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Abstract 

Single-molecule experiments that monitor time evolution of molecular observables in real time 

have expanded beyond measuring transition rates toward measuring distributions of times of 

various molecular events. Of particular interest is the first passage time for making a transition 

from one molecular configuration (!) to another (") and conditional first passage times such as 

the transition path time, which is the first passage time from !	to " conditional upon not 

leaving the transition region intervening between ! and ". Another experimentally accessible 

(but not yet studied experimentally) observable is the conditional exit time, i.e., the time to 

leave the transition region through a specified boundary. The distributions of such times 

contain a wealth of mechanistic information about the transitions in question. Here we use the 

first and the second (and, if desired, higher) moments of these distributions to characterize 

their relative width, for the model where the experimental observable undergoes Brownian 

motion in a potential of mean force. We show that, while the distributions of transition path 

times are always narrower than exponential (in that the ratio of the standard deviation to the 

distribution’s mean is always less than 1), distributions of first passage times and of conditional 

exit times can be either narrow or broad, in some cases displaying long power-law tails. The 



conditional exit time studied here provides a generalization of the transition path time that also 

allows one to characterize the temporal scales of failed barrier crossing attempts.  

 

Why it matters.  

Single-molecule measurements directly visualize dynamics of proteins, DNA, and molecular 

motors as they cross activation barriers and carry out their biological functions, but, in contrast 

to the complexity of the molecular motion involving many atoms, single-molecule signals are 

inherently low-dimensional, reporting only on a few degrees of freedom. Towards solving the 

inverse problem of learning about the underlying dynamics from single-molecule signals, this 

paper discusses distributions of barrier crossing timescales expected for the important model 

where the time evolution of the single-molecule signal can be described as Brownian dynamics.       

  



1. Introduction. 

Learning about dynamics of molecules from experimental data is a difficult inverse 

problem. Molecular trajectories occur in a 3N-dimensional space, where N is the number of 

participating atoms (including those of the solvent in the case of biomolecular processes). 

Experimental measurements, in contrast, typically provide a low-dimensional signal. In single-

molecule studies, this signal is the time-dependence $(&) of a single variable $ (or, in some of 

the state-of-the-art studies, two variables) such as the distance between two molecular groups, 

or it is a list of photon arrival times. For several decades, the common approach to this inverse 

problem has been to postulate a specific phenomenological model – that the trajectory $(&) is 

described as one-dimensional diffusion in a potential of mean force – and to deduce the 

parameters of this model (such as the diffusivity D) by fitting experimental observations. But 

recent improvements in the spatial and temporal resolution of single-molecule experiments 

offer an opportunity to both refine such models (e.g., by deducing more accurate potentials or 

by allowing for coordinate-dependent diffusivity) and to move beyond phenomenological 

models toward more accurate, data-driven ones
1, 2

. Importantly, recent theoretical advances 

(to be discussed below) show that certain details about the underlying multidimensional 

dynamics are encoded in the low-dimensional signal $(&), thereby suggesting that progress 

toward solving the above-mentioned inverse problem is possible. 

 A phenomenon of particular significance for the field of biomolecular dynamics is that of  

large conformational transitions attained via the crossing of a free energy barrier (Fig. 1).  More 

precisely, suppose that the experimentally determined potential of mean force (($) (defined 

through the requirement that the equilibrium distribution )!"($)	of the coordinate $ is the 

Boltzmann distribution in this potential, )!"($) ∝ exp .− #(%)
'!(

0) has a double-well shape with 

two wells separated by a barrier, each well corresponding to distinct molecular species. The 

experimental observable then provides a natural (albeit not necessarily optimal) choice of the 

reaction coordinate for the inter-well transitions, or “chemical reactions”.  Biomolecular folding 

is a common example of such a process. With a more general potential (($), this picture can 

also be extended to such phenomena as biomolecular binding
3, 4

, or even to nonequilibrium 

processes such as the stroke of a molecular motor
5, 6

.   



Although the theory presented below is general and does not rely on any assumptions 

about the shape of (($), for concreteness let us assume that we are dealing with biomolecular 

folding. The coordinate $, then, may correspond to the molecule’s extension, as in single-

molecule force spectroscopy
7
, or may be related to the distance between two dyes as in 

fluorescence resonance energy transfer (FRET) studies
8
.  The potential (($) then typically has 

two wells corresponding to the molecule’s unfolded and folded states.  

There are several timescales of interest in this case. If the barrier height is much greater 

than the thermal energy 1)2	then the typical time for a transition between the two wells is 

much longer than the equilibration time within each well, and it is meaningful to define such 

equilibration timescales, 3* and 3), for each well. In the field of protein folding, the latter 

timescales, usually referred to as the “reconfiguration” times
8-12

, have attracted considerable 

experimental attention, particularly for the unfolded state.  It can be measured, e.g., using 

single-molecule fluorescence correlation spectroscopy
13-18

.     

Reconfiguration timescale is a dynamical characteristic of thermal fluctuations around in 

a (meta)stable thermodynamic state. To understand the kinetics of transitions between such 

states, one needs information about the dynamics of barrier crossing. If we choose some point 

!	within the folded state and a point " within the unfolded state, then the first passage time 

&+,(! → ") to go from ! to "	provides a measure of the overall time required to accomplish the 

transition. In general, this time of course will depend on the choice of the points !	and ", but if 

these points are separated by a barrier that is much higher than 1)2 then the average value of 

this time is insensitive to the choice of the initial and final points. Indeed, typical trajectories 

originating from ! or " will relax into the adjacent free energy well on a timescale which is 

much shorter than the escape time from the well, and the much longer escape time from the 

well will provide a dominant contribution to the mean first passage time. In this limit, the 

inverse mean first passage time defines the rate (coefficient) 1 for the transition (see, e.g., 

refs.
19, 20

). Moreover, for a double-well free energy landscape the distribution of this time is 

close to exponential, as expected for first-order chemical kinetics. 

To obtain further mechanistic insight into the dynamics of inter-well transitions, one can 

dissect a trajectory that takes the system from !	to " into pieces where the system dwells in 



the initial state and where it is caught mid-way between the initial and the final state. The latter 

are arguably most interesting as they determine the transition “mechanism”. To make this idea 

precise, we call the interval (!, ") the “transition region”. Typically, its boundaries are chosen 

to contain the free energy barrier (Fig. 1). Consider now a typical trajectory that crosses !	 at 

& = 0 and eventually arrives, for the first time, at " (Fig. 1). In most cases it will not stay 

continuously within the interval (!, ") but rather escape it to the left well region (−∞, !). It 
may further reenter the transition region and loop back into the left well multiple times. Finally, 

it will enter the transition region for the last time and proceed to cross the point "  thereby 

exiting the transition region toward the right well region (", +∞). Thus the first-passage path 

from ! to " generally consists of “internal loops” entering and exiting the transition region 

through the same boundary (red in Fig. 1), “external loops” where the system dwells inside the 

well region (−∞, !) (black in Fig. 1), and a “transition path” where the system traverses the 

transition region from one boundary to the other
21, 22

 (green in Fig. 1).       

