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ABSTRACT: While antioxidants are widely known as natural
components of healthy food and drinks or as additives to commercial
polymer materials to prevent their degradation, recent years have seen
increasing interest in enhancing the antioxidant functionality of newly
developed polymer materials and coatings. This paper provides a
critical overview and comparative analysis of multiple ways of
integrating antioxidants within diverse polymer materials, including
bulk films, electrospun fibers, and self-assembled coatings. Poly-
phenolic antioxidant moieties with varied molecular architecture are
in the focus of this Review, because of their abundance, nontoxic
nature, and potent antioxidant activity. Polymer materials with
integrated polyphenolic functionality offer opportunities and
challenges that span from the fundamentals to their applications. In
addition to the traditional blending of antioxidants with polymer materials, developments in surface grafting and assembly via
noncovalent interaction for controlling localization versus migration of antioxidant molecules are discussed. The versatile chemistry
of polyphenolic antioxidants offers numerous possibilities for programmed inclusion of these molecules in polymer materials using
not only van der Waals interactions or covalent tethering to polymers, but also via their hydrogen-bonding assembly with neutral
molecules. An understanding and rational use of interactions of polyphenol moieties with surrounding molecules can enable precise
control of concentration and retention versus delivery rate of antioxidants in polymer materials that are critical in food packaging,
biomedical, and environmental applications.
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1. INTRODUCTION

Natural antioxidants, commonly found in fruits,1 vegetables,2

nuts,3 cereals,4 herbs and spices,5 teas,6 and wines,7 are often
associated with anti-inflammatory, anticancer, and antiaging
benefits, because of their potential to minimize oxidative stress
and unwanted damage to cells caused by reactive oxygen
species (ROS) and reactive nitrogen species (RNS).8−10 The
role of antioxidants, specifically polyphenols, in balancing ROS
and RNS levels in biological systems is achieved through their
inhibition of ROS-generating enzymes11 and chelation with
ROS-forming ferrous (Fe2+) ions,12 in addition to their
powerful radical-scavenging abilities.13 However, the need to
scavenge free radicals is not only limited to biological systems;
many industrial applications involving materials that are
vulnerable to oxidative degradation require antioxidant
protection, including most organic polymers.14 For example,
antioxidants are regularly used as stabilizing additives for
commercial polymers, such as polypropylene (PP) and
polyethylene (PE), to inhibit environmental degradation and
extend the service life of the polymer, particularly in outdoor

applications.15 The incorporation of antioxidants within a
polymeric matrix has significant advantages, such as protecting
vulnerable polymers from active scavenging radicals and
oxidation, along with the associated anti-inflammatory,
antimicrobial, and immunomodulatory properties benefiting
biological systems. This combination of properties is of specific
importance to food packaging and biomedical applica-
tions,16−18 yet an understanding of the principles of
antioxidant inclusion in a polymer matrix is necessary to
leverage their antioxidant activity.
This Review focuses on polyphenols as one of the most

abundant classes of antioxidants (with over 8000 phenolic
structures identified in plants19) that have no or low toxicity in
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reasonable doses20,21 and highly potent antioxidant activity.22

While recent reviews have discussed the general properties of
polyphenol assemblies,23−26 the health effects of polyphenol
conjugates,27 or specific applications of polyphenol−polymer
materials,28−33 this Review instead hopes to bring together the
diverse areas of food science, biomedical engineering, analytical
chemistry, and materials science by making fundamental
connections between the antioxidant activity of polyphenols
within polymer matrices to the strength, type of antioxidant−
polymer interactions, and intended application. The diverse
chemical structures of polyphenols enable strategic selection
from a wide array of chemical properties, including the number
of functional groups, molecular size, hydrophobicity, and
intrinsic antioxidant activity. Moreover, the presence of
polyphenol functional groups opens an opportunity for

inclusion of these antioxidants in materials via hydrogen
bonding, metal coordination, or covalent interactions. One
promising example of using polyphenols as building blocks for
synthesis of new materials, i.e., formation of metal-phenolic
networks, has been widely summarized in recent years through
many excellent reviews34−38 and thus is not included in this
discussion. The scope of this Review will not cover another
important class of polyphenol adhesivesmussel-inspired
dopamine-based materialsbecause of their prior extensive
coverage,39−44 and the mechanism of their activity (such as
synergistic action of catechol groups with other amino acid
groups and oxidation cross-linking)45 being distinct from the
polyphenols covered here.
This Review aims to emphasize opportunities in rational

development of polymeric materials with controllable incor-

Figure 1. Outline for the structure of this Review. Graphics were created with BioRender.com.

Figure 2. Classification of natural polyphenols based on the number of carbon atoms in the structure. The “C6” label represents an aromatic ring.
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poration and release of active antioxidant molecules and
highlight their recent applications in food packaging and
biomaterials. A schematic outline of this Review is presented in
Figure 1. With specific focus on the chemically diverse family
of polyphenols, the main goal is to provide an overview of the
mechanisms of relevant interactions of varying strengths
between polyphenols and polymers, including noncovalent
and covalent bonding. Recent advances that employ these
interactions in antioxidant polymer assemblies are critically
analyzed and compared, with specific focus on the antioxidant
retention and activity of the polyphenol-containing polymer
materials. Finally, novel applications of these materials in food
packaging and biomedical applications are highlighted, and
outlooks on the future of polyphenol-polymer materials are
provided.

2. POLYPHENOLS AS ORGANIC ANTIOXIDANTS
Antioxidants can be classified in various ways based on their
origin, solubility, enzymatic activity, and chemical structure.
Based on their origin, antioxidants are classified as natural
(extracted from plants,46 fungi,47 etc.48), synthetic, or semi-
synthetic, which are made by chemical modification of natural
antioxidants for enhanced stability or antioxidant activity.49,50

Antioxidants can be classified as water-soluble or lipid-
soluble,51 as well as enzymatic (like superoxide dismutase,
catalase, and glutathione peroxidase), which prevent oxidative
damage to cells and biomolecules,52 and nonenzymatic.
Nonenzymatic antioxidants are represented by various classes
of compounds such as polyphenols, carotenoids, vitamins C
and E, and glutathione,53 as well as some peptides,
phospholipids, polysaccharides, and amines.54

2.1. Classifications of Polyphenols. The majority of
natural antioxidants are represented by polyphenols, which are
a vast class of phenol derivatives with more than one hydroxyl
group attached to an aromatic ring.53 Most natural
polyphenols are small molecules that can be classified in
several ways. As demonstrated in Figure 2, nonpolymeric
natural polyphenols can be classified based on the number and
arrangement of carbon atoms in the molecule.55−57

Catechol and pyrogallol represent the C6 class of molecules
containing a single aromatic ring. The C6−C1, C6−C2, and
C6−C3 classifications are mainly represented by various
phenolic acids and constitute about one-third of the

polyphenols in plants.55 C6−C3-C6 compounds include
chalcones, aurones, and flavonoids.57 Flavonoids have a
common structure consisting of three rings: one aromatic
ring conjugated with a heterocycle that is substituted with
another aromatic ring.58 With modification of the common
flavonoid structure, they can be classified as flavanones,
flavanols, isoflavones, flavones, flavonols, and anthocyanidins.59

Structures of some of the most well-known low-molecular-
weight, nonpolymeric polyphenols are presented in Figure 3a.
A group of highly researched flavanolsgreen tea poly-
phenolsare typically extracted from green teas as a mixture
of epicatechin (EC), epigallocatechin (EGC), epicatechin-3-
gallate (ECG), and epigallocatechin gallate (EGCG), and are
well-known for their potential health benefits.60 Flavonols,
including kaempferol, quercetin, and myricetin, are some of the
most abundant flavonoids in foods.61,62 Curcumin, one of the
major components of turmeric, notably has a seven-carbon
chain connecting partially methylated phenol rings. This
hydrophobic compound is insoluble in water, yet soluble in
nonpolar solvents and ethanol, making curcumin a great
antioxidant agent for lipid-containing products.
Lignins, lignans, and tannins are distinguished among high-

molecular-weight polyphenols. Lignina polymeric polyphe-
nol that provides structural support in plants57is built from
phenylpropanoids polymerized through ester bonds, while
lignans are dimers and oligomers built from the same building
blocks. Tanninsnamed for their ability to tan animal skins
into leatherare a wide variety of compounds with the ability
to interact with proteins.57 As shown in Figure 3b, tannins are
classified in three groups: condensed tannins, hydrolyzable
tannins, and complex tannins.57 Condensed tannins, or
proanthocyanidins, are formed by condensing flavanol units
into oligomers that release anthocyanidins upon hydrolysis,
hydrolyzable tannins release polyphenol molecules upon
hydrolysis with the most important examples of tannic acid
and ellagic acid. Lastly, complex tannins consist of a catechin
unit with a glycosidic linkage to a gallotannin or ellagitannin.
The versatile chemical properties of natural polyphenols

have inspired the development of new synthetic polymers that
incorporate polyphenol functionalities. These novel polymers
can be categorized by whether an existing polymer is modified
with polyphenol groups, or if a new polymer is synthesized by
polymerization of polyphenol-containing monomers. The

