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Abstract— This work is motivated by the need to automate
the analysis of parent-infant interactions to better understand
the existence of any potential behavioral patterns useful for
the early diagnosis of autism spectrum disorder (ASD). It
presents an approach for synthesizing the facial expression
exchanges that occur during parent-infant interactions. This
is accomplished by developing a novel approach that uses
landmarks when synthesizing changing facial expressions. The
proposed model consists of two components: (i) The first is
a landmark converter that receives a set of facial landmarks
and the target emotion as input and outputs a set of new
landmarks transformed to match the emotion. (ii) The second
component involves an image converter that takes in an input
image, a target landmark and a target emotion and outputs
a face transformed to match the input emotion. The inclusion
of landmarks in the generation process proves useful in the
generation of baby facial expressions; babies have somewhat
different facial musculature and facial dynamics than adults.
This paper presents a realistic-looking matrix of changing
facial expressions sampled from a 2-D emotion continuum
(valence and arousal) and displays successfully transferred
facial expressions from real-life mother-infant dyads to novel
ones.

I. INTRODUCTION

This paper describes the first step in a larger study to

develop a generative model for better understanding and

synthesizing videos of parent-infant interactions. In recent

years, awareness of the intricacies of parent-infant interac-

tions in the first few months of life has become relevant in

monitoring the mental health of both mother and infant [3].

Developmental disorders such as autism spectrum disorder

(ASD) can be detected from brain and behavioral patterns

presented in infants as early as 6 months of age [32]. How-

ever, diagnostic behavioral features for the disorder are not

presented until children are 2 years of age or older[2]. More

recently, child psychologists have examined the behaviors of

“infant siblings of children with ASD”, starting as early as 6

months, to learn more about potential behavioral patterns

useful for early diagnosis[2]. The ability to successfully

diagnose ASD early allows earlier intervention, which can

reduce the negative effects of the disorder [11] and increase

the positive long-term outcomes for the child, with results

such as better verbal and overall cognition at school age[10].

This material is based upon work partly supported by the National Science
Foundation under Grant No. 1846076.
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Fig. 1. Three different sets of frames, where the top row shows real images
from the infant-sibling dataset; the bottom row shows images synthesized
using the valence and arousal estimated from the top frames, and imposed
on a sports celebrity with her 6-month-old daughter. More in Section IV-B

Recently, Ahn et al. [1] generated a large number of

social communication variables, including patterns of vocal

interactions between children and adults, to explore the

development of objective measurements in ASD diagnostic

and treatment monitoring. In this and many other studies, the

number of parent-child pairs was typically approximately 70

or less. Gaining access to families willing and able to par-

ticipate in studies such as these, cleaning and annotating the

resulting data and finally performing analysis on the data can

be very tedious and expensive; however the benefits of such

studies cannot be overstated. Additionally, privacy concerns

often limit the dissemination of such data to computational

scientists for more automated studies.

For these and other reasons, our long-term goal is to de-

velop a probabilistic generative technique for understanding

and synthesizing new videos of parent-infant interactions

through learning from real-life interactions. Beebe 2012 [3]

describes how facial expression analysis is a key component

of studying mother-infant interactions, as the mothers and

their infants often tend to match each other’s positive facial

expressions until they both “build to a peak of positive

facial excitement”, along with the many other expression

exchanges that happen between them.

Therefore, this work, given time-synchronized videos of 6-

month-old infants interacting with a parent, the goal is to

extract the facial expressions from an interacting pair and

transfer them to a novel parent-infant dyad in a realistic

manner. The interaction data used for this work was collected

from an infant-sibling ASD study dataset, as described

above.
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II. RELATED WORKS

A. Emotional expression representation

A common strategy in human emotion representation is to

abstract emotions into discrete categories [15], such as the

six commonly used ones: happy, sad, disgust, fear, surprise,

and anger1. However, using discrete categories might result

in the loss of some subtle variations in emotional expressions.

