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Rademacher type and Enflo type coincide

By Paata Ivanisvili, Ramon van Handel, and Alexander Volberg

Abstract

A nonlinear analogue of the Rademacher type of a Banach space was

introduced in classical work of Enflo. The key feature of Enflo type is that

its definition uses only the metric structure of the Banach space, while the

definition of Rademacher type relies on its linear structure. We prove that

Rademacher type and Enflo type coincide, settling a long-standing open

problem in Banach space theory. The proof is based on a novel dimension-

free analogue of Pisier’s inequality on the discrete cube.

1. Introduction and main results

Let (X, ‖ · ‖) be a Banach space. We say that X has Rademacher type

p ∈ [1, 2] if there exists C ∈ (0,∞) so that for all n ≥ 1 and x1, . . . , xn ∈ X,

E

∥∥∥∥∥ n∑
j=1

εjxj

∥∥∥∥∥
p

≤ Cp
n∑
j=1

‖xj‖p.

We denote by TR
p (X) the smallest possible constant C in this inequality.

A nonlinear notion of type was introduced by Enflo [4]: a Banach space

has Enflo type p if there exists C ∈ (0,∞) so that for all n ≥ 1 and every

function f : {−1, 1}n → X,

E

∥∥∥∥f(ε)− f(−ε)
2

∥∥∥∥p ≤ Cp n∑
j=1

E‖Djf(ε)‖p.

We denote by TE
p (X) the smallest possible constant C in this inequality. Here

we define the discrete partial derivatives on the cube {−1, 1}n as

Djf(ε) :=
f(ε1, . . . , εj , . . . , εn)− f(ε1, . . . ,−εj , . . . , εn)

2
.
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The key feature of Enflo type is that its definition depends only on the metric

structure of X; that is, it involves only distances between two points. This

notion therefore extends naturally to the setting of general metric spaces. In

contrast, the definition of Rademacher type relies on the linear structure of X.

The study of metric properties of Banach spaces, known as the “Ribe

program,” has been of central importance in Banach space theory in recent

decades [12]. Understanding the relationship between Rademacher type and

Enflo type is a fundamental question in this program. That Enflo type p

implies Rademacher type p follows immediately by choosing the linear function

f(ε) =
∑n

j=1 εjxj in the definition of Enflo type. Whether the converse is also

true, that is, that Rademacher type p implies Enflo type p, is a long-standing

problem that dates back to Enflo’s original paper [4] from 1978. Despite a

number of partial results in this direction [2], [3], [1], [14], [13], [11], [7], [6],

the question has remained open.

Here we settle Enflo’s question in the affirmative: Rademacher type p is

equivalent to Enflo type p. In other words, Enflo type provides a characteri-

zation of Rademacher type using only the metric structure of X.

Theorem 1.1. We have

TR
p (X) ≤ TE

p (X) ≤ π√
2
TR
p (X)

for every p ∈ [1, 2] and Banach space X .

The key new ingredient in the proof of Theorem 1.1 is a novel dimension-

free analogue of a classical inequality of Pisier.

1.1. Pisier ’s inequality. Let p ≥ 1, let f : {−1, 1}n → X and let ε, δ

be independent random vectors that are uniformly distributed on the discrete

cube {−1, 1}n. As part of his investigation of metric type, Pisier discovered

the following class of Sobolev-type inequalities for vector-valued functions on

the discrete cube:

(1.1) E‖f(ε)−Ef(ε)‖p ≤ CpE
∥∥∥∥∥ n∑
j=1

δjDjf(ε)

∥∥∥∥∥
p

.

If such an inequality were to hold with a constant C that is independent of

dimension n, then Enflo’s problem would be solved: if X has Rademacher

type p, then applying this property to the right-hand side of (1.1) conditionally

on ε would yield immediately the definition of Enflo type p. Unfortunately,

Pisier was able to prove (1.1) only with a dimension-dependent constant C ∼
log n [14, Lemma 7.3], and it was subsequently shown by Talagrand [15, §6]

that this order of growth is optimal; that is, there exist Banach spaces X for

which the optimal constant in Pisier’s inequality must grow logarithmically

with dimension.
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In order to resolve Enflo’s problem, however, it is not necessary to establish

Pisier’s inequality for an arbitrary Banach space: it suffices to show that (1.1)

holds with a dimension-free constant under the additional assumption that X

has nontrivial type. For this reason, subsequent work has focused on identifying

conditions on the Banach space X under which (1.1) holds with a constant

that depends only on the geometry of X (but not on n). Notably, Naor and

Schechtman [13] proved that (1.1) holds with a dimension-free constant under

the stronger assumption that X is an UMD Banach space (see also [7], [5]).