Figure 3. (a) Chemical structures of well-known low-molecular-weight polyphenols. (b) Classification of tannins, showing structures of extensively
studied tannins: tannic acid (TA) and ellagic acid (EA).
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former category achieves polyphenolic functionality; however,
this process does not offer precise control over the polyphenol
positioning or the regularity of polyphenol substitution.
Alternatively, polymers in the latter category allow precise
control over polyphenol content and have been shown to
demonstrate high antioxidant activity in solution,63,64 as well as
in films.65 These polymers were used for the production of
films or coatings targeted toward applications as adhe-
sives,66−68 low-fouling materials,69 or within batteries.70−72

2.2. Chemical Properties of Polyphenols. With the
presence of hydroxyl-substituted aromatic rings, polyphenol
molecules are able to participate in a variety of intermolecular
and intramolecular interactions such as hydrogen bonding,73

electrostatic interactions,74 π−π stacking,75 covalent bond-
ing,76 and hydrophobic interactions.77 Polar hydroxyl groups
work as donors and acceptors of hydrogen bonds, resulting in a
well-known propensity of polyphenols to intermolecular78 and
intramolecular79−81 hydrogen bonding (Figure 4a). In
addition, the combination of a relatively high acidity of
hydroxyl groups with a flat-shaped active site provides
polyphenols with chelating abilities for several transition-
metal ions.82,83 Finally, the conjugation between the aromatic
ring and multiple hydroxyl groups leads to a higher acidity of
polyphenols than alcohols, enhancing their antioxidant and
radical scavenging capabilities (Figure 4b).
2.3. Proposed Mechanisms of Polyphenol Antiox-

idant Activity. Free radicals form under the impact of
ionizing radiation (e.g., ultraviolet (UV) light), pollutants,
inflammation, and other irritants and oxidizing agents.84 An
unpaired electron makes free radicals typically unstable and
highly reactive toward organic molecules.52,85 For example, the
ROS/RNS cause oxidation of lipids in membranes,86 starting a
chain of oxidation reactions, which damage biomolecules.
Antioxidants reduce highly reactive free radicals by turning into
more stable radicals themselves, breaking the chain of radical
reactions, or quenching initiators of chain reactions.52,87

The following reaction describes the general mechanism of
polyphenol antioxidant activity:88

+ → +• •ArOH R ArO RH (2.3.1)

Understanding the specific radical-scavenging mechanism of a
polyphenol is necessary for an accurate evaluation of reaction
kinetics and proper selection of an appropriate antioxidant. For
example, flavonoids are not efficient against peroxides,
preventing the radical lipid oxidation in the propagation
stage, but they can efficiently scavenge in the initiation step.89

Several mechanisms have been proposed90 to describe

polyphenol antioxidant activity, which differ in the first radical
transfer process and intermediate structure formation. In most
cases, the antioxidant donates or receives an electron from the
free radical and provides a hydrogen ion to the free radical.
However, the sequence of electron and proton transition may
vary between antioxidants and conditions. The most common
mechanisms described are hydrogen-atom transfer (HAT),
proton-coupled electron transfer (PCET), radical adduct
formation (RAF), signal electron transfer (SET), electron
transfer-proton transfer (ET-PT), and sequential proton-loss
electron transfer (SPLET).90

Two mechanismsHAT and PCETexecute the proton
and electron transfer in a single kinetic step, as shown in
reaction 2.3.1. In HAT, the proton and electron transfer to the
same orbital of the radical species simultaneously.89 In PCET,
several molecular orbitals of the radical and antioxidant engage
in the transfer89 through a hydrogen-bonded phenol-radical
transition state, according to density functional theory (DFT)
calculations.91 The proton and electron also transfer
simultaneously, but the proton and the electron are transferred
between different pairs of atomic orbitals in the free radical and
the antioxidant.92 Typically, flavonoids follow PCET to
transfer a hydrogen atom from the hydroxyl groups.89

SET involves the transfer of an electron and proton in
several kinetic steps.93,94 However, in contrast to prior
mechanisms, the proton is transferred from another mole-
cule:94

+ → +• + −ArOH R ArOH R (2.3.2)

+ → ++ • +ArOH H O ArO H O2 3 (2.3.3)

+ → +− +R H O RH H O3 2 (2.3.4)

The SET mechanism was observed, for example, for
(+)-catechin and its analogues against peroxyl radicals,95 and
resveratrol against oxygen radicals.96

Opposite to PCET, ET-PT involves the subsequent electron
and proton transfer in a two-step process:93

+ → +• + −ArOH R ArO H R (2.3.5)

+ → ++ − •ArO H R ArO RH (2.3.6)

The ET-PT mechanism described reactions between xan-
thones and radicals •OH or O2

•−.93

At high pH, SPLET can be initiated first by a proton loss of
the polyphenol, followed by protonation of the formed
anion:89

Figure 4. Schematic and graphic representation of (a) pH-dependent hydrogen-bonded complex formation between tannic acid (TA) hydroxyl
groups and branched polyethylenimine (BPEI) amino groups, and (b) antioxidant activity of TA. Reduction of 2,2-diphenyl-1-picrylhydrazyl
(DPPH•) is visualized by the loss of violet color.
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+ → +− +ArOH H O ArO H O2 3 (2.3.7)

+ → +− • • −ArO R ArO R (2.3.8)

+ → +− +R H O RH H O3 2 (2.3.9)

This three-step mechanism occurs when the environmental
conditions favor antioxidant ionization and stabilization of the
anion (ArO−).89 This mechanism describes scavenging of 2,2-
diphenyl-1-picrylhydrazyl (DPPH•) with cinnamic acids97 and
phenol derivatives,98,99 reactions of propyl gallate100 and EA101

with model lipid peroxides, and interaction of GA with
hydroxyl and peroxyl radicals.102

HAT, PCET, ET-PT, and SPLET mechanisms have the
same initial and final products; however, they differ in the
kinetics of the limiting step, which is electron transfer in ET-
PT and SPLET, and atom transfer in PCET.89 However, in
contrast, the RAF mechanism involves formation of anti-
oxidant-radical adducts as shown below:90

+ → [ − ]• •ArOH R ArOH R (2.3.10)

RAF occurs when a radical can electrophilically attach to a
benzene ring, such as in hydroxybenzyl alcohols.103 In
addition, it occurs at the propagation step of a radical-
scavenging reaction when the electron-deficient polyphenol
recombines with another free radical, for example, in the case
of interactions between DPPH• and the glycoside of
myricetin.104

3. INTEGRATION OF POLYPHENOLS WITH
POLYMERIC MATERIALS

To increase the antioxidant functionality of polymer films in food
packaging or polymer constructs for biomedical applications,
antioxidant moieties are integrated with a polymer matrix. Different
strengths of polyphenols−polymer interactions can affect the ability of
polyphenols to release to aqueous or nonpolar media and can alter the
antioxidant activity and physical properties of polyphenol-containing
materials. Figure 5 illustrates that polyphenol-containing polymer
materials can be grouped within three major categories,105 which
include (a) migratory materials,106 (b) covalently bonded non-
migratory materials,107 and (c) materials assembled via hydrogen-
bonding or electrostatic interactions that are capable of tunable
antioxidant release in response to the environmental conditions.108,109

In migratory polymer materials, polyphenols are held within polymer
matrices via nonstoichiometric hydrogen bonding or other weak
noncovalent interactions, and typically release when brought in
contact with liquids.106,110−112 Nonmigratory materials, on the other
hand, contain covalently tethered polyphenols that do not release to
the surroundings. These materials can either have polyphenols
covalently grafted to the surface,107,113,114 or can be fully made of
individual polymers with covalently attached polyphenol
groups.115−117

The molecular design of polyphenol-containing films is dictated by
the desired antioxidant activity mode required by specific applications.
Releasing films are widely used as active packaging material,118,119 as
they can prevent spoilage via penetration of antioxidants within
packed food items. At the same time, nonreleasing films containing
polyphenolic oxygen scavengers can be useful in the same application
as they can inhibit penetration of oxidative species to the surface of
goods,120 prolonging their shelf life and reducing waste. Antioxidant
films constructed by assembly, on the other hand, can be beneficial for

