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Many sign languages are bona fide natural languages with grammatical rules and lexicons hence can benefit

from machine translation methods. Similarly, since sign language is a visual-spatial language, it can also ben-

efit from computer vision methods for encoding it. With the advent of deep learning methods in recent years,

significant advances have been made in natural language processing (specifically neural machine translation)

and in computer vision methods (specifically image and video captioning). Researchers have therefore begun

expanding these learning methods to sign language understanding. Sign language interpretation is especially

challenging, because it involves a continuous visual-spatial modality where meaning is often derived based

on context.

The focus of this article, therefore, is to examine various deep learning–based methods for encoding sign

language as inputs, and to analyze the efficacy of several machine translation methods, over three different

sign language datasets. The goal is to determine which combinations are sufficiently robust for sign language

translation without any gloss-based information.

To understand the role of the different input features, we perform ablation studies over the model architec-

tures (input features + neural translation models) for improved continuous sign language translation. These

input features include body and finger joints, facial points, as well as vector representations/embeddings from

convolutional neural networks. The machine translation models explored include several baseline sequence-

to-sequence approaches, more complex and challenging networks using attention, reinforcement learning,

and the transformer model. We implement the translation methods over multiple sign languages—German

(GSL), American (ASL), and Chinese sign languages (CSL). From our analysis, the transformer model com-

bined with input embeddings from ResNet50 or pose-based landmark features outperformed all the other

sequence-to-sequence models by achieving higher BLEU2-BLEU4 scores when applied to the controlled and

constrained GSL benchmark dataset. These combinations also showed significant promise on the other less

controlled ASL and CSL datasets.

CCS Concepts: • Human-centered computing → Gestural input; • Computing methodologies → Lan-

guage resources; Image representations;
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1 INTRODUCTION

According to the World Health Organization, approximately 430 million people have hearing loss
and require some rehabilitation assistance [66]. Sign language is a natural visual-spatial language
used for communication among manyDeaf andHard-of-Hearing (DHH) people. It is estimated
that there are over 200 [34] different sign languages used around the world and sign languages are
not necessarily mutually intelligible even if their spoken counterparts are similar [69].
Unfortunately, the majority of hearing people do not understand sign language, and this may

result in missed opportunities for some members of the DHH communities, in areas such as edu-
cation, employment, sports, and other social activities. Sign language interpretation can address
many of these challenges by facilitating the communication between signers and non-signers. But
the use of human interpreters for sign language translation can be inconvenient, difficult to sched-
ule, and costly, hence more research groups are attempting to automate this translation process
usingmachine learning techniques. It is important to note that an artificial intelligence tool such as
we propose facilitates the language system support required by both DHH signers and non-signers,
but is not a replacement for sign language interpreters or direct signer to signer communication.
Many sign languages are bona fide languages with their own grammars and lexicons [81], and

hence there are rules governing the order of signed words along with the forms of signed words
to use when communicating. Because of these underlying rules, we can implement machine trans-
lation methods for sign languages. In recent times, text-to-text–based machine translations have
enjoyed much success using deep learning–based sequence modeling methods, and in this work,
we visit how these methods are applied to sign language translation.

Unlike regular hand gestures, sign languages typically have five parameters (grammatical fea-
tures): handshape, location (use of space), palm orientation, body movement, and facial gram-
mar (non-manual signals) [36, 71]. Several of these five parameters such as leaning the body for-
ward/backward, head turns and shakes, eyebrow movements, nose wrinkling, mouth movements,
and so on, do not have equivalents in written or spoken language grammar. For this reason, un-
like their spoken/written language counterparts, for machine analysis, sign languages need to be
encoded visually and spatially. Deep learning–based computer vision techniques, provide a frame-
work to support this.

In this article, therefore, we evaluate various deep learning–based methods for encoding sign
language at the front-end and combine these with various deep learning–based machine transla-
tion techniques at the back-end. Specifically, for machine translation, we implement sequence-to-
sequence models with and without attention, a reinforcement learning– (RL) based model, and
a transformer model for sign language to text translations. We perform this comprehensive eval-
uation using three different established sign languages. To the best of our knowledge, this is the
first work to perform continuous sign language translation, without the intermediary gloss1-based
recognition step.

1More about gloss is discussed in Section 2.
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The rest of the article is organized as follows: a brief explanation of glossing for the American

Sign Language (ASL) is presented in Section 2; the related works are described in Section 3;
Section 4 describes the sign language translation methodologies implemented in this work; the
dataset statistics and feature vectors used are described in Sections 5 and 6, respectively; popular
evaluation metrics are described in Section 7.1; Section 7.2 discusses training details and results
obtained from different ablations and a brief analysis of the results are given in Section 7.3; and,
finally, the conclusion is presented in Section 8.

2 SIGN LANGUAGE TRANSCRIPTION (GLOSSING)

Glossing is a written form of sign language [37, 38], though it does not have the same structure
as the spoken language equivalent. When a person signs a phrase, glossing refers to the written
form of the sign-for-sign transcription (not translation) of that phrase. For example, when sign-
ing the phrase “My name is Albert,” the signer might finger-spell “Albert” and conceptually place
that spelled construct at some location in a three-dimensional (3D) space in the vicinity of the
signer. This way, any ensuing references to the name “Albert” will no longer require full finger-
spelling; rather, the signer can point to that abstract location in space where the construct was
stored. While the gloss can accurately capture this process, there is no equivalent representation
in the spoken/written equivalent language. Sign language translation aims more to preserve the
overall meaning of the phrasewhile following the rules of the language grammar. As another exam-
ple, ASL makes use of special signs known as classifiers. A classifier categorizes a bunch of phrases
to a single sign that then can be used as a reference while signing. An example is the “3-handshape”
used to represent a vehicle. But the sign can also include the orientation, speed, location, and direc-
tion of travel of the vehicle. The written form or gloss of a sign includes information about these
classifiers and also includes information relating to facial and body movements.
Some glossing terminologies include information like LOC referring to a location, PO referring to

palm orientation, LCL referring to locative classifiers, and so on. Glossing also includes information
based on the number of times a sign is repeated. For example, the plus sign ++ at the end of a gloss
indicates a number of repetitions of an ASL word; e.g., again++ (signing the word “again” two
more times) means “again” and “again.” Another example, HELP+++ could mean “help many times”
or “help from time to time,” depending on the context, the duration of the movement, and spatial
reference to convey different meanings.
Some glosses along with their meanings and spoken sentence equivalent are shown in Table 1.
The main difference between a sign and a spoken language is the mode of communication,

where sign languages are visual-gestural, whereas spoken languages are based on speaking and
hearing [19]. For this reason, it is difficult to capture sign language fully in writing and is best done
via a video recording. For continuous sign language translation, researchers are presented with
the challenge of interpreting a language based on a complex visual-gestural grammar involving
handshapes, spatial locations, facial expressions, palm orientations, movement, and non-manual
signals from video recordings into the written word. This brief overview of glossing sheds some
light on the significant challenges involved in interpreting signs to spoken language.
In this work, we address some of these sign language translation challenges by (i) exploring

different visual features that can be extracted from signing videos, (ii) performing neural machine
translation using various sequence-to-sequence deep learning models ranging in complexity, and
(iii) presenting our findings from applying the features andmodels to three different sign languages.
In the real-world scenario, because it is challenging to obtain gloss information, we address sign
language translation in this article, by investigating the best model and input features that are
robust enough without using any gloss-based information.
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Table 1. Glosses (Sign-for-Sign Transcriptions) and Their Spoken Sentence Translations

from the ASL Dataset [21]

No. Gloss Spoken Sentence Selected gloss meaning

1. IX-loc:j OVER/AFTER
EXAGGERATE IX-3P:j
LATER_2 USE COAT RAIN
COAT USE UMBRELLA
BOOT PANTS_3

People go too far: they use
umbrellas, wear rain coats,
and put boots and pants on.