Very recently, Eskenazis and Naor [6] proved that for superreflexive Banach

spaces X, the constant in Pisier’s inequality can be improved to logα n for

some α < 1.

Beside the inequality (1.1), Pisier also proved [14, Th. 2.2] a more general

counterpart of his inequality in Gauss space: if f : Rn → X is locally Lipschitz,

G,G′ are independent standard Gaussian vectors in Rn, and Φ : X → R is

convex and satisfies a mild regularity assumption, then

(1.2) E[Φ(f(G)−Ef(G))] ≤ E

ï
Φ

Å
π

2

n∑
j=1

G′j
∂f

∂xj
(G)

ãò
.

One obtains an inequality analogous to (1.1) by choosing Φ(x) = ‖x‖p. Re-

markably, the Gaussian inequality is dimension-free for an arbitrary Banach

space X, in sharp contrast to the inequality on the cube. Unfortunately, its

proof is very special to the Gaussian case: one defines G(θ) := G sin θ+G′ cos θ

and notes that (G(θ), ddθG(θ)) has the same distribution as (G,G′) for each θ

by rotation-invariance of the Gaussian measure. Then (1.2) follows by express-

ing f(G)− f(G′) =
∫ π/2

0
d
dθf(G(θ)) dθ and applying Jensen’s inequality. If one

attempts to repeat this idea on the discrete cube, the absence of rotational

symmetry makes the argument inherently inefficient, and one cannot do better

than (1.1) with constant C ∼ log n.

Despite the apparent obstructions, we will prove in this paper a completely

general dimension-free analogue of (1.2) on the discrete cube. The existence

of such an inequality appears at first sight to be quite unexpected. It will

turn out, however, that the dimension-dependence of (1.1) is not an intrinsic

feature of the discrete cube, but is simply a reflection of the fact that (1.1) is

not the “correct” analogue of the corresponding Gaussian inequality. To obtain

a dimension-free inequality, we will replace δ by a vector of biased Rademacher

variables δ(t) that arises naturally in our proof by differentiating the discrete

heat kernel.

1.2. A dimension-free Pisier inequality. The following random variables

will appear frequently in the sequel, so we fix them once and for all. Let ε

be a random vector that is uniformly distributed on the cube {−1, 1}n. Given

t > 0, we let ξ(t) be a random vector in the cube, independent of ε, whose
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coordinates ξi(t) are independent and identically distributed with

P{ξi(t) = 1} =
1 + e−t

2
, P{ξi(t) = −1} =

1− e−t

2
.

We also define the standardized vector δ(t) by

δi(t) :=
ξi(t)−Eξi(t)√

Var ξi(t)
=
ξi(t)− e−t√

1− e−2t
.

The following analogue of (1.2) lies at the heart of this paper.

Theorem 1.2. For any linear space X , function f : {−1, 1}n → X , and

convex function Φ : X → R, we have

(1.3) E[Φ(f(ε)−Ef(ε))] ≤
∫

E

ï
Φ

Å
π

2

n∑
j=1

δj(t)Djf(ε)

ãò
µ(dt),

where µ is the probability measure on R+ with density µ(dt) := 2
π

1√
e2t−1

dt.

Even though (1.3) is formulated in terms of the biased variables δj(t) as

opposed to the Rademacher variables δj that appear in (1.1), the proof of

Theorem 1.1 will follow readily by a routine symmetrization argument. For

this purpose the precise distribution of the random variables δi(t) is in fact

immaterial: it suffices that they are independent, centered, and have bounded

variance. However, other applications (such as Theorem 1.5 below) do require

more precise information on the distribution of δi(t), which can be read off

from its definition.