Figure 5. Schematic demonstrating the rational molecular design of interactions between polyphenol and surrounding polymers to enable
controllable antioxidant activity.
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the mechanical properties and integrity of the films; however, they can
potentially diminish their antioxidant efficiency as more functional
moieties are occupied within the assemblies.121 This section
overviews different types of polyphenol-containing materials and
discusses their benefits and shortcomings.
3.1. Migratory Films. Migratory films are constructed by

noncovalently adding polyphenols to a bulk polymer via several
paths, including direct blending of polyphenols or polyphenol extracts
with a polymer matrix followed by extrusion122 or solution casting,105

blending of polyphenol-preloaded particles,123 or coating of
polyphenols on the top of the film as an active layer.113,124,125

The main mechanism of activity for migratory films is the release of
active components that provide antioxidant, oxygen-scavenging, or
antimicrobial protection. Migration of polyphenolic additives from the
bulk polymer to vulnerable materials (e.g., foods119) occurs via
diffusion and adsorption resulting from different partitioning of
antioxidants, and is dependent on the packaging composition,
temperature, time of contact, and hydrophilic or lipophilic nature of
the media.126 Importantly, this releasing mechanism implies a time-
limited antioxidation protection as the antioxidants are depleted from
the materials, which is appropriate for the protection of substances
with a short shelf life, such as foods.
3.1.1. Noncovalent Polyphenol−Polymer Blends. In blended

migratory films, weak, noncovalent bonding should exist between the
polyphenols and polymer matrix so that polyphenols diffuse from the
matrix and provide antioxidant activity to the surrounding. Assuming
a simplified system where polyphenols are not bound with a matrix,
the antioxidant migration should only be dependent on simple
molecular diffusion, exhibiting a burst release as all polyphenols near
the surface diffuse out rapidly, followed by slower diffusion of internal
polyphenols out of the bulk. However, in addition to complex
polymer dynamics, the previously described chemical properties of
polyphenols invoke diverse interactions with a wide variety of
polymers, further complicating the delivery of active antioxidants.127

An understanding of the physicochemical properties of both the
polymer and polyphenol are necessary for the strategic design of
migratory films. Depending on the intended environment for the film,
the selection of the polymer should consider swelling/deswelling,
which could accelerate/inhibit antioxidant release, and chemistry of
functional groups, which could influence the formation of
intermolecular bonds.128,129 Among the most popular polymers
used for the production of migratory films are chitosan
(CS),130−133 gelatin,134 ethylene vinyl alcohol (EVOH),110,112,135

and poly(vinyl alcohol) (PVA),111,136 which are all considered to be
safe for consumers.137−139 Other relevant properties of these polymers
include the potential to form crosslinks via hydrogen bonding and

electrostatic interactions (CS, gelatin, and PVA)121,136 and low
oxygen permeability (EVOH).140 Polyphenols that are typically used
for blending within polymer films include phenolic acids,111,141−143

cinnamic acids,110,135 flavonols,111,144 stilbenes,145 green tea poly-
phenols,146−149 EA,150 TA,136,143 and various polyphenol ex-
tracts.151−153 However, it is not always possible to predict the effects
of incorporated polyphenol-rich natural extracts, because they may
contain a wide spectrum of interacting and noninteracting chemical
compounds. Nonetheless, in many cases, polyphenol−polymer blends
provide simultaneous benefits of enhancing the antioxidant and
antibacterial properties of materials.150,154,155

As shown in Figure 6a, the antioxidant activity of blended CS/EA
films was strongly improved with increased concentrations of
polyphenol up to 5% EA.150 The gradual development of a yellow
color in the films is expected as polyphenolic rings typically absorb
light in the wavelength range of 200−400 nm.

Because of the diffusion-dependent release mechanism of blended
films, the effect of the polyphenol miscibility in both the polymer and
the media on the antioxidant activity is more pronounced in these
systems. For example, diffusion of hydrophilic extracts from a polar
film into a lipophilic environment was low, preventing antioxidant
delivery to fatty foods, but still providing an improved barrier against
light, water, and oxygen.156 In contrast, active films containing
curcumin154,155,157 and its derivatives158 have been developed for
antioxidant protection of lipophilic materials as these polyphenols
have good solubility in nonpolar solvents, relevant for antioxidant
delivery to fatty foods, tissues, and other oil-based products. Similarly,
essential oils were shown to actively release into a lipophilic
environment, providing antioxidant protection to the medium;156

however, the high volatility of essential oils limits their retention time
in dry films, so nonvolatile polyphenols are more favorable for
applications in films.159

The effects of miscibility make the selection of processing method
important to the properties of the resulting film. The most common
method to create blended films is film casting, where polyphenols are
added to a polymer solution, casted to the mold, and dried.150,160,161

The dissolution required for casting enhances intermixing of the
components; however, residual solvent may be left in the film. To
avoid the possibility of solvent contamination, one may use melt-
blending technology159 and coextrusion, which is popular for mixing
polyphenols with nonpolar bulk polymers, such as high- and low-
density polyethylene (HDPE and LDPE, respectively).114,162

However, these methods may have limited polyphenol−polymer
intermixing, leading to a nonuniform distribution and release of active
components.

Figure 6. (a) Optical changes (top) and improvement of antioxidant activity (bottom) of a chitosan (CS) film loaded with various percentages of
EA. [Adapted with permission from ref 150. Copyright 2017, Elsevier.] Also provided are 3D representations of possible hydrogen bonding
between (b) large polyphenol TA or (c) small polyphenol EA with a CS matrix. Bold lines represent polymer chains, and dashed lines represent
hydrogen bonds.
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Table 1. Mechanical Properties of Migratory Films Containing Polyphenols

polyphenol additivea thickness [μm] tensile strength [MPa] elongation at break [%] ref

Film Matrix: Chitosan
− 61 ± 1 40.84 ± 1.31 62.80 ± 6.82 141
PA, 0.5% 65 ± 2 49.59 ± 1.50 35.10 ± 2.77
PA, 1% 74 ± 2 46.86 ± 2.19 33.49 ± 6.76
PA, 1.5% 79 ± 1 34.66 ± 2.01 20.70 ± 1.59
PA, 2% 83 ± 2 26.71 ± 3.15 7.86 ± 1.10

− 107 ± 6 13.876 ± 0.604 32.36 ± 1.18 142
GA, 0.5% 108 ± 9 23.773 ± 0.453 33.15 ± 2.53
GA, 1% 111 ± 1 18.394 ± 1.405 25.56 ± 0.58
GA, 1.5% 141 ± 1 9.207 ± 0.616 10.97 ± 0.95

− 30.5 ± 3.0 55.3 ± 5.1 22.0 ± 1.4 150
EA, 0.5% 33.1 ± 3.1 49.5 ± 5.4 23.6 ± 2.6
EA, 1% 34.1 ± 2.9 52.3 ± 4.6 26.8 ± 2.9
EA, 2.5% 36.3 ± 1.8 48.0 ± 3.4 25.5 ± 3.8
EA, 5% 38.3 ± 1.6 48.5 ± 5.7 25.6 ± 3.7

− 62.08 ± 6.31 23.66 ± 2.63 54.62 ± 3.12 149
GTE, 2% 25.00 ± 2.68 54.76 ± 3.14
GTE, 5% 25.13 ± 1.91 58.14 ± 4.24
GTE, 10% 28.35 ± 3.51 60.39 ± 3.60
GTE, 20% 27.55 ± 3.46 60.73 ± 3.37

Film Matrix: Ethylene-Vinyl Alcohol Copolymer
− 83 ± 3 62 ± 1 33 ± 3 135
FE, 0.25 wt % 78 ± 5 61 ± 3 38 ± 6
FE, 0.5 wt % 81 ± 4 63 ± 2 41 ± 2
FE, 0.75 wt % 84 ± 7 60 ± 1 43 ± 7
FE, 1 wt % 77 ± 3 64 ± 2 54 ± 4

− 45 ± 4 265 ± 28 110
CA, 5% 41 ± 3 310 ± 26
CA, 15% 58 ± 4 263 ± 11

Film Matrix: Poly(vinyl alcohol)
− 45 ± 5 67 ± 12 195 ± 45 111
GA, 5% 40 ± 5 75 ± 10 280 ± 70
GA, 10% 50 ± 8 55 ± 10 190 ± 80
Q, 5% 40 ± 7 74 ± 10 255 ± 35
Q, 10% 50 ± 7 60 ± 10 170 ± 10

− 63 ± 6 81 ± 9 136
TA, 1 wt % 70 ± 7 105 ± 12
TA, 3 wt % 91 ± 4 108 ± 4
TA, 5 wt % 98 ± 4 81 ± 10
TA, 7 wt % 95 ± 4 38 ± 4
TA, 10 wt % 89 ± 4 12 ± 2