IX: index, IX-loc: points to a
location.

2. IX-1p SAY part:indef
UP-TO-NOW IX-3p:I
5“looking for words”
IX-3p:I fs-PAUL KNOW
IX-3p:I POSS-1p (1h)
GOOD/ THANK-YOU
FRIEND

I said to Paul in the email,
“you know, you have been a
good friend of mine”

fs: fingerspell, POSS-1:
Possessive pronouns (my,
mine, etc,).

3. IX-1p LOOK:p
5“resignation” FINE IX-1p
WAIT++

Thought “ugh” and ended
up waiting again.

++: repeat sign.

3 RELATEDWORKS

Sign language translation borrows concepts from various natural language processing (NLP)

tasks where sentences from one language are translated to the other. In the following subsections,
we discuss some of these methods and highlight existing research being done that contribute in
one way or the other toward sign language interpretation. In the following subsections, we discuss
different sequence modeling techniques related to sign language understanding including text-
to-text translation, video captioning, gesture recognition, reinforcement learning, and video sign
language to text translation.

3.1 Sequence Modeling for Text-to-Text Translation

One application of sequence modeling is machine or language translation. Neural machine trans-
lation is the task of translating a text from one language to the other. Machine translation tasks
started to gain recognition from the work proposed by Kalchbrenner and Blunsom [40] where a
probabilistic continuous translation model was introduced. Following this work, Sutskever et al.
[89] introduced a multilayered Long Short-Term Memory (LSTM) [33] to take in a variable
number of encoded words of the input sentence and translate it to a target language using another
LSTM in the decoder. The performance of these networks was limited by the length of the input
sequence that was highlighted by Cho et al. [12]. Bahdanau et al. [5] extended LSTMs by intro-
ducing attention mechanism. This involves taking a linear combination of encoder hidden states
when predicting the next target word in the decoder. There are many other works using attention
mechanism for the neural machine learning tasks [55, 105].

Vaswani et al. [94] introduced a text-to-text–based model completely based on attention and
feed-forward networks without the use of Recurrent Neural Networks (RNNs). These models,
called transformer models, process all input words in parallel using the query, key, and value word
embeddings. Other works such as Generative Pre-Traning models, GPT-1 [76], GPT-2 [77], and
GPT-3 [7] have extended the work by Vaswani et al. These models are designed for text-based tasks
like text classification, sentence similarity, question answering, next-word prediction, and text sum-
marization. These GPTmodels initially train the transformermodel with large unlabeled data in an
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unsupervised fashion and later perform supervised learning to address the above-mentioned tasks.
GPT-3 [7] is a very big language model with 175 billion parameters. Bidirectional Encoder Rep-
resentations from Transformers (BERT) [24] model, also inspired by the transformer model,
trains on unlabeled data in an unsupervised manner and these pre-trained weights are used to
fine-tune on labeled data for downstream tasks like question and answering.

3.2 Video Captioning

Sequence modeling has also been extended toward other variable length tasks like video descrip-
tion, visual question and answering, scene description, and action or gesture recognition. Venu-
gopalan et al. [97] introduced a sequence-to-sequence video to text model with two stacked LSTMs.
Each frame is passed one at a time during the encoding stage. The hidden representation from the
encoding stage is passed onto the decoding stage where the model predicts one word at a time.
Hierarchical Recurrent Neural Networks proposed by Yu et al. [108] not only include attention
mechanisms but also use sentence and paragraph generators. Researchers have explored different
variations of LSTMs such as leveraging attention mechanism with semantic consistency [28, 67],
and LSTMs with temporal modifications based on the discontinuities between the frames [6]. Oli-
vastri [63] perform end-to-end captioning of videos with an encoder-decoder architecture using
LSTMs with attention. Aafaq et al. [3] performed comprehensive ablation studies for video cap-
tioning across several datasets and compare benchmark results based on the size of the dataset
and number of classes. They evaluate results on different evaluation metrics to highlight the ad-
vantages and disadvantages of different metrics. Reinforcement learning-based video captioning
is also gaining popularity with a teacher–student module [50, 101]. To enable processing of longer
sequences, transformer-based models [11, 87, 113] and BERT-based models [54, 88] are also con-
tributing toward improving the performance of the video captioning tasks. Vision-and-Language
BERT [54] introduced co-attentional transformer layers over two parallel pipelines, one for text
and the other for visual data. The co-attentional layer helps in providing information from the
video pipeline to text pipeline and vice versa. Transformer-XL [18] enhanced the NLP tasks by
learning even longer-term dependencies in a computationally contractible fashion.

3.3 Gesture Recognition

Gesture and action recognition is a variant of sequence modeling. These are often treated as a
categorical classification problem. In these types of models, the temporal features of the video and
specifically themotion of the body, hand, and face play amajor role. Karpathy et al. [41] introduced
several early, late, andmid-fusion temporal variations of convolutional neural networks (CNN)

for video classification. Pigou et al. [73] and Nishida et al. [61] used recurrent architectures for
gesture recognition. To facilitate the gesture recognition process, several works have studied ways
to extract 2D and 3D locations of body, hands, and face. OpenPose [9, 10, 86, 102] consolidated
many of these works into a single framework by providing 70 facial keypoints, 25 body keypoints,
and 21 hand keypoints for each hand. OpenFace [65] extracts facial landmark and action units.
Artrack [39] also provides key joints in the body. While gesture and action recognition analyze
a sequence of frames for discrete classification, continuous sign language translation analyzes a
stream of frames, continuously outputting textual content that takes into consideration prior video
context.

3.4 Reinforcement Learning

Reinforcement learning has been very popular in robotics research [43, 47, 70, 95]. Reinforcement
learning gained a lot of fame from its successes in playing the well-known Atari game [58] and
AlphaGo game [27, 85]. However, only recently has it started to contribute to the field of sequence
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modeling. A typical sequence-to-sequence model like LSTM is trained such that it predicts the
next word based on the previous ground-truth word. This method is also sometimes referred to as
“teacher forcing” where instead of passing the previous predicted word to obtain the next word, the
previous ground-truth word is passed. Teacher forcing is applied only during training. During test
time the predicted previous word is passed on to guess the next word. This leads to a performance
hit, known as exposure bias, as the model is not able to generalize well. Exposure bias ([78, 111])
leads to error during test time. In addition to exposure bias, there can be issues because there is no
back-propagation of the evaluation metric during testing, i.e., we can see non-differentiable issues
during testing. These two issues are addressed largely by using RL.
Rennie et al. [80] implemented image captioning using self-critical sequence training (SCST),

which is based on the REINFORCE algorithm [103]. SCST with REINFORCE baselines its experi-
ences from the test-time inference algorithm output to normalize the rewards. A positive weight
is assigned to the samples that performed well during test-time inference and those that do not
perform well are suppressed. In this work, SCST with REINFORCE was performed after the sys-
tem was trained with cross-entropy loss for a minimum of 20 epochs. To improve the test-time
inference, the Consensus-based Image Description Evaluation (CIDEr) [96] metric is used
with SCST along with greedy decoding. CIDEr score is evaluated by matching predicted sentence
with the consensus of a set of human-annotated ground-truth sentences. Shi et al. [84] use two
networks, a “policy network” and “value network,” which perform joint learning to predict the
next word in an image captioning task. While the policy network evaluates the confidence of pre-
dicting the next word, the value network evaluates rewards based on the predictions. The policy
network, in short, is a supervised network trained with cross-entropy loss. The value network is
trained to minimize the mean squared loss. These two networks are then jointly trained to maxi-
mize the rewards. Li et al. [51] and Zhang et al. [111] extend the concept from Reference [80] by
using the REINFORCE algorithm toward video captioning and continuous sign language recogni-
tion tasks, respectively. While Reference [51] uses a sequence-to-sequence LSTM-based network
with the CIDEr score, Reference [111] uses the transformer model and Word Error Rate (WER)

to minimize the loss and maximize the reward.

