Annals of Mathematics 192 (2020), 665-678
https://doi.org/10.4007 /annals.2020.192.2.8

Rademacher type and Enflo type coincide

By PAATA IVANISVILI, RAMON VAN HANDEL, and ALEXANDER VOLBERG

Abstract

A nonlinear analogue of the Rademacher type of a Banach space was
introduced in classical work of Enflo. The key feature of Enflo type is that
its definition uses only the metric structure of the Banach space, while the
definition of Rademacher type relies on its linear structure. We prove that
Rademacher type and Enflo type coincide, settling a long-standing open
problem in Banach space theory. The proof is based on a novel dimension-
free analogue of Pisier’s inequality on the discrete cube.

1. Introduction and main results

Let (X,]| - ||) be a Banach space. We say that X has Rademacher type
p € [1,2] if there exists C € (0,00) so that for all n > 1 and z1,...,z, € X,

n p n
E| Y el <O |layllP.
=1 =1

We denote by TE(X ) the smallest possible constant C' in this inequality.

A nonlinear notion of type was introduced by Enflo [4]: a Banach space
has Enflo type p if there exists C' € (0,00) so that for all n > 1 and every
function f: {—1,1}" — X,

SEEE
2

P n
< CPY E|D;f(e)|"-
j=1

We denote by T]DE (X) the smallest possible constant C' in this inequality. Here
we define the discrete partial derivatives on the cube {—1,1}" as

flet,...,€j,. .. en) — fler, .., —€4, ... €n)

Dif(e) = .
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The key feature of Enflo type is that its definition depends only on the metric
structure of X; that is, it involves only distances between two points. This
notion therefore extends naturally to the setting of general metric spaces. In
contrast, the definition of Rademacher type relies on the linear structure of X.

The study of metric properties of Banach spaces, known as the “Ribe
program,” has been of central importance in Banach space theory in recent
decades [12]. Understanding the relationship between Rademacher type and
Enflo type is a fundamental question in this program. That Enflo type p
implies Rademacher type p follows immediately by choosing the linear function
f(e) =3 71 €jx; in the definition of Enflo type. Whether the converse is also
true, that is, that Rademacher type p implies Enflo type p, is a long-standing
problem that dates back to Enflo’s original paper [4] from 1978. Despite a
number of partial results in this direction [2], [3], [1], [14], [13], [11], [7], [6],
the question has remained open.

Here we settle Enflo’s question in the affirmative: Rademacher type p is
equivalent to Enflo type p. In other words, Enflo type provides a characteri-
zation of Rademacher type using only the metric structure of X.

THEOREM 1.1. We have
T
THX) <TP(X) < —QTPR(X)

for every p € [1,2] and Banach space X.

The key new ingredient in the proof of Theorem 1.1 is a novel dimension-
free analogue of a classical inequality of Pisier.

1.1. Pisier’s inequality. Let p > 1, let f : {—=1,1}"" — X and let ¢,¢
be independent random vectors that are uniformly distributed on the discrete
cube {—1,1}". As part of his investigation of metric type, Pisier discovered
the following class of Sobolev-type inequalities for vector-valued functions on
the discrete cube:

P
(L1) E||f(z) - Ef()| < OV

> 6;D;f(e)

J=1

If such an inequality were to hold with a constant C' that is independent of
dimension n, then Enflo’s problem would be solved: if X has Rademacher
type p, then applying this property to the right-hand side of (1.1) conditionally
on ¢ would yield immediately the definition of Enflo type p. Unfortunately,
Pisier was able to prove (1.1) only with a dimension-dependent constant C' ~
logn [14, Lemma 7.3|, and it was subsequently shown by Talagrand [15, §6]
that this order of growth is optimal; that is, there exist Banach spaces X for
which the optimal constant in Pisier’s inequality must grow logarithmically
with dimension.
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In order to resolve Enflo’s problem, however, it is not necessary to establish
Pisier’s inequality for an arbitrary Banach space: it suffices to show that (1.1)
holds with a dimension-free constant under the additional assumption that X
has nontrivial type. For this reason, subsequent work has focused on identifying
conditions on the Banach space X under which (1.1) holds with a constant
that depends only on the geometry of X (but not on n). Notably, Naor and
Schechtman [13] proved that (1.1) holds with a dimension-free constant under
the stronger assumption that X is an UMD Banach space (see also [7], [5]).
Very recently, Eskenazis and Naor [6] proved that for superreflexive Banach
spaces X, the constant in Pisier’s inequality can be improved to log®n for
some o < 1.