Remark 1.3. It is interesting to note that (1.3) is not just an analogue

of (1.2) on the cube: it is in fact a strictly stronger result, as the Gaussian

inequality can be derived from Theorem 1.2 by the central limit theorem. To

see why, assume f : Rn → X is a sufficiently smooth function with compact

support and let Φ : X → R be a sufficiently regular convex function. Define

fN : {−1, 1}n×N → X by

fN (ε) := f

Å∑N
j=1 ε1j√
N

, . . . ,

∑N
j=1 εnj√
N

ã
,

and note that for 1 ≤ i ≤ n and 1 ≤ j ≤ N ,

DijfN (ε) =
εij√
N

∂f

∂xi

Å∑N
j=1 ε1j√
N

, . . . ,

∑N
j=1 εnj√
N

ã
+ o

Å
1√
N

ã
as N →∞. Thus by Theorem 1.2,

E[Φ(fN (ε)−EfN (ε))]

≤
∫

E

ï
Φ

Å
π

2

n∑
i=1

∑N
j=1 δij(t)εij√

N

∂f

∂xi

Å∑N
j=1 ε1j√
N

, . . . ,

∑N
j=1 εnj√
N

ããò
µ(dt) + o(1).
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Letting N → ∞ now yields (1.2) by the multivariate central limit theorem,

as {(ε1j , δ1j(t)ε1j , . . . , εnj , δnj(t)εnj)}j≤N are independent and identically dis-

tributed random vectors with unit covariance matrix. The requisite regularity

assumptions on f and Φ can subsequently be removed by routine approxima-

tion arguments.

The above discussion also shows that the constant in Theorem 1.2 is opti-

mal. Indeed, as (1.3) implies (1.2), it suffices to show that (1.2) is sharp. But

this is already known to be the case when X = R and Φ(x) = |x| [10, Ch. 8].

When Φ(x) = ‖x‖p, the conclusion of Theorem 1.2 may be slightly im-

proved. As the improvement will be needed in the sequel, we spell out this

variant separately.

Theorem 1.4. Let µ be as in Theorem 1.2. Then for any Banach space

(X, ‖ · ‖), function f : {−1, 1}n → X , and 1 ≤ p <∞, we have

(1.4) (E‖f(ε)−Ef(ε)‖p)1/p ≤ π

2

∫ Å
E

∥∥∥∥ n∑
j=1

δj(t)Djf(ε)

∥∥∥∥pã1/p

µ(dt).

In this setting, the difference between (1.3) and (1.4) is that in the former

the exponent 1/p appears outside the µ(dt) integral on the right-hand side.

We now briefly describe the idea behind the proofs of Theorems 1.2

and 1.4, which was inspired by Gaussian semigroup methods of Ledoux [10,

Ch. 8]. Instead of using rotational invariance as in the proof of (1.2) to interpo-

late between f(G) and f(G′), we use the heat semigroup on the discrete cube

to interpolate between f and Ef . The resulting expressions involve derivatives

of the form Dje
t∆f . We now observe that rather than applying the deriva-

tive to f , we may differentiate the heat kernel instead. A short computation

(Lemma 2.1) shows that the gradient of the heat kernel on the cube yields the

biased Rademacher vector δ(t). This elementary observation, analogous to the

classical smoothing property of diffusion semigroups, leads us to discover (1.3)

in a completely natural manner.

1.3. Pisier ’s inequality and cotype. Theorems 1.2 and 1.4 provide dimen-

sion-free analogues of Pisier’s inequality on the cube for an arbitrary Banach

space X. With these results in hand, however, we can now revisit the question

of what additional assumption must be imposed on X in order that Pisier’s

original inequality (1.1) holds with a dimension-independent constant.

Recall that a Banach space (X, ‖ · ‖) has (Rademacher) cotype q ∈ [2,∞)

if there exists C ∈ (0,∞) so that for all n ≥ 1 and x1, . . . , xn ∈ X,

n∑
j=1

‖xj‖q ≤ Cq E
∥∥∥∥∥ n∑
j=1

εjxj

∥∥∥∥∥
q

.
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We denote by Cq(X) the smallest possible constant C in this inequality. The

significance of cotype in the present context is twofold:

• If X has finite cotype, one can estimate biased Rademacher averages by reg-

ular Rademacher averages [14, Prop. 3.2], so that Theorem 1.4 yields (1.1).

• If X does not have finite cotype, it contains `n∞ uniformly [14, Th. 3.3], which

enables us to embed Talagrand’s example [15, §6] for every n.

Both theorems applied here are classical results of Maurey and Pisier. These

observations give rise to the following characterization.

Theorem 1.5. For any Banach space X and 1 ≤ p < ∞, Pisier’s in-

equality (1.1) holds with a constant independent of dimension n if and only if

X has finite cotype.