Film Matrix: Gluten + Glycerol
− 1.08 ± 0.04 204.90 ± 9.78 143
GA, 1% 1.04 ± 0.11 196.44 ± 26.10
GA, 2% 0.94 ± 0.10 187.70 ± 19.62
GA, 5% 0.85 ± 0.10 238.23 ± 11.19
GA, 10% 0.53 ± 0.07 296.8 ± 13.98
TA, 5% 1.36 ± 0.33 87.88 ± 15.51
TA, 10% 2.14 ± 0.37 84.05 ± 8.57
TA, 20% 2.66 ± 0.41 9.45 ± 1.80
TA, 30% 3.22 ± 0.57 3.59 ± 0.43

aAbbreviations: PA, protocatechuic acid; GA, gallic acid; EA, ellagic acid; GTE, green tea extract; FE, ferulic acid; CA, caffeic acid; Q, quercetin;
and TA, tannic acid. See Figure 2 for PA, GA, EA, and FE structures. See Figure 3 for GTE, Q, and TA structures.
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The addition of polyphenols to a polymer matrix can also affect the
optical, thermal, and mechanical properties, depending on the
miscibility of the components and their ability to stabilize the
mixture. Often, the small polyphenolic additives disrupt existing
intramolecular/intermolecular bonding within the polymer matrix;
however, the formation of stronger intermolecular bonds between the
polyphenol and polymer can stabilize the film, and, in some cases,
decrease water vapor permeation.121,163 Development of opacity and
loss of transparency is often a sign of phase separation within the film,
which can lead to decreased mechanical strength of materials.145

Stabilization of a mixture by hydrogen bonding is likely the reason for
improvement of thermal stability of these blended materials, as in the
case of walnut green husk polyphenols impregnated into biodegrad-
able polyesters,164 and increased oxidation and denaturation temper-
ature, as demonstrated with EGCG/gelatin films.121 In many cases of
polyphenol-blended films, the mechanical properties declined with
increasing blended polyphenol concentration.165 This effect is also
shown in Table 1, which contains the tensile strength and elongation
at break data from select recent publications.
Notably, large molecules, like TA and green tea polyphenols,

achieved significant improvement of mechanical properties. These
molecules have many polar hydroxyl groups and can form multiple
hydrogen bonds with polar polymers (Figure 6b), which is likely the
reason for this improvement. On the other hand, small molecules, like
EA, rarely improve the mechanical properties of the films;150 however,
they may still form few hydrogen bonds with the polymer (Figure 6c)
causing a minimal effect on the mechanical properties. This balance of
hydrogen bonding will be discussed further in following sections as
they fall in the spectrum of tunable antioxidant activity.

3.1.2. Noncovalent Surface Modification with Polyphenols. For
rapid, nondiffusion-limited migration and/or surface activity,
antioxidants can be deposited on a polymer surface through
noncovalent interactions, including van der Waals or hydrogen
bonding interactions.166,167 This has been done by direct spraying of
polyphenols onto a surface,166,168 or by depositing a layer of
polyphenol-based particles or thin film.169,170 Polymers with surface-
specific functionality maintain the properties of the underlying
material while benefiting from the reduced use of the active
component, elimination of additional processing steps needed for
blended bulk materials, and convenience for inert plastics, such as
LDPE113,171 or polyethylene terephthalate (PET).166,168,169 For
instance, PET sprayed with citrus extract delayed lipid oxidation of
cooked meat.168 When sprayed on a plasma-treated PET surface, the
coatings had enhanced stability, likely due to the dipole−dipole
interactions or hydrogen bonding.167 In another case, beneficial for
high-humidity applications, an LDPE-sodium carbonate mixture was
further coated with a pyrogallol−polyurethane formulation, displaying
enhanced oxygen scavenging as the hydrolyzed sodium carbonate
increased the pH.113,171

3.2. Tunable Antioxidant Activity by Controlled Assembly
Interactions. Unlike the weakly bound polyphenols that are
characteristic of migratory films, the strategic consideration of
polyphenol−polymer assembly interactions can be used to control
polyphenol retention and stimuli-responsive release. The relatively
high pKa of polyphenols enables both strong hydrogen bonding and
electrostatic interactions, depending on the conditions of the
assembly.23 These intermolecular interactions are advantageous to
creating constructs with functional architectures, including hydrogen-
bonded nanofibers and layer-by-layer assemblies.

Figure 7. Comparison of antioxidant release and mechanical properties for polylactic acid (PLA)/tea polyphenol (TP) or poly(vinylpyrrolidone)
(PVP)/TA nanofibers (NFs). (a−d) Demonstration of the ratio dependence of PLA/TP on optical and morphological changes (panel (a)),
viscosity (panel (b)), NF tensile strength and elongation at break (panel (c)), and temporal TP release in 95% (top) and 50% (bottom) ethanol
(panel (d)). [Adapted with permission from ref 182 (CC BY 4.0). Copyright 2018, MDPI.] Also shown is a demonstration of (e, g, h, i) the ratio
and (f) surface area dependence of PVP/TA NFs on stability in an aqueous solution (panel (e)), ABTS• + scavenging (panel (f)), proposed
evolution of PVP/TA hydrogen bonding (panel (g)), NF tensile strength and toughness (panel (h)), and temporal TA release in an aqueous
solution (panel (i)). [Adapted with permission from ref 185. Copyright 2020, American Chemical Society, Washington, DC.]
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3.2.1. Hydrogen-Bonded Nanofibers. Nanofibers have significantly
higher surface-area-to-volume ratios than coatings, which can enhance
the surface availability and diffusive release of incorporated active
components,172 finding diverse applications in medical and food
fields.173 Polymeric nanofibers loaded with polyphenols showed
controlled release properties based on various formulation and
process conditions reviewed recently,174 including polyphenol
concentration, polymer hydrophilic−hydrophobic balance, and
applied spinning voltage.175−178 However, in many cases, the claim
of controlled release is only supported by altered solution viscosity
causing changes in nanofiber diameter, with rapid burst release from
small-diameter nanofibers and longer instances of sustained release
from large-diameter nanofibers as the central polyphenols diffuse
through the polymer matrix.179−181 The reduced viscosity with
increasing small-molecule incorporation is expected as the existing
polymer−polymer interactions are interrupted, eventually causing
beading along the fiber or nanoparticle formation.
As described, reduced diameter (Figure 7a), viscosity (Figure 7b),

and mechanical properties (Figure 7c) were observed for increasing
concentrations of tea polyphenols (TP) in poly(lactic acid) (PLA).182

The smaller-diameter 2:1 and 3:1 PLA/TP nanofibers exhibited the
aforementioned rapid burst release compared to thicker 5:1
nanofibers, especially after partial swelling in a 50% ethanol solution
(Figure 7d).182 Burst release due to rapid polymer swelling and
erosion was also reported for electrospun nanofibers with Garcinia
mangostana extracts (GME) in CS-ethylenediaminetetraacetic acid
(CS-EDTA)/PVA, although incorporation of the hydrophobic GME
compounds was thought to decrease the degree of swelling.183 In this
case, increasing GME concentration in the CS-EDTA/PVA mixtures
also reduced the solution viscosity. Polycaprolactone (PCL) fibers
loaded with Clerodendrum phlomidis leaves extract (CP) displayed
similar burst release, with up to 36% cumulative release; however, the

remaining CP exhibited sustained release, possibly through a
combination of slow hydrolytic PCL degradation and solid-state
diffusion through the hydrophobic, nonswelling PCL fibers.184

Conversely, polyphenols that form strong, stoichiometric hydro-
gen-bonded complexes with the polymer matrix display controlled
retention within the fiber, rather than diffusion-based release. In
addition, hydrogen-bonded nanofibers can release polyphenols in
response to pH changes if the ions infiltrate and destabilize the
assemblies.185 For example, both polyvinylpyrrolidone (PVP, some-
times abbreviated as PVPON) and TA are soluble in water; however,
PVP/TA fibers mixed at 1:0.5 and 1:0.67 stochiometric ratios
maintained their structure after immersion in aqueous conditions
(Figure 7e).185 The high-surface-area fiber mat demonstrated
excellent antioxidant activity compared to a bulk complex (Figure
7f), attributed to both the TA held by hydrogen bonds with the fiber,
proposed in Figure 7g, and the TA released into the surroundings
(Figure 7i). The PVP/TA fibers also displayed enhanced mechanical
properties at a ratio of 1:0.25 (Figure 7h), implying stronger
interactions within the PVP/TA mixture than pure PVP and
consistent with previous reports of hydrogen-bond self-assembly.186

Similar enhanced properties were reported for hydrogen-bonded
nanofibers of poly(N-vinylcaprolactam) (PVCL)/TA and PVP/
GME.187,188

3.2.2. Layer-by-Layer Assemblies. Layer-by-layer (LbL) deposition
is a powerful technique that can be used to modulate antioxidant
activity through the design of electrostatically pairing or hydrogen-
bonding systems. Rational selection of the polyphenol, polymer, and
assembly conditions (e.g., pH, ionic strength, solvent) enables tunable
thickness, morphology, and functionality of the LbL coating.189

