transition path time. Second, we would like to explore the shape of the distribution of the
conditional exit time (and its limiting cases such as the return and transition path time). In
particular, the distribution width can be characterized by the ratio of the distribution variance
to its mean (known as the coefficient of variation), which, for the case of diffusive dynamicsin a
potential of mean force, can be calculated analytically. Experimentally, the coefficient of
variation, which only requires the first and the second moments of the distribution, is a more
robust statistical measure than the distribution itself. Note that, in the context of chemical
kinetics and molecular biophysics, the first-passage-time distribution, particularly for the model
of 1D diffusive motion, is well studied?® 4> 4748 and the expression for the first moment of the
transition-path-time distribution has also been derived more recently?> %, In contrast, higher
moments of the distribution of the transition path time, which are required to quantify the
distribution’s width, have only received attention over the past year3> 3730,

The importance of the distribution shape and width is exemplified by several recent
developments: First, it was shown that the short-time behavior of the first passage time
distribution contains information about the number of kinetic intermediates of a process® 2,
Second, the shape of the distribution of the transition path time measured in a FRET study of
protein binding suggested the existence of an intermediate, encounter complex (i.e. potential
well in the transition region) that could not be observed directly®. Third, it was shown3> 37,50
that the relative width of the distribution of the transition path time, as quantified by its
coefficient of variation, cannot be too large if the system’s dynamics along the coordinate x is
diffusive: thus observation of broad distributions of transition path times can only be explained
by a higher-dimensional free energy landscape allowing for parallel pathways. If transition-
path-time distributions for diffusive dynamics are always narrow, what can we say about the
distributions of other characteristic times of interest? In all of these cases, distributions of the
observed times inform one about global features of the underlying free energy landscapes. Our

hope, then, is that studying the distributions of various characteristic barrier crossing times is a



viable step toward solving the inverse problem of learning about underlying multidimensional
landscapes from low-dimensional signals.

We will further show here that these distributions display interesting (and sometimes
pathological) behavior in some of the limiting cases. In particular, the mean return time tz(a =
a) is identically zero in the case of diffusive dynamics. This result has an important
experimental implication: because of the finite spatial and temporal resolution of any
experiment, the precise crossing of a boundary cannot be detected. As a result, an attempt to
measure tz(a — a) will lead to a finite time that depends on, e.g., experimental resolution,
data sampling rate and/or the smoothing procedure used to reduce the noise in the
experimental signal. We propose that such artifacts can be avoided if, instead, one considers
the conditional exit time tz(x, — a), where one starts from a point x, € (a, b) rather than
from a. This resulting time has a well-defined distribution for any x, > a, and its behavior as x,
approaches the left boundary a (i.e. when it becomes the return time) is quite interesting, as
the distribution becomes “arbitrarily broad” for a sufficiently small distance (x, — a) from the
boundary in the sense that its mean becomes infinitely smaller than the standard deviation
from the mean (note, however, that when inertial effects are neglected as in the Smoluchowski
equation model, the absolute values of the standard deviation and the mean both approach 0
as x, — a). In this regard, the distribution of the return time is drastically different from that of
the transition path time. The physical origins of this behavior will be explained.

Likewise, we will show that distributions of first passage times can be broad, with a
coefficient of variation that can be arbitrarily large. In contrast, distributions of the transition

path time are always narrow, with a coefficient of variation below 1.

2. General formalism.

2.1. Distributions of conditional exit times and first passage times. To determine the statistical
properties of conditional exit times we envisage a large ensemble of particles each starting, at
t = 0, from a point x, that belongs to the transition region (a, b). The stochastic trajectories of
each particle may be described by the usual overdamped Langevin equation?’, in which the

force acting on the particle includes, in addition to the deterministic component —U’(x), a



friction force as well as a random noise component. We monitor each particle until it reaches
either boundary a or boundary b, record the time it took to reach this boundary (and which
boundary was reached), and then discard it from the ensemble. We seek the conditional
probability density pgp)(t]xo), Which describes the distribution of the time to exit the
transition region for particles exiting through the boundary a(b). Note that p,(;,(t]|x,) can be
thought of as the probability density of the first passage time from x, to a(b) conditional upon

not crossing the point b(a). Further note that
Patn(t) = ppla(t) = llm pu(tlxe) = llm pa(tlxe) (1)

is the distribution of the transition path time for the transition paths starting in a and ending in
b, which is the same as the distribution of the transition path time for paths going from b to a

because of the time reversal symmetry of Brownian dynamics!® 2% 2’ Moreover, the limit
Pi-a(t) = lim pg(t]xo) (2)
Xp—a

gives the distribution of the return time for recrossing the boundary a. We will, however, show
that this limit is pathological for the model of diffusive dynamics.