3.5 Video Sign Language Translation

Word-level and sentence-level datasets are widely used for sign language translation. Word-level
sign language translation tasks can be classified under image classification or gesture/action recog-
nition. References [45, 46, 52, 59] made contributions toward tasks like translating discrete signs,
mouth, and hand shapes while Ye et al. [106] used a combination of RGB, optical flow, and depth
information for ASL translation using a 3D CNN to classify words using its respective temporal
information from the continuous sign language video. Residual architectures with temporal convo-
lutions and framewise classification were used by Pigou et al. [74] to classify 100 signs. Word-level
sign language interpretation is a simpler task than continuous sign language as the former in-
volves classifying the input clip between a given number of classes. Whereas for continuous sign
language, the input clip itself is long enough needing to take care of long-term dependencies and
the output is a series of words where every current word depends on the previously predicted
words.

Continuous sign language utilizes temporal information and can be considered a sub-set of video
captioning. Fang et al. [26] introduced DeepASL, which uses a hierarchical bidirectional deep re-
current neural network for both word-level and continuous sign language translation. DeepASL
is an extensive work showcasing sign language translation and speech recognition for real-time
two-way communication.Wang et al. [100] introduced a hybrid model where C3D-ResNet features
from the input frames are passed into a temporal convolution (TCOV) and bidirectional GRU
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(BGRU) block. TCOV and BGRU are responsible for short-term and long-term learning, respec-
tively. A fusion layer is also used with inputs from both the TCOV and BGRU blocks to learn the
complementary relationship between them. Connectionist temporal classification (CTC) [30]
loss combines losses from these three blocks to predict the words of the sign language sentence.
Pu et al. [75] used 3D temporal residual CNNs with CTC post-processing for continuous sign lan-
guage recognition, whereas Reference [16] use CTC loss to train end-to-end models with custom
networks targeting certain specific problems known as SubUNets. Camgoz et al. [17] used a multi-
layer RNN and an encoder-decoder structure for sign language to text translation. This model in-
corporates encoder-decoder attention to improve the learning process. Yuan et al. [110] introduced
a Chinese sign language dataset (CSLD) and performed Chinese sign language translation by
modeling a two-layer LSTM encoder-decoder–based architecture using different body, hand, and
facial features from input frames. Ko et al. [42] studied different methods for sign language transla-
tion using various joint locations and CNN features as input on the Korean sign language dataset.
In this article, we study sign language translation by not only considering different models but
by also looking at different datasets to understand how the organization of the dataset affects the
performance.

4 SPECIFIC MODELS FOR SIGN LANGUAGE TRANSLATION

In this section, we review different deep learning captioning methods specifically tailored to per-
form sign language to text translation. We start by briefly explaining a basic Recurrent Neural
Network and then sequence-to-sequence models, transformer models, and inclusion of RL.

4.1 Recurrent Neural Networks

Neural networks are well suited for handling tasks that have fixed size input and output vectors.
For example, a CNN takes as input an image of predetermined resolution and outputs a vector of
probabilities for each output class it has been trained on. For temporal tasks, such as videos, this
concept can be extended to take in a fixed number of frames. RNN extend this concept further by
using hidden states. Hidden states allow the output to be a function of the current input and the
output from the previous timestep. By passing the previous hidden state information, the RNN
can make predictions based upon all prior inputs. RNNs are powerful architectures for NLP-based
tasks like language translation, question and answering, image captioning, and video captioning.
Vanilla or basic RNNs can take in an arbitrary number of timesteps, but unfortunately, the passing
of information over time is subject to vanishing gradients, thus limiting its usefulness to only a few
timesteps. To remember longer-term dependencies of dozens to even over 100 timesteps, a special
type of RNN called LSTM [33] can be used. Using a series of gates and a second hidden state called
a memory cell, LSTMs can be used as a replacement for the vanilla RNN. Gated recurrent unit

(GRU) [13, 14] is a slight variation of LSTM with fewer gates and no memory cells. The LSTM and
GRU RNNmethodologies have been used extensively in deep learning applications like image cap-
tioning, video captioning, speech recognition, and language translation. Even LSTMs andGRUs are,
however, subject to vanishing and exploding gradient problems on long sequences. Transformer
model and RL address these issues and are described in Sections 4.4 and 4.5, respectively.

4.2 Sequence-to-Sequence Modeling for Sign Language to Text

A basic sequence-to-sequence model for sign language video to text translation inspired by Ref-
erences [89, 97, 98] is described in this subsection. The sign language translation task is modeled
to take the features derived from the input frames such as OpenPose [9], extracted features from
a Deep Neural Network, or k-means centroids [53]. These features are fed one frame at a time to
the encoder. The hidden state from the encoder carries semantically rich features of the signing
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Fig. 1. Sequence-to-sequence model without attention.

Fig. 2. Sequence-to-sequence model with attention mechanism.

in the visual domain. The hidden states are propagated to the decoder that employs those features
in producing one word at a time. During inference time the decoder starts predicting words upon
receiving the “start of sentence” token <s> and predicts one word at a time. The word predicted
at timestep t is fed as input to the next layer at timestep t+1. The encoder and the decoder layers
are typically stacked with LSTM units. As this serves as a baseline model for the sign language
translation task, experiments using single and multiple stacked recurrent layers on both the recur-
rent channels have been carried out. The sequence-to-sequence model is shown in Figure 1 with
respective notations in Table 2.

4.3 Sequence-to-Sequence Modeling with Attention

Inspired by sequence-to-sequence models [17, 97] and attention mechanisms [5, 55], an architec-
ture is assembled to perform sign language to text translation as shown in the Figure 2. Inputs
to the model are identical as to the basic sequence-to-sequence model shown in Figure 1. One
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Table 2. Notations for Sequence-to-Sequence Models

Notation Meaning

n Input sequence length

x Output sequence length

f1, f2, f3. . . . fn Feature vectors for each frame of the video

o1,o2,o3. . . . on Output vectors from encoder for each frame of the video

hr ep Latent embedding from encoder

w1,w2,w3. . . .wx Predicted words

a1,a2,a3. . . . ax Encoder-decoder attention vectors for each word

<s > Start of sentence token

</s > End of sentence token

frame feature at a time is passed into the encoder. Reversing the sequence order has proven to be
beneficial to the model [17, 89], as it helps mitigate long-term dependency and vanishing gradi-
ents. With respect to Figure 2, on:1 a linear combination of the output of all input timesteps and
is passed onto the decoder in addition to the latent embedding hr ep . The decoder takes in previ-
ous word embedding, previous hidden state, and previous attention weights as input. The decoder
starts decoding words after receiving the “start of sentence” token (< s >) and predicts one word
at a time by feeding the previous predicted word as input to the next timestep as explained in
Section 4.2. The attention mechanism block incorporates encoder-decoder attention by taking in
the output vector from the encoder and previous hidden representation from the output of the
decoder. The attention vector is calculated as shown in Equation (1),

ax = tanh(Wccx +Whhx +Wbb), (1)

where cx is the context vector, hx is the hidden state, b is the bias, andWc ,Wh , andWb are the
learned weights for the context vector, hidden state, and bias, respectively. The context vector as
shown in (2) is a weighted sum of encoder outputs. γ xn represents the attention weights,

cx =
N∑
n=1

γ xn on . (2)

The attention weights highlight the importance of encoder input with the generated word while
predicting the next word. The attention weights are typically normalized using the probabilistic
softmax equation. Attention weights and mechanism are shown in Equation (3),

γ xn = so f tmax ( fatt (hx ,on )), (3)

where fatt represents the attention mechanism used. We give two options for function fatt , (Equa-
tion (4a)) Luong attention [55] based on multiplication and (Equation (4b)) Bahdanau attention [5]
based on concatenation,

X = hTxWon , (4a)

X = VT tanh(W [hx ;on]). (4b)

Here,W and V are learned weights. Combining (1:4), the decoder can be expressed as Equa-
tion (5) as follows:

yx ,hx = Decoder (word_embeddinдx−1,hx−1,ax−1). (5)

The decoder stops decoding once it receives the “end of sentence” token (</s >).
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Fig. 3. The baseline transformer model.