Although the discussion in this section will focus on planar LbL
coatings and their antioxidant activity, the diverse architectures
enabled via LbL assembly, such as microtubules, microcubes, and

Figure 8. (a) Structures of P3HMA and P2HMA (i), resulting growth curves (ii), and schematic representation of antioxidant active regions (iii)
for LbL coatings formed via hydrogen bonding with poly(ethylene oxide) (PEO). [Adapted with permission from ref 65. Copyright 2020,
American Chemical Society.] (b) Proposed interaction mechanism (top) and pH stability (bottom) for hydrogen-bonded LbL coatings of poly(N-
vinylpyrrolidone) (PVPON, or PVP)/TA and poly(N-vinylcaprolactam) (PVCL)/TA. [Adapted with permission from ref 109. Copyright 2008
American Chemical Society.] (c) ABTS•+ scavenging ability for hydrogen-bonded poly(ethylene glycol) (PEG)/TA LbL films of 5, 5.5, 10, and 15
bilayers. Images show the change in solution color with time. (d) From left to right: temporal release of TA from (PEG/TA)x films (x = 5, 5.5, 10,
or 15), and release of TA from (PEG/TA)15 in response to pH (1.2, 7.4, or 8.0), temperature (4 °C, 25 °C, 37 °C, or 45 °C), and ionic
concentration (0, 100, 200, or 500 mM NaCl). [Adapted with permission from ref 108. Copyright 2016, Elsevier.]
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microcapsules,74,190 allow for wide-ranging applications in biomedical
fields.191 LbL capsules for drug delivery, nanofiber coatings for
enhanced tissue engineering, and cellular modifications for
immunomodulation will be discussed in later sections.
Importantly, a significant amount of LbL antioxidant research has

used TA as a polyphenolic binding partner. In addition to its high
availability and suspected anticancer, antibacterial, and immunomo-
dulatory benefits,192 TA is considered as Generally Recognized As
Safe (GRAS) for use as a food additive by the U.S. Food & Drug
Administration. With a pKa of 8.5, TA can act as an efficient
hydrogen-bond donor or anionic partner at near-physiological
conditions.109 The beneficial, biorelevant properties of TA, combined
with the versatility of polymer binding partners and mild assembly
conditions for LbL systems, stimulate applications for sensitive
biological environments. More recently, various polyphenolic
polymers have been used in antioxidant LbL assemblies, including a
commercial cationic tannin derivative (TN)193 and linear synthetic
polymers poly(3,4-dihydroxybenzyl methacrylamide) (P2HMA) and
poly(3,4,5-trihydroxybenzyl methacrylamide) (P3HMA).65

In the earlier work of TA assembly into LbL films, TA was
assembled with strong polyelectrolyte poly(diallyldimethylammonium
chloride) (PDADMAC) and weak polyelectrolyte poly(allylamine
hydrochloride) (PAH). Important fundamental discoveries from these
original works include (1) the pH-dependent permeability and film
dissolution of both strong, electrostatic system PDADMAC/TA and
weakly electrostatic or hydrogen-bonding system PAH/TA;74 (2) the
dependence of radical scavenging on thickness and capping layer,
signifying a retention of TA antioxidant activity even when held by
interactions within the film, and an accelerated antioxidant activity
when TA is at the surface;194 and (3) the evolution of the effective
radical-scavenging volume, starting at the film surface and gradually
propagating through the PAH/TA film.195

The elucidation of the radical-scavenging permeation volume in the
LbL film was key to designing films capable of protecting oxidation of
encapsulated species. This idea of an antioxidant-active region was
further developed recently using linear synthetic polymersP2HMA
and P3HMAwith phenolic structures that differ by one hydroxyl
group.65 As seen in Figure 8a, the slight difference in the chemical
structure led to different growth regimes when P2HMA and P3HMA
were assembled via hydrogen bonding with poly(ethylene oxide)
(PEO). In particular, P2HMA/PEO films demonstrated linear
growth, indicating stronger interactions and stratified layers, while
P3HMA/PEO films showed exponential growth, indicating weak
interactions and a high intermixing of the layers. The difference in
growth regimes was attributed to stronger intramolecular binding (i.e.,
self-association) of the P3HMA gallol moieties relative to the P2HMA
catechol moieties. The more compact assembly of P2HMA/PEO
remained almost unswollen, limiting radical diffusion and antioxidant
activity to the top 30−35 nm of the film. This limited radical diffusion
is relevant to applications that require ultimate protection of
encapsulated materials. In contrast, the looser P3HMA/PEO film
swelled up to 30% in solution and displayed radical-scavenging
functionality through the entire film, as demonstrated in Figure 8a.
Altogether, these results inform the strategic design of antioxidant
LbL films, such as the necessary thickness of films for full protection
of encapsulated materials, or the arrangement of layers in which an
active component should be incorporated.
In addition, LbL films have been shown to disassemble in response

to changes in the surrounding media, imparting a valuable stimuli-
responsive release behavior.108,109,196,197 Hydrogen-bonded PVP/TA
and PVCL/TA LbL films were stable in both acidic and neutral
conditions, but disassembled under basic conditions, because of the
interruption of existing hydrogen bonds (Figure 8b) by electrostatic
repulsion as phenolic hydroxyl groups dissociated.109 The achieve-
ment of hydrogen-bonded LbL films that are stable under neutral
conditions was advantageous, compared to hydrogen-bonded
assemblies based on poly(carboxylic acid)s that become ionized and
disintegrate at neutral pH values.196,197 Furthermore, this significant
achievement paved way for the biomedical application of these films,
in which stability is needed during exposure to phosphate-buffered

saline (PBS) at physiological pH values. Another study of hydrogen-
bonded PVP/TA LbL films further explored the effect of solution
conditions on TA release.198 As expected for hydrogen-bonded
systems, the films gradually disassembled in all solutions; however,
their dissolution rates could be controlled by changing the pH,
temperature, and ionic strength of the solution. TA release was very
slow in acidic and neutral conditions and rapid in alkaline conditions,
consistent with the prior study.109 Furthermore, higher temperatures
induced faster TA release, because of increased dissociation of the
hydrogen bonds. Ionic strength had a slight inverse effect on TA
release, possibly due to reduced electrostatic repulsion of ionized
species.196

Although poly(ethylene glycol) (PEG)/TA hydrogen bonding is
weaker than PVP/TA, hydrogen-bonded PEG/TA films on planar
and spherical surfaces exhibited a similar zero-order erosion
mechanism as PVP/TA.199,200 In addition, the molecular weight of
PEG was shown to inversely impact the rate of TA release.199 When
deposited on cellulose nanofiber mats, PEG/TA films confirmed the
earlier discovery of the dependence of antioxidant activity on film
thickness and capping layer (Figure 8c), and displayed interesting
bimodal TA release that followed similar pH-, temperature-, and salt-
responsive release trends as PVP/TA (Figure 8d).108 The bimodal
release was attributed to the increasing surface-area-to-volume ratio as
the PEG/TA layers dissolved, which was supported by a near-linear
TA release of thin PEG/TA films, and subsequent depletion of TA
from the film.

Another important feature of LbL films is the ability to load natural
anti-inflammatory/anticancer lipophilic polyphenols into LbL films
after assembly. In one example, multilayers of strong polyelectrolytes
poly(sodium 4-styrenesulfonate) (PSS) and PDADMAC were
assembled and exposed to curcumin dispersed in water/ethanol
solutions.201,202 A direct relationship between curcumin uptake and
film thickness, independent of the top layer, was observed, with up to
8 μg/cm2 loaded into a 20-layer film.202 At the same time, the
dependence of multilayer swelling on ionic strength enabled ion-
responsive release of loaded curcumin.201 Polyphenolic chalcones
were also loaded into and released from PSS/PDADMAC multilayers
to demonstrate controlled drug delivery.203 Hydrophobic interactions
and π−π stacking between the aromatic rings of curcumin, chalcones,
and PSS were thought to encourage polyphenol uptake into the
multilayers.201−203

3.3. Nonmigratory Films. Nonmigratory films are defined by
inhibiting the release of loaded molecules to the environment. In cases
where the release of active molecules is not favorable, the antioxidant
activity should be retained at the surface or within the bulk of the
material, such as in the case of juice packaging.107 Furthermore, the
release of small molecules, characteristic of migratory films, can open
pathways for water penetration and weaken the integrity of the film.
Finally, diffusion-controlled release leads to a gradual decrease in film
activity, because of the loss of active component, which limits the time
of service of such materials. Thus, nonmigratory polymers that
provide continuous antioxidant activity at the surface of the films and
do not release polyphenols into the surrounding have been
created.120,204 Materials with polyphenols covalently attached to the
surface or to individual polymer chains in the bulk will be discussed
separately in the following sections.