The dynamics in the transition region, then, can be characterized by:   

(1) The return time &-(! → !), which is the temporal duration of failed attempts to cross the 

transition region (the red trajectory pieces in Fig. 1). This is the time that the system starting at 

the boundary ! will take to return to this boundary conditional upon staying within the barrier 

region for 0 < & < &-(! → !) . 
(2) The transition path time &(,(! → "), which is the temporal duration of successful attempts 

to cross the barrier (the green trajectory piece in Fig. 1). It is the time that the system starting 

at the boundary ! will take to reach the other boundary " conditional upon staying within the 

barrier region for  0 < & < &(,(! → ") . 
  The transition path time has received considerable theoretical

2, 20-37
 and experimental

3, 

38-44
 attention in the last decade, while the return time, to our knowledge, has not yet been 

studied experimentally. As will be seen below, both of these times, as well as the first passage 

time, are limiting cases of the more general conditional exit time
45, 46

, which is the time to exit 

the transition region through a given boundary (a or b) having started from a given point $. 

within the transition region.   



The purpose of this study is two-fold. First, we propose that the more general yet 

experimentally accessible conditional exit time offers additional information about barrier 

crossing dynamics, particularly about failed barrier crossing attempts not captured by the 

transition path time. Second, we would like to explore the shape of the distribution of the 

conditional exit time (and its limiting cases such as the return and transition path time). In 

particular, the distribution width can be characterized by the ratio of the distribution variance 

to its mean (known as the coefficient of variation), which, for the case of diffusive dynamics in a 

potential of mean force, can be calculated analytically.  Experimentally, the coefficient of 

variation, which only requires the first and the second moments of the distribution, is a more 

robust statistical measure than the distribution itself.  Note that, in the context of chemical 

kinetics and molecular biophysics, the first-passage-time distribution, particularly for the model 

of 1D diffusive motion, is well studied
20, 45, 47, 48

, and the expression for the first moment of the 

transition-path-time distribution has also been derived more recently
25, 49

. In contrast, higher 

moments of the distribution of the transition path time, which are required to quantify the 

distribution’s width, have only received attention over the past year
35, 37, 50

.   

The importance of the distribution shape and width is exemplified by several recent 

developments: First, it was shown that the short-time behavior of the first passage time 

distribution contains information about the number of kinetic intermediates of a process
51, 52

. 

Second, the shape of the distribution of the transition path time measured in a FRET study of 

protein binding suggested the existence of an intermediate, encounter complex (i.e. potential 

well in the transition region) that could not be observed directly
3
.  Third, it was shown

35, 37, 50
 

that the relative width of the distribution of the transition path time, as quantified by its 

coefficient of variation, cannot be too large if the system’s dynamics along the coordinate $ is 

diffusive: thus observation of broad distributions of transition path times can only be explained 

by a higher-dimensional free energy landscape allowing for parallel pathways. If transition-

path-time distributions for diffusive dynamics are always narrow, what can we say about the 

distributions of other characteristic times of interest? In all of these cases, distributions of the 

observed times inform one about global features of the underlying free energy landscapes. Our 

hope, then, is that studying the distributions of various characteristic barrier crossing times is a 



viable step toward solving the inverse problem of learning about underlying multidimensional 

landscapes from low-dimensional signals.    

We will further show here that these distributions display interesting (and sometimes 

pathological) behavior in some of the limiting cases. In particular, the mean return time &-(! →
!)  is identically zero in the case of diffusive dynamics. This result has an important 

experimental implication: because of the finite spatial and temporal resolution of any 

experiment, the precise crossing of a boundary cannot be detected. As a result, an attempt to 

measure &-(! → !)  will lead to a finite time that depends on, e.g., experimental resolution, 

data sampling rate and/or the smoothing procedure used to reduce the noise in the 

experimental signal. We propose that such artifacts can be avoided if, instead, one considers 

the conditional exit time  &/($. → !), where one starts from a point $. ∈ (!, ") rather than 

from !. This resulting time has a well-defined distribution for any $. > !, and its behavior as $. 

approaches the left boundary ! (i.e. when it becomes the return time) is quite interesting, as 

the distribution becomes “arbitrarily broad” for a sufficiently small distance ($. − !) from the 

boundary in the sense that its mean becomes infinitely smaller than the standard deviation 

from the mean (note, however, that when inertial effects are neglected as in the Smoluchowski 

equation model, the absolute values of the standard deviation and the mean both approach 0 

as $. → !). In this regard, the distribution of the return time is drastically different from that of 

the transition path time. The physical origins of this behavior will be explained.  

 Likewise, we will show that distributions of first passage times can be broad, with a 

coefficient of variation that can be arbitrarily large. In contrast, distributions of the transition 

path time are always narrow, with a coefficient of variation below 1.     

 

2. General formalism. 

2.1. Distributions of conditional exit times and first passage times. To determine the statistical 

properties of conditional exit times we envisage a large ensemble of particles each starting, at 

& = 0, from a point $. that belongs to the transition region (!, "). The stochastic trajectories of 

each particle may be described by the usual overdamped Langevin equation
20

, in which the 

force acting on the particle includes, in addition to the deterministic component −(0($), a 



friction force as well as a random noise component. We monitor each particle until it reaches 

either boundary	! or boundary ", record the time it took to reach this boundary (and which 

boundary was reached), and then discard it from the ensemble. We seek the conditional 

probability density =1(2)(&|$.), which describes the distribution of the time to exit the 

transition region for particles exiting through the boundary !(").  Note that =1(2)(&|$.)  can be 

thought of as the probability density of the first passage time from $. to !(") conditional upon 

not crossing the point "(!). Further note that 

 )1→2(, (&) = )2→1(, (&) = lim
4"→1	

=2(&|$.) = lim
4"→2	

=1(&|$.)  (1) 

 is the distribution of the transition path time for the transition paths starting in !	and ending in 

", which is the same as the distribution of the transition path time for paths going from " to ! 

because of the time reversal symmetry of Brownian dynamics
19, 26, 27

. Moreover, the limit   

 )1→1- (&) = lim
4"→1	

=1(&|$.) (2) 

gives the distribution of the return time for recrossing the boundary !. We will, however, show 

that this limit is pathological for the model of diffusive dynamics.  