Beside the inequality (1.1), Pisier also proved [14, Th. 2.2] a more general
counterpart of his inequality in Gauss space: if f : R" — X is locally Lipschitz,
G,G' are independent standard Gaussian vectors in R, and ® : X — R is
convex and satisfies a mild regularity assumption, then

(1.2) E[®(f(C) - Ef(G))] [ ( ZGSQZ )}

One obtains an inequality analogous to (1.1) by choosing ®(z) = ||z||P. Re-
markably, the Gaussian inequality is dimension-free for an arbitrary Banach
space X, in sharp contrast to the inequality on the cube. Unfortunately, its
proof is very special to the Gaussian case: one defines G() := G'sin 0+ G’ cos 0
and notes that (G(6), d%G(Q)) has the same distribution as (G, G") for each 6
by rotation-invariance of the Gaussian measure. Then (1.2) follows by express-
ing f(G)— f(G") = 0”/2 4 29 f(G(0)) df and applying Jensen’s inequality. If one
attempts to repeat this 1dea on the discrete cube, the absence of rotational
symmetry makes the argument inherently inefficient, and one cannot do better
than (1.1) with constant C' ~ logn.

Despite the apparent obstructions, we will prove in this paper a completely
general dimension-free analogue of (1.2) on the discrete cube. The existence
of such an inequality appears at first sight to be quite unexpected. It will
turn out, however, that the dimension-dependence of (1.1) is not an intrinsic
feature of the discrete cube, but is simply a reflection of the fact that (1.1) is
not the “correct” analogue of the corresponding Gaussian inequality. To obtain
a dimension-free inequality, we will replace ¢ by a vector of biased Rademacher
variables 0(t) that arises naturally in our proof by differentiating the discrete
heat kernel.

1.2. A dimension-free Pisier inequality. The following random variables
will appear frequently in the sequel, so we fix them once and for all. Let ¢
be a random vector that is uniformly distributed on the cube {—1,1}". Given
t > 0, we let £(t) be a random vector in the cube, independent of e, whose
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coordinates &;(t) are independent and identically distributed with

Pl =1} =1 Pla(=-1}=""

2
We also define the standardized vector §(t) by
5;(t) == &i(t) — B& (1) _ &i(t) — e*t.
' Var&(t) Ve %

The following analogue of (1.2) lies at the heart of this paper.

THEOREM 1.2. For any linear space X, function f:{-1,1}" — X, and
convez function ® : X — R, we have

0 e -Bfe < [ Blo(5 Y a600,56)] man,

where v is the probability measure on Ry with density u(dt) := %\/eii_ldt.

Even though (1.3) is formulated in terms of the biased variables §;(t) as
opposed to the Rademacher variables d; that appear in (1.1), the proof of
Theorem 1.1 will follow readily by a routine symmetrization argument. For
this purpose the precise distribution of the random variables §;(¢) is in fact
immaterial: it suffices that they are independent, centered, and have bounded
variance. However, other applications (such as Theorem 1.5 below) do require
more precise information on the distribution of §;(¢), which can be read off
from its definition.

Remark 1.3. Tt is interesting to note that (1.3) is not just an analogue
of (1.2) on the cube: it is in fact a strictly stronger result, as the Gaussian
inequality can be derived from Theorem 1.2 by the central limit theorem. To
see why, assume f : R® — X is a sufficiently smooth function with compact
support and let ® : X — R be a sufficiently regular convex function. Define
v {1, 13N & X by

o) = p(EEL, | Dlien)
and note that for 1 <t <nand 1 <j <N,

Dijfn(e) = j%gi (Zéj:ﬁ;\:lj”gj:ﬁl\:m> +O<\/1N)

as N — oo. Thus by Theorem 1.2,

E[®(fn(c) — Efn(e))]

§/E[@<gim of <2:;V:181], - %))} p(dt) + o(1).
i=1

VN 9n\ VN VN
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Letting N — oo now yields (1.2) by the multivariate central limit theorem,
as {(e15,01;(t)e1j, .-, €nj, Onj(t)enj) }j<n are independent and identically dis-
tributed random vectors with unit covariance matrix. The requisite regularity
assumptions on f and ® can subsequently be removed by routine approxima-
tion arguments.