The ensemble of trajectories originating from x, and terminating at the transition region
boundaries can be described by the Smoluchowski equation. Specifically, the (conditional)
probability density G (x, t|x,) of finding the particle at point x € (a, b) at time t (Green’s

function) obeys the equation:

ac a a
ot _ 9 -BU(x) % ,BU(x)
oL axD(x)e 52 € G (3)

with the initial condition
G (x,0]x0) = 8(x — xo) (4)
and the absorbing boundary conditions at the boundaries
G(a,tlxg) = G(b, tlxe) = 0 (5)
The probability density pq 1) (t]|xo) is proportional to the flux of particles j(a, t|x,) or

Jj(b, t|xy) exiting to the boundary a or b:

_ _Jatlxe) _ 6G(x tlxo)
Paltlxe) = =222 = —=—D(a) |
aG(x, t|x
P (tlxg) = L) p(py X&) )

P(xo=b)  Plxo eb) x=b



Here ¢(xq — a) = —fooo dtj(a,t|xy) and ¢p(xy = b) =1 —p(xy — a) = fooo dtj(b, t|x,) are
the fractions of particles in the ensemble exiting through a and b: those are known the splitting
probabilities®® (i.e. the probabilities to exit through the boundaries a and b).

The probability distribution of the first passage time from x, to b is calculated
analogously, with the only difference that no absorbing boundary condition is imposed at x =
a, since the trajectory x(t) can cross the point a any number of times before being terminated

at x = b (See Fig. 1). In this case we have

ac(x t|xo)

Prgb(t) = —D(b) (8)

x=b

for any starting point x, < b. We note that for a potential that has the property U(x) — oo for
x = —oo, this first passage time distribution can be obtained as the a — —oo limit of the
conditional exit time distribution p, (t|x,). In other words, since the absorbing boundary at

a — —oo is never reached, the first passage times from x, to b are identical to the exit times.

Thus first passage times can be viewed as a limiting case of conditional exit times.

2.2. Recursive equations for the distribution moments. Similarly to an approach known in the
literature (see, e.g., ref. *8), we now outline a general procedure for the calculation of the
moments of the distributions of the conditional exit times introduced above. For concreteness,
let us focus on the distribution p, (t|x,) of the exit time to the boundary a. We are interested

in its n-th moment,

(t" (o = @)} = f;” dtt"pq(tlxo) = o

j(a, tlxe) = (t"(xg > a)) (9)

$(xo —>a)

where we have introduced the moments of a unnormalized distribution

(10)

To find such moments, we start with the adjoint Smoluchowski equation (see, e.g., refs?% 53),

(T"(xg 2 a)) = f dtt™j(a, t|x,) _f dtt"D(a )6G(x t|xo)

X=a

which considers G (x, t|x() as a function of the starting point x:

G

— oBU(xe) 9_ —BU(xo) 96
Pyl axOD(xo)e 0 oxg’ (11)

with the initial condition of Eq. 4 and the boundary conditions
G(x, tla) = G(x,t|lb) =0 (12)

Multiplying both sides of this equation by t™ and integrating over time, we obtain



BU(x0) 9 -BU(xg) OFn _ _
ePUXo axOD(xo)e 0 I nk,_,n>0, (13)

BU(x0) 9_ —BUxe) 2o — _ 50y —
ePlXo axOD(xO)e 0 ox 6(x — xp), (14)

where we have introduced the auxiliary functions

F,(xlxo) = [ dtt™G (x, t]x,), (15)
which satisfy the boundary condition
Fy(x|a) = Fy(x[b) = 0. (16)
From Eq. 10, the moments (t"(x, — a )) (Eq. 10) now can be written as
(" (xo > a)) = D(a) &P (q7)
x=a

Using Egs. 13 and 17, we find that these moments satisfy the following equation:

ePU(xo) iD(xo)e‘BU(x(’) Ar(xoma)) _ —n{t" Y (xy = a)), n >0, (18)
6x0 6x0

which should be supplemented with the boundary conditions
(T"(xg = aNlx=q = (" (xo = a)|x=p =0 (19)
Thus if the (n — 1)-th moment, (t" 1(x, — a)), is known then the next moment
(t™(xy — a)) can be obtained by integrating Eq. 18 twice.

