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Abstract— This work is motivated by the need to automate
the analysis of parent-infant interactions to better understand
the existence of any potential behavioral patterns useful for
the early diagnosis of autism spectrum disorder (ASD). It
presents an approach for synthesizing the facial expression
exchanges that occur during parent-infant interactions. This
is accomplished by developing a novel approach that uses
landmarks when synthesizing changing facial expressions. The
proposed model consists of two components: (i) The first is
a landmark converter that receives a set of facial landmarks
and the target emotion as input and outputs a set of new
landmarks transformed to match the emotion. (ii) The second
component involves an image converter that takes in an input
image, a target landmark and a target emotion and outputs
a face transformed to match the input emotion. The inclusion
of landmarks in the generation process proves useful in the
generation of baby facial expressions; babies have somewhat
different facial musculature and facial dynamics than adults.
This paper presents a realistic-looking matrix of changing
facial expressions sampled from a 2-D emotion continuum
(valence and arousal) and displays successfully transferred
facial expressions from real-life mother-infant dyads to novel
ones.

I. INTRODUCTION

This paper describes the first step in a larger study to
develop a generative model for better understanding and
synthesizing videos of parent-infant interactions. In recent
years, awareness of the intricacies of parent-infant interac-
tions in the first few months of life has become relevant in
monitoring the mental health of both mother and infant [3].
Developmental disorders such as autism spectrum disorder
(ASD) can be detected from brain and behavioral patterns
presented in infants as early as 6 months of age [32]. How-
ever, diagnostic behavioral features for the disorder are not
presented until children are 2 years of age or older[2]. More
recently, child psychologists have examined the behaviors of
“infant siblings of children with ASD”, starting as early as 6
months, to learn more about potential behavioral patterns
useful for early diagnosis[2]. The ability to successfully
diagnose ASD early allows earlier intervention, which can
reduce the negative effects of the disorder [11] and increase
the positive long-term outcomes for the child, with results
such as better verbal and overall cognition at school age[10].
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Fig. 1. Three different sets of frames, where the top row shows real images
from the infant-sibling dataset; the bottom row shows images synthesized
using the valence and arousal estimated from the top frames, and imposed
on a sports celebrity with her 6-month-old daughter. More in Section IV-B

Recently, Ahn et al. [1] generated a large number of
social communication variables, including patterns of vocal
interactions between children and adults, to explore the
development of objective measurements in ASD diagnostic
and treatment monitoring. In this and many other studies, the
number of parent-child pairs was typically approximately 70
or less. Gaining access to families willing and able to par-
ticipate in studies such as these, cleaning and annotating the
resulting data and finally performing analysis on the data can
be very tedious and expensive; however the benefits of such
studies cannot be overstated. Additionally, privacy concerns
often limit the dissemination of such data to computational
scientists for more automated studies.

For these and other reasons, our long-term goal is to de-
velop a probabilistic generative technique for understanding
and synthesizing new videos of parent-infant interactions
through learning from real-life interactions. Beebe 2012 [3]
describes how facial expression analysis is a key component
of studying mother-infant interactions, as the mothers and
their infants often tend to match each other’s positive facial
expressions until they both “build to a peak of positive
facial excitement”, along with the many other expression
exchanges that happen between them.

Therefore, this work, given time-synchronized videos of 6-
month-old infants interacting with a parent, the goal is to
extract the facial expressions from an interacting pair and
transfer them to a novel parent-infant dyad in a realistic
manner. The interaction data used for this work was collected
from an infant-sibling ASD study dataset, as described
above.
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II. RELATED WORKS
A. Emotional expression representation

A common strategy in human emotion representation is to
abstract emotions into discrete categories [15], such as the
six commonly used ones: happy, sad, disgust, fear, surprise,
and anger'. However, using discrete categories might result
in the loss of some subtle variations in emotional expressions.
For example, emotions can vary in intensity, and several
emotions can occur at the same time. For this reason,
the use of compound emotions such as happily surprised
was proposed [14]. However, this further complicates the
expression of emotions and it still does not describe the
continuum of emotional expressions. The valance-arousal
emotional state model[31] was introduced in the eighties,
in an attempt to express emotions in 2D (or 3D) continuous
space. Additionally, the facial action coding system (FACS)
[16], was developed to decompose facial expressions into
combinations of several fixed facial action units, that corre-
sponded to specific musculature movements on the face. It
provided one standard system for quantitatively describing
facial expressions.