For example, emotions can vary in intensity, and several

emotions can occur at the same time. For this reason,

the use of compound emotions such as happily surprised

was proposed [14]. However, this further complicates the

expression of emotions and it still does not describe the

continuum of emotional expressions. The valance-arousal

emotional state model[31] was introduced in the eighties,

in an attempt to express emotions in 2D (or 3D) continuous

space. Additionally, the facial action coding system (FACS)

[16], was developed to decompose facial expressions into

combinations of several fixed facial action units, that corre-

sponded to specific musculature movements on the face. It

provided one standard system for quantitatively describing

facial expressions.

B. Generative adversarial network

Generative adversarial network(GAN)[18] is an effective

generative model based on game theory. Currently, there

are many different extensions of GANs, and the conditional

GAN (CGAN)[24] is one of the more popular variants.

CGAN uses conditional information to guide the image

generation process; however, it is a supervised model, which

requires ground truth target images in the training process.

CycleGAN [41], DualGAN [40] and DiscoGAN [20] side-

step this issue by utilizing a cycle consistency loss. The

cycle consistency loss reconstructs the generated image back

to the input image and lets the reconstructed image and

original image be as similar as possible. This helps the model

reduce the space of possible mapping functions and thus

enables the transfer of an image from one domain to another

with unpaired data. Based on this, Choi et al. [7] proposed

training models that support image transfer between multiple

domains. This laid the foundation for emotion-based GANs.

C. Facial image manipulation

Facial expression generation techniques have been sub-

stantially explored. Many earlier works either manipulated

the facial components of the input image [25], [37], [38]

or used the target image as a comparison reference for the

model to learn to generate a corresponding image[6], [30],

[34].

In [22], the authors fitted a 3D morphable model (3DMM)

[4] to an input neutral face image and deformed the recon-

structed face into the target emotion. Then, the new face

was blended with the original image to obtain the target face

image. This strategy easily obtains high-quality synthesized

images and can overcome cases of extreme head poses.

1The emotion contempt is also sometimes included in these discrete
categories.

However, unlike our proposed work, this model requires the

input faces to be neutral, which greatly limits its flexibility.

In [13], the authors used an expression controller module

to encode emotion into a more expressive vector, allowing the

model to generate emotions of different intensities without

the need for a target image of corresponding intensity.

However, this model was still not able to generate a wide

variety of emotions.

Vielzeuf et al. [36] projected each discrete emotion la-

bel into 3D space and then discovered the corresponding

vector of dominance in the 3D space when given valance

and arousal values, thus allowing the model to convert an

image expression into any combination of valence-arousal-

dominance.

Ganimation [28] was proposed to replace the emotion label

with action units in an attempt to improve the smoothness

of face animation. However, the problem was that the corre-

spondences between the action units and emotions were often

complicated and were measured based on discrete emotions.

Again, it is not clear how well the use of a GAN based on

action units would perform on baby faces.

D. Keypoint-guided image-to-image translation

Landmarks, as an extremely condensed facial feature

representation, can preserve facial information such as the

pose, gender, and facial structure. In the gender preserving

generative adversarial network (GP-GAN) [12], the authors

attempted to restore the original image by using only the

landmarks as input. This confirmed that the semantic in-

formation contained in landmarks can further be used to

generate new images. In [33], the authors used landmarks as

a label for face swapping and used a landmark converter first

to adjust the landmarks, which helped the expression better

fit the target face. The experiments also demonstrated that

the landmark changes could be successfully fed back to the

generated faces. In [29], the authors used two different varia-

tional autoencoder (VAE) structures to encode the landmarks

and the original face. They then concatenated the two vectors

to generate the target face. However, this still required pairs

of matched original and target faces for training. In [35], the

authors proposed using landmarks as the label and used cycle

consistency separately for landmarks and images. This was

to ensure that the generated image retained both the semantic

and landmark information of the original image and would

not need a target image. However, this still required target

ground truth landmarks as labels, thus reducing its flexibility

as a completely unsupervised model.