To obtain the n-th moment of interest, (t"(x, = a )), the moment (" (x, = a))
needs to be divided by the splitting probability (Eq. 9). As this probability is the 0-th order
moment of the unnormalized distribution, it can be obtained by solving Eq. 14 with the

boundary conditions of Eq. 16, resulting in the known result*®

b veBUG) /p(y
$(xo = @) = D(@) == [, dtG(x, t]x,)] _ = D(a) oR(X[X0)|  _ fxo? /D)

T e a2
Note that while the equation hierarchy, Eq. 18, is similar to that derived in the literature for
first-passage times®” %%, there is an important technical difference: because p, ) (t|x,) is a
conditional distribution, Eq. 18 is satisfied by the moments (t"(x, — a )) and not by

(t"(xo = a)).

3. Results
3.1. Exit times. We now give the general analytical solutions for the first and second moments

of the exit times. Starting with the unnormalized distribution’s “zeroth moment” (which is the



splitting probability), integrating Eq. 18 twice, and dividing by the splitting probability (Eq. 9) we
find the first moment

1 fx() dx ePU@) fb dy eBUD)
fjoaxeﬁwx)/n(x) a D) “Ja D)

(t(xo > a))g = ) dzp(z > a)e U@, (21)

where the splitting probability ¢(z — a) is defined in Eq. 20. (Note that here we use the
notation (... )y to indicate averaging over the distribution of conditional exit times). Similarly,
the second moment now can be expressed in terms of the first moment by integrating Eq.18

twice. This gives

2 fxo dx ePU fb dy eBUD)
ffo dxeBU® p(x)°a D) “Ja  D(y)

(t*(xo > a))g = J) dzd(z = a)(t(z = a))ge FUV@.

(22)
The expression for the n-th moment, (t"(x, = a ))g, n = 3,4 ..., is obtained by replacing
2(t(z » a))g inEq. 22 by n(t" 1(z - a))g.

We are particularly interested in the distribution’s relative width, which is
conventionally quantified by its coefficient of variation, which is equal to the ratio of the

standard deviation to the distribution’s mean:

1
(t2)—(t)?]?

_ |
€= (23)

Narrower distributions have smaller values of the coefficient of variation, and the coefficient of
variation for an exponential distribution is 1. The value of the coefficient of variation encodes
important information about the underlying dynamics and energy landscape. For example, in
the case of barrier crossing by transition paths, lower values of this coefficient correspond to
higher barriers®, while a value of 1 (corresponding to a single-exponential distribution)
suggests (inasmuch as the model of diffusive dynamics is applicable) that transition paths cross
a potential well (intermediate) that traps the system3. Even more interestingly, regardless of
the underlying potential of mean force this coefficient cannot possibly exceed 1 for the model
of one-dimensional diffusive dynamics model3> 37; thus experimental observation of C
exceeding 1 automatically invalidates such a model. But what about coefficients of variation for

the more general exit time?



For the double-well potential shown in Fig. 2, Fig. 3 shows how the coefficient of
variation of the exit time through the left boundary depends on the starting point x,. For x,
approaching the right boundary, x, — b, the exit time approaches the transition path time
trp(b — a); it has been shown previously3> 3’ that the coefficient of variation for this time is
always less than 1 (assuming the validity of the diffusive dynamics model).

In the opposite limit, x, — a, the exit time becomes the return time tz(a - a), and
we observe that the coefficient of variation diverges. Mathematically, this divergence arises
because both the first and the second moments grow linearly with x, — a in the limit x, —a —
0.