As any Banach space with nontrivial type has finite cotype [9, Th. 7.1.14],

we obtain, in particular, an affirmative answer to the question posed after

(1.1): Pisier’s inequality holds with a dimension-free constant in any Banach

space with nontrivial type. However, one may argue that this fact is no longer

of great importance in view of our main results; in practice Theorems 1.2

and 1.4 may be just as easily deployed directly in applications (as we do in

Theorem 1.1) and give rise to much better constants than would be obtained

from Theorem 1.5.

A quantitative formulation of Theorem 1.5 will be given in Section 4.

1.4. Organization of this paper. The rest of this paper is organized as

follows. Section 2 is devoted to the proofs of Theorems 1.2 and 1.4. We

subsequently deduce Theorem 1.1 in Section 3. Finally, Theorem 1.5 is proved

in Section 4.

2. Proof of Theorems 1.2 and 1.4

The Laplacian on the discrete cube is defined by

∆f := −
n∑
j=1

Djf.

We denote by Pt the standard heat semigroup on the cube, that is,

Pt := et∆.

Recall that ∆ is self-adjoint on L2({−1, 1}n) with quadratic form

−E[f(ε) ∆g(ε)] =
n∑
j=1

E[Djf(ε)Djg(ε)].

The basis for the proof of Theorem 1.2 is the following probabilistic represen-

tation of the heat semigroup and its discrete partial derivatives.
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Lemma 2.1. We have

Ptf(x) = E[f(x1ξ1(t), . . . , xnξn(t))] for t ≥ 0

and

DjPtf(x) =
1√

e2t − 1
E[δj(t)f(x1ξ1(t), . . . , xnξn(t))] for t > 0.

Proof. Let Qtf(x) := E[f(x1ξ1(t), . . . , xnξn(t))]. By the definition of ξj(t),

we have

Qtf(x) =
∑

ξ∈{−1,1}n

[
n∏
i=1

1 + e−tξi
2

]
f(x1ξ1, . . . , xnξn).

Note also that

Qtf(x1, . . . ,−xj , . . . , xn)

=
∑

ξ∈{−1,1}n

[
n∏
i=1

1 + e−tξi
2

]
1− e−tξj
1 + e−tξj

f(x1ξ1, . . . , xnξn).

We now observe that

1

2

Å
1− 1− e−tξj

1 + e−tξj

ã
=

e−tξj
1 + e−tξj

=
e−t

1− e−2t
(ξj − e−t).

We have therefore shown that

DjQtf(x) =
1√

e2t − 1
E[δj(t)f(x1ξ1(t), . . . , xnξn(t))].

It remains to show that Qtf = Ptf . To this end, note that Q0f = f and

d

dt
Qtf(x) = −

n∑
j=1

∑
ξ∈{−1,1}n

[
n∏
i=1

1 + e−tξi
2

]
e−tξj

1 + e−tξj
f(x1ξ1, . . . , xnξn)

= −
n∑
j=1

DjQtf(x) = ∆Qtf(x).

Thus Qt satisfies the Kolmogorov equation for the semigroup Pt. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We may assume without loss of generality that X

is finite-dimensional (as f({−1, 1}n) spans a space of dimension at most 2n).

Write

Φ(x) = sup
z∈X∗

{〈z, x〉 − Φ∗(z)},

where Φ∗ : X∗ → (−∞,∞] is the convex conjugate of Φ. Then

E[Φ(f(ε)−Ef(ε))] = sup
g:{−1,1}n→X∗

{E[〈g(ε), f(ε)−Ef(ε)〉]−E[Φ∗(g(ε))]}.
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As P0f = f and limt→∞ Ptf = Ef(ε) (this follows, e.g., from Lemma 2.1), by

the fundamental theorem of calculus we can write

E[〈g(ε), f(ε)−Ef(ε)〉] = −
∫ ∞

0

E

ï≠
g(ε),

d

dt
Ptf(ε)

∑ò
dt

= −
∫ ∞

0

E[〈g(ε),∆Ptf(ε)〉] dt

=

∫ ∞
0

n∑
j=1

E[〈DjPtg(ε), Djf(ε)〉] dt,

where we used in the last line that ∆ is self-adjoint and commutes with Pt. To

proceed, we note that by Lemma 2.1
n∑
j=1

E[〈DjPtg(ε), Djf(ε)〉] =
1√

e2t − 1
E

ï≠
g(εξ(t)),

n∑
j=1

δj(t)Djf(ε)