 The ensemble of trajectories originating from $. and terminating at the transition region 

boundaries can be described by the Smoluchowski equation. Specifically, the (conditional) 

probability density C($, &|$.) of finding the particle at point $ ∈ (!, ") at time & (Green’s 

function) obeys the equation: 

67
68
= 6

6%
D($)E9:#(%) 6

6%
E:#(%)C  (3) 

with the initial condition   

C($, 0|$.) = F($ − $.)   (4) 

and the absorbing boundary conditions at the boundaries  

C(!, &|$.) = C(", &|$.) = 0  (5) 

 The probability density =1(2)(&|$.) is proportional to the flux of particles  G(!, &|$.) or 

G(", &|$.) exiting to the boundary ! or ": 

=1(&|$.) = − ;(1,8|%")
>(%"→1)

= ?
>(%"→1)

D(!) 67@$, &A$.B
6%

H
%C1

	  (6) 

=2(&|$.) = ;(2,8|%")
>(%"→2)

= − ?
>(%"→2)

D(") 67@$, &A$.B
6%

H
%C2

	 (7) 



Here  I($. → !) = −∫ K&G(!, &|$.)D
. 	and  I($. → ") = 1 − I($. → !) = ∫ K&G(", &|$.)D

.  are 

the fractions of particles in the ensemble exiting through ! and	": those are known the splitting 

probabilities
48

 (i.e. the probabilities to exit through the boundaries ! and "). 

 The probability distribution of the first passage time from $.	to " is calculated 

analogously, with the only difference that no absorbing boundary condition is imposed at $ =
!, since the trajectory $(&) can cross the point ! any number of times before being terminated 

at $ = " (See Fig. 1). In this case we have   

)%"→2+, (&) = −D(") 67@$, &A$.B
6%

H
%C2

 (8) 

for any starting point $. < ".	 We note that for a potential that has the property (($) → ∞	 for 

$ → 	−∞, this first passage time distribution can be obtained as the ! → −∞ limit of the 

conditional exit time distribution =2(&|$.). In other words, since the absorbing boundary at 

! → −∞ is never reached, the first passage times from $. to " are identical to the exit times. 

Thus first passage times can be viewed as a limiting case of conditional exit times.   

 

2.2. Recursive equations for the distribution moments.  Similarly to an approach known in the 

literature (see, e.g., ref. 
48

), we now outline a general procedure for the calculation of the 

moments of the distributions of the conditional exit times introduced above. For concreteness, 

let us focus on the distribution =1(&|$.) of the exit time to the boundary !. We are interested 

in its M-th moment,  

〈&E($. → !	)〉 = ∫ K&&E=1(&|$.)D
. = ?

>(%"→1)
∫ K&&EG(!, &|$.)D
. ≡ ?

>(%"→1)
〈3E($. → !	)〉    (9)    

where we have introduced the moments of a unnormalized distribution 

 〈3E($. → !	)〉 = ∫ K&&EG(!, &|$.)D
. = ∫ K&&ED(!) 67@$, &A$.B

6%
H
%C1

D
. 		(10)	

To find such moments, we start with the adjoint Smoluchowski equation (see, e.g., refs
20, 53

), 

which considers C($, &|$.) as a function of the starting point $.: 

67
68
= E:#(%") 6

6%"
D($.)E9:#(%") 676%",  (11) 

with the initial condition of Eq. 4 and the boundary conditions  

C($, &|!) = C($, &|") = 0   (12)  

Multiplying both sides of this equation by &E and integrating over time, we obtain  



E:#(%") 6
6%"

D($.)E9:#(%") 6+#6%"
= −MQE9?, M > 0,  (13) 

		 E:#(%") 6
6%"

D($.)E9:#(%") 6+"6%"
= −F($ − $.),	  (14) 

where we have introduced the auxiliary functions  

QE($|$.) = 	∫ K&&EC($, &|$.)D
. ,      (15) 

which satisfy the boundary condition  

QE($|!) = QE($|") = 0.   (16) 

From Eq. 10, the moments 〈3E($. → !	)〉 (Eq. 10) now can be written as  

〈3E($. → !	)〉 = D(!) 6+#@$A$.B
6%

H
%C1

(17) 

 Using Eqs. 13 and 17, we find that these moments satisfy the following equation: 

E:#(%") 6
6%"

D($.)E9:#(%") 6〈G
#(%"→1	)〉
6%"

= −M〈3E9?($. → !	)〉, M > 0, (18) 

which should be supplemented with the boundary conditions 

	〈3E($. → !	)〉|%C1 = 〈3E($. → !	)〉|%C2 = 0 (19) 

Thus if the (M − 1)-th moment, 〈3E9?($. → !	)〉, is known then the next moment 

〈3E($. → !	)〉 can be obtained by integrating Eq. 18 twice.   

 To obtain the n-th moment of interest, 〈&E($. → !	)〉, the moment 〈3E($. → !	)〉  
needs to be divided by the splitting probability (Eq. 9). As this probability is the 0-th order 

moment of the unnormalized distribution, it can be obtained by solving Eq. 14 with the 

boundary conditions of Eq. 16, resulting in the known result
48

     

I($. → !) = D(!) 6
6%
R∫ K&C($, &|$.)D
. S

%C1
= D(!) 6+"@$A$.B

6%
H
%C1

= ∫ J%!$%(')/L(%))
'"
∫ J%!$%(')/L(%))
*

,   (20) 

Note that while the equation hierarchy, Eq. 18, is similar to that derived in the literature for 

first-passage times
37, 48

, there is an important technical difference: because =1(2)(&|$.)  is a 

conditional distribution, Eq. 18 is satisfied by the moments 〈3E($. → !	)〉 and not by 

〈&E($. → !	)〉.    
    

3. Results 

3.1. Exit times. We now give the general analytical solutions for the first and second moments 

of the exit times. Starting with the unnormalized distribution’s “zeroth moment” (which is the 



splitting probability), integrating Eq. 18 twice, and dividing by the splitting probability (Eq. 9) we 

find the first moment 

〈&($. → !	)〉/ = ?

∫ J%	!$%(')/L(%))
'"

∫ J%	!$%(')

L(%) ∫ JM	!$%(+)

L(M)
2
1 ∫ KTI(T → !)E9:#(N)M

%
%"
1 ,   (21) 

where the splitting probability  I(T → !) is defined in Eq. 20. (Note that here we use the 

notation 〈… 〉/  to indicate averaging over the distribution of conditional exit times). Similarly, 

the second moment now can be expressed in terms of the first moment by integrating Eq.18 

twice. This gives 

 〈&O($. → !	)〉/ = O

∫ J%!$%(')/L(%))
'"

∫ J%	!$%(')

L(%) ∫ JM	!$%(+)

L(M)
2
1 ∫ KTI(T → !)〈&(T → !	)〉/E9:#(N)	M

%
%"
1 . 

(22) 

The expression for the M-th moment,	〈&E($. → !	)〉/ ,	M = 3,4…,	is	obtained	by	replacing	
2〈&(T → !	)〉/ 	in	Eq.	22	by	M〈&E9?(T → !	)〉/ .	 