Broadening of the exit time distribution as the starting point x, approaches the
absorbing boundary a is also observed directly in the distribution’s shape shown, for three
values of x, in Fig. 4. These distributions were obtained using Eq. 6, from a numerical solution
of the Smoluchowski equation that uses the spectral expansion method — see ref.?’ for further
details. Note that, because both the first and the second moments of this distribution increase
with increasing x, (see the inset of Fig. 3, where the first moment of the distribution is plotted
as a function of x;), the time in each distribution is rescaled by its mean value. In other words,
the first moments of each distribution as plotted in Fig. 4 are the same and equal to 1.

At first glance, the distribution p, (t|x,) obtained for a value x, that is closest to the left
boundary seem more “narrow” than the other two, showing a sharper rise at short times. But
this is not so (inasmuch as the coefficient of variation is a good measure of width) because of
the long tail exhibited by this distribution. This tail is more readily observed when the same
distribution is plotted on a logarithmic scale (Fig. 4, inset).

To further understand the distribution broadening as x, approaches the boundary a, it
is instructive to consider the case of zero potential, U(x) = 0, with a coordinate-independent
diffusion coefficient D(x) = D. Setting, without loss of generality, a = 0, the integrals of Eq. 21

and 22 can be evaluated analytically to give

_ (2b—x0)x0

(t(xg = 0))g = ~ep (24)

xo(8b3+8b2x¢—12bx3+3x3)
180D2 ’

(t*(xg = 0))p = (25)



Both functions are proportional to x; in the limit x, — 0, thus leading to xo_l/2 divergence of
the coefficient of variation (Eq. 23).

Moreover, the distribution of the exit time for the case of zero potential can be
calculated analytically. Although this problem of free diffusion on an interval with absorbing
boundaries was studied in the literature — see, e.g., ref.*> — we provide a derivation for p,(t|x,)
in Appendix A for completeness, and as a simple illustration of the approach here. Specifically,
the Laplace transform of p, (t|x,) is given by

sinh[(b—xo)\/%]

Po(slxg) = ————F5 (26)

(b—xp) sinh[b\/%]

Consider now the case x, < b, b\/% > 1. Inthe time domain, the second inequality implies

that we are considering timescales much shorter than the characteristic diffusion time on the

2 - S
segment (0,b),i.e., t K %. In this limit, we obtain j,(s|x,) = ﬁe xo\ﬁ , and taking the
—A0

inverse Laplace transform we find

2
X
X0 0

3
po(tlxg) = ==t ze ant (27)

In fact, Eq. 27 provides an accurate description of the exit time distribution even in the
presence of a nonzero potential U(x) as long as the time t is not too long - see Figure 5. This is
because, at short enough timescales, diffusion dominates over the drift, and the presence of
the potential is immaterial. At longer times, however, the exit time distribution exhibits an
exponential tail, in contrast to a power-law tail predicted by Eq. 27. A true power-law tail will be
observed in the absence of a potential when the right boundary is removed to infinity — see
Section 3.2.

Returning to the case of zero potential, when x3 <« Dt then the exponential in Eq. 27

can be replaced by 1. On the other hand, when Dt « b?, the particle originating from x, does

2
not have time to reach the right boundary b. When both of these conditions are satisfied, %" K

2 3
t K %, Eq. 27 predicts a power lay p,(t|x,) « t"z, a behavior characteristic of a “broad”

distribution displaying multiple timescales. Note, however, that the absolute width of the



distribution, as opposed to the relative width quantified by the coefficient of variation,
decreases as xy, — 0. Indeed, at x, = 0 the Laplace transform of this distribution is constant,
and the distribution is the delta function, p, (t|x,) = §(t), indicating that a particle cannot
leave the absorbing boundary x, = 0. In other words, the return time is identically zero in this
case.

This delta-function distribution of the return time should be expected of diffusive
dynamics (or equivalently, of the overdamped Langevin equation where the inertial term
containing acceleration is omitted). It is pathological: if inertial effects are taken into account,
the system crossing the left boundary a with a positive velocity will travel to the right over
some finite time. Thus it will take a finite time to return to the boundary. The typical return
time, then, would be comparable to the velocity correlation time, which is typically very short
and thus unresolvable by current single-molecule techniques®. This conclusion has important
experimental implications: an attempt to measure the return time will likely be confounded by
experimental artifacts such as the limited spatial and temporal resolution or the smoothing of
the trajectory (which introduces an artificial “velocity” that would be absent in true diffusive
dynamics). These difficulties can be avoided by measuring the exit time distribution p, (t]x,)
instead, with the initial point x, being within the limits allowed by the experiment’s spatial

resolution.