III. PROPOSED METHODOLOGY

The core objective of our model is to transform any input

face to express an arbitrary emotion under weak supervision.

As shown in Figure 2, our model consists of two parts: 1. the

landmark converter which converts the landmark xl of the

input image xi into the target emotion ce; and 2. the image

converter which takes the converted landmarks yl and target

emotion ce as labels to convert the input image xi into the

target image yi.
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Fig. 2. High-level representation of the proposed avLandmarkGAN model,
showing how an emotional target face image is generated from both an input
face and target emotion labels via intermediate landmark generation.

A. Landmark converter

The landmark converter has a 2D GAN structure, and

the input landmarks are a 2D vector: 2×68, following the

landmark format in DLib [21]. The converter consists of

a discriminator Dl and a generator Gl. The structure of

landmark converter can be found in Figure 3

Input landmarks

Landmark

generator

Target emotion

Generated landmarks

Input landmarks

Discriminator
L1: Emotion detector

L2: Real/Fake detector

Landmark

generator

Original emotion

Reconstructed landmarks

CVC loss

Landmark converter

Fig. 3. 1. The landmark generator converts the input landmarks into
generated landmarks based on the target emotion. 2. The discriminator will
receive both the input landmarks and generated landmarks to distinguish
between them and to detect the emotion with such landmarks. 3. The
generator uses the generated landmarks and original emotion to generate
the reconstructed landmarks and to calculate the cycle consistency loss with
the input landmarks

The input landmarks are detected by a pretrained face

alignment network (FAN) model [5] and the goal is to convert

these landmarks xl to yl through conditioning with ce. To

ensure the identity constancy, we use cycle consistency in

our model, i.e. we reconstruct yl back to the xl on which it

was originally based. In addition, to address steganography,

the issue of messages being hidden in the latent variables

of the model, as discussed in [41], we propose a strategy to

calibrate the generated landmarks yl. The loss function of

the landmark converter consists of the following parts:

1) Adversarial loss: Similar to the vanilla adversarial loss

[18], the adversarial loss Ladv can be formulated as follows:

Ladv = Exl
[logDl (xl)] + Exl,ce [log (1−Dl (Gl (xl, ce)))]

(1)

2) Emotion loss: This is similar to the classification loss

in StarGAN [7], but we use an L2 regression loss instead,

because the emotion labels we use consist of two continuous

values. The emotion loss function consists of two terms. The

first term Lreal
e is to force Dl correctly predict the emotion

c′e of a real image. The second term Lfake
e forces Gl to

generate more suitable faces. Thus, the emotion loss is:

Lreal
e = Exl,c′e

[∥Dl (xl)− c′e∥2]

Lfake
e = Exl,ce [∥Dl (Gl (xl, ce))− ce∥2]

(2)

3) Reconstruction loss: Following the cycle consistency

paradigm, we send yl back to the generator and use the

original emotion label c′e to reconstruct a similar landmark

x′

l, which is supposed to be similar to xl. Hence, the

reconstruction loss Lrec can be formulated as:

Lrec = Exl,ce,c′e
[∥xl −Gl (Gl (xl, ce) , c

′

e)∥1] (3)

4) Face feature center loss: In our initial experiments,

we find that even though we have Lrec, yl usually still has

errors. For example, yl gives pose directions opposite to and

eye positions different from those of xl. This is because

the capacity/size of the landmark vector is small. Compared

to 128*128*3 images, landmarks have only 2*68 points, so

they are more likely to encounter steganography issues. This

issue occurs here when the generator uses tricks to hide

certain information and then attempts to recover it in the

reconstruction step.

To address this, we propose the center of facial feature loss

Lffc. This is the novel loss that we introduce in this work. In

Lffc the landmarks are split into 7 groups: face shape, left

eye, right eye, left eyebrow, right eyebrow, nose and mouth.