We are particularly interested in the distribution’s relative width, which is 

conventionally quantified by its coefficient of variation, which is equal to the ratio of the 

standard deviation to the distribution’s mean:   

f = P〈8,〉9〈8〉,Q
-
,

〈8〉
      (23) 

Narrower distributions have smaller values of the coefficient of variation, and the coefficient of 

variation for an exponential distribution is 1. The value of the coefficient of variation encodes 

important information about the underlying dynamics and energy landscape. For example, in 

the case of barrier crossing by transition paths, lower values of this coefficient correspond to 

higher barriers
35

, while a value of 1 (corresponding to a single-exponential distribution) 

suggests (inasmuch as the model of diffusive dynamics is applicable) that transition paths cross 

a potential well (intermediate) that traps the system
3
.  Even more interestingly, regardless of 

the underlying potential of mean force this coefficient cannot possibly exceed 1 for the model 

of one-dimensional diffusive dynamics model
35, 37

; thus experimental observation of f 

exceeding 1 automatically invalidates such a model. But what about coefficients of variation for 

the more general exit time?  



 For the double-well potential shown in Fig. 2, Fig. 3 shows how the coefficient of 

variation of the exit time through the left boundary depends on the starting point $..  For $. 

approaching the right boundary, $. → ", the exit time approaches the transition path time 

&(,(" → !); it has been shown previously
35, 37

 that the coefficient of variation for this time is 

always less than 1 (assuming the validity of the diffusive dynamics model).  

In the opposite limit,  $. → !, the exit time becomes the return time  &-(! → !), and 

we observe that the coefficient of variation diverges. Mathematically, this divergence arises 

because both the first and the second moments grow linearly with $. − ! in the limit $. − ! →
0.	 
 Broadening of the exit time distribution as the starting point $.	approaches the 

absorbing boundary  !	is also observed directly in the distribution’s shape shown, for three 

values of $., in Fig. 4. These distributions were obtained using Eq. 6, from a numerical solution 

of the Smoluchowski equation that uses the spectral expansion method – see ref.
27

 for further 

details. Note that, because both the first and the second moments of this distribution increase 

with increasing $. (see the inset of Fig. 3, where the first moment of the distribution is plotted 

as a function of $.), the time in each distribution is rescaled by its mean value. In other words, 

the first moments of each distribution as plotted in Fig. 4 are the same and equal to 1.  

 At first glance, the distribution =1(&|$.) obtained for a value $. that is closest to the left 

boundary seem more “narrow” than the other two, showing a sharper rise at short times. But 

this is not so (inasmuch as the coefficient of variation is a good measure of width) because of 

the long tail exhibited by this distribution. This tail is more readily observed when the same 

distribution is plotted on a logarithmic scale (Fig. 4, inset). 

To further understand the distribution broadening as $. approaches the boundary !, it 

is instructive to consider the case of zero potential, (($) = 0, with a coordinate-independent 

diffusion coefficient D($) = D.	Setting, without loss of generality, ! = 0,	 the integrals of Eq. 21 

and 22 can be evaluated analytically to give  

〈&($. → 0	)〉/ = (O29%")%"
RL

  (24) 

〈&O($. → 0	)〉/ = %"@S2.TS2,%"9?O2%",TU%".B
?S.L,

.   (25) 



Both functions are proportional to $. in the limit $. → 0,	thus leading to $.9?/O divergence of 

the coefficient of variation (Eq. 23).  

 Moreover, the distribution of the exit time for the case of zero potential can be 

calculated analytically. Although this problem of free diffusion on an interval with absorbing 

boundaries was studied in the literature – see, e.g., ref.
45

 – we provide a derivation for =.(&|$.) 
in Appendix A for completeness, and as a simple illustration of the approach here. Specifically, 

the Laplace transform of =.(&|$.) is given by 

 	=g.(h|$.) =
VWXYZ(29%")[

/
0\

(29%") VWXYZ2[
/
0\

    (26) 

Consider now the case $. ≪ ", "j]
L
≫ 1	.  In the time domain, the second inequality implies 

that we are considering timescales much shorter than the characteristic diffusion time on the 

segment (0, "),	i.e., & ≪ 2,

L
. In this limit, we obtain  	=g.(h|$.) ≈ ?

29%"
E9%"[

/
0	, and taking the 

inverse Laplace transform we find 

=.(&|$.) ≈ %"
O√_L

&9.,E9
'",
102   (27) 

In fact, Eq. 27 provides an accurate description of the exit time distribution even in the 

presence of a nonzero potential (($) as long as the time & is not too long - see Figure 5. This is 

because, at short enough timescales, diffusion dominates over the drift, and the presence of 

the potential is immaterial. At longer times, however, the exit time distribution exhibits an 

exponential tail, in contrast to a power-law tail predicted by Eq. 27. A true power-law tail will be 

observed in the absence of a potential when the right boundary is removed to infinity – see 

Section 3.2.  

Returning to the case of zero potential, when $.O ≪ D& then the exponential in Eq. 27 

can be replaced by 1. On the other hand, when D& ≪ "O, the particle originating from $. does 

not have time to reach the right boundary ". When both of these conditions are satisfied,  
%",

L
≪

& ≪ 2,

L
, Eq. 27 predicts a power lay  =.(&|$.) ∝ &9

.
,, a behavior characteristic of a “broad” 

distribution displaying multiple timescales. Note, however, that the absolute width of the 



distribution, as opposed to the relative width quantified by the coefficient of variation, 

decreases as $. → 0. Indeed, at $. = 0 the Laplace transform of this distribution is constant, 

and the distribution is the delta function, =.(&|$.) = F(&), indicating that a particle cannot 

leave the absorbing boundary $. = 0.  In other words, the return time is identically zero in this 

case.  

This delta-function distribution of the return time should be expected of diffusive 

dynamics (or equivalently, of the overdamped Langevin equation where the inertial term 

containing acceleration is omitted).  It is pathological: if inertial effects are taken into account, 

the system crossing the left boundary ! with a positive velocity will travel to the right over 

some finite time. Thus it will take a finite time to return to the boundary. The typical return 

time, then, would be comparable to the velocity correlation time, which is typically very short 

and thus unresolvable by current single-molecule techniques
54

. This conclusion has important 

experimental implications: an attempt to measure the return time will likely be confounded by 

experimental artifacts such as the limited spatial and temporal resolution or the smoothing of 

the trajectory (which introduces an artificial “velocity” that would be absent in true diffusive 

dynamics). These difficulties can be avoided by measuring the exit time distribution  =1(&|$.) 
instead, with the initial point $.	being within the limits allowed by the experiment’s spatial 

resolution.  