B. Generative adversarial network

Generative adversarial network(GAN)[18] is an effective
generative model based on game theory. Currently, there
are many different extensions of GANs, and the conditional
GAN (CGAN)[24] is one of the more popular variants.
CGAN uses conditional information to guide the image
generation process; however, it is a supervised model, which
requires ground truth target images in the training process.

CycleGAN [41], DualGAN [40] and DiscoGAN [20] side-
step this issue by utilizing a cycle consistency loss. The
cycle consistency loss reconstructs the generated image back
to the input image and lets the reconstructed image and
original image be as similar as possible. This helps the model
reduce the space of possible mapping functions and thus
enables the transfer of an image from one domain to another
with unpaired data. Based on this, Choi et al. [7] proposed
training models that support image transfer between multiple
domains. This laid the foundation for emotion-based GANS.

C. Facial image manipulation

Facial expression generation techniques have been sub-
stantially explored. Many earlier works either manipulated
the facial components of the input image [25], [37], [38]
or used the target image as a comparison reference for the
model to learn to generate a corresponding image[6], [30],
[34].

In [22], the authors fitted a 3D morphable model (3DMM)
[4] to an input neutral face image and deformed the recon-
structed face into the target emotion. Then, the new face
was blended with the original image to obtain the target face
image. This strategy easily obtains high-quality synthesized
images and can overcome cases of extreme head poses.

'The emotion contempt is also sometimes included in these discrete
categories.

However, unlike our proposed work, this model requires the
input faces to be neutral, which greatly limits its flexibility.

In [13], the authors used an expression controller module
to encode emotion into a more expressive vector, allowing the
model to generate emotions of different intensities without
the need for a target image of corresponding intensity.
However, this model was still not able to generate a wide
variety of emotions.

Vielzeuf et al. [36] projected each discrete emotion la-
bel into 3D space and then discovered the corresponding
vector of dominance in the 3D space when given valance
and arousal values, thus allowing the model to convert an
image expression into any combination of valence-arousal-
dominance.

Ganimation [28] was proposed to replace the emotion label
with action units in an attempt to improve the smoothness
of face animation. However, the problem was that the corre-
spondences between the action units and emotions were often
complicated and were measured based on discrete emotions.
Again, it is not clear how well the use of a GAN based on
action units would perform on baby faces.

D. Keypoint-guided image-to-image translation

Landmarks, as an extremely condensed facial feature
representation, can preserve facial information such as the
pose, gender, and facial structure. In the gender preserving
generative adversarial network (GP-GAN) [12], the authors
attempted to restore the original image by using only the
landmarks as input. This confirmed that the semantic in-
formation contained in landmarks can further be used to
generate new images. In [33], the authors used landmarks as
a label for face swapping and used a landmark converter first
to adjust the landmarks, which helped the expression better
fit the target face. The experiments also demonstrated that
the landmark changes could be successfully fed back to the
generated faces. In [29], the authors used two different varia-
tional autoencoder (VAE) structures to encode the landmarks
and the original face. They then concatenated the two vectors
to generate the target face. However, this still required pairs
of matched original and target faces for training. In [35], the
authors proposed using landmarks as the label and used cycle
consistency separately for landmarks and images. This was
to ensure that the generated image retained both the semantic
and landmark information of the original image and would
not need a target image. However, this still required target
ground truth landmarks as labels, thus reducing its flexibility
as a completely unsupervised model.

III. PROPOSED METHODOLOGY

The core objective of our model is to transform any input
face to express an arbitrary emotion under weak supervision.
As shown in Figure 2, our model consists of two parts: 1. the
landmark converter which converts the landmark z; of the
input image z; into the target emotion c.; and 2. the image
converter which takes the converted landmarks y; and target
emotion c. as labels to convert the input image z; into the
target image ;.
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Fig. 2. High-level representation of the proposed avLandmarkGAN model,
showing how an emotional target face image is generated from both an input
face and target emotion labels via intermediate landmark generation.