We then calculate the group centers, which are represented

by hj . The group centers are expected to be constant for

all the different emotions. Therefore, the loss function is as

follows:

Lffc = Exl,ce





7
∑

j=1

∥hj (xl)− hi (Gl (xl, ce))∥1



 (4)

5) Full objective: Finally, the complete loss function for

Dl and Gl is:

LDl
= −Ladv + λl

eL
real
e

LGl
= Ladv + λl

eL
fake
e + λrecLrec + λffcLffc

(5)

B. Image converter

Similar to the landmark converter, the image converter is

a cycle consistency based GAN. The input is the image, and

the image converter generates a new image conditioned on

both the landmarks and a target emotion.

The image converter receives two sets of labels: 1. The

landmark label cl, which is the landmark yl generated from

the landmark converter. It helps the model to understand the

outline of the target expression. 2. The emotion label ce,

which is the same as that used in landmark converter. It

complements the details not provided in the landmark, such

as nasolabial folds, teeth, etc.

The structure of the image converter can be found in

Figure 4, which is similar to that of the landmark converter.

Its loss function can be divided into five parts:
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Fig. 4. 1. The image generator uses the converted landmarks as its target
landmarks and associates with the target emotion to convert the input image.
2. The discriminator receives both the input image and the generated image
to distinguish them and to detect the emotion in the generated image. 3.
The generator reconstructs a generated image with the original emotion
that should be similar to the input image.

1) Adversarial loss: Similar to the landmark converter,

discriminator Di and generator Gi play the minmax game

by optimizing the adversarial loss L
img
adv :

L
img
adv =Exi

[logDi(x)]

+ Exi,ce,cl [log (1−Di (Gi (xi, ce, cl)))]
(6)

2) Emotion loss: This is same as the loss described in the

landmark converter, and can be written as:

Lreal
e = Exi,c′e

[∥Di (xi)− c′e∥2]

Lfake
e = Exi,ce,cl [∥Di (Gi (xi, ce, cl))− ce∥2]

(7)

3) Landmark loss: In addition to the emotion, landmarks

are also used as conditional labels in the generation process.

We use the L1 loss to deal with the sparsity of landmarks’

variation.

Lreal
l = Exi,c

′

l

[

∥Di (xi)− c′l∥1
]

L
fake
l = Exi,ce,cl [∥Di (Gi (xi, ce, cl))− cl∥1]

(8)

4) Reconstruction loss: Similar to the reconstruction loss

in landmark converter, the Lrec ensures the identity consis-

tency of the generated image by minimizing the following

function:

Lrec = Exi,ce,cl,c′e,c
′

l
[∥xi −Gi (Gi (xi, ce, cl) , c

′

e, c
′

l)∥1]
(9)

5) Full objective: Finally, the complete loss function for

the generator and discriminator in the image converter is:

LDi
= −Ladv + λi

eL
real
e + λlL

real
l

LGi
= Ladv + λi

eL
fake
e + λlL

fake
l + λrecLrec

(10)

IV. IMPLEMENTATION AND RESULTS

A. Generating Smooth Transitions between Expressions

Both the landmark converter and image converter are

trained on the AffectNet dataset [26], which provides both

valence and arousal labels for each image. We use the

pretrained FAN model to detect landmarks in each image

in the dataset and discard all images where either faces are

not detected or any of the landmarks are missing. This results

in 234,815 images in the training set and 3,159 images in

the validation set. To fit our GANs, the faces are resized to

128*128*3.

Because the input of the landmark converter is a sequence

of 2*68 coordinates instead of a 3*128*128 array of image

pixels, we treat the x- and y-coordinates as two channels to

obtain a vector with a length of 136 (2×68) and use this as

input. In the image converter, we draw the landmarks on a

128*128*1 white image and then directly concatenate it to

the original image as the landmark label.

For the discriminator, we require it to provide the specific

values for 136 coordinates, thus ensuring that the generator

truly applies the landmarks to the image, rather than simply

hiding the coordinates within some vectors.