3.2. First passage times. We now consider the distribution of the first passage time px P (0 to

arrive at the (target) boundary b starting from x = x, < b. The first moment of this distribution

is given by the known expression?% 4> 47

(t(xo = b))pp = |

Xo D(x)

BUX)
baxe T [* dyeFUW), (28)

and the second moment can be obtained similarly to the approach of Section 3.1 by integrating
Eq. 18:

fb dx eBUX)

(t?(xg > b))pp = X0 D@

f dye PUO)(t(y » b))pp  (29)
The dependence of the coefficient of variation on the initial position x, for the double-well

potential shown in Fig. 2 and for a coordinate-independent D (x) is illustrated in Fig. 6. For x,



located not too far from the left potential minimum (located at x = —1), we observe that its
value is close to 1. This is easy to understand: thermally activated escape from a potential well
separated from the target boundary b by a sufficiently high barrier is governed by 1*-order
kinetics, resulting in an exponential distribution of escape times, whose coefficient of variation
is 1. Even though the barrier in this case is only 2kzT, the coefficient of variation is only slightly
below 1.

When the initial position x, moves toward b, however, the coefficient of variation
increases, and it diverges as the starting point approaches the target, x, = b. This behavior is
similar to that of the exit time discussed in Section 3.1 and illustrated in Fig. 3. The physical
origins of this behavior will be further discussed below. Mathematically, the divergent behavior
of the coefficient of variation follows from Eqgs. 28 and 29 (and from the definition of the
coefficient of variation, Eg. 23). Indeed, based on these equations, both the first and the second

moments of the distribution are, to lowest order in the distance to the target (b — x,), are

proportional to (b — x;), and thus the coefficient of variation scales as C o« (b — xo)_% .
To gain further insight into the shapes of the first passage time distributions, consider
the analytically tractable case of a linear potential,
U(x) = —Fx (30)

describing a particle subjected to a constant force F > 0. Using Eqs. 28 and 29, we find, for

Xy < b,
(t(xo = b))pp = 77 (31)
and
_ 2
(£ (0 = D ))ep = s [(b = x9) + FE20], (32)

from which, using Eq. 23, we find

1/2

=[] (33)

showing divergent behavior as x, — b.
A particularly interesting case is that of free diffusion, which is obtained by setting the
force F to zero. Formally, Eg. 33 predicts that the coefficient of variation should diverge for any

initial position x,, but, of course, both the first and the second moments of the distribution



diverge in this case, so the coefficient of variation is not well defined at exactly zero force (see
Eq. 23). Nevertheless, the distribution of the first passage time itself is well defined for free

diffusion. It is given by (see, e.g., ref. 4°; Appendix B provides a derivation for completeness)

3 (b—xq)?

Prsp(t) = 2\/_1: ze 4Dt (34)

Eq. 34 is identical to Eq. 27 (provided that x, is replaced by b — x,; both of these quantities are
the distances to the absorbing boundary in each case). However, unlike Eq. 27, which only holds
at intermediate timescales, Eq. 34 has a power-law tail decaying as t =3/ at arbitrarily long
times. This difference is due to the fact that diffusion on an infinitely long segment, unlike
diffusion within a transition region of finite length, does not possess a longest characteristic
timescale. More specifically, as noted above, the power law in Eq. 27 holds only at times short
enough that the particle does not have enough time to reach the right boundary b, and thus
the exit time is indistinguishable from the first passage time. In contrast, no such boundary
exists in the present case, diffusion takes place on a semi-infinite segment, and arbitrarily long
excursions from the point x, are possible. Although the distribution of Eq. 34 is itself
normalized, all of its moments diverge.

These findings show that first passage time distributions can be broad, with a coefficient
of variation exceeding 1, or even with its moments being infinite. This is different from the
distribution of the transition path time, which, for one-dimensional diffusive dynamics, is

always below 1, as further discussed below.