We implement sequence-to-sequence model using LSTM as the RNN by sending in a reversed
input frame sequence and incorporating encoder-decoder attention based on Luong attention [55]
to predict the words one at a time in the decoder.

4.4 Transformer Model

Transformer models have demonstrated remarkable capabilities lately for language translation
tasks [24, 76, 77, 94]. This idea was leveraged for video captioning [11, 18, 113]. Recently, Camgoz
et al. [8] modified the transformer model for sign language translation using CTC loss. The fea-
tures used in this model were trained on a CNN-LSTM-HMM architecture [44] where gloss labels
are used in a weakly supervised setup followed by a HMM model that performs the alignment.
Yin [107] experimented with the transformer model by using different number of layers in the
transformer model and perform Sign to Gloss and Gloss to Text translation. We focus on the trans-
former model shown in Figure 3, which is a state-of-the-art model introduced by Vaswani et al.
[94] for the task of sign language to text translation. While an LSTM has been shown to produce
good results with over a 100 output tokens long, transformers can produce good results with over
a 1,000 output tokens long. The transformer encoder and decoder layers are repeated N times.
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Each layer in an encoder consists of two sublayers and the decoder consists of three sublayers.
Unlike a typical RNN where sequence of inputs are fed one at a time, the transformer takes all the
inputs together. To help the model understand the order of input, a positional encoding parameter
is introduced. The positional encoding provides the order information in the sequence of inputs
and this is added to the input embedding before passing it to the encoder. Positional encoding is
given in Equation (6) [94],

PE (pos,2i ) = sin(pos/10000
2i/dmodel )

PE (pos,2i+1) = cos (pos/10000
2i/dmodel ),

(6)

where pos is the position of the input in the sequence of inputs and i represents embedding dimen-
sion. The first sub-layer in the encoder is the “Multi-head Attention.” The customized positional
encoding with input embedding is now used to calculate the keys (K ), queries (Q), and values (V )
by learning three distinct linear layers as shown in Equation (7),

K = linear_key (input )
Q = linear_query (input )
V = linear_value (input ).

(7)

In Equation (7), input is a combination of input embedding and positional encoding. linear_key,
linear_query, and linear_value are three distinct linear neural network layers for K, Q, and V, re-
spectively. These three linear layers can also be considered as a typical feedforward neural net-

work (FFN) layers that are learned separately with three different weights. The attention is then
calculated as shown in Equation (8) [94],

Attention(K ,Q,V ) = so f tmax

(
QKT

√
dk

)
V , (8)

where dk is the dimension of the key vector. Equation (8) is scaled by a factor of
√
dk to avoid the

larger values of dot product that will leawd to smaller gradients due to softmax. This attention
mechanism is called Scaled Dot-Product Attention. The authors of Reference [94] introduced the
concept of Multi-Head Attention where the linearly learnt queries, keys, and values are projected
separately h times where h represents the number of heads. For each of these projections, scaled
dot-product attention vectors are calculated as per Equation (8), and the results for all the heads are
concatenated together in a final linear layer to obtain the multi-head attention layer output. This
multi-head attention output is passed through a FFN with two linear layers and a ReLU activation
as shown in Equation (9), where x is the output from multi-head attention block,

FFN (x ) =max (0,xW 1 + b1)W 2 + b2, (9)

whereW 1 and b1 are the weights and biases, respectively, of the first linear layer;W 2 and biases
are weights and biases of the second linear layer.
The first sub-layer in the decoder is a masked multi-head attention layer. The masking mecha-

nism is used to mask the future words. The second sub-layer in the decoder is the encoder-decoder
multi-head attention where the query comes from the previous decoder layer and key and value
parameters come from the encoder layer. The output is then passed through the FFN as per Equa-
tion (9) followed by a linear layer and softmax to obtain the output probabilities. Residual con-
nections are used across all sub-layers in the encoder and decoder. After every sub-layer, a layer
normalization is implemented where the inputs are normalized across the features.
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Fig. 4. Sign language to text model using reinforcement learning.

4.5 Sequence-to-Sequence Modeling with Reinforcement Learning

Inspired by References [80, 111] we investigate the performance of a sign language to text model
using RL to update the weights and contrast and compare its behavior with different input fea-
ture vectors and different models. Reinforcement learning learns what actions need to be taken to
maximize a certain reward. Actions are not initially defined but it is something that the model dis-
covers while obtaining either positive or negative rewards [90]. Most of the sequence-to-sequence
methods use “teacher-forcing” while training leading to exposure bias issues during test time. Re-
inforcement learning mitigates this exposure bias problem. Casting our model in the RL archetype,
the type of model used (sequence-to-sequence, or transformer) will act as an agent with a policy
pθ . The environment will be a video from a sign language dataset, and the state or observation
will be frames from the video. The action for this task would be predicting the next word. Initially,
the reward is set to 0 until EOS token is received. At the end of all the tokens, the final reward
is denoted as R. The goal is to minimize the negative expected reward as shown in Equation (10).
The architecture is as shown in Figure 4,

L(θ ) = −Ews∼pθ [R (w
s )], (10)

where ws = (ws
1 , . . . ,w

s
T
) are the words sampled from the model from timesteps 1 −T . Adapting

from References [90, 103], we utilize REINFORCE [103] with a baseline that is computed as shown
in Equation (11),

∇L(θ ) = −Ews∼pθ [R (w
s )∇θ loдpθ (ws )]. (11)

The self-critic REINFORCE algorithm is calculated by using inference algorithm at test time for
calculating the reward,

R (ws ) = Metric ((ws
1 , . . . ,w

s
T
), (w∗1 , . . . ,w

∗
T ))

R (ŵs ) = Metric ((ŵs
1 ), . . . , (ŵ

s
T
), (w∗1 , . . . ,w

∗
T )),

(12)

where (ws
1 , . . . ,w

s
T
) is the sentence generated through sampling-based probabilities and

((ŵs
1 ), . . . , (ŵ

s
T
)) is the sentence generated using the inference algorithm during test time and

(w∗1 , . . . ,w
∗
T ) is the ground-truth sentence. TheMetric based on which the reward in Equation (12)

is calculated can be any evaluation metric like CIDEr or WER.
The word sampled at timestep t , ŵt can be obtained by taking the max probability following the

greedy decoding technique as shown in Equation (13),

ŵt = argmax
wt

p (wt ). (13)
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Fig. 5. Random samples from the datasets: (top) GSL dataset [60], (middle) ASL dataset [21], and (bottom)

CSL dataset [110].