Training schedule:: The landmark converter and image

converter share many hyper-parameters: the batch size is

16; the learning rate is 0.0001 with a linear decay factor

of 0.99997 over every epoch; the emotion loss weight

λl
e = λi

e = 5; the landmark loss weight λlm = 10; the

reconstruction weight λrecon = 10; the face feature center

weight λffc = 10; the arousal and valence vectors are

concatenated and flattened into a 1-D vector to calculate the

regression loss; and the parameters are optimized with the

Adam optimizer and trained for 400,000 iterations.

The weight represents the relative importance of each loss

during training. The weights we provide above attempt to

adjust each loss to a similar scale and thus ensure that each

loss can fully perform its role. To further verify the reliability

of our model, we perform ablation experiments for all the

other weights in the loss function except for λrecon, for

which a value has already been suggested in [7], [9]. To show

the effect of each loss term, we individually adjusted each

weight to show its impact on the model. The Frechet incep-

tion distance (FID) [19] and root mean square error (RMSE)

are used to determine the performance of our model. The

FID score has been popularly used in many different works

[8], [23], [39] to indicate the realisticness of the generated

image. It was calculated between 10,000 generated images

and our training set. To calculate the RMSE, we first train a

RESNET-18 to predict valence and arousal using AffectNet,

and use this to predict the emotions of all generated images.

We then calculate the RMSE between the predicted emotions

and real emotions. RMSE therefore reflects the extent of

similarity between the generated emotional values are to the

real ones.

As shown in Table I , the model is very sensitive to λe in

the image converter. Too small of a weight leads to a sharp

decrease in accuracy, while too high leads to a sharp decrease

in realisticness. The other parameters are less sensitive. In

our model, the landmarks and images used are 2-dimensional

and do not take into account the 3-dimensional spatial

structure of the face. Therefore some potentially useful

information may be lost. To explore further, we replaced

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on April 09,2022 at 19:07:59 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I

ABLATION STUDY SHOWING MODEL PERFORMANCE WITH DIFFERENT

LOSS FUNCTIONS AND CORRESPONDING WEIGHTS.

weight metrics λl
e λffc λi

e λl

0
FID 25.66 25.80 20.92 25.50

RMSE 0.188 0.199 0.56 0.200

0.1
FID 24.40 26.43 20.84 25.97

RMSE 0.204 0.205 0.56 0.192

1
FID 24.24 24.54 21.89 25.58

RMSE 0.193 0.202 0.31 0.208

5
FID 22.13 22.13 22.13 25.33

RMSE 0.200 0.200 0.200 0.208

10
FID 26.25 24.16 26.59 22.13

RMSE 0.203 0.192 0.177 0.200

100
FID 24.02 24.84 64.92 23.44

RMSE 0.202 0.198 0.178 0.198

all the landmarks in the model with 3D ones. However,

from our experimental results, the best performance of our

model using 3D points was FID = 26.7 and RMSE =
0.211, demonstrating that 3D points do not improve model

performance.

To qualitatively demonstrate the continuous transitions

between expressions, we generate avImage matrices as in

Figure 5. Additional image matrices are presented in the

supplementary material.

To validate the output of our proposed end-to-end av-

LandmarkGAN, since AffetNet provides both discrete and

continuous labels for each face, we computed the valence

and arousal averages of each of the 8 discrete emotions for

the faces, and the results are presented in Table IV-A. We

then synthesized expressive images using these arousal and

valence values, and the results are shown in Figure 6.

TABLE II

AVERAGES OF CONTINUOUS EMOTIONS FOR EACH DISCRETE EMOTION

LABEL, USED TO GENERATE THE IMAGES IN FIGURE 6.