3.3.1. Surface-Grafted Polyphenols. One approach to creating
nonmigratory films is by grafting antioxidant functionality to the
surface of the polymer film, which allows modification of even
relatively inert polymers, such as PP.107,205 In a typical modification
process, an inert surface is irradiated with UV light to initiate active
centers which can be grafted with antioxidant moieties. In the case of
PP grafted with hydroxyethyl methacrylate (HEMA) and further
modified with CA, the ability to reduce DPPH• by surface-grafted CA
was comparable with the activity of CA grafted on a water-soluble
polymer in solution, which suggests good availability of the
polyphenol at the surface.107 In addition, polyphenols can be
oxidatively polymerized on the surface of inert film-forming materials,
as demonstrated with catechol and catechin grafted to a UV/ozone-
treated PP surface that was modified with CS.206 Importantly, surface-
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grafted polyphenols retain their antioxidant and metal-chelating
capabilities.205−207

3.3.2. Covalent Attachment of Polyphenol Pendant Groups for
Bulk Modification. In contrast with grafting limited to surfaces,
covalent attachment of polyphenol pendant groups can occur along a
polymer chain when dissolved in solution. Polyphenol-modified
polymers can be further processed into bulk materials with
nonmigratory antioxidant activity that are especially efficient in the
form of hydrogels, as they swell in the presence of water and provide
rapid access to polyphenols throughout the bulk.208 The attached
polyphenol moieties can impact the mechanical and thermal
properties of the original polymer by either stabilizing the polymer
matrix with hydrogen bonds or by disrupting existing intermolecular
interactions. The latter was thought to occur in films made of GA-
functionalized CS, in which irregular substitution of GA moieties
along the CS chain disturbed the close packing of CS, weakening the
intermolecular interactions.120 Grafting of phenolic acids, such as GA,
PA, and CA, is often done to polymers that have reactive hydroxyl and
amino groups, popularly including CS,115−117 gelatin,209,210 and other
proteins,211 which can be modified through various chemical
reactions.76,117 The most common synthetic routes include Schiff
base reactions,116 nonenzymatic oxidation by peroxides,212−214

ascorbic acid−peroxide systems,215−217 and enzymatic modification
with laccase,115,218−220 as well as 1-ethyl-3-(3-(dimethylamino)-
propyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS)
coupling.120 EDC/NHS coupling facilitates grafting to the polymer
through the formation of amide or ester bonds, so polyphenols do not
lose their activity since polyphenols rings are not involved in the
chemical reaction.107,120 As expected, oxidative nonenzymatic grafting
uses oxidative species, such as peroxides and cerium(IV) nitrate,208,221

to facilitate the formation of reactive groups. Ascorbic acid with
hydrogen peroxide generates free hydroxyl radicals, which, in turn,
initiate radicals on CS, activating amino and hydroxyl groups and
mediating possible amidation and esterification.115,211 Enzymatic
modification is beneficial for sensitive species, as it typically occurs at

room temperature without the use of organic solvents, and provides
high substrate conversion. Laccase, a multicopper oxidase,222

selectively mediates one-electron oxidation in phenols. Once the
radical is formed,223 it reacts with an amino group of glucosamine in
CS, forming a covalent C−N bond in a nonoccupied position of the
aromatic ring. Sometimes, Schiff base formation can occur as a side
reaction, leading to the loss of aromaticity. Another enzyme,
tyrosinase, acts by oxidizing catechol groups to quinone, which
further form Schiff bases or Michael-type adducts with amino and
hydroxyl groups and trigger loss of aromaticity. Importantly, the
potential loss of aromaticity caused by enzyme-mediated grafting may
prevent antioxidant capabilities. However, polymers modified by
tyrosinase-mediated grafting find applications as adhesives.117

Schematics in Figure 9a show grafting of CS with GA using three
different initiation reactions: carbodiimide coupling, free radical
initiation with peroxide-ascorbic acid system, and tyrosinase catalysis.
Depending on the modification method, the GA-modified CS films
possess differing optical, antioxidant, mechanical, and permeation
properties.76 In all three methods, free hydroxyl and amino groups can
participate in grafting reactions, and they cause different degrees of
polyphenol oxidation. The degree of polyphenol oxidation can be
correlated with the development of yellow color in the GA-modified
CS films (Figure 9b).76 The enzymatically modified CS film
developed the deepest yellow color and revealed carboxyl peaks at
1730 cm−1 in FTIR, suggesting polyphenol oxidation. The film made
by carbodiimide-assisted grafting had the least noticeable color change
and the highest grafting ratiotwice as high as the free radical-
mediated grafting and almost three times higher than enzymatic
grafting. In addition, the film made by carbodiimide-assisted grafting
demonstrated the highest antioxidant activity (Figure 9c) and
mechanical strength, yet the lowest water vapor permeation. This
comparison suggests that polyphenol grafting methods that preserve
the aromaticity of aromatic rings can retain the highest polyphenolic
functionality, sustaining the radical-scavenging and hydrogen-bonding
capabilities.

Figure 9. (a) Chemical modification of chitosan (CS) with gallic acid (GA), from left to right: carbodiimide-mediated grafting (II), free radical-
mediated grafting (I), and enzymatic oxidation followed by grafting (III). Highlighted are reactive amino (blue), reactive hydroxyl (green), and
polyphenol (red) groups. (b, c) Comparison of the appearance (panel (b)) and DPPH• scavenging ability (panel (c)) of GA-g-CS polymer films
synthesized from routes I−III. [Adapted with permission from ref 76. Copyright 2018, Elsevier.]
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4. APPLICATIONS IN FOOD PACKAGING AND
BIOMEDICAL ENGINEERING

Antioxidant activity is important to protecting oxidation-prone
materials in industrial applications, including as additives to
commercial plastics and corrosion-resistant coatings;224−227

however, the vulnerability of complex biological environments
in food and the body encourages the design of materials with
more precise control of antioxidant activity. A diverse set of
properties associated with polyphenols, including low toxicity,
antioxidant, antibacterial, and antiviral activity,228 led to their
wide applications in materials for food packaging and
biomedical engineering, which have been reviewed exten-
sively.31,228−231 After summarizing the mechanisms of
polyphenolic antimicrobial activity necessary for further
discussions, the following chapter will focus mainly on novel
applications of polyphenols as antioxidant species within
polymer materials, while briefly mentioning complementary
properties that are relevant to the specified application.
4.1. Polyphenols as Antimicrobial Agents. Based on

interactions between polyphenols and biomolecules, poly-
phenols provide antimicrobial properties that are not directly
associated with the redox activity. As simplistically summarized
in Figure 10, these nonredox antimicrobial properties result

from the polyphenol’s inhibition of enzymes, interactions with
cell wall and membranes, or deprivation of metal ions through
metal chelation, among other mechanisms.232,233 The activity
of certain enzymes, such as amylases,234 cellulases,235

lipases,236 pectinases,237 and proteases238 have decreased or
even halted after binding with polyphenols. Interestingly, TA
showed more efficient inhibition of enzymes in comparison to
other low-molecular-weight polyphenols.234−236 This effect is
likely related to the strong binding between the enzyme and
the numerous phenolic hydroxy groups in TA. Furthermore,
strong binding of polyphenols with the lipid membranes of
bacterial cells can interfere with wall integrity, increase wall
permeability, and inhibit further adhesions.239−241 Moreover,
the propensity of polyphenols to form complexes with metal
ions essential for bacteria growth, such as iron, copper, and
zinc, leads to a deprivation that can strongly affect a micro-
organisms’ vitality.242−244 However, bacteria can develop a
resistance to polyphenols through different mechanisms, such
as cleavage and excretion of hydrolyzable polyphenols, metal
ion sequestration, altering enzymes, and modification or repair
of bacterial membrane.232,245 Because of this ability, as well as
the overall lower magnitude of antimicrobial effects of
polyphenols, compared to their antioxidant activity, poly-
phenols are primarily sought for their prominent radical

scavenging activity, while their antimicrobial properties are
typically considered as a complementary beneficial feature.
Antimicrobial properties of polyphenol-based materials have

been demonstrated for a variety of architectures, including LbL
assemblies,246−248 solvent-cast films,249 and electrospun nano-
fibers.177,250 Interestingly, the antibacterial properties of
collagen (COL)/TA LbL films were strongly dependent on
the buffer selection.246 COL/TA films assembled in citrate
buffer displayed higher rates and concentrations of TA release
that were especially effective at release-killing S. aureus, in
contrast to the films formed in acetate buffer, demonstrating an
interesting effect of the nature of type of ions in the immediate
environment on functionality of antioxidant materials. In
several cases, both for LbL assembly of TA-graphene oxide
(TA-GO)/lysozyme (Lys) planar films247 and CS/TA coatings
on cellulose nanofibers,251 the efficient synergy of assembled
systems was demonstrated. Specifically, while each component
had only slight antibacterial activity, the assemblies showed
excellent antibacterial properties against Gram-positive and
Gram-negative bacteria. In nanofiber geometry, mixtures of
PLA and TP showed good antibacterial activity against Gram-
positive and Gram-negative bacteria,182 perhaps due to the
high surface area of the electrospun material. Finally,
integration of polyphenols with polymers can not only achieve
good antimicrobial properties, but also enhance materials’
mechanical properties, as this was shown for solvent-cast films
from mixtures of various polyphenol and PVA.249