3.3. Transition path times. The 1° and 2" moments of the distribution of the transition path
can be found from Egs. 21-22 as the limiting case where the starting point x, coincides with the
absorbing boundary b. Note that this gives moments of the transition path time from b to a,
but given the time-reversal symmetry of transition paths, they are the same as those for

transition paths from a to b. The result for the first moment has been derived previously?> 4%

55.

(t(@— b))rp = (tb = a)rp = ([P [P dzg(z - x)p(z » e V@ (35)

a D(x)

For the second moment, we arrive at



b dx ePUX

(t2(a = b)rp = (t2(b > ))rp = 2(J, T5r5) J, dz(z = x0)b(z — b)(t(z >
b))ge PV, (36)
where (t(x, = b))y is the mean exit time through boundary b conditional upon not crossing
the boundary a. This result was reported earlier in ref.3> for coordinate-independent diffusivity,
and in ref.?’.

As proven in refs.3> 37, the coefficient of variation of the transition path time distribution
(Eq. 23) always remains below 1 (Fig. 6). For the potential shown in Fig. 2 and for initial points
xo < —1 located to the left of the potential minimum at x = —1, the coefficients of variation
for both transition path time- and first passage time distributions are close to each other and to
the value C = 1 expected for an exponential distribution (Fig. 6). This is not surprising: if the
starting point x, < —1 is located on a steep left wall of a potential well, a trajectory originating
from x, will likely proceed toward the right of the starting point, and thus a first passage and a
transition path time should be nearly the same. Moreover, their distributions should be close to
exponential, with C = 1, as these times should be close to the time of thermally activated
escape from the left potential well.

As the initial point x, approaches the target b, the coefficient of variation for the
transition path time distribution stays below 1, while the coefficient of variation for the first
passage time distribution increases and diverges for x, — b, a behavior explained in Section

3.2.

4. Discussion and concluding remarks.

Our findings show that the distribution of the transition path time is special in that, in
the case of purely diffusive dynamics, its coefficient of variation cannot exceed 1, in contrast to
the distributions of the first passage and conditional exit times. In other words, transition path
time distributions are narrow (narrower than exponential) while first passage time and exit
time distributions may be arbitrarily broad, with their coefficients of variations being arbitrarily
large.

What is the physical origin of this difference? It is instructive to consider the free

diffusion case discussed in Section 3.2. Consider a Brownian particle starting to the left of the



target at x, < b. It may proceed directly toward the target b, in which case its trajectory will be
a transition path from x, to b, or it may exercise an arbitrarily long detour to the left of the
starting point before finally finding the target at x = b (note that in 1D the particle will
eventually find the target with certainty). In a sense, these two scenarios may be considered as
two parallel pathways contributing to the first passage time distribution, but only with the first
scenario contributing to the transition path time distribution. As shown in refs.3>0 it is the
existence of such parallel pathways with disparate characteristic timescales that leads to broad
distributions, and, indeed, Eq. 34 exhibits a power-law tail describing long-lasting events.

Exit times, Eqs. 21-22, provide a more general description of barrier crossing dynamics
than the better-studied transition path time. Exit times have been discussed previously in the
context of finding practical reaction coordinates®. It is widely believed that the splitting
probability (committor) has attractive mathematical properties that makes it in a certain sense
an optimal reaction coordinate?® >3 >6-62 The splitting probability answers the following
guestion: starting from a certain point in phase or configuration space, what is the probability
to get to the reaction product before getting to the reactant? In our one-dimensional model,
the function ¢(x, = b) (x, being the starting point) gives the answer to this question, provided
that the segment (—oo, a) is regarded as the reactant and (b, +o0) as the product. The
conditional exit time is a complementary quantity that answers a question that is concerned
with the transition timescale: starting from a certain point in phase or configuration space,
what is the (mean) time to get to the product conditional upon reaching the product before
getting to the reactant? In our case this question is answered by the mean exit time
(t(xy = b))g. The exit time generalizes the notion of the transition path time: in the limit
where the initial point x, coincides with the boundary a, this time becomes the transition path
time trp(a — b). Another limiting case of the conditional exit time is the (mean) return time
(t(xo = @))glx,»a = (t(a = a))g, which is the mean time it takes to return to the boundary
a starting from this boundary and conditional upon not exiting through the boundary b. For the
case of diffusive dynamics considered here, however, this time is identically equal to zero.