  

3.2. First passage times. We now consider the distribution of the first passage time )%"→2+, (&) to 

arrive at the (target) boundary " starting from $ = $. < ". The first moment of this distribution 

is given by the known expression
20, 45, 47

  

〈&($. → "	)〉+, = ∫ J%	!$%(')

L(%)
2
%"

∫ KmE9:#(M)%
9D ,	 (28) 

and the second moment can be obtained similarly to the approach of Section 3.1 by integrating 

Eq. 18:  

〈&O($. → "	)〉+, = 2∫ J%	!$%(')

L(%)
2
%"

∫ KmE9:#(M)%
9D 〈&(m → "	)〉+,  (29) 

The dependence of the coefficient of variation on the initial position $. for the double-well 

potential shown in Fig. 2 and for a coordinate-independent D($) is illustrated in Fig. 6. For $. 



located not too far from the left potential minimum (located at $ = −1), we observe that its 

value is close to 1. This is easy to understand: thermally activated escape from a potential well 

separated from the target boundary "	by a sufficiently high barrier is governed by 1
st

-order 

kinetics, resulting in an exponential distribution of escape times, whose coefficient of variation 

is 1. Even though the barrier in this case is only 21)2, the coefficient of variation is only slightly 

below 1. 

 When the initial position $. moves toward ", however, the coefficient of variation 

increases, and it diverges as the starting point approaches the target, $. → ". This behavior is 

similar to that of the exit time discussed in Section 3.1 and illustrated in Fig. 3. The physical 

origins of this behavior will be further discussed below.  Mathematically, the divergent behavior 

of the coefficient of variation follows from Eqs. 28 and 29 (and from the definition of the 

coefficient of variation, Eq. 23). Indeed, based on these equations, both the first and the second 

moments of the distribution are, to lowest order in the distance to the target (" − $.), are 

proportional to (" − $.), and thus the coefficient of variation scales as	f ∝ (" − $.)9
-
, .  

 To gain further insight into the shapes of the first passage time distributions, consider 

the analytically tractable case of a linear potential,  

(($) = −Q$    (30) 

describing a particle subjected to a constant force Q ≥ 0.  Using Eqs. 28 and 29, we find, for 

$. < ", 
〈&($. → "	)〉+, = 29%"

:+L
   (31) 

and  

〈&O($. → "	)〉+, = O
(:+).L,

[(" − $.) + :+(29%"),

O
],   (32) 

from which, using Eq. 23, we find 

f = q O
:+(29%")

r?/O   (33) 

showing divergent behavior as $. → ".  

 A particularly interesting case is that of free diffusion, which is obtained by setting the 

force Q to zero.  Formally, Eq. 33 predicts that the coefficient of variation should diverge for any 

initial position $., but, of course, both the first and the second moments of the distribution 



diverge in this case, so the coefficient of variation is not well defined at exactly zero force (see 

Eq. 23). Nevertheless, the distribution of the first passage time itself is well defined for free 

diffusion. It is given by (see, e.g., ref. 
45

; Appendix B provides a derivation for completeness)  

)%"→2+, (&) = 29%"
O√_L

&9.,E9
()3'"),
102     (34) 

Eq. 34 is identical to Eq. 27 (provided that $. is replaced by " − $.; both of these quantities are 

the distances to the absorbing boundary in each case). However, unlike Eq. 27, which only holds 

at intermediate timescales, Eq. 34 has a power-law tail decaying as &9U/O at arbitrarily long 

times. This difference is due to the fact that diffusion on an infinitely long segment, unlike 

diffusion within a transition region of finite length, does not possess a longest characteristic 

timescale. More specifically, as noted above, the power law in Eq. 27 holds only at times short 

enough that the particle does not have enough time to reach the right boundary ", and thus 

the exit time is indistinguishable from the first passage time. In contrast, no such boundary 

exists in the present case, diffusion takes place on a semi-infinite segment, and arbitrarily long 

excursions from the point $. are possible. Although the distribution of Eq. 34 is itself 

normalized, all of its moments diverge.  

These findings show that first passage time distributions can be broad, with a coefficient 

of variation exceeding 1, or even with its moments being infinite. This is different from the 

distribution of the transition path time, which, for one-dimensional diffusive dynamics, is 

always below 1, as further discussed below. 

 

3.3. Transition path times. The 1
st

 and 2
nd

 moments of the distribution of the transition path 

can be found from Eqs. 21-22 as the limiting case where the starting point $. coincides with the 

absorbing boundary ". Note that this gives moments of the transition path time from " to !, 

but given the time-reversal symmetry of transition paths, they are the same as those for 

transition paths from ! to ".  The result for the first moment has been derived previously
25, 49, 

55
: 

〈&(! → "	)〉(, = 〈&(" → !	)〉(, = (∫ J%	!$%(')

L(%)
2
1 ) ∫ KTI(T → $.)I(T → ")E9:#(N)2

1  (35) 

For the second moment, we arrive at 



〈&O(! → "	)〉(, = 〈&O(" → !	)〉(, = 2(∫ J%	!$%(')

L(%)
2
1 ) ∫ KTI(T → $.)I(T → ")〈&(T →2

1

")〉/E9:#(N), (36) 

where  〈&($. → ")〉/  is the mean exit time through boundary " conditional upon not crossing 

the boundary !. This result was reported earlier in ref.
35

 for coordinate-independent diffusivity, 

and in ref.
37

. 

As proven in refs.
35, 37

, the coefficient of variation of the transition path time distribution 

(Eq. 23) always remains below 1 (Fig. 6). For the potential shown in Fig. 2 and for initial points 

$. < −1 located to the left of the potential minimum at $ = −1,  the coefficients of variation 

for both transition path time- and first passage time distributions are close to each other and to 

the value f = 1	expected for an exponential distribution (Fig. 6). This is not surprising: if the 

starting point $. < −1 is located on a steep left wall of a potential well, a trajectory originating 

from $. will likely proceed toward the right of the starting point, and thus a first passage and a 

transition path time should be nearly the same. Moreover, their distributions should be close to 

exponential, with f ≈ 1, as these times should be close to the time of thermally activated 

escape from the left potential well.  

 As the initial point $. approaches the target ", the coefficient of variation for the 

transition path time distribution stays below 1, while the coefficient of variation for the first 

passage time distribution increases and diverges for $. → ", a behavior explained in Section 

3.2. 

 

4. Discussion and concluding remarks.  

Our findings show that the distribution of the transition path time is special in that, in 

the case of purely diffusive dynamics, its coefficient of variation cannot exceed 1, in contrast to 

the distributions of the first passage and conditional exit times. In other words, transition path 

time distributions are narrow (narrower than exponential) while first passage time and exit 

time distributions may be arbitrarily broad, with their coefficients of variations being arbitrarily 

large.  