The above discussion also shows that the constant in Theorem 1.2 is opti-
mal. Indeed, as (1.3) implies (1.2), it suffices to show that (1.2) is sharp. But
this is already known to be the case when X =R and ®(z) = |z| [10, Ch. 8].

When ®(z) = ||z||P, the conclusion of Theorem 1.2 may be slightly im-
proved. As the improvement will be needed in the sequel, we spell out this
variant separately.

THEOREM 1.4. Let u be as in Theorem 1.2. Then for any Banach space
(X, - 1), function f:{-1,1}" — X, and 1 < p < oo, we have

p> Up,u,(dt).

In this setting, the difference between (1.3) and (1.4) is that in the former
the exponent 1/p appears outside the p(dt) integral on the right-hand side.

Ly @l -erenr <] [ (B

> 5;(t)D; f(e)
j=1

We now briefly describe the idea behind the proofs of Theorems 1.2
and 1.4, which was inspired by Gaussian semigroup methods of Ledoux [10,
Ch. 8]. Instead of using rotational invariance as in the proof of (1.2) to interpo-
late between f(G) and f(G’), we use the heat semigroup on the discrete cube
to interpolate between f and Ef. The resulting expressions involve derivatives
of the form DjetA f- We now observe that rather than applying the deriva-
tive to f, we may differentiate the heat kernel instead. A short computation
(Lemma 2.1) shows that the gradient of the heat kernel on the cube yields the
biased Rademacher vector §(t). This elementary observation, analogous to the
classical smoothing property of diffusion semigroups, leads us to discover (1.3)
in a completely natural manner.

1.3. Pisier’s inequality and cotype. Theorems 1.2 and 1.4 provide dimen-
sion-free analogues of Pisier’s inequality on the cube for an arbitrary Banach
space X. With these results in hand, however, we can now revisit the question
of what additional assumption must be imposed on X in order that Pisier’s
original inequality (1.1) holds with a dimension-independent constant.

Recall that a Banach space (X, || - ||) has (Rademacher) cotype q € [2,00)
if there exists C' € (0,00) so that for all n > 1 and 1, ..., 2, € X,

n
E :Ej%'
J=1

q

n
Y lagllt < CUE
j=1
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We denote by Cy(X) the smallest possible constant C' in this inequality. The
significance of cotype in the present context is twofold:

e If X has finite cotype, one can estimate biased Rademacher averages by reg-
ular Rademacher averages [14, Prop. 3.2], so that Theorem 1.4 yields (1.1).

e If X does not have finite cotype, it contains ¢ uniformly [14, Th. 3.3], which
enables us to embed Talagrand’s example [15, §6] for every n.

Both theorems applied here are classical results of Maurey and Pisier. These
observations give rise to the following characterization.

THEOREM 1.5. For any Banach space X and 1 < p < oo, Pisier’s in-
equality (1.1) holds with a constant independent of dimension n if and only if
X has finite cotype.

As any Banach space with nontrivial type has finite cotype [9, Th. 7.1.14],
we obtain, in particular, an affirmative answer to the question posed after
(1.1): Pisier’s inequality holds with a dimension-free constant in any Banach
space with nontrivial type. However, one may argue that this fact is no longer
of great importance in view of our main results; in practice Theorems 1.2
and 1.4 may be just as easily deployed directly in applications (as we do in
Theorem 1.1) and give rise to much better constants than would be obtained
from Theorem 1.5.

A quantitative formulation of Theorem 1.5 will be given in Section 4.

1.4. Organization of this paper. The rest of this paper is organized as
follows. Section 2 is devoted to the proofs of Theorems 1.2 and 1.4. We
subsequently deduce Theorem 1.1 in Section 3. Finally, Theorem 1.5 is proved
in Section 4.