This paper has focused on the model of diffusive dynamics along a one-dimensional

reaction coordinate. Given the many successes of this model in application to biomolecular



folding (see, e.g., refs.®3-%%), we view elaboration on further consequences of this model for the
dynamics in the transition region a worthy pursuit, but it also gives us an opportunity to
delineate potential limitations of this model in application to experimental data. Indeed, the
following three properties are strictly satisfied by this model, yet they may be violated when
the dynamics along the reaction coordinate are influenced by memory effects and/or when
multi-dimensionality is essential®® ®7:

(1) Locality of exit times: Distributions of exit times (and transition path times in particular) are
independent of the potential U(x) outside the transition region (a, b). This is obvious from the
derivation outline described in Section 2.1, since the properties of the potential outside the
transition interval do not enter into the picture (Of course, Markovianity of diffusion, allowing
one to disregard any knowledge of the system’s past prior to its arrival at the point x is key
here). Note that this local property is not true for first-passage times from a to b, which depend
on the properties of the potential U(x) for x < a.

(2) The distribution of the transition path time has a coefficient of variation that cannot exceed
1, regardless of the potential and the transition region boundaries. This property is a direct
consequence of Egs. 23, 35 and 36%.

(3) Transition path times exhibit forward/backward symmetry, pI?, (t) = pI® ,(t), as already
stated in Eq. 1. Note that this property is true even for systems that are not in equilibrium®8
because of the property (1).

While strictly true for diffusive dynamics, some (or all) of these properties may not be
true if the dynamics along x is not diffusive. For example, property (1) cannot be generally true
for non-Markovian dynamics, property (2) has already been found to be violated for the
dynamics of reaction coordinates in protein folding3®, and property (3), while true for any
equilibrium system, was found to be violated for systems that are simultaneously non-
equilibrium and non-Markovian®. Violation of any of the above exact predictions would
invalidate, with certainty, the diffusive picture of the dynamics along a reaction coordinate and
call for a more accurate model.

We conclude this paper with comments on how experimental time resolution may

affect information that can be deduced from the distributions of the various times discussed



here. Generally, limited time resolution may result in missing short-time events, thereby

skewing the apparent distribution toward longer times while simultaneously making it

narrower. More formally, we may write the true distribution p(t) of the time of interest as
P(t) = fPun() + (1 = fDops (1), (37)

where f is the fraction of unobserved short-time events with a normalized distribution p,,,(t) ,

and 1 — f the fraction of observed events with a normalized distribution p,,(t). The latter

distribution is the one observed experimentally. Thus we have

(£2) 3 un+@=)tHobs
C’+1=—= 38
+ (t)z [f(t)un"'(l_f)(t)obs]z ( )

where (t)yn, ()obs, {t%)un, (t2)ops are the first and second moment of the unobserved and
observed distributions, as indicated by the subscripts. Given that unobserved events are shorter
than the observed ones, we have (t),, < (t),ps, and it is obvious that the true distribution
mean (t) = f(t)yn + (1 — f)(t),ps is always shorter than the observed value (t),ps-

Let us now focus on the case of measuring transition path times. Given that higher
barriers (for the same transition region boundaries) correspond to shorter mean transition path
times!® 2>, this longer observed values of the transition path time could lead the

experimentalist to deduce a lower transition barrier. On the other hand, as follows from Eq. 38,

1
_ [(tz)obs—(t)gbs]z

the true coefficient of variation C is greater than the observed one, C,;,s = (t) ,and a
obs

narrower observed distribution of the transition path time, with a greater coefficient of
variation, corresponds to a higher barrier. Thus analysis of experimental distribution widths

may reveal experimental artifacts.

Appendix A. Exit time distribution for free diffusion.