The Self-critic loss function can now be written as follows:

∇L(θ ) ≈ −(R (ws ) − R (ŵ ))∇θ loдpθ (ws ). (14)

The final part of Equation (14), ∇θ loдpθ (ws ), is effectively equivalent to
∇pθ (ws )
pθ (ws ) , which is the col-

umn vector of the partial derivatives of pθ (w
s ) divided by the policy evaluation for that particular

ws . The form in the equation is used specifically to make it possible to update the loss function
when doing gradient descent. In Figure 4, the symbol ∇L(θ ) is intended to represent the final gra-
dient expression of the RL algorithm. This allows for the generation of a scalar loss value that the
sign language to text models can use to backpropagate and learn. This can be contrasted to a more
traditional loss function such as cross entropy.

5 DATASET INFORMATION

We evaluate these methods on a German Sign Language (GSL) dataset [60] and apply the best
performingmodel and features on both aChinese Sign Language (CSL) dataset [110] and an ASL
dataset [21]. Some examples of frames from these datasets are shown in the Figure 5 to illustrate
the nature of the input data we are working with.

5.1 German Sign Language

This data are collected from weather forecast airings from the RWTH-PHOENIX-Weather dataset
[60]. The videos were recorded at 25 frames per second with 210×260 pixels as the frame size. Fig-
ure 6(a) highlights the word-level frequency for unique utterances. We use the same train/dev/test
split as the original creators of the GSL dataset [60]. The GSL dataset signed by nine signers col-
lected 7,096 training videos and ground-truth captions of which 6,811 are unique utterances as
seen from the sentence repetition frequency in Figure 6(b). There are 1, 078 unique words in the
dataset with 1, 042 repeated 2–10 times and other words spread out with frequencies greater than
11. Figures 7 and 8 shows that majority of the annotated sentences are signed by signer 1, signer 4,
and signer 5 with an unequal distribution of sentences between the nine signers. The GSL dataset
was collected in a controlled environment with similarly illuminated background for almost all the
videos with color contrasts in the clothes worn by the signers as seen in the top row of Figure 5.
The dataset is also confined to only weather-related sentences, thus spanning a confined subject
area as shown in the word cloud in the Figures 7 and 8.
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Fig. 6. (a) Word repetition frequency for unique utterances. (b) Sentence repetition frequency. The Y axis

represents the log10 scale.

Fig. 7. Word clouds for GSL, CSL, and ASL datasets.

Fig. 8. Graph representing number of signs annotated by each signer in the GSL dataset.

5.2 American Sign Language

The ASL dataset [21] consists of videos narrating 38 different topics in American sign language.
The frames were extracted at 25 frames per second with the resolution of videos ranging from
216 × 218 to 312 × 324. The extracted dataset has videos signed by 7 signers. The distribution
between the signers is shown in Figure 9. The dataset consists of 38 stories. As the videos are
approximately 1.5 to 2 minutes long on average, each video is divided into multiple sub-videos
based on individual utterances. Due to this, some of the videos and utterances do not match one-
to-one and the quality of the sub-videos are also affected poorly. The ASL dataset has around
1457 unique utterances. The word and sentence repetition frequency are shown in Figure 6(a) and

ACM Transactions on Accessible Computing, Vol. 14, No. 4, Article 22. Publication date: October 2021.



Deep Learning Methods for Sign Language Translation 22:15

Fig. 9. Graph representing number of signs annotated by each signer in the ASL dataset.

Figure 6(b), respectively. From Figure 5, middle row, it can be seen that, very similarly to the GSL
dataset, the ASL dataset also has a controlled background with contrast in cloth colors. The signers
appear to be signing professionally with ease.

5.3 Chinese Sign Language

The Chinese Sign Language Dataset [110] consists of approximately 50,000 Chinese sign language
videos; 1,000 utterances were assigned to 50 Deaf signers (25 male and 25 female). All signers have
a fair distribution of utterances assigned for signing as shown in Figure 10, and 10,000 utterances
have been signed in the CSL dataset. The videos were recorded at 30 frames per second. The color
image frames are 1,920 × 1,080 pixels in size. The segmentation of words and characters specific to
the Mandarin language were done using the Chinese word segmentation tool, Jieba.2 Figure 6(a)
shows the word-level frequency among unique utterances. Figure 6(b) shows the repetition
frequency of the 10,000 utterances. This CSL dataset was based on a recently standardized sign
language in China [110], and hence the signers used in this dataset are not native signers. They
were provided training videos showing experts performing these new standardized signs, and
the signers mimicked the videos by experts. These videos are taken in different settings and
backgrounds and at different positions from the camera.

6 INPUT FEATURES

We extract various features from each frame from the sign language datasets and pass them in as
inputs to the different models under consideration. These features have been meticulously chosen
to obtain good performance. We extract OpenPose [10] features obtaining body, hand, and face
joint locations, and AlexNet [48], and ResNet [32] CNN feature from the video. The CNN feature
extraction models are pre-trained on ImageNet [23] dataset to extract a multi-dimensional feature
vector from the visual frames. We also evaluate the use of k-means cluster IDs based on Open-
Pose joint locations. The details on each of the feature extractors are described in the following
subsections.

6.0.1 OpenPose Features. Using OpenPose [10] we extract 25 body-joint keypoints, 21 key-
points for each hand, and 70 facial landmark keypoints. x ,y and confidence are obtained for each of
these 137 keypoints. Of these, we only choose the x ,y coordinates of the joints. So for each frame,
we have an input vector of 274 points. We keep the order of the joints the same as the original au-
thors [10]. Because CSL has full-body information (see Figure 5) we use all 274 points, but for the
GSL and ASL datasets, only the upper body landmarks are present. The other landmarks are zeroed

2Jieba Chinese text segmentation. https://github.com/fxsjy/jieba/.
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Fig. 10. Graph representing number of signs annotated by each signer in the CSL dataset.

Fig. 11. Top figure shows sample frames from the CSLD, bottom figure shows the respective canonical rep-

resentations of the frames.

out. From Figure 11 it can be seen that there are variations in the dataset based onwhere the person
is standing relative to the camera position. To take care of this variation, We obtain a canonical
and normalized representation based on the center body points. After mapping to canonical form,
all the body points are centered to the origin and scaled to the same size. Figure 11 demonstrates
the value of canonical representations. We additionally perform frame-to-frame smoothing of the
OpenPose points. The OpenPose points are, first, median filtered to remove any noise in the data
and, second, temporally smoothed using Savitzky-Golay [82] filtering mechanism.
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Fig. 12. The k-means cluster points (red) and original OpenPose points (blue) are plotted for a few random

frames from the GSL dataset. The x and y axis represent the body joint locations.

6.0.2 CNN Features. We explore different CNN features to see which visual features stand out.
The features include pretrained AlexNet (4,096 dimensional) [48], pretrained ResNet50 (2,4048 di-
mensional) [32], pretrained EfficientNet-B7 (2,560 dimensional) [93], and pretrained InceptionV3
(2,048 dimensional) [92]. These visual extractors are pretrained on ImageNet [23]. We also perform
end-to-end training using InceptionV1 (1,024 dimensional) [91] and ResNet50 and use the trained
network to extract the corresponding features.

6.0.3 Kmeans from OpenPose Features. We developed a pose dictionary where each frame be-
longed to a cluster based on the similarity of the keypoints and cluster center. Hence the entire
video was represented as a vector of cluster IDs; 9,521 clusters gave the best performance.

Figure 12 shows how k-means groups similar poses together. Here we plot some frames belong-
ing to particular cluster IDs.

7 ANALYSIS AND RESULTS

In this section, we will discuss our analysis and results obtained, involving different types of input
features, performance metrics, and performance evaluation.

7.1 Performance Metrics

In the following subsections we briefly discuss the different performance metrics used in this work.