2. Proof of Theorems 1.2 and 1.4
The Laplacian on the discrete cube is defined by

Af:=-) D;f.
Jj=1

We denote by P; the standard heat semigroup on the cube, that is,
Pt = etA.

Recall that A is self-adjoint on L?({—1,1}") with quadratic form
~E[f(e) Ag(e)] = Y _EID;f(e) Djg(e)].
j=1

The basis for the proof of Theorem 1.2 is the following probabilistic represen-
tation of the heat semigroup and its discrete partial derivatives.
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LEMMA 2.1. We have

Ptf(x) = E[f(xlfl(t)a s 7xn§n(t))] Jort=0

and

621_1 E[0;(t) f (2161 (1), ..., 2n&n(t))]  fort > 0.

Proof. Let Qi f(z) := E[f(x1&1(t), ..., xn&n(t))]. By the definition of §;(t),

we have

D;P;f(x) =

n 1 —t ;

Qtf(x) = Z [H —1_';5] f(l‘lglw"amngn)-
ce{-1,1}" Li=1

Note also that

Qtf(.%'l, vy TGy ,iL‘n)

SN

ge{-1,1}n Li=1

We now observe that
1 1—e et et _
7(1_ —tj.>: = (& — e
2 1+e7%; 1+e % 1-e
We have therefore shown that
1
D;Qif(x) = E[5;(t) f(z1&1(2), - - s 2n&n(t))]-

et —1
It remains to show that Q;f = P,f. To this end, note that Qo f = f and

1-— e_tﬁj
1+ eftfj

f(xlfla e axnfn)

d = ol + e*t& e_tﬁj
aQf@ == > |5 g @b )
j=1¢e{-1,1} Li=1
== D;Qif(z) = AQ:f ().
j=1
Thus @ satisfies the Kolmogorov equation for the semigroup F;. O

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We may assume without loss of generality that X
is finite-dimensional (as f({—1,1}") spans a space of dimension at most 2").
Write

P(a) = sup {(z.) - (=)},

where ®* : X* — (—o00, 00| is the convex conjugate of ®. Then

E[®(f(e) -Ef(e)l =  suwp  {E[(g(e), f(e) — Ef(e))] — E[®"(g(¢))]}-

g{-1,1}n—>X*
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As Pof = f and limy_,oo P;f = Ef(¢) (this follows, e.g., from Lemma 2.1), by

the fundamental theorem of calculus we can write

Blig(e).S2) ~ BIEN] = - [ B[ (o) GRure))]
—- [ Ellgte). AR s at

- /OOO Z E[(D;Pg(e), D;f(e))] dt
=1

where we used in the last line that A is self-adjoint and commutes with P;. To
proceed, we note that by Lemma 2.1

n 1 n
> EID, Ple). Dy (e))] = S EKg(as(t»,j;ajuwjf(a)ﬂ,

=1

where £(t) = (£161(1), ..., ena(t)). Moreover, B[&*(g(e))] = BI®* (g(<£ (1)),

as the random vectors €£(t) and ¢ have the same distribution. Thus

E[(g(e), f(e) — Ef(e))] — E[®*(9(¢))]

— [ B[ (o(ee), T3 5,00D,5(6)) - ¥ (g(ec(t))] mla)
[elfocn 5 Ss00m50) - o)
</ E[@(giwwjf(e))} u(d),

j=1

and the conclusion follows. U
The proof of Theorem 1.4 is almost identical.
Proof of Theorem 1.4. In this case we use [8, Prop. 1.3.1]
(Ellf(e) —Ef(e)|")/? = sup E[(g(e), () — Ef(e))]

Eljg(e)[la<1

with % + % = 1. Proceeding exactly as in the proof of Theorem 1.2, we obtain

Bl(g(e). /() ~ Ef(e))]
= [ Bl{stecn. 5328001509 tan

7j=1
. 1/p
< [®lgecol (x| Za @) nar
using Holder’s inequality. Recalling that El/g(e€(t))||? = E||g(¢)||? as the ran-
dom vectors €£(t) and € have the same distribution, the conclusion follows

readily. O




RADEMACHER TYPE AND ENFLO TYPE COINCIDE 673

Remark 2.2 (Alternative approach to the proofs of Theorems 1.2 and 1.4).
Using that ¢ and €£(¢) have the same distribution and that (2.1) holds for all g,
it is readily seen that (2.1) implies the pointwise identity