4.2. Food Packaging. Food packaging that intentionally
releases or absorbs active substances, known as active
packaging, is an innovative approach to prolonging food
freshness and shelf life and has been the subject of many recent
reviews and books.105,119,252−260 Furthermore, a recent focus
on edible packaging has provoked the use of antioxidants
within biodegradable polymers, such as polysaccharides.261,262

With these recent advances in food packaging technology, this
Review uniquely aims to bridge the gap between materials and
food sciences by providing strategies to modify antioxidant
release and retention while maintaining other necessary
material properties.
Active food packaging utilizes various types of films,

including migratory, nonmigratory, films with tunable anti-
oxidant activity, and surface-modified films, depending on the
type of food and expected environment. Most active packaging
films work by releasing antioxidants into the stored food,263,264

protecting it from oxidation. Moreover, some active packaging
utilizes multilayer films in which each layer brings a desirable
property to the packaging material.119 Active substances in
food packaging should prevent microbial growth and have
antioxidant activity to prevent lipid oxidation, a primary cause
of nonmicrobial quality deterioration in meat and meat
products.265,266 In addition to mechanical strength, antioxidant
and antimicrobial activity, and appearance, water vapor
permeability,263,264,267,268 oxygen permeation,161 and adsorp-
tion125 are important parameters that are considered for food
applications. Films with low water vapor permeability prevent
the produce from losing or absorbing excess moisture, while
low oxygen permeation decreases the oxidation rates of
produce. In many cases, the addition of antioxidants decreases
water permeability; however, adding excessive amounts of a
polyphenol can also slightly increase film permeability, because
of disruption of the polymer matrix.113

The main functionality of polyphenols as oxygen scavengers
in food packaging applications is to decrease oxygen

Figure 10. Possible mechanisms of antimicrobial activity for
polyphenols. Graphics were created with BioRender.com.
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permeation through the film and prolong freshness of the
produce. This functionality was demonstrated for GA, which
was either mixed with a polymer matrix267 or deposited as an
active layer.125 Furthermore, complementary to radical
scavengers, some metal ions in low oxidation states can be
considered as oxygen scavengers, such as the iron-based
scavenger sachets found in enclosed food packaging.269 One of
the most important considerations in food applications is the
safety and nontoxicity of antioxidants, because they can diffuse
into the produce. For this reason, natural antioxidants are
typically preferred for these applications. Table 2 provides
recent examples of active packaging containing polyphenols.

4.3. Biomedical Applications. Many applications of
polyphenols in biomedical engineering harness the antioxidant
activity to regulate ROS/RNS species with the body and
modulate immunogenicity, accelerate wound healing and tissue
generation, and provide synergistic antioxidant activity and
targeted drug delivery.28,33,272 TA has played a significant role
in the development of antioxidant materials for medical
applications, as reviewed recently;273 however, we envision an
expansion of antioxidant biomaterials to include other
polyphenols, such as green tea extracts, curcumin, and
synthesized polyphenolic polymers.
4.3.1. Coatings for Immunomodulation. The transplant of

foreign materials into the body, including blood transfusions,
organ implants, and other biomedical implants, often invokes
an immune response from the host, potentially leading to
rejection of the material. Camouflaging with a coating may
protect the foreign material from T-cell recognition and
rejection.274 For example, in experimental treatment of Type 1
diabetes, modifications of pancreatic islets with hydrogen-
bonded TA-based LbL coatings have demonstrated immuno-
modulatory effects.275−277 In one study, hydrogen-bonded
PVP/TA and PVCL/TA LbL films had dual antioxidant and
immunomodulatory properties that suppressed the synthesis of
proinflammatory cytokines, while dissipating proinflammatory
ROS/RNS species (Figure 11a).276 The incorporation of TA
into both PVP/TA and PVCL/TA suppressed ROS
production, in stark contrast to control coatings without TA
(Figure 11b), suggesting that the antioxidant activity is due to
the TA in the shells.276 In addition to ROS-scavenging
properties, these shells reduced nitrite concentrations (Figure
11c), which can be reduced within the body to nitric oxide

the primary mediator of cytokine-induced islet damage.276 The
conformal PVP/TA LbL coating on pancreatic islets were
stable for at least 7 days (Figure 11d) and did not change the
functions of rat, nonhuman primate (NHP), or human
pancreatic islets (Figure 11e).277 Also, PVP/TA coatings
showed promising results in in vivo transplantation of
encapsulated islets, because of the localized immunosuppres-
sion and nontoxicity of the coatings.278

PVP/TA LbL coatings have also been used to encapsulate
live cancer cells for the development of effective anticancer
vaccines.279 Although the viability of cell decreased as the
number of bilayers increased, especially for coatings with a TA
starting layer, the PVP/TA LbL coating effectively retained
cellular proteins after cell lysis.279 In addition, this procedure
permitted the pretreatment of cells with a heat shock prior to
encapsulation to potentially modulate the immunogenicity of
the capsule. In another case, tocopherol polyethylene glycol
1000 succinate (TPGS) formed stable hydrogen-bonded
nanocomplexes with polyphenols containing at least 8 hydroxyl
groups, i.e., EGCG, procyanidin, and TA, which showed
therapeutic efficacy in the treatment of acute lung inflamma-
tion.280 In vivo studies suggested that the EGCG/TPGS
nanocomplex decreased inflammation processes of lung tissue,
leading to significant remission.280

4.3.2. Nanofibers, Films, and Hydrogels for Tissue
Engineering. Materials for accelerated wound healing and
tissue engineering benefit from the combined antioxidant,
antimicrobial, biocompatible, and bioadhesive properties of
polyphenols.28,281,282 For these applications, biodegradable
biomaterials are usually desired.
One approach of integrating polyphenols with hydrolyzable

polymers is through surface modification of a precontracted
polymer material. For example, biodegradable poly-
(caprolactone)/collagen nanofibers (PCL/Coll NFs) modified
with LbL coatings of peptide-based block copolymer micelles
(BCM) and TA provided a multifunctional approach for
accelerated wound healing and vascularization (Figure 12a).283

Incorporation of clindamycin into BCM micelles inhibited
bacterial growth (Figure 12b) while transforming growth factor
(TGF-1) stimulated wound healing. Extended deposition time
enhanced the distribution of micelles on the nanofibers (Figure
12c), adding nanosized roughness to the fibers that regulated
the adhesion, spreading, proliferation, and enhanced migration
of fibroblasts.283 Another way of incorporating antioxidant
functionality to a biomaterial for wound healing applications is
to integrate a polyphenol within a polymer bulk during
electrospinning or cryogel preparation. In one study, electro-
spun fibers of PLA and date palm polyphenols displayed
promising cell proliferation and migration in vitro.284

Furthermore, cryogel scaffold made of CS, silk fibroin (SF),
and TA/Fe3+ complexes (CSTFe (3)) showed robust
mechanical, antibacterial, and hemostatic properties, as well
as promising cell proliferation, which accelerated wound repair
in vivo (Figure 12d).285

Polyphenols were also integrated with nanofibers for bone
regeneration applications. For example, biodegradable poly(L-
lactic acid) (PLLA) nanofibers dip-coated with EGCG (E-PL)
displayed improved stem cell adhesion and protection from
external oxidative stress resulting in enhanced osteogenesis and
suppressed adipogenesis of stem cells in vivo, providing
efficient bone fracture healing (Figure 12e).286 In addition, a
multifunctional lysozyme/TA LbL coating was used to impart

Table 2. Examples of Polyphenol-Containing Films for
Active Packaging

polyphenol polymer matrix application

Malaysian
herbs extract

semirefined
carrageenan

active packaging film for beef
patties270

C and Q EVOH improved antioxidant stability of
packaged food263

GA and Q solvent-cast PVA film color-changing active food
packaging271

GA LDPE film active packaging of high-moisture
foods267

apple peel
extract

CS active packaging with improved
antimicrobial and antioxidant
activity268

CA Ca2+ cross-linked CS
and
methylcellulose

potential alternative approach to
reduced lipid oxidation in fish
oil264

immobilized
CA

hydroxyethyl
methacrylate-
grafted PP film

protective against ascorbic acid
oxidation in orange juice107
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antioxidant and antibacterial activity, as well as fast cell
attachment and enhanced osteogenesis, to a substrate.287