7.1.1 BLEU Scores. BiLingual Evaluation Understudy (BLEU) [68] BLEU score is a popular
metric that compares a predicted caption with one or more ground-truth captions. The metric is
based on a calculation that compares the n-grams (number of words per group) from the predicted
caption to n-grams in the ground-truth caption. Examples of n-grams are unigrams (comparing
single words), bigrams (comparing two words), trigrams (comparing three words), and so on. The
unigram precision is calculated by counting the number of times a word occurs in the predicted
sentence, this is then clipped to the maximum number of times that particular word has occurred
in the ground-truth sentence. This result is divided by the total number of words in the predicted
sentence. However, this method of measuring the BLEU score fails whenever the length of the
predicted sentence is less than the ground-truth sentence. To overcome this problem, the predicted
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sentence is penalized whenever its length is less than that of the ground-truth sentence. This
penalty is called Brevity Penalty [68].

7.2 Results

This section contrasts different sign language to textmodels trained and evaluated on the GSL, ASL,
and CSL datasets. Different ablations are performed by taking various kinds of feature vectors as
input. For GSL, the models are trained on 7,096 videos and validated and tested on 519 and 642
videos, respectively. For CSL, 2240 videos have been chosen based on sentence repetition. The
models are trained on 1,790 of these 2,240 videos and tested on 450 videos. After splitting the main
story videos from the ASL dataset, we obtain 1, 031 training and 340 test videos. Other training
details are mentioned according to the specificmodel under consideration in the subsections below.
Unless otherwise mentioned, for GSL the maximum frame length and maximum caption length
are set to 300 and 30, whereas for CSL it is set to 240 and 20 and for ASL it is set to 225 and 10,
respectively. Each batch requires the same input and output length for processing. For this reason,
most of our sequence models are designed in a way that can handle a fixed input length and a fixed
output length. To avoid a lot of padding, the maximum frame is chosen to be the average frame
length and the caption length is chosen to be the average caption length in the respective datasets.
For training, we use NVIDIA RTX 2080 Ti graphics processor.

7.2.1 Training Details.

(1) Sequence-to-sequence model: The model is trained using Adam optimization with a learn-
ing rate and a decay of 1e−04 and 1e−05, respectively. We set the dimensionality of the hid-
den space to 256 for all the datasets the model is trained on. Results are reported on a bi-
directional LSTM model with four layers. The model is trained with a batch size of 32. On
average, the model takes 14 hours or 150 epochs to train on the GPU.

(2) Sequence-to-sequence model with attention: The model is trained using Adam optimization
with a learning rate of 1e−05. Training is performed for 150,000 steps. We use Luong [55]
attention for this sign language translation model. Training takes approximately four days
on one GPU. We use a batch size of one as it proved to give the best results in Reference [17].
The model is trained with 1,000-dimensional hidden units and four layers of bi-directional
LSTM.

(3) Transformer Model: While training the transformer model, for each batch the maximum
length of the sequence in the batch is chosen as the number of frames and likewise for
the number of captions. Batch normalization and softsign [62] activation are used on input
features before feeding to the network as it gives us good results. The model is trained for
100 epochs with a batch size of 32 and Adam optimizer.

(4) Reinforcement Learning: The model is trained using Adam optimization with a learning rate
and a decay of 5e−04 and 5e−05, respectively. We set the dimensionality of the hidden space
to 256. Results are reported on a bi-directional LSTM model with two layers. The model is
trained with a batch size of 32. On average, the model takes 15 hours or 280 epochs to train
on the GPU. The model is pre-trained using cross-entropy for 56 epochs and then trained
using self-critical sequence training for the remaining 224 epochs.

7.3 Analysis of Results

We begin our analysis by considering the GSL dataset mainly due to two reasons, one, the dataset
consists of samples portraying a controlled environment, and two, because the dataset has highest
training samples and a good distribution of samples in the validation and test sets as compared to
the other datasets.
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Table 3. OpenPose Ablation Results on Sequence-to-Sequence Model without Attention

on the GSL Dataset

OpenPose Features Set BLEU 1 BLEU 2 BLEU 3 BLEU 4

Hands Validation 7.31 1.36 0.34 0.07
Test 12.14 1.71 0.55 0.12

Body Validation 4.63 0.88 0.18 0.01
Test 6.29 0.82 0.14 0.01

Face Validation 2.54 0.46 0.04 0.01
Test 2.23 0.40 0.04 0.01

Hands + Body Validation 18.11 6.50 4.42 4.06
Test 20.68 7.01 4.65 4.33

Hands + Face Validation 18.13 5.92 4.51 4.06
Test 17.68 5.76 4.47 4.04

Hands + Body + Face Validation 23.31 8.73 6.49 5.68

Test 23.49 8.52 6.36 5.55

Table 4. Ablations on Basic Sequence-to-Sequence Models without Attention on the

GSL Dataset Using Openpose Points without Frame-to-Frame Smoothing

Model Set BLEU 1 BLEU 2 BLEU 3 BLEU 4

Vanilla RNN Validation 12.67 4.09 3.17 2.79
Test 14.31 4.68 3.43 2.92

GRU Validation 20.16 7.41 5.29 4.66
Test 20.40 7.56 5.63 4.98

LSTM Validation 23.62 8.89 6.54 5.71

Test 22.89 8.43 6.20 5.57

7.3.1 Variants of OpenPose for Sign Language Translation. OpenPose joints keypoints gained
popularity from gesture and action recognition tasks [9, 10, 86, 102] as already see in the Section 3.
We want to explore its performance for sign language translation. In addition, OpenPose joints
are very human interpretable. It highlights the importance of joints for particular signs. We want
to investigate how different OpenPose joints contribute toward the performance of sign language
translation. The ablations with OpenPose features on the GSL dataset are shown in the Table 3.
Observations. From our observation, hands are the most important keypoints from OpenPose

that is useful for translation. Even though hands alone does not yield high scores, it improves
when combined with face and body, whereas it jumps significantly when all three are combined.

7.3.2 Choosing among Vanilla RNN, GRU, and LSTM. We perform sign language to text trans-
lation on the GSL dataset using Vanilla RNN, GRU, and LSTM bi-directional models by feeding
OpenPose key points as input. From the results shown in Table 4, we can see that Vanilla RNN
performs the worst when compared to LSTM and GRU.
Observations. We can thus infer that LSTM and GRU are capable of handling long-term depen-

dencies when compared to Vanilla RNN. For all the sequence-to-sequence modeling used in our
experiments henceforth, we will be using LSTM as the RNN model.

7.3.3 Ablations with Different CNN Features. To choose an appropriate CNN architecture, we
perform ablations using the embedding features extracted from the architectures. These CNNs
(ResNet50, AlexNet, EfficientNet-B7, InceptionV1, V3) are pretrained on ImageNet and used as
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Table 5. Ablation Results on Different CNN Features Using

the Transformer Model on the GSL Dataset

CNN Features Set BLEU 1 BLEU 2 BLEU 3 BLEU 4

Pretrained ResNet50 Validation 24.75 16.04 11.56 8.95

Test 23.67 14.58 10.29 8.00

Pretrained AlexNet Validation 23.81 14.71 10.65 8.32
Test 23.00 13.86 9.75 7.5

Pretrained EfficienetNet-B7 Validation 20.84 12.4 8.78 6.9
Test 18.84 11.36 8.06 6.31

Pretrained Inceptionv3 Validation 19.90 11.75 8.44 6.67
Test 18.71 11.08 7.93 6.19

Pretrained Inceptionv1 Validation 17.7 10.26 7.28 5.72
Test 18.18 10.63 7.39 5.67

feature extractors, whereas we performed end-to-end training by freezing the first three layers of
InceptionV1 and ResNet50 in a sequence-to-sequence setup. As the end-to-end training needs a
lot of memory and takes many days to converge, our models did not have the opportunity to learn
as well. All the features were evaluated using the transformer model. The results of the ablations
are presented in Table 5.
Observations. As seen in Table 5, pretrained ResNet50 features provide the best results. Going

forward for all the ablations with CNN features we will be using ResNet50 extracted features.
From our analysis, we have observed that SLT datasets benefit from features extracted using

deep networks. When comparing with shallow networks (AlexNet), deep networks (ResNet50)
provides better features giving better performance in SLT. Empirically, from our studies, we have
seen that wider networks do not perform as well. So Inception v1, Inception v3, EfficientNet-B7
(even though is not only wide but also deep) do not seem to perform as well as a purely deep
network. The deep network architecture and skip-connections in ResNet50 prove to be the most
beneficial for SLT yielding the best results.