What is the physical origin of this difference? It is instructive to consider the free 

diffusion case discussed in Section 3.2. Consider a Brownian particle starting to the left of the 



target at $. < ". It may proceed directly toward the target ", in which case its trajectory will be 

a transition path from $. to ", or it may exercise an arbitrarily long detour to the left of the 

starting point before finally finding the target at $ = "	(note that in 1D the particle will 

eventually find the target with certainty). In a sense, these two scenarios may be considered as 

two parallel pathways contributing to the first passage time distribution, but only with the first 

scenario contributing to the transition path time distribution. As shown in refs.
35, 50

, it is the 

existence of such parallel pathways with disparate characteristic timescales that leads to broad 

distributions, and, indeed, Eq. 34 exhibits a power-law tail describing long-lasting events.    

Exit times, Eqs. 21-22, provide a more general description of barrier crossing dynamics 

than the better-studied transition path time. Exit times have been discussed previously in the 

context of finding practical reaction coordinates
46

. It is widely believed that the splitting 

probability (committor) has attractive mathematical properties that makes it in a certain sense 

an optimal reaction coordinate
25, 53, 56-62

. The splitting probability answers the following 

question: starting from a certain point in phase or configuration space, what is the probability 

to get to the reaction product before getting to the reactant? In our one-dimensional model, 

the function I($. → ") ($. being the starting point) gives the answer to this question, provided 

that the segment (−∞, !) is regarded as the reactant and (", +∞) as the product. The 

conditional exit time is a complementary quantity that answers a question that is concerned 

with the transition timescale: starting from a certain point in phase or configuration space, 

what is the (mean) time to get to the product conditional upon reaching the product before 

getting to the reactant? In our case this question is answered by the mean exit time 

〈&($. → ")〉/. The exit time generalizes the notion of the transition path time: in the limit 

where the initial point $. coincides with the boundary !, this time becomes the transition path 

time &(,(! → ").  Another limiting case of the conditional exit time is the (mean) return time 

〈&($. → !)〉/|%"→1 = 〈&(! → !)〉-, which is the mean time it takes to return to the boundary 

!	starting from this boundary and conditional upon not exiting through the boundary ". For the 

case of diffusive dynamics considered here, however, this time is identically equal to zero.    

This paper has focused on the model of diffusive dynamics along a one-dimensional 

reaction coordinate. Given the many successes of this model in application to biomolecular 



folding (see, e.g., refs.
63-65

), we view elaboration on further consequences of this model for the 

dynamics in the transition region a worthy pursuit, but it also gives us an opportunity to 

delineate potential limitations of this model in application to experimental data. Indeed, the 

following three properties are strictly satisfied by this model, yet they may be violated when 

the dynamics along the reaction coordinate are influenced by memory effects and/or when 

multi-dimensionality is essential
66, 67

: 

(1) Locality of exit times: Distributions of exit times (and transition path times in particular) are 

independent of the potential (($) outside the transition region (!, "). This is obvious from the 

derivation outline described in Section 2.1, since the properties of the potential outside the 

transition interval do not enter into the picture (Of course, Markovianity of diffusion, allowing 

one to disregard any knowledge of the system’s past prior to its arrival at the point $.	is key 

here). Note that this local property is not true for first-passage times from !	to ", which depend 

on the properties of the potential (($) for $ < !. 

(2) The distribution of the transition path time has a coefficient of variation that cannot exceed 

1, regardless of the potential and the transition region boundaries. This property is a direct 

consequence of Eqs. 23, 35 and 36
35

. 

(3) Transition path times exhibit forward/backward symmetry, )1→2(, (&) = )2→1(, (&), as already 

stated in Eq. 1. Note that this property is true even for systems that are not in equilibrium
68

 

because of the property (1).    

While strictly true for diffusive dynamics, some (or all) of these properties may not be 

true if the dynamics along $ is not diffusive. For example, property (1) cannot be generally true 

for non-Markovian dynamics, property (2) has already been found to be violated for the 

dynamics of reaction coordinates in protein folding
35

, and property (3), while true for any 

equilibrium system, was found to be violated for systems that are simultaneously non-

equilibrium and non-Markovian
68

.  Violation of any of the above exact predictions would 

invalidate, with certainty, the diffusive picture of the dynamics along a reaction coordinate and 

call for a more accurate model.   

We conclude this paper with comments on how experimental time resolution may 

affect information that can be deduced from the distributions of the various times discussed 



here. Generally, limited time resolution may result in missing short-time events, thereby 

skewing the apparent distribution toward longer times while simultaneously making it 

narrower. More formally, we may write the true distribution )(&) of the time of interest as 

)(&) = s)`E(&) + (1 − s))a2](&),  (37)   

where s is the fraction of unobserved short-time events with a normalized distribution )`E(&) , 
and 1 − s the fraction of observed events with a normalized distribution )a2](&). The latter 

distribution is the one observed experimentally. Thus we have  

fO + 1 = 〈8,〉
〈8〉,

= b〈8,〉4#T(?9b)〈8,〉5)/
[b〈8〉4#T(?9b)〈8〉5)/],

   (38) 

where  〈&〉`E, 〈&〉a2], 〈&O〉`E, 〈&O〉a2] are the first and second moment of the unobserved and 

observed distributions, as indicated by the subscripts. Given that unobserved events are shorter 

than the observed ones, we have 〈&〉`E < 〈&〉a2], and it is obvious that the true distribution 

mean 〈&〉 = s〈&〉`E + (1 − s)〈&〉a2]  is always shorter than the observed value 〈&〉a2].  

Let us now focus on the case of measuring transition path times. Given that higher 

barriers (for the same transition region boundaries) correspond to shorter mean transition path 

times
19, 25

, this longer observed values of the transition path time could lead the 

experimentalist to deduce a lower transition barrier. On the other hand, as follows from Eq. 38, 

the true coefficient of variation f is greater than the observed one, fa2] = P〈8,〉5)/9〈8〉5)/
, Q

-
,

〈8〉5)/
, and a 

narrower observed distribution of the transition path time, with a greater coefficient of 

variation, corresponds to a higher barrier. Thus analysis of experimental distribution widths 

may reveal experimental artifacts. 

 

 

Appendix A. Exit time distribution for free diffusion. 

Following the approach outlined in Section 2.1, we write the diffusion equation describing the 

time evolution of Green’s function  C($, &|$.) of a free particle (i.e., Eq. 3 with constant 

diffusivity D and with (($) = 0): 

67
68
= D 6,7

6%,
,  (A1) 

with the initial condition  



C($, 0|$.) = F($ − $.), (A2) 

and with absorbing boundary conditions (cf. Eq. 5)   

C(! = 0, &|$.) = C(", &|$.) = 0  (A3) 

To solve Eq. A1, we rewrite it in Laplace space: 

h	Ct − F($ − $.) = D 6,7e
6%,

, (A4) 

where  

Ct($, h|$.) = ∫ K&E9]8C($, &|$.)D
.  (A5) 

The solution of Eq. A4 satisfying the absorbing boundary conditions can be written in the form 

Ct($, h|$.) =
⎩
⎨
⎧ x	 sinh[$j]

L
] , 0 ≤ $ < $.	