A promising direction in biomaterials is inclusion of
polyphenols in hydrogels, which have been shown to have
excellent properties for wound dressing and tissue engineering
applications. GA-conjugated gelatin (GGA) was introduced to
a gelatin-hydroxyphenyl propionic (GH) hydrogel to create an
injectable in situ forming hydrogel with enhanced ROS/RNS
scavenging properties. The GGA/GH hydrogel showed
tunable mechanical and antioxidant properties, as well as
effectively promoted tissue regeneration. Furthermore, shape-
memory hydrogels, formed simply by soaking a polar polymer
gel (e.g., PVA, gelatin, or methacrylic acid-functionalized ε-
poly-L-lysine) in a TA solution, are attractive new biomaterials,
because of strong antioxidant and antibacterial properties, as
well as mechanical robustness.288−290

4.3.3. Capsules and Hydrogels for Targeted Drug
Delivery. Polymeric materials that deliver simultaneous
antioxidative activity and targeted drug release enable multi-
faceted therapeutic treatment of severe inflammatory disorders,
such as rheumatoid arthritis, Crohn’s disease, and lupus.291

LbL assembly of TA with different hydrogen-bond acceptors
on sacrificial templates enabled development of a new class of
hollow hydrogen-bonded capsules useful for controlled drug
delivery.190 For example, LbL PVP/TA microcapsules,
obtained by dissolution of an inorganic template material,
can be used as doxorubicin (DOX) carriers with negligible

leaking of the drug, even after long storage.292 These
microcapsules have low toxicity and are stable in near-
physiological pH, making them a suitable candidate for
targeted drug delivery. Interestingly, the PVP/TA LbL film
can also form nonspherical microcapsules by geometric
selection of the sacrificial core (Figures 13a−i).293 Cuboidal
microcapsules demonstrated better internalization by breast
cancer cell lines.293 Furthermore, the hollow polymer micro-
capsules were unrecognizable to macrophages, in contrast to
their rigid counterparts with an intact core.293 More recently,
ultrasound stimulus was applied to provide on-demand,
controlled release of DOX from PVP/TA capsules (Figure
13j).294 In addition, intracellular protein delivery have been
pursued using hollow protein/TA microcapsules.295 These
microcapsules showed long-term stability in an extracellular-
mimicking environment but disintegrated in an intracellular-
mimicking environment, because of the competitive interaction
of TA with glutathione. It is important that assembly/
disassembly of protein/TA microcapsules did not affect
protein bioactivity, opening a pathway for controlled delivery
of different biomacromolecules.295

Antioxidant polymers have also demonstrated their promise
for treatment of ocular diseases. In particular, a novel,
biodegradable, in situ gelling copolymer with antioxidant
functionalityGA-functionalized gelatin-g-poly(N-isopropyla-
crylamide) (GNGA)was developed to improve the total
antioxidant status in glaucomatous eyes while simultaneously

Figure 11. Hydrogen-bonded (PVCL/TA) or (PVP/TA) LbL coatings encapsulate islets to modulate immunogenicity. (a) Schematic of ROS/
RNS deactivation by coated islets. (b) Luminol oxidation assay after stimulation of splenocytes in the presence (+) or absence (−) of TA-
containing or TA-free LbL shells. (c) Nitrite levels in tissue culture supernatants after stimulation of splenocytes in the presence (+) or absence (−)
of (PVP/TA)5 (#1) and (PVCL/TA)5 (#2) capsules. [Adapted with permission from ref 276. Copyright 2014, Wiley−VCH.] (d) Images of evenly
distributed fluorescent PVP* on as-deposited and cultured (PVP/TA)4.5-coated islets. (e) Viability of noncoated (control) and (PVP/TA)4.5-
coated rat, nonhuman primate (NHP), and human islets. [Adapted with permission from ref 277. Copyright 2012, Wiley−VCH.]
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releasing an antiglaucoma drug, pilocarpene.296 In solution, the
GNGA gel was twice as effective as GA in inhibiting DPPH•

(Figure 13k). Furthermore, the GNGA gels were shown to
reduce H2O2-induced intracellular ROS in human lens
epithelial (HLE) cells, while also significantly decreasing
nitrite levels in glaucomatous rabbit eyes (Figure 13l).

5. CONCLUSIONS AND OUTLOOK
Techniques for imparting antioxidant activity to polymers are
continuously growing in their strength as promising
approaches to preserve the integrity of polymer materials,
protect food from oxidative degradation, or consume ROS/
RNS species in biological environment. However, the
molecular principles of integration of antioxidant materials
within a polymer matrix are insufficiently understood. Yet
interactions of antioxidant molecules with other components
of a polymer material are critically important for the
development of materials in which antioxidant moieties are
designed to be retained within or migrate from a functional
matrix (i.e., nonmigratory and migratory materials). To
emphasize the importance of building a better understanding
and control of such interactions, this Review first introduced
the structures, classifications, and physicochemical properties
of polyphenol molecules and linked the intrinsic polyphenol
properties to their interactions in a polymer matrix. The
resultant antioxidant materials were then discussed in the
context of applications in food packaging and biomedical
engineering.
The main challenge for rational designing of antioxidant

materials is to establish a correlation between strength and
type of antioxidant−polymer interactions, materials’ function-
ality and migratory versus nonmigratory behavior. Polyphenols

are particularly versatile in their ability to bind to polymers via
a variety of interactions, including hydrogen-bonding, electro-
static, π−π interactions, or by pH-dependent oxidative cross-
linking. Detailed understanding of action of these interactions
in different material preparation conditions, including pH,
solvent, temperature, or application of a vacuum, can enable
control of localization and antioxidant performance of these
materials in food packaging and biomedical applications.
Moreover, different ways of integrating antioxidants with
polymers, such as simple blending of polyphenols with an inert
matrix for migratory release, development of hydrogen-bonded
nanofibers and layer-by-layer films for tunable release, as well
as covalent attachment of polyphenols for nonmigratory
scavenging, each have their specific advantages and challenges.
For example, achieving homogeneous mixing of antioxidant
components with a polymer matrix remains a major challenge
in the development of robust migratory films. Solutions likely
lie in a combined attention to tuning weak interactions
between antioxidant and polymer matrix molecules and
rational selection of processing paths (melt or solution
mixing). On the other hand, for antioxidant materials, which
are based on stronger hydrogen-bonded or electrostatic
interactions, matching the chemistry of an antioxidant to that
of a polymer component can be even more important.
Hydrogen-bonded and electrostatic interactions can be
efficiently controlled by assembly conditions, such as selection
of a solvent, solution pH, or ionic strength, and these
parameters should be more actively explored and exploited
for the development of new antioxidant assemblies. For all
types of antioxidant films, studies of multiple orthogonal
properties (antioxidant activity and mechanical, optical,
antimicrobial, antiviral, oxygen and/or water barrier proper-

Figure 12. Polyphenolic antioxidant materials for accelerated tissue regeneration and wound healing. (a) Schematic representation of block
copolymer micelles (BCM)/TA coatings on poly(caprolactone)/collagen nanofibers (PCL/Coll NFs) with transforming growth factor (TGF-β1).
(b) Zones of inhibition (ZOI) for bare and BCM/TA-coated PCL/Coll NFs loaded with clindamycin as-deposited and after 20-week storage. (c)
Surface coverage of (BCM/TA)1.5 on PCL/Coll NFs deposited for (A) 5 min or (B) 30 min. [Adapted with permission from ref 283. Copyright
2018, Wiley−VCH.] (d) Temporal wound healing for chitosan (CS)/silk fibroin (SF) cryogels with and without incorporated TA/Fe3+ complexes
(CSTFe (3) and CS/SF, respectively). [Reproduced with permission from ref 285. Copyright 2019 Wiley−VCH.] (e) Enhanced in vivo bone
regeneration of a mouse calvarial defect 2 months after EGCG-coated nanofiber implantation. [Adapted with permission from ref 286. Copyright
2019, Wiley−VCH.]
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ties) for a single material are still rare and should be more
vigorously pursued.
Another future trend the area might see is a stronger focus

on material multifunctionality. Recently reported synergistic
enhancement of antiviral297 and anticancer298 performance of
therapeutic agents by polyphenols opens exciting opportunities
for incorporating these agents in materials.
Finally, future technologies will see an increased focus on

sustainability, and antioxidant polymer materials are already
seeing a considerable amount of such research. One example
includes edible films made of proteins for food packaging
applications,299 and the use of polyphenols (tannic acid) as an
efficient cross-linking agent to improve their functional
properties.300 In the case of antioxidant polymer materials
for biomedical applications, more work should be done for
achieving biodegradable polymer assemblies with antioxidant
properties, as well as mitigating possible toxicity of the
assemblies in biological environments.
In future sustainable and multifunctional polymer materials,

controlled integration of antioxidant functionalities through a
concerted effort in rational manipulation of chemical
interactions and processing conditions is likely to eventually
achieve performance that is highly sought-after in food
packaging and biomedical applications.
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