Valence Arousal

Neutral 0.0043 0.0040
Happy 0.6652 0.1342
Sad -0.6864 -0.2585
Surprise 0.2306 0.6812
Fear -0.1156 0.7741
Disgust -0.7312 0.4342
Anger -0.3646 0.6604
Contempt -0.5548 0.5880

Observations: From the images shown in Figure 5,

we demonstrate that the proposed avLandmarkGAN can

successfully generate new emotionally expressive images on

a 2-D valence-arousal continuum. By computing the average

valence and arousal values for the corresponding discrete

labels, we successfully generated faces that approximately

match the discrete emotion labels. Although successful for

emotions such as happy, sad, surprise and fear, it is challeng-

ing for the model to differentiate between disgust (typically

Low High valence

Low

High 

arousal

Original

Low High valence

Low

High 

arousal

Original

Fig. 5. Two avImage matrices generated by avLandmarkGAN with
continuous arousal and valence labels imposed on an original face from
AffectNet (top left)

characterized by AU 92, the nose wrinkler + others), anger

(often characterized by AU 4, the brow lowerer + others)

and contempt (characterized by AU 12 or 14, the lip corner

puller or the dimpler, expressed strictly on only one side of

the face). There are not enough differentiating examples of

these 3 labels in the training dataset; hence, additional data

is required to better cover the spectrum.

B. Effects of Landmarks on the Generation of Baby Faces

To quantitatively test the effects of adding the landmark

converter to our architecture, specifically those on the baby

faces in our dataset (described in more detail in Section IV-

C), we do the following:

1) We implemented the avGAN[36], which is an architec-

ture similar to ours, but uses a different discriminator

architecture and does not implement landmarks.

2) In the interest of fairness, we developed a classifier

similar to the discriminator used in the avGAN based

on the ResNet-18 architecture.

3) We then selected 49,000 frames from our infant-sibling

dataset. The dataset is annotated only with valence

labels. The selected frames contain frontal faces, and the

2AU is the abbreviation of action unit. Each AU represents the contrac-
tions of specific facial muscles and is used in the facial action coding system
(FACS) [17].
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Fig. 6. Image showing the results of generating discrete emotions using AffectNet valence and arousal labels. The first columns show the original image
and the next sets of 2 columns show face images and landmarks synthesized with the converted emotion labels. The conversion values are shown in Table
IV −A .

Fig. 7. Plots comparing avGAN and avLandmarkGAN showing the
estimated (predicted) versus the expected (labeled) valence values for baby
(top) and mom (bottom) faces from the infant-sibling dataset. NOTE: Moms
collectively did not display negative affect in the experiment.

standard deviation on valence labels between annotators

was not greater than 0.2.

4) For each frame, frame #1 is presented to both GANs as

input, along with the target valence label (annotated in

the dataset). The ResNet-18-based classifier estimated

the valence of the 2 resulting synthetic images (one from

avGAN and the other from avLandmarkGAN).

5) The correlation factors between the estimated (or pre-

dicted) versus the annotated (or expected) valence val-

ues on the synthesized baby faces are avGAN=0.49 and

avLandmarkGAN=0.70. On the synthesized mother

faces, the correlation values are avGAN=0.64 and av-

LandmarkGAN=0.65.

6) The plots of estimated versus expected valence labels

on the baby and mom faces from the dataset are shown

in Figure 7.

Observations: Including landmark generation as an

intermediary step during facial expression synthesis leads to

improvements in the expressions generated on baby faces.

Using the expert annotations provided, we note that the

avGAN without landmarks performs as well as our proposed

avLandmarkGAN on adult mother faces whereas it performs

almost 30% worse on baby faces.

This could be related to the findings of studies by Os-

ter who observed significant differences between the facial

structures and dynamics of adults and babies [27], and this

led to the development of Baby FACS, a system specifically

dedicated to coding the facial movements on babies’ faces.