A. Landmark converter

The landmark converter has a 2D GAN structure, and
the input landmarks are a 2D vector: 2x68, following the
landmark format in DLib [21]. The converter consists of
a discriminator D; and a generator (. The structure of
landmark converter can be found in Figure 3

Input landmarks

Input landmarks

Generated landmarks|
’F\| L1: Emotion detector
Landmark .
generator s

I/ L2: Real/Fake detector

Landmark converter

Original emotion

Landmark
generator

Fig. 3. 1. The landmark generator converts the input landmarks into
generated landmarks based on the target emotion. 2. The discriminator will
receive both the input landmarks and generated landmarks to distinguish
between them and to detect the emotion with such landmarks. 3. The
generator uses the generated landmarks and original emotion to generate
the reconstructed landmarks and to calculate the cycle consistency loss with
the input landmarks

The input landmarks are detected by a pretrained face
alignment network (FAN) model [5] and the goal is to convert
these landmarks z; to y; through conditioning with c.. To
ensure the identity constancy, we use cycle consistency in
our model, i.e. we reconstruct y; back to the x; on which it
was originally based. In addition, to address steganography,
the issue of messages being hidden in the latent variables
of the model, as discussed in [41], we propose a strategy to
calibrate the generated landmarks y;. The loss function of
the landmark converter consists of the following parts:

1) Adversarial loss: Similar to the vanilla adversarial loss
[18], the adversarial loss L4, can be formulated as follows:

Lody = Ex, [log D, (xl)] + Bz e, [log (1 - Dy (G (mlvce)))]
(D

2) Emotion loss: This is similar to the classification loss
in StarGAN [7], but we use an L2 regression loss instead,
because the emotion labels we use consist of two continuous

values. The emotion loss function consists of two terms. The
first term L7°% is to force D, correctly predict the emotion
c, of a real image. The second term L% forces G; to
generate more suitable faces. Thus, the emotion loss is:

L'geal — E‘"L’lA,C;/ [ ‘Dl (.’L'l) - C/EH2]

| Dy (G (w1, ce)) — cell5]

3) Reconstruction loss: Following the cycle consistency
paradigm, we send y; back to the generator and use the
original emotion label ¢, to reconstruct a similar landmark
xj, which is supposed to be similar to z;. Hence, the
reconstruction loss L,... can be formulated as:

Lrec - Eml,cc,c’ [ ‘Z’l - Gl (Gl (-lece) 3 c;)”l] (3)

4) Face feature center loss: In our initial experiments,
we find that even though we have L,..., y; usually still has
errors. For example, y; gives pose directions opposite to and
eye positions different from those of x;. This is because
the capacity/size of the landmark vector is small. Compared
to 128*128*3 images, landmarks have only 2*68 points, so
they are more likely to encounter steganography issues. This
issue occurs here when the generator uses tricks to hide
certain information and then attempts to recover it in the
reconstruction step.

To address this, we propose the center of facial feature loss
L ¢.. This is the novel loss that we introduce in this work. In
L. the landmarks are split into 7 groups: face shape, left
eye, right eye, left eyebrow, right eyebrow, nose and mouth.
We then calculate the group centers, which are represented
by h;. The group centers are expected to be constant for
all the different emotions. Therefore, the loss function is as
follows:

(@)

Lgake = sz-,ce [

7
Life=Euc. | > s (@) = hi (Gi(w,co))ll, | 4

j=1

5) Full objective: Finally, the complete loss function for
D; and G is:

LD = *Ladv + AéLgeal

1

(%)
LG; = Laav + )\leL{;ake + ArecLirec + )\fchffc

B. Image converter

Similar to the landmark converter, the image converter is
a cycle consistency based GAN. The input is the image, and
the image converter generates a new image conditioned on
both the landmarks and a target emotion.

The image converter receives two sets of labels: 1. The
landmark label ¢;, which is the landmark y; generated from
the landmark converter. It helps the model to understand the
outline of the target expression. 2. The emotion label c,
which is the same as that used in landmark converter. It
complements the details not provided in the landmark, such
as nasolabial folds, teeth, etc.