{ sinh[(" − $)j]
L
] , $. < $ ≤ "

(A6) 

The coefficients x	and { can be determined from the continuity of the Green’s function at $ =
$.,  

Ct($. + 0, h|$.) = Ct($. − 0, h|$.), (A7) 

and from the condition  

	D 67e

6%
H
%"9.

%"T. = −1, (A8) 

which is obtained by integrating Eq. A4 over an infinitesimal interval from $. − 0 to $. + 0.  

 The exit time distribution can now be found from Eq. 6 rewritten in Laplace space: 

=|.(&|$.) = ?
>(%"→.)

D 67e@$, &A$.B
6%

H
%C.

, (A9) 

where the splitting probability I($. → 0) is the integral of the flux exiting through the left 

boundary,  

I($. → 0) = D ∫ K& 67(%,8|%")
6%

H
%C.

D
. = D 67e(%,8|%")

6%
H
%C.

 (A10) 

The expression in Eq. 26 is then obtained using Eqs. A6-A10.       

 

Appendix B. First passage time distribution for free diffusion 

Following the approach outlined in Section 2.1, we seek the solution C($, &|$.) of the diffusion 

equation 



67
68
= D 6,7

6%,
,  (B1) 

with the initial condition  

 C($, 0|$.) = F($ − $.) (B2) 

and with absorbing boundary condition at $ = ":  

C(", &|$.) = 0  (B3) 

We assume that $. < ".	The solution for $ < " is easily constructed from Green’s function of 

the freely diffusing particle using the method of images: 

C($, &|$.) = ?
√f_L8

}E9
('3'"),
102 − E9

('3,)6'"),
102 ~  (B4) 

The probability distribution of the first passage time from $.	to the boundary "	is equal to the 

flux at the target boundary, 

)%"→2+, (&) = −D 67(%,8|%")
6%

H
%C2

= 29%"
O√_L

&9.,E9
()3'"),
102 , (B5) 

which is the expression in Eq. 34. Note that this distribution is automatically normalized, since 

the integral of the flux over time, equal to the probability of crossing $ = " at any time, is 1.  
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Figure legends 

Figure 1. Barrier crossing dynamics: A first-passage path from ! to " consists of “internal loops” 

entering and exiting the transition region through the same boundary
22

 (red), “external loops”  

where the system dwells inside the well region (−∞, !) (black), and a “transition path” where 

the system traverses the transition region from one boundary to the other (green). Typical one-

dimensional free energy landscape of folding is shown on the right. 

 



Figure 2. Double-well potential (($) = 21)2($O − 1)O used to illustrate the results here. The 

transition region boundaries, ! = −1, " = 1,	are shown as dashed lines. 

 

Figure 3. Coefficient of variation for the exit time distribution =1(&|$.) as a function of the 

starting point $.. The transition region boundaries are shown as dashed lines. Inset shows the 

mean exit time as a function of $.. This time is measured in dimensional units, with �O/D 

(where 2�	is the distance between the two potential minima and D the diffusivity) being the 

unit of time. The unit of distance is �.  

 

Figure 4. Probability distribution =1(&|$.)	of the exit time to the left boundary (Eq.6) for 

different values of the initial position $., as indicated in the legend. The time in each case is 

normalized by the distribution’s mean. The potential (($) and the transition region boundaries 

are the same as in Figures 2-3. Of the three distributions shown here, the one corresponding to 

the point $. closest to the left boundary is the broadest (i.e. has the largest coefficient of 

variation)  because of its long tail. This tail is easy to see when the same data is plotted on a 

logarithmic scale (inset).   

 

Figure 5. Eq. 27 vs. the probability distribution for the exit time to the left boundary, 

=1(&|$.),	in the double-well potential of Fig. 2. In both cases, the distance $. − ! is much 

shorter than the length  " − ! of the transition region and is equal to 0.1.  The time is 

measured in dimensional units, with �O/D (where 2�	is the distance between the two potential 

minima and D the diffusivity) being the unit of time. The distance � provides a unit of distance. 

 

Figure 6. Coefficient of variation C for the first passage time from $. to " (solid line), and for the 

transition path time from $. to " (dashed-dotted line), as a function of the starting point $..  

Inset: same data for the transition path time. 

 

 

 



References 

1. Z. Kilic, I. Sgouralis and S. Presse, Biophys J 120 (3), 409-423 (2021). 

2. D. E. Makarov, J Phys Chem B 125 (10), 2467-2476 (2021). 

3. F. Sturzenegger, F. Zosel, E. D. Holmstrom, K. J. Buholzer, D. E. Makarov, D. Nettels and 

B. Schuler, Nat Commun 9 (1), 4708 (2018). 

4. G. Schreiber, G. Haran and H. X. Zhou, Chem Rev 109 (3), 839-860 (2009). 

5. A. B. Kolomeisky, Motor Proteins and Molecular Motors. (CRC Press, 2015). 

6. A. M. Berezhkovskii and D. E. Makarov, J Phys Chem Lett 11 (5), 1682-1688 (2020). 

7. N. Q. Hoffer and M. T. Woodside, Curr Opin Chem Biol 53, 68-74 (2019). 

8. B. Schuler and W. A. Eaton, Curr Opin Struct Biol 18 (1), 16-26 (2008). 

9. B. Schuler, E. A. Lipman and W. A. Eaton, Nature 419 (6908), 743-747 (2002). 

10. S. J. Hagen, J. Hofrichter, A. Szabo and W. A. Eaton, Proc. Natl. Acad. Sci. USA 93, 11615 

(1996). 

11. O. Bieri and T. Kiefhaber, Biological chemistry 380 (7-8), 923-929 (1999). 

12. O. Bieri, J. Wirz, B. Hellrung, M. Schutkowski, M. Drewello and T. Kiefhaber, Proceedings 

of the National Academy of Sciences of the United States of America 96 (17), 9597-9601 (1999). 

13. Z. Wang and D. E. Makarov, J.  Phys. Chem. B 107, 5617 (2003). 

14. I. V. Gopich, D. Nettels, B. Schuler and A. Szabo, J Chem Phys 131 (9), 095102 (2009). 

15. A. Hoffmann, A. Kane, D. Nettels, D. E. Hertzog, P. Baumgartel, J. Lengefeld, G. 

Reichardt, D. A. Horsley, R. Seckler, O. Bakajin and B. Schuler, Proc Natl Acad Sci U S A 104 (1), 

105-110 (2007). 

16. D. Nettels, I. V. Gopich, A. Hoffmann and B. Schuler, Proc Natl Acad Sci U S A 104 (8), 

2655-2660 (2007). 

17. A. Soranno, B. Buchli, D. Nettels, R. R. Cheng, S. Muller-Spath, S. H. Pfeil, A. Hoffmann, E. 

A. Lipman, D. E. Makarov and B. Schuler, Proceedings of the National Academy of Sciences of 

the United States of America 109, 17800-17806 (2012). 