C. Results of Transferring Parent-Infant Emotions

a) Dataset: The Infant-Sibling dataset is collected in a

still-face experiment involving an infant and a parent facing

each other. The experiment consists of 3 phases: (i) the parent

interacts very positively and animatedly with the infant; (ii)

the mother turns away and maintains a “still face” and

remains unresponsive; and finally, (iii) the repair or reunion

phase, where the mother faces the infant and resumes play as

before. We focus on the emotional reactions in all 3 phases.

The dataset provided to us contains 60 dyadic pairs of
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#2 #546 #692

#2 #546 #692

Fig. 8. Three different sets of frames where the top row shows real images from the infant-sibling dataset and the bottom row shows the emotions
transferred onto an adult face and a baby face obtained from AffectNet.

parents and infants at age six months, with video-recordings

of the three phases for each dyad. One camera faces the

infant, and another faces the parent. The data from both

cameras are already time-aligned. The video recordings are

converted to frames at 30 fps and each frame (mother and

infant) is annotated for valence on a scale of {-100,100},

which we normalize to {-1,1}.

b) Emotion Transfer: To transfer emotions, we select

a video (any arbitrary video) from the provided dataset and

predict the valence and arousal values on each frame for the

parent and infant using the avLandmarkGAN discriminator.

Taking any arbitrary starting image, such as that in Figure 1,

where we use an image of the tennis player Serena Williams

and her 6-month-old daughter, we use the avLandmarkGAN

to synthesize new images of their faces with expressions that

match a real-life parent-infant dyad as shown in Figure 1.

Another example of transferred emotions is shown in Figure

8. The top row shows the original dyad, and the bottom row

shows the emotion-synthesized pair. Frame #2 shows high

valence for mother but low arousal from baby; frame #546

shows medium valence from both, but low arousal from the

baby, and #692 show very high valence and arousal from

both mother and baby. The bottom graph displays the valence

values for mother and baby (as predicted by the ResNet

classifier), and the extracted frames are highlighted in the

graph.

Videos of different parent-infant interactions with their

transferred dyads are provided in the supplemental material.

c) Video post-processing: To create a realistic-looking

generated video using the synthesized images, we introduced

two transformations: rotation and resizing. We first calculate

the target rotation angle θ based on current iterations i using

the following function:

θ =
sin(a ∗ i) + sin(b ∗ i)

2
∗m

where a, b ∈ [−2,−1]∪[1, 2]) and m ∈ [0, 10]; a, b and m are

randomly initialized and are reinitialized when the rotation

angle becomes zero again. The rotation is also accompanied

by a resizing factor to prevent the resulting image from

having a black portion (empty pixels after rotation); the

resize factor sr is calculated by the following equation:

sr =
tan(θ)

(1 + tan(θ)) ∗ sin(θ)

Next, we obtain the resize factor s, also based on the current

iteration i, which can be calculated by the function:

s = 1−
abs(sin(c ∗ i) + sin(d ∗ i))

2
∗ n

where c, d ∈ [−2,−1]∪ [1, 2]) and n ∈ [0, 0.2]. We take the

smaller value min(s, sr) to perform the resizing.

The net effect is a smooth and more realistic motion in

the synthesized videos. This is applied purely for aesthetic

reasons.
d) Observations: We observed that the synthetically

generated expressions indeed appear to interact in a similar

manner as the original dyads. Paying particular attention

to the babies’ faces, both the arousal and valence transfer

readily to the synthetic images, resulting in natural dynamics

such as eyes closure (for low arousal) and lip widening (for

high valence).
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V. CONCLUSION AND FUTURE WORK

In conclusion, we successfully developed a 2-part model

that generated realistic-looking faces when provided with an

input image and a target emotion. The target emotion can be

drawn from a continuous 2-D space.

By integrating landmarks in the model, we successfully

generated baby faces whose predicted emotion labels cor-

relate strongly with human annotations, even more so than

state-of-the-art models.

As a part of a larger ongoing study in analyzing the

behavioral patterns of at-risk infants, we are interested in

evaluating a generative model of parent-infant interactions,

to understand the types of interactions occurring in different

phases of the collection experiment.
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