The structure of the image converter can be found in
Figure 4, which is similar to that of the landmark converter.
Its loss function can be divided into five parts:
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Fig. 4. 1. The image generator uses the converted landmarks as its target

landmarks and associates with the target emotion to convert the input image.
2. The discriminator receives both the input image and the generated image
to distinguish them and to detect the emotion in the generated image. 3.
The generator reconstructs a generated image with the original emotion
that should be similar to the input image.

1) Adversarial loss: Similar to the landmark converter,
discriminator D; and generator G; play the minmax game
by optimizing the adversarial loss L,

Loy =Ey, [log Di()]
+ Eoycorer [10g (1= Di (Gi (2, ce, @r)))]
2) Emotion loss: This is same as the loss described in the

landmark converter, and can be written as:

L = By [|Di (i) = &1

(6)

(7
LI = By, cocr [|1Di (Gi (i, cey 1)) = celly]

3) Landmark loss: In addition to the emotion, landmarks
are also used as conditional labels in the generation process.
We use the L1 loss to deal with the sparsity of landmarks’
variation.

Lyl = By, o [|IDi (1) — ¢lI,]

3
Llfake = Ez, cone, [[|1Di (Gi (i, ce, 1)) — aill]

4) Reconstruction loss: Similar to the reconstruction loss
in landmark converter, the L,.. ensures the identity consis-
tency of the generated image by minimizing the following
function:

Lyec = sz,cc,cl,cé,c; HI'TZ - Gi (Gl (l'i, Ce, Cl) 7C/ea C;)Hl]
©))
5) Full objective: Finally, the complete loss function for
the generator and discriminator in the image converter is:

LDi = —Lggv + )\iLzeal =+ )\le'eal
, (10)
LGi - Lad’u + /\YéLgake + )\lLlfake + /\recLTec
IV. IMPLEMENTATION AND RESULTS
A. Generating Smooth Transitions between Expressions

Both the landmark converter and image converter are
trained on the AffectNet dataset [26], which provides both
valence and arousal labels for each image. We use the

pretrained FAN model to detect landmarks in each image
in the dataset and discard all images where either faces are
not detected or any of the landmarks are missing. This results
in 234,815 images in the training set and 3,159 images in
the validation set. To fit our GANSs, the faces are resized to
128*128*3.

Because the input of the landmark converter is a sequence
of 2#68 coordinates instead of a 3*128*128 array of image
pixels, we treat the x- and y-coordinates as two channels to
obtain a vector with a length of 136 (2x68) and use this as
input. In the image converter, we draw the landmarks on a
128%128*1 white image and then directly concatenate it to
the original image as the landmark label.

For the discriminator, we require it to provide the specific
values for 136 coordinates, thus ensuring that the generator
truly applies the landmarks to the image, rather than simply
hiding the coordinates within some vectors.

Training schedule:: The landmark converter and image
converter share many hyper-parameters: the batch size is
16; the learning rate is 0.0001 with a linear decay factor
of 0.99997 over every epoch; the emotion loss weight
)\le = )\i = 5; the landmark loss weight \;,, = 10; the
reconstruction weight Accor, = 10; the face feature center
weight Arr. = 10; the arousal and valence vectors are
concatenated and flattened into a 1-D vector to calculate the
regression loss; and the parameters are optimized with the
Adam optimizer and trained for 400,000 iterations.

The weight represents the relative importance of each loss
during training. The weights we provide above attempt to
adjust each loss to a similar scale and thus ensure that each
loss can fully perform its role. To further verify the reliability
of our model, we perform ablation experiments for all the
other weights in the loss function except for Ayecon, for
which a value has already been suggested in [7], [9]. To show
the effect of each loss term, we individually adjusted each
weight to show its impact on the model. The Frechet incep-
tion distance (FID) [19] and root mean square error (RMSE)
are used to determine the performance of our model. The
FID score has been popularly used in many different works
[8],[23],[39] to indicate the realisticness of the generated
image. It was calculated between 10,000 generated images
and our training set. To calculate the RMSE, we first train a
RESNET-18 to predict valence and arousal using AffectNet,
and use this to predict the emotions of all generated images.
We then calculate the RMSE between the predicted emotions
and real emotions. RMSE therefore reflects the extent of
similarity between the generated emotional values are to the
real ones.