∑ò
,

where εξ(t) := (ε1ξ1(t), . . . , εnξn(t)). Moreover, E[Φ∗(g(ε))] = E[Φ∗(g(εξ(t)))],

as the random vectors εξ(t) and ε have the same distribution. Thus

E[〈g(ε), f(ε)−Ef(ε)〉]−E[Φ∗(g(ε))]

=

∫
E

ï≠
g(εξ(t)),

π

2

n∑
j=1

δj(t)Djf(ε)

∑
− Φ∗(g(εξ(t)))

ò
µ(dt)

≤
∫

E

ï
Φ

Å
π

2

n∑
j=1

δj(t)Djf(ε)

ãò
µ(dt),

and the conclusion follows. �

The proof of Theorem 1.4 is almost identical.

Proof of Theorem 1.4. In this case we use [8, Prop. 1.3.1]

(E‖f(ε)−Ef(ε)‖p)1/p = sup
E‖g(ε)‖q≤1

E[〈g(ε), f(ε)−Ef(ε)〉]

with 1
p + 1

q = 1. Proceeding exactly as in the proof of Theorem 1.2, we obtain

E[〈g(ε), f(ε)−Ef(ε)〉]

=

∫
E

ï≠
g(εξ(t)),

π

2

n∑
j=1

δj(t)Djf(ε)

∑ò
µ(dt)

≤
∫

(E‖g(εξ(t))‖q)1/q

Å
E

∥∥∥∥π2
n∑
j=1

δj(t)Djf(ε)

∥∥∥∥pã1/p

µ(dt)

using Hölder’s inequality. Recalling that E‖g(εξ(t))‖q = E‖g(ε)‖q as the ran-

dom vectors εξ(t) and ε have the same distribution, the conclusion follows

readily. �
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Remark 2.2 (Alternative approach to the proofs of Theorems 1.2 and 1.4).

Using that ε and εξ(t) have the same distribution and that (2.1) holds for all g,

it is readily seen that (2.1) implies the pointwise identity

(2.1) f(x)−Ef(ε) =

∫
E

[
π

2

n∑
j=1

δj(t)Djf(xξ(t))

]
µ(dt)

for x ∈ {−1, 1}n. By using this identity one can organize the proofs in a manner

that is closer to the proof of (1.2). For example, to prove Theorem 1.2 we can

upper bound Φ(f(x)−Ef(ε)) pointwise by applying Jensen’s inequality to the

right-hand side of (2.1), and then (1.3) follows by taking the expectation of

the resulting expression and using that ε and εξ(t) have the same distribution.

The pointwise identity (2.1) can also be proved directly, which leads to

proofs of Theorems 1.2 and 1.4 that avoid the use of duality. The following ar-

gument was communicated to us by Jingbo Liu. First, note two basic properties

of the discrete cube: D2
j = Dj and DjPt = PtDj for every j. Thus we can write

f(x)−Ef(ε) = −
∫ ∞

0

d

dt
Ptf(x) dt = −

∫ ∞
0

∆Ptf(x) dt

=

∫ ∞
0

n∑
j=1

D2
jPtf(x) dt =

∫ ∞
0

n∑
j=1

DjPtDjf(x) dt.

=

∫ ∞
0

1√
e2t − 1

E

[
n∑
j=1

δj(t)Djf(xξ(t))

]
dt,

using Lemma 2.1 in the last step. While conceptually appealing, the disadvan-

tage of this argument is that it relies on special properties of calculus on the

discrete cube. In contrast, the proofs that are based on duality use nothing

other than the quadratic form −〈f,∆g〉`2({−1,1}) = 〈Df,Df〉`2({−1,1}) and the

gradient formula of Lemma 2.1, providing a more direct route to extensions

beyond the discrete cube.

3. Proof of Theorem 1.1

Theorem 1.1 follows from Theorem 1.2 by a routine symmetrization argu-

ment.

Proof of Theorem 1.1. The first inequality TR
p (X) ≤ TE

p (X) follows read-

ily by choosing f(ε) =
∑n

j=1 εjxj in the definition of Enflo type.