Following the approach outlined in Section 2.1, we write the diffusion equation describing the
time evolution of Green’s function G(x, t|x,) of a free particle (i.e., Eq. 3 with constant
diffusivity D and with U(x) = 0):

oG 926

with the initial condition



G(x,0]xy) = 5(x — xp), (A2)

and with absorbing boundary conditions (cf. Eq. 5)
G(a =0,t|lxy) = G(b,t|xy) =0 (A3)

To solve Eqg. Al, we rewrite it in Laplace space:

926G

ox?’

sG—8(x—xy)=D (A4)

where
Gx,slxo) = [ dte™ G (x, t]xo) (AS)

The solution of Eq. A4 satisfying the absorbing boundary conditions can be written in the form

A sinh[x\/%],OSx<x0

G(x,s|x) = (A6)

B sinh[(b —x)\/%],xo <x<bh

The coefficients A and B can be determined from the continuity of the Green’s function at x =
Xo,
G(xy+0,5|xy) = G(xy — 0,5]x,), (A7)

and from the condition

x0+0

X" =-1,(n8)

0x XO—O
which is obtained by integrating Eq. A4 over an infinitesimal interval from x, — 0 to x, + 0.
The exit time distribution can now be found from Eq. 6 rewritten in Laplace space:

1 aG(x, t|xg)
$(x0—0) 0x

Po(tlxy) =

» (A9)
=0

X

where the splitting probability ¢ (x, — 0) is the integral of the flux exiting through the left

boundary,

¢(xo—>0) =D [ dt 26xt1xo)

06 (x,t|x
D (x,t]xo)
0x

x=0 ox x=0

(A10)

The expression in Eq. 26 is then obtained using Egs. A6-A10.

Appendix B. First passage time distribution for free diffusion
Following the approach outlined in Section 2.1, we seek the solution G (x, t|x,) of the diffusion

equation



a¢c _ 9%

at oax?’ (B1)

with the initial condition

G(x,0]x0) = 8(x — x0) (B2)

and with absorbing boundary condition at x = b:

G(b,t|xy) =0 (B3)

We assume that x, < b. The solution for x < b is easily constructed from Green’s function of

the freely diffusing particle using the method of images:

1 (x—xo)2 (x—2b+x0)2
G(x, tlxy) = Nreon [e Dt — e 4Dt (B4)

The probability distribution of the first passage time from x, to the boundary b is equal to the

flux at the target boundary,

PP (1) = —p oSGl _ boxo I P (B5)
Pxq-b ox  ly_p  2vmD ,

which is the expression in Eq. 34. Note that this distribution is automatically normalized, since

the integral of the flux over time, equal to the probability of crossing x = b at any time, is 1.
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Figure legends

Figure 1. Barrier crossing dynamics: A first-passage path from a to b consists of “internal loops”
entering and exiting the transition region through the same boundary?? (red), “external loops”
where the system dwells inside the well region (—o0, a) (black), and a “transition path” where
the system traverses the transition region from one boundary to the other (green). Typical one-

dimensional free energy landscape of folding is shown on the right.



Figure 2. Double-well potential U(x) = 2kzT (x? — 1)? used to illustrate the results here. The

transition region boundaries, a = —1,b = 1, are shown as dashed lines.

Figure 3. Coefficient of variation for the exit time distribution p, (t|x,) as a function of the
starting point x,. The transition region boundaries are shown as dashed lines. Inset shows the
mean exit time as a function of x,. This time is measured in dimensional units, with L2 /D
(where 2L is the distance between the two potential minima and D the diffusivity) being the

unit of time. The unit of distance is L.

Figure 4. Probability distribution p, (t|x,) of the exit time to the left boundary (Eq.6) for
different values of the initial position x,, as indicated in the legend. The time in each case is
normalized by the distribution’s mean. The potential U(x) and the transition region boundaries
are the same as in Figures 2-3. Of the three distributions shown here, the one corresponding to
the point x, closest to the left boundary is the broadest (i.e. has the largest coefficient of
variation) because of its long tail. This tail is easy to see when the same data is plotted on a

logarithmic scale (inset).

Figure 5. Eq. 27 vs. the probability distribution for the exit time to the left boundary,

pa(tlxy), in the double-well potential of Fig. 2. In both cases, the distance x, — a is much
shorter than the length b — a of the transition region and is equal to 0.1. The time is
measured in dimensional units, with L? /D (where 2L is the distance between the two potential

minima and D the diffusivity) being the unit of time. The distance L provides a unit of distance.

Figure 6. Coefficient of variation C for the first passage time from x, to b (solid line), and for the
transition path time from x, to b (dashed-dotted line), as a function of the starting point x,.

Inset: same data for the transition path time.
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