As shown in Table I, the model is very sensitive to A, in
the image converter. Too small of a weight leads to a sharp
decrease in accuracy, while too high leads to a sharp decrease
in realisticness. The other parameters are less sensitive. In
our model, the landmarks and images used are 2-dimensional
and do not take into account the 3-dimensional spatial
structure of the face. Therefore some potentially useful
information may be lost. To explore further, we replaced
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TABLE I
ABLATION STUDY SHOWING MODEL PERFORMANCE WITH DIFFERENT
LOSS FUNCTIONS AND CORRESPONDING WEIGHTS.

weight  metrics M} Affe AL Al

FID 2566 2580 2092 25.50

0 RMSE 0.188 0.199 056  0.200
FID 2440 2643 2084 2597

0.1 RMSE 0204 0205 056 0.192
FID 2424 2454 2189 2558

1 RMSE 0.193 0202 031 0.208
FID 2213 2213 2213 25.33

5 RMSE  0.200 0.200 0.200 0.208
FID 2625 2416 2659 2213

10 RMSE 0203 0.192 0.177  0.200
FID 24.02 2484 6492 2344

100 RMSE 0202 0.198 0.178 0.198

all the landmarks in the model with 3D ones. However,
from our experimental results, the best performance of our
model using 3D points was FID = 26.7 and RMSE =
0.211, demonstrating that 3D points do not improve model
performance.

To qualitatively demonstrate the continuous transitions
between expressions, we generate avlmage matrices as in
Figure 5. Additional image matrices are presented in the
supplementary material.

To validate the output of our proposed end-to-end av-
LandmarkGAN, since AffetNet provides both discrete and
continuous labels for each face, we computed the valence
and arousal averages of each of the 8 discrete emotions for
the faces, and the results are presented in Table IV-A. We
then synthesized expressive images using these arousal and
valence values, and the results are shown in Figure 6.

TABLE I
AVERAGES OF CONTINUOUS EMOTIONS FOR EACH DISCRETE EMOTION
LABEL, USED TO GENERATE THE IMAGES IN FIGURE 6.

Valence | Arousal
Neutral 0.0043 0.0040
Happy 0.6652 0.1342
Sad -0.6864 | -0.2585
Surprise 0.2306 0.6812
Fear -0.1156 | 0.7741
Disgust -0.7312 0.4342
Anger -0.3646 | 0.6604
Contempt | -0.5548 0.5880

Observations: From the images shown in Figure 5,
we demonstrate that the proposed avLandmarkGAN can
successfully generate new emotionally expressive images on
a 2-D valence-arousal continuum. By computing the average
valence and arousal values for the corresponding discrete
labels, we successfully generated faces that approximately
match the discrete emotion labels. Although successful for
emotions such as happy, sad, surprise and fear, it is challeng-
ing for the model to differentiate between disgust (typically

Original High valencg

High
arousal

Low

High
arousal

Low

Fig. 5. Two avlmage matrices generated by avLandmarkGAN with
continuous arousal and valence labels imposed on an original face from
AffectNet (top left)

characterized by AU_92, the nose wrinkler + others), anger
(often characterized by AU_4, the brow lowerer + others)
and contempt (characterized by AU_12 or 14, the lip corner
puller or the dimpler, expressed strictly on only one side of
the face). There are not enough differentiating examples of
these 3 labels in the training dataset; hence, additional data
is required to better cover the spectrum.

B. Effects of Landmarks on the Generation of Baby Faces

To quantitatively test the effects of adding the landmark
converter to our architecture, specifically those on the baby
faces in our dataset (described in more detail in Section I'V-
C), we do the following:

1) We implemented the avGAN[36], which is an architec-
ture similar to ours, but uses a different discriminator
architecture and does not implement landmarks.

2) In the interest of fairness, we developed a classifier
similar to the discriminator used in the avGAN based
on the ResNet-18 architecture.