7.3.4 Experiments and Ablations on GSL Dataset. From the experiments and ablations in Ta-
ble 6, we study how different feature inputs contribute toward improving the model and how at-
tention plays an important role in sign language to text translation. Visual features from ResNet50
and location-based features from OpenPose smoothed version perform better than other features.
Between the sequence-to-sequence models, attention mechanism predicts bi-grams and longer n-
grams better than the sequence-to-sequence model without attention. The transformer model per-
forms further better than the sequence-to-sequence model with attention in predicting bi-grams
and more due to its extensive multi-head attention and self-attention mechanism. The results of
the ablations are presented in Table 6.
Observations. Compared to the other models evaluated, the transformer can learn more weights

and parameters that contribute toward its good performance on the GSL dataset as shown in Ta-
ble 6. The multi-head self-attention mechanism in the transformer model can learn complex repre-
sentations for every frame. The self-attention in the transformer model helps to learn interdepen-
dencies between different frames depending upon the position of the frames and the ground-truth
caption. The self-attentions are calculated in parallel, eight times, referred to as eight heads, and
concatenated together forming multi-head attention. This parallelization has an advantage in the
transformer model as against the sequential sequence-to-sequence models. The advanced archi-
tecture of the transformer model helps in learning long-term dependencies when compared to the
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Table 6. Ablation Results on Different Feature Inputs Using the GSL Dataset

Input Features Model Set BLEU 1 BLEU 2 BLEU 3 BLEU 4

OpenPose (NS) s2s Validation 23.62 8.89 6.54 5.71

Test 22.89 8.43 6.20 5.57

s2s with att Validation 17.64 11.42 8.52 6.78

Test 18.50 11.92 8.73 6.95

Transformer model Validation 24.2 15.28 11.08 8.69

Test 22.69 14.61 10.38 8.09

OpenPose (WS) s2s Validation 23.31 8.73 6.49 5.68

Test 23.49 8.52 6.36 5.55

s2s with att Validation 20.65 13.39 9.80 7.68

Test 19.65 12.36 8.97 7.00

Transformer model Validation 24.82 15.87 11.53 9.07

Test 23.52 15.24 11.00 8.67

ResNet50 s2s Validation 21.55 7.97 5.76 4.96

Test 20.90 7.81 5.08 4.22

s2s with att Validation 23.01 14.48 10.20 7.79

Test 21.71 13.89 10.07 7.87

Transformer model Validation 24.75 16.04 11.56 8.95

Test 23.67 14.58 10.29 8.00

k-means s2s Validation 15.68 3.67 3.12 2.74

Test 16.93 3.90 3.32 2.95

s2s with att Validation 12.75 6.92 5.06 4.07

Test 12.78 7.30 5.51 4.54

Transformer model Validation 14.02 7.47 5.44 4.41

Test 13.65 7.46 5.57 4.54

NS - No Smoothing, WS - With Smoothing,

s2s - basic sequence-to-sequence model without attention,

s2s with att - sequence-to-sequence model with attention.

sequence-to-sequence models. Although ResNet50 and OpenPose input features perform very sim-
ilar with the highest BLEU scores on the transformer model, OpenPose features are less expensive
to get than ResNet50 features.

7.3.5 Experiments and Ablations on CSL Dataset. Preliminary results on the CSL dataset [110]
are shown in Table 7. The CSL dataset chosen for training is a very small subset of the whole
dataset. Due to the language complexity and abnormalities in the dataset, there is still room for
improvement in the Chinese Sign Language recognition models. BLEU 1 scores are considerably
high when compared to BLEU 2 scores, because a few characters like “我 (I)” occur 2,103 times in
the dataset followed by “是 (is),” “他 (he),” “你 (you),” repeating around 1,000 times. For the CSL
dataset, OpenPose feature inputs work better than CNN features because of the structure of the
dataset. As explained in Section 6 and Figure 11 the OpenPose canonical form obtain a scaled and
center version of points for all the frames, whereas the CNN features still take in as input the
original frames where the person signing may not be at the center and the same distance from
the camera. For such a real-life scenario dataset consisting of different abnormalities and noise,
OpenPose proves to be beneficial while performing sign language to text translation.
The attention mechanisms (sequence-to-sequence with attention and transformer model) per-

form very well with OpenPose input features. The transformer model, however, performs the best
with high BLEU 1 to BLEU 4 scores for the pose-based inputs. Whereas, the CNN feature input
overall does not do very well due to abnormalities in the dataset.
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Table 7. Ablation Results on Different Feature Inputs Using the CSL Dataset

Input Features Model Set BLEU 1 BLEU 2 BLEU 3 BLEU 4

OpenPose (NS) s2s Test 14.36 1.60 0.04 0.01
s2s with att Test 39.45 34.44 32.55 31.43

Transformer model Test 52.04 48.94 47.86 47.25

OpenPose (WS) s2s Test 19.68 2.32 0.12 0.01
s2s with att Test 36.13 31.11 29.48 28.63

Transformer model Test 43.03 38.93 37.52 36.76

ResNet50 s2s Test 17.41 1.19 0.12 0.01
s2s with att Test 14.01 5.16 3.55 2.93

Transformer model Test 13.2 6.04 4.58 4.02

NS - No Smoothing, WS - With Smoothing,

s2s - basic sequence-to-sequence model without attention

s2s with att - sequence-to-sequence model with attention.

Observations. In situations where the CNN features are not as good due to the structure of the
dataset, OpenPose feature inputs help in elevating the results.

7.3.6 Experiments and Ablations on ASL Dataset. Preliminary results with the ASL dataset are
shown in Table 8. The sequence-to-sequence model with attention follows a similar trend like
GSL and CSL in predicting longer n-grams better for different feature inputs. It is evident from
Tables 6, 7, and 8 that the organization of the dataset highly influences the results. While ASL is
very similar to the GSL dataset, it has fewer samples and covers a widespread topic rather than just
weather information (like GSL). It is very different from the CSL dataset with respect to the number
of signers, the number of samples, and the type of samples. The OpenPose and CNN feature inputs
perform comparatively the same for the ASL dataset using the attention models. The sequence-to-
sequence model with attention performs the best when compared with the transformer model
and the sequence-to-sequence model without attention. The transformer model does not provide
a boost in BLEU scores as seen in the other datasets.
Observations. The organization of the ASL dataset is somewhere between the GSL and CSL

dataset. Because of the input frames having a controlled background, it performs better than CSL
with CNN features but due to the poor quality of frames when compared to CSL, it incurs a per-
formance hit when using OpenPose points. The poor performance of the transformer model may
be due to the ASL being a smaller dataset with fewer repetitions as seen in Figure 6 and with 10%
of sentences in the test set seen during training. The CSL dataset is chosen such that the dataset
has sentences that are repeated due to this there is a high overlap of the captions between test and
train but these are all signed by different signers. GSL, however, being a huge dataset, performs
fairly better than ASL even with less number of test samples seen during training. To further un-
derstand the ASL dataset, we perform experiments to see how different signers interpret the same
sign, which is further explained in Section 7.3.8.