In the converse direction, note first that as ε and −ε have the same dis-

tribution, and as x 7→ ‖x‖p is convex, we can estimate

E

∥∥∥∥f(ε)− f(−ε)
2

∥∥∥∥p = E

∥∥∥∥f(ε)−Ef(ε)− f(−ε) + Ef(−ε)
2

∥∥∥∥p
≤ E‖f(ε)−Ef(ε)‖p.



674 PAATA IVANISVILI, RAMON VAN HANDEL, and ALEXANDER VOLBERG

Applying Theorem 1.2 with Φ(x) = ‖x‖p yields

E

∥∥∥∥f(ε)− f(−ε)
2

∥∥∥∥p ≤ ∫ E

∥∥∥∥∥π2
n∑
j=1

δj(t)Djf(ε)

∥∥∥∥∥
p

µ(dt).

To estimate the right-hand side we use a standard symmetrization argument.

Let ξ′(t) be an independent copy of ξ(t) and ε′ be an independent copy of ε.

Then

E

∥∥∥∥∥ n∑
j=1

δj(t)Djf(ε)

∥∥∥∥∥
p

≤ E

∥∥∥∥∥ n∑
j=1

ξj(t)− ξ′j(t)√
Var ξj(t)

Djf(ε)

∥∥∥∥∥
p

= E

∥∥∥∥∥ n∑
j=1

ε′j
ξj(t)− ξ′j(t)√

Var ξi(t)
Djf(ε)

∥∥∥∥∥
p

≤ TR
p (X)p

n∑
j=1

E

∣∣∣∣ξj(t)− ξ′j(t)√
Var ξi(t)

∣∣∣∣pE‖Djf(ε)‖p,

where we used Jensen’s inequality in the first line; that ξ(t)−ξ′(t) has the same

distribution as ε′(ξ(t)− ξ′(t)) (by symmetry and independence) in the second

line; and the definition of Rademacher type conditionally on ξ(t), ξ′(t), ε and

that ξ(t), ξ′(t), ε, ε′ are independent in the third line. But as p ≤ 2, we obtain

E

∣∣∣∣ξj(t)− ξ′j(t)√
Var ξi(t)

∣∣∣∣p ≤ ÅE[(ξj(t)− ξ′j(t))2]

Var ξi(t)

ãp/2
= 2p/2

by Jensen’s inequality. Thus we have shown

E

∥∥∥∥f(ε)− f(−ε)
2

∥∥∥∥p ≤ Å π√
2
TR
p (X)

ãp n∑
j=1

E‖Djf(ε)‖p,

which implies TE
p (X) ≤ π√

2
TR
p (X). �

4. Proof of Theorem 1.5

The following contraction principle is a classical result of Maurey and

Pisier (see, e.g., [14, Prop. 3.2]). We spell out a version with explicit constants.

Theorem 4.1. Let (X, ‖ · ‖) be a Banach space of cotype q < ∞, let

η1, . . . , ηn be independent and identically distributed symmetric random vari-

ables, and let ε be uniformly distributed on {−1, 1}n. Then for any n ≥ 1,

x1, . . . , xn ∈ X , and 1 ≤ p <∞, we have(
E

∥∥∥∥∥ n∑
j=1

ηjxj

∥∥∥∥∥
p)1/p

≤ Lq,p
∫ ∞

0

P{|η1| > t}
1

max(q,p)dt

(
E

∥∥∥∥∥ n∑
j=1

εjxj

∥∥∥∥∥
p)1/p

with Lq,p = LCq(X) max(1, (q/p)1/2), where L is a universal constant.
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Proof. As ηi are symmetric random variables, they have the same dis-

tribution as εiηi. The conclusion for the special case p = q follows from [9,

Th. 7.2.6]. For the general case, we consider two distinct cases.

For the case p > q, recall that a Banach space with cotype q also has

cotype r for all r > q, with Cr(X) ≤ Cq(X) [9, p. 55]. Thus the conclusion

follows readily from [9, Th. 7.2.6] by choosing q = p.

For the case p < q, we bound the Lp-norm on the left-hand side by the

Lq-norm, and then apply the inequality for the case p = q. This yields(
E

∥∥∥∥∥ n∑
j=1

ηjxj

∥∥∥∥∥
p)1/p

≤ LCq(X)

∫ ∞
0

P{|η1| > t}
1
q dt

(
E

∥∥∥∥∥ n∑
j=1

εjxj

∥∥∥∥∥
q)1/q

.