(2.1) f)-BfE) - [ Za Dy f(w€(1)) | ()

for z € {—1,1}". By using this 1dent1ty one can organize the proofs in a manner
that is closer to the proof of (1.2). For example, to prove Theorem 1.2 we can
upper bound ®(f(z) —Ef(¢)) pointwise by applying Jensen’s inequality to the
right-hand side of (2.1), and then (1.3) follows by taking the expectation of
the resulting expression and using that € and ££(t) have the same distribution.

The pointwise identity (2.1) can also be proved directly, which leads to
proofs of Theorems 1.2 and 1.4 that avoid the use of duality. The following ar-
gument was communicated to us by Jingbo Liu. First, note two basic properties
of the discrete cube: DJQ» = D; and DjP; = P,D; for every j. Thus we can write

fa)=Bfe) =~ [ gri@d=- [T anse
:/OOZDJZ-Ptf(m)dt:/ ZDthDjf(a:)dt
(UN— (U

9] 1 n
:/0 ﬁE jzlfsj(t)Djf@f(t))] dt

using Lemma 2.1 in the last step. While conceptually appealing, the disadvan-

tage of this argument is that it relies on special properties of calculus on the
discrete cube. In contrast, the proofs that are based on duality use nothing
other than the quadratic form —(f, Ag)p(—1,1y) = (Df, Df)2({-1,1}) and the
gradient formula of Lemma 2.1, providing a more direct route to extensions
beyond the discrete cube.

3. Proof of Theorem 1.1

Theorem 1.1 follows from Theorem 1.2 by a routine symmetrization argu-
ment.

Proof of Theorem 1.1. The first inequality TE(X ) < TE(X ) follows read-
ily by choosing f(¢) = >>/_; €;x; in the definition of Enflo type.
In the converse direction, note first that as ¢ and —e have the same dis-
tribution, and as x — ||z||” is convex, we can estimate
fle) = f(=9o)|]” EHf(E) —Ef(e) - f(=e) +Ef(=9) |
2 2

E

<E|f(e) -Ef()|".
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Applying Theorem 1.2 with ®(x) = ||z||? yields

SLCESERI ‘ < [® Z 5

To estimate the right-hand side we use a standard symmetrization argument.
Let &'(t) be an independent copy of £(¢) and €’ be an independent copy of .
Then

p
p(dt).

p

50
<E W =5 Dife)

D;f(e)

P

Z JW(?D”@
p e (G =0 P
< T, (X) ;E - &”(t)

where we used Jensen’s inequality in the first line; that £(¢) —&'(¢) has the same
distribution as £'(£(t) — &'(¢)) (by symmetry and independence) in the second
line; and the definition of Rademacher type conditionally on £(¢),&'(t),e and
that £(t),&'(t),e,e’ are independent in the third line. But as p < 2, we obtain

&M WP _ (BI&GO - GOPIN? L,
. Var &;(t) = ( Var & (t) ) =7

by Jensen’s inequality. Thus we have shown
fle) = f(=9)|" (77 R )” -
E|l—————| <|—=TH"X E|D, p
| P < (S > EIDIE
which implies TF(X) < %TR(X) O
4. Proof of Theorem 1.5

E||D;f ()",

The following contraction principle is a classical result of Maurey and
Pisier (see, e.g., [14, Prop. 3.2]). We spell out a version with explicit constants.

THEOREM 4.1. Let (X,| - ||) be a Banach space of cotype q < oo, let

N1, ..., be independent and identically distributed symmetric random vari-
ables, and let € be uniformly distributed on {—1,1}". Then for any n > 1,
T1,...,2n € X, and 1 < p < oo, we have

p\ 1/p 0o ) p\ 1/p
(E ) < Lq,p/ P{|m| > t}mextan dt (E )
0

with Ly, = L Cy(X)max(1, (¢/p)/?), where L is a universal constant.
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Proof. As n; are symmetric random variables, they have the same dis-
tribution as g;7;. The conclusion for the special case p = ¢ follows from [9,
Th. 7.2.6]. For the general case, we consider two distinct cases.