3) We then selected 49,000 frames from our infant-sibling
dataset. The dataset is annotated only with valence
labels. The selected frames contain frontal faces, and the

2AU is the abbreviation of action unit. Each AU represents the contrac-
tions of specific facial muscles and is used in the facial action coding system
(FACS) [17].
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Image showing the results of generating discrete emotions using AffectNet valence and arousal labels. The first columns show the original image

and the next sets of 2 columns show face images and landmarks synthesized with the converted emotion labels. The conversion values are shown in Table
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Fig. 7. Plots comparing avGAN and avLandmarkGAN showing the
estimated (predicted) versus the expected (labeled) valence values for baby
(top) and mom (bottom) faces from the infant-sibling dataset. NOTE: Moms
collectively did not display negative affect in the experiment.

standard deviation on valence labels between annotators
was not greater than 0.2.

4) For each frame, frame #1 is presented to both GANs as
input, along with the target valence label (annotated in
the dataset). The ResNet-18-based classifier estimated
the valence of the 2 resulting synthetic images (one from
avGAN and the other from avLandmarkGAN).

5) The correlation factors between the estimated (or pre-
dicted) versus the annotated (or expected) valence val-
ues on the synthesized baby faces are avGAN=0.49 and
avLandmarkGAN=0.70. On the synthesized mother
faces, the correlation values are avGAN=0.64 and av-
LandmarkGAN=0.65.

The plots of estimated versus expected valence labels
on the baby and mom faces from the dataset are shown
in Figure 7.

6)

Observations: Including landmark generation as an
intermediary step during facial expression synthesis leads to
improvements in the expressions generated on baby faces.
Using the expert annotations provided, we note that the
avGAN without landmarks performs as well as our proposed
avLandmarkGAN on adult mother faces whereas it performs
almost 30% worse on baby faces.

This could be related to the findings of studies by Os-
ter who observed significant differences between the facial
structures and dynamics of adults and babies [27], and this
led to the development of Baby FACS, a system specifically
dedicated to coding the facial movements on babies’ faces.

C. Results of Transferring Parent-Infant Emotions

a) Dataset: The Infant-Sibling dataset is collected in a
still-face experiment involving an infant and a parent facing
each other. The experiment consists of 3 phases: (i) the parent
interacts very positively and animatedly with the infant; (ii)
the mother turns away and maintains a “still face” and
remains unresponsive; and finally, (iii) the repair or reunion
phase, where the mother faces the infant and resumes play as
before. We focus on the emotional reactions in all 3 phases.

The dataset provided to us contains 60 dyadic pairs of
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——Mom valence ——Baby valence

Fig. 8.
transferred onto an adult face and a baby face obtained from AffectNet.

parents and infants at age six months, with video-recordings
of the three phases for each dyad. One camera faces the
infant, and another faces the parent. The data from both
cameras are already time-aligned. The video recordings are
converted to frames at 30 fps and each frame (mother and
infant) is annotated for valence on a scale of {-100,100},
which we normalize to {-1,1}.

b) Emotion Transfer: To transfer emotions, we select
a video (any arbitrary video) from the provided dataset and
predict the valence and arousal values on each frame for the
parent and infant using the avLandmarkGAN discriminator.
Taking any arbitrary starting image, such as that in Figure 1,
where we use an image of the tennis player Serena Williams
and her 6-month-old daughter, we use the avLandmarkGAN
to synthesize new images of their faces with expressions that
match a real-life parent-infant dyad as shown in Figure 1.
Another example of transferred emotions is shown in Figure
8. The top row shows the original dyad, and the bottom row
shows the emotion-synthesized pair. Frame #2 shows high
valence for mother but low arousal from baby; frame #546
shows medium valence from both, but low arousal from the
baby, and #692 show very high valence and arousal from
both mother and baby. The bottom graph displays the valence
values for mother and baby (as predicted by the ResNet
classifier), and the extracted frames are highlighted in the
graph.
Videos of different parent-infant interactions with their
transferred dyads are provided in the supplemental material.
c) Video post-processing: To create a realistic-looking