We conclude by using the Kahane-Khintchine inequality [9, Th. 6.2.4] to bound

the Lq-norm on the right-hand side by the Lp-norm, which incurs the additional

factor . (q/p)1/2. This completes the proof. �

We are now ready to prove one direction of Theorem 1.5: if X has finite

cotype, then (1.1) holds with a dimension-free constant.

Proposition 4.2. Let (X, ‖ · ‖) be a Banach space of cotype q, and let

ε, δ be independent uniformly distributed random vectors in {−1, 1}n. Then

for any function f : {−1, 1}n → X and 1 ≤ p <∞, we have

E‖f(ε)−Ef(ε)‖p ≤ Kp
q,pE

∥∥∥∥∥ n∑
j=1

δjDjf(ε)

∥∥∥∥∥
p

with Kq,p = K Cq(X) pmax(1, (q/p)3/2), where K is a universal constant.

Proof. Let ξ′(t) be an independent copy of ξ(t). We first note that∫ ∞
0

P{|ξj(t)− ξ′j(t)| > s}1/rds = 21−1/r(1− e−2t)1/r.

Thus Å
E

∥∥∥∥ n∑
j=1

δj(t)Djf(ε)

∥∥∥∥pã1/p

≤ 1√
1− e−2t

Å
E

∥∥∥∥ n∑
j=1

(ξj(t)− ξ′j(t))Djf(ε)

∥∥∥∥pã1/p

≤ 2Lq,p(1− e−2t)
1

max(q,p)
− 1

2

Å
E

∥∥∥∥ n∑
j=1

δjDjf(ε)

∥∥∥∥pã1/p

,
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where we used Jensen’s inequality in the first line and we applied Theorem 4.1

conditionally on ε in the second line. Now note that

π

2

∫
(1− e−2t)

1
max(q,p)

− 1
2µ(dt) ≤

∫ ∞
0

e−t(1− e−t)
1

max(q,p)
−1
dt = max(q, p).

Thus Theorem 1.4 yields

(E‖f(ε)−Ef(ε)‖p)1/p ≤ 2Lq,p max(q, p)

(
E

∥∥∥∥∥ n∑
j=1

δjDjf(ε)

∥∥∥∥∥
p)1/p

,

and the conclusion follows by the definition of Lq,p in Theorem 4.1. �

Remark 4.3. It should be noted that the improvement provided by Theo-

rem 1.4 is used crucially in the proof of Theorem 1.5. Had we used Theorem 1.2

instead, we would have encountered the integral
∫∞

0 (1 − e−2t)
p

max(q,p)
− p

2µ(dt)

in the proof; it is readily verified that this integral diverges at some finite value

of p.

It remains to show the converse direction: if X does not have finite cotype,

then the constant in (1.1) is at least of order log n.

Proposition 4.4. If the Banach space X does not have finite cotype,

then for every n ≥ 1 and 1 ≤ p <∞, there exists a function f : {−1, 1}n → X

so that

E‖f(ε)−Ef(ε)‖p ≥ Cpn,pE
∥∥∥∥∥ n∑
j=1

δjDjf(ε)

∥∥∥∥∥
p

with Cn,p = C log(n/9p), where C is a universal constant.

Proof. It was shown by Talagrand [15, §6] that for every n ≥ 1 and 1 ≤
p <∞, there is a function f : {−1, 1}n → `2

n

∞ so that

(E‖f(ε)−Ef(ε)‖p∞)1/p ≥ c log(n/9p)

(
E

∥∥∥∥∥ n∑
j=1

δjDjf(ε)

∥∥∥∥∥
p

∞

)1/p

for a universal constant c. But if X does not have finite cotype, then by the

Maurey-Pisier theorem [9, Th. 7.3.8] it must contain a 2-isomorphic copy of

`N∞ for every N ≥ 1. Thus we can embed Talagrand’s example in X for every

n ≥ 1 and 1 ≤ p <∞, and the proof is readily concluded. �

Remark 4.5. We emphasize that our characterization of when Pisier’s in-

equality holds with dimension-free constant assumes the Banach space X and

1 ≤ p < ∞ are fixed. When this is not the case, other phenomena can arise.

For example, it follows from a result of Wagner [16] that if one chooses p � n,

then (1.1) holds with a universal constant for any Banach space X. This is a



RADEMACHER TYPE AND ENFLO TYPE COINCIDE 677

purely combinatorial fact that does not capture any structure of the underly-

ing space.
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