For the case p > ¢, recall that a Banach space with cotype ¢ also has
cotype r for all r > ¢, with C,(X) < Cy(X) [9, p.55]. Thus the conclusion
follows readily from [9, Th. 7.2.6] by choosing ¢ = p

For the case p < ¢, we bound the LP-norm on the left-hand side by the
L%-norm, and then apply the inequality for the case p = q. This yields

p\ 1/p oo ) a\ 1/q
(E ) chq(X)/ P{m| > t}dt (E > .
0

We conclude by using the Kahane-Khintchine inequality [9, Th. 6.2.4] to bound
the L9-norm on the right-hand side by the LP-norm, which incurs the additional
factor < (g¢/p)'/?. This completes the proof. O

T T

We are now ready to prove one direction of Theorem 1.5: if X has finite
cotype, then (1.1) holds with a dimension-free constant.

PROPOSITION 4.2. Let (X, || - ||) be a Banach space of cotype q, and let
g,0 be independent uniformly distributed random vectors in {—1,1}". Then
for any function f:{-1,1}" - X and 1 < p < oo, we have

E||lf(e) -Ef(e)|" < K

with K., = K Cy(X) pmax(1, (q/p)3/?), where K is a universal constant.
Proof. Let £ (t) be an independent copy of £(t). We first note that

| Pls0 -0l > sy/ras =2 e
0

Thus

n

> 6;(t) D f(e)

j=1

P)l/p
Z t)D; f(e)
=1

ULHE

(e

p> 1/p
)1/20

<m(’

< 2L4,(1 — o2 maxiam 2(
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where we used Jensen’s inequality in the first line and we applied Theorem 4.1
conditionally on ¢ in the second line. Now note that

™

Tl = e 2ymman 2 p(dt) < T et(1 - e tymtan gt —
D72 p(dt) < e t(1 — e t)maxa t = max(q, p).
0

2
1/p
Zan ) :

Thus Theorem 1.4 yields
(E[f() — Ef(e)|")!/? < 2Ly, max(g, p (
and the conclusion follows by the definition of L, , in Theorem 4.1. O

Remark 4.3. Tt should be noted that the improvement provided by Theo-
rem 1.4 is used crucially in the proof of Theorem 1.5. Had we used Theorem 1.2
instead, we would have encountered the integral [;~(1 — e*2’5)m_g w(dt)
in the proof; it is readily verified that this integral diverges at some finite value
of p.

It remains to show the converse direction: if X does not have finite cotype,
then the constant in (1.1) is at least of order logn.

PROPOSITION 4.4. If the Banach space X does not have finite cotype,
then for everyn > 1 and 1 < p < oo, there exists a function f:{—1,1}" — X

so that
n p
E| > 6;D;f(e)
j=1

with Cy,p, = Clog(n/9p), where C is a universal constant.

El|f(e) -Ef(@@)|” = CF

Proof. It was shown by Talagrand [15, §6] that for every n > 1 and 1 <
p < 00, there is a function f: {—1,1}" — (2] so that
) 1/p

for a universal constant c. But if X does not have finite cotype, then by the

(Ellf(e) = Ef(e)[5%)"" > clog(n/9p) (

Maurey-Pisier theorem [9, Th. 7.3.8] it must contain a 2-isomorphic copy of
¢N for every N > 1. Thus we can embed Talagrand’s example in X for every
n>1and 1 <p < oo, and the proof is readily concluded. O

Remark 4.5. We emphasize that our characterization of when Pisier’s in-
equality holds with dimension-free constant assumes the Banach space X and
1 < p < oo are fixed. When this is not the case, other phenomena can arise.
For example, it follows from a result of Wagner [16] that if one chooses p < n,
then (1.1) holds with a universal constant for any Banach space X. This is a
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purely combinatorial fact that does not capture any structure of the underly-
ing space.
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