18. E. Haas and I. Z. Steinberg, Biophysical Journal 46, 429 (1984). 

19. D. E. Makarov, Single Molecule Science: Physical Principles and Models. (CRC Press, 

Taylor & Francis Group, Boca Raton, 2015). 

20. R. Elber, D. E. Makarov and H. Orland, Molecular Kinetics in Condense Phases: Theory, 
Simulation, and Analysis. (Wiley and Sons, 2020). 

21. A. M. Berezhkovskii, L. Dagdug and S. M. Bezrukov, J Chem Phys 147 (13), 134104 

(2017). 

22. A. M. Berezhkovskii, L. Dagdug and S. M. Bezrukov, J Phys Chem B 121 (21), 5455-5460 

(2017). 

23. B. W. Zhang, D. Jasnow and D. M. Zuckerman, J. Chem. Phys. 126, 074504 (2007). 

24. D. M. Zuckerman and T. B. Woolf, J. Chem. Phys 116 (6), 2586-2591 (2002). 

25. G. Hummer, J Chem Phys 120, 516-523 (2004). 

26. A. M. Berezhkovskii, G. Hummer and S. M. Bezrukov, Phys Rev Lett 97 (2), 020601 

(2006). 

27. S. Chaudhury and D. E. Makarov, J. Chem. Phys. 133, 034118 (2010). 

28. E. Pollak, Phys Chem Chem Phys 18 (41), 28872-28882 (2016). 

29. E. Pollak, Phys Rev Lett 118 (7), 070401 (2017). 



30. E. Carlon, H. Orland, T. Sakaue and C. Vanderzande, The Journal of Physical Chemistry B 

122 (49), 11186-11194 (2018). 

31. M. Laleman, E. Carlon and H. Orland, J Chem Phys 147 (21), 214103 (2017). 

32. P. Cossio, G. Hummer and A. Szabo, Journal of Chemical Physics 148, 123309 (2018). 

33. S. V. Malinin and V. Y. Chernyak, J Chem Phys 132 (1), 014504. 

34. E. Medina, R. Satija and D. E. Makarov, J Phys Chem B 122 (49), 11400-11413 (2018). 

35. R. Satija, A. M. Berezhkovskii and D. E. Makarov, Proc Natl Acad Sci U S A 117 (44), 

27116-27123 (2020). 

36. R. Satija, A. Das and D. E. Makarov, The Journal of Chemical Physics 147 (15), 152707 

(2017). 

37. D. Hartich and A. Godec,  (arXiv:2011.04628 . Accepted for publication in Phys. Rev. X, 

2021). 

38. H. S. Chung and W. A. Eaton, Curr Opin Struct Biol 48, 30-39 (2018). 

39. H. S. Chung, J. M. Louis and W. A. Eaton, Proc Natl Acad Sci U S A 106 (29), 11837-11844 

(2009). 

40. H. S. Chung, J. M. Louis and W. A. Eaton, Science 335, 981-984 (2012). 

41. K. Neupane, D. A. Foster, D. R. Dee, H. Yu, F. Wang and M. T. Woodside, Science 352 

(6282), 239-242 (2016). 

42. K. Neupane, D. B. Ritchie, H. Yu, D. A. Foster, F. Wang and M. T. Woodside, Phys Rev Lett 

109 (6), 068102 (2012). 

43. H. Yu, A. N. Gupta, X. Liu, K. Neupane, A. M. Brigley, I. Sosova and M. T. Woodside, Proc 

Natl Acad Sci U S A 109 (36), 14452-14457 (2012). 

44. J. Y. Kim and H. S. Chung, Science 368 (6496), 1253-1257 (2020). 

45. S. Redner, A Guide to Fisrt Passage Times. (Cambridge University Press, 2001). 

46. P. Ma, R. Elber and D. E. Makarov, J Chem Theory Comput 16 (10), 6077-6090 (2020). 

47. A. Szabo, K. Schulten and Z. Schulten, J Chem Phys 72, 4350 (1980). 

48. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural 
Sciences. (Springer-Verlag, Berlin, 1983). 

49. H. S. Chung and I. V. Gopich, Phys Chem Chem Phys 16 (35), 18644-18657 (2014). 

50. A. M. Berezhkovskii, S. M. Bezrukov and D. E. Makarov, J Chem Phys 154 (11), 111101 

(2021). 

51. X. Li and A. B. Kolomeisky, J Chem Phys 139 (14), 144106 (2013). 

52. A. L. Thorneywork, J. Gladrow, Y. Qing, M. Rico-Pasto, F. Ritort, H. Bayley, A. B. 

Kolomeisky and U. F. Keyser, Sci Adv 6 (18), eaaz4642 (2020). 

53. B. Peters, Reaction Theory and Rare Events (Elsevier, 2017). 

54. A. M. Berezhkovskii and D. E. Makarov, J Chem Phys 148 (20), 201102 (2018). 

55. A. M. Berezhkovskii, M. A. Pustovoit and S. M. Bezrukov, Journal of Chemical Physics 

116, 9952-9956 (2002). 

56. W. E and E. Vanden-Eijnden, J. Stat. Phys. 123 (3), 503-523 (2006). 

57. J. Lu and E. Vanden-Eijnden, J Chem Phys 141 (4), 044109 (2014). 

58. E. Vanden-Eijnden, in Computer Simulations in Condensed Matter: From Materials to 
Chemical Biology, edited by M. M. Ferrario, G. Ciccotti and K. Binder (Springer, 2006). 

59. B. Peters, Annu Rev Phys Chem 67, 669-690 (2016). 

60. A. M. Berezhkovskii and A. Szabo, J Phys Chem B 117 (42), 13115-13119 (2013). 



61. P. V. Banushkina and S. V. Krivov, J Chem Phys 143 (18), 184108 (2015). 

62. P. V. Banushkina and S. V. Krivov, Biochem Soc Trans 43 (2), 157-161 (2015). 

63. N. D. Socci, J. N. Onuchic and P. G. Wolynes, J. Chem. Phys. 104, 5860-5868 (1996). 

64. D. Klimov and D. Thirumalai, Phys. Rev. Lett. 79, 317 (1997). 

65. K. Neupane, A. P. Manuel and M. Woodside, Nature Physics 12, 700-703 (2016). 

66. P. I. Zhuravlev, M. Hinczewski, S. Chakrabarti, S. Marqusee and D. Thirumalai, Proc Natl 

Acad Sci U S A 113 (6), E715-724 (2016). 

67. S. M. Avdoshenko and D. E. Makarov, J Phys Chem B 120 (8), 1537-1545 (2015). 

68. A. M. Berezhkovskii and D. E. Makarov, Journal of Chemical Physics 151, 065102 (2019). 

 