7.3.7 Addition Experiments and Analysis Using RL. Reinforcement learning is also used as one
of themodels to analyze how it tackles the exposure bias problemwhen compared to othermethods.
Using a rewards mechanism, the final gradient is calculated, which is then backpropagated to the
model under consideration. We report preliminary results with RL on the sequence-to-sequence
model without attention using ResNet features on the GSL dataset. The results are shown in
Table 9.
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Table 8. Ablation Results on Different Feature Inputs Using the ASL Dataset

Input Features Model Set BLEU 1 BLEU 2 BLEU 3 BLEU 4

OpenPose (NS) s2s Test 14.68 3.81 2.76 2.31
s2s with att Test 19.83 8.45 4.79 2.93

Transformer model Test 13.58 6.7 4.35 3.17

OpenPose (WS) s2s Test 16.85 4.17 3.29 3.02
s2s with att Test 20.20 8.62 5.21 3.43

Transformer model Test 13.57 6.83 4.46 3.34

ResNet50 s2s Test 21.66 4.95 4.43 4.26

s2s with att Test 19.55 10.02 6.2 4.25
Transformer model test 12.78 5.7 3.38 2.43

NS - No Smoothing, WS - With Smoothing,

s2s - basic sequence-to-sequence model without attention,

s2s with att - sequence-to-sequence model with attention.

Table 9. Results on the GSL Dataset Using RL-based Sequence-to-Sequence (s2s)

Model without Attention with ResNet Input Features

Model Set BLEU 1 BLEU 2 BLEU 3 BLEU 4

s2s without RL Validation 21.55 7.97 5.76 4.96
Test 20.90 7.81 5.08 4.22

s2s with RL Validation 26.97 8.94 7.08 6.48
Test 25.70 7.87 6.31 5.64

Table 10. Human as an Oracle Experiment on ASL Dataset

for Original (Sign Language RGB Video) and

OpenPose Generated Videos

Video type BLEU 1 BLEU 2 BLEU 3 BLEU 4

Original videos 24.86 12.17 6.87 3.81

OpenPose videos 6.32 1.790 0.59 0.14

Observations. The RL model performs better than the sequence-to-sequence model without at-
tention. Thus the RLmodel without teacher-forcing can performwell when compared to themodel
that incorporates teacher-forcing thus reducing the exposure-bias problem. This model is also able
to predict one-gram words better than the sequence-to-sequence model with attention. In the fu-
ture, it would be interesting to see how the RL model performs if attention is introduced.

7.3.8 Human as an Oracle. We performed an experiment with a human as an oracle (an expert
signer) to compare how a human is able to predict the captions on a sign language video versus
OpenPose joints visualization for each frame rendered as a video. The OpenPose joints are mainly
used for this experiment, because the OpenPose annotated body, hands, and face joints are highly
interpretable by humans. The results on 340 ASL videos from the test set and OpenPose videos are
shown in Table 10.
The low BLEU 4 scores in Table 10 for original videos may be attributed to the fact that the

ground-truth captions were taken out of context from a story telling scenario. Therefore, the signs
and captions may not necessarily match up. Ideally, 50% BLEU 4 score from human evaluation
would indicate that the ground truth is collected efficiently. To test the efficacy of the dataset
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Table 11. Comparison between Ground Truth and Predicted Captions between

Two Human Annotators

No. Ground-truth caption ASL Signer 1 ASL Signer 2

1. He called and asked if they
had the right kind of dog,
and the answer was yes!

You can have they shouted “you have it?”,
“yes”.

2. He keeps drinking coffee Still making out coffee continued still.

3. It must be a head trip or
something

I was tripping I’m strict/hardheaded.

4. As I was driving, I was really
bored. So I started thinking
about what I could do.

The car ride was bor-
ing

Driving’s boring.

5. Did the teacher buy a house
yesterday?

Did the teacher buy a
house yesterday?

Did the teacher buy a house
yesterday?

The yellow cells show agreement while green shows disagreement (Best viewed in color).

collection further, we asked another ASL signer to annotate five videos and compared the results
of the two signers with the ground truth.
Observations. From Table 11 we can see that the predicted sentences have non-matching grams

thus leading to low BLEU scores in Table 10.

8 CONCLUSION

There is still much to be done to facilitate smooth communication between hearing and non-
hearing communities. In this article, we have discussed how methodologies evolved from text-
to-text translation to sign-to-text translation. We selected four models to evaluate: the sequence-
to-sequence model, the sequence-to-sequence model with attention, the transformer model, and
the reinforcement-learning–based model; to better understand how well they perform for sign
language translation. We also explored different input features such as the joints of the body and
hands, along with facial landmarks all using OpenPose, CNN features, and k-means cluster IDs
for each frame. To better understand which sets and subsets of features aid best in improving per-
formance, we performed ablation studies using different combinations of body, hands, and face
keypoints as inputs to our models. In addition to ablations with different input features, we also
examined different sign language datasets to better understand how the performance varied, based
on the complexity (controlled collection and constrained vocabulary) of the sign language videos.
We evaluated our models on different sign languages, ASL, GSL, and CSL. Our transformer model
outperformed all the other sequence-to-sequence models on the GSL and CSL datasets using Open-
Pose features. In some cases, ResNet features provided similar results as OpenPose but as seen it
is highly dataset dependent. ASL dataset could not leverage the attention mechanisms involved in
the transformer model due to being a smaller and noisy dataset. In general, the attention mech-
anisms involved in the transformer model learned more weights than the sequence-to-sequence
models with and without attention, thus leading to significantly better learning capability.
To provide the reader with a comprehensive study for sign language translation, we performed

a preliminary experiment using ResNet features with the sequence-to-sequence model without
attention and RL. This RL-based model helped in mitigating the exposure bias issue usually seen
due to teacher-forcing when sequence-to-sequence models are used. Our RL-based sequence-to-
sequence model yielded approximately a 1.5- to 5-point increase in BLEU 1–BLEU 4 scores. Our
human-as-an-oracle experiment completed our extensive study for this article by looking at how
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a human expert signer would interpret the ASL videos and their corresponding OpenPose-based
stick videos.We used OpenPose for comparison as it is visually more understandable for predicting
signs when compared to other features.
In conclusion, this article has provided a comprehensive overview of the representations and

models used for continuous sign language translation without gloss. We have shown that the
transformer model performed the best on the the controlled and constrained GSL dataset, espe-
cially when combined with either OpenPose or ResNet50 as input features. But for the other less
consistent datasets, the results were more varied. Also, the human experiment demonstrated that
our ASL dataset is very noisy (with several incorrect captions), resulting in low BLEU scores being
obtained even by a human expert and low agreement between two different signers. In the future,
we plan to collect a larger and more consistent ASL dataset, to make it more on par with the GSL
and CSL datasets.

APPENDIX

A SAMPLE VIDEOS FROM DIFFERENT DATASETS FOR SAME UTTERANCE

This section shows sign language videos of the same utterance signed by different signers. The
videos can be downloaded from here. These videos can be best played using a VLC player. From

the videos, we can see that GSL and ASL utterances signed by different signers look very similar in
terms of signs and speed, whereas the CSL videos show the difference in speed and slight variation
in the signs between the two signers. These examples mimic the entire dataset very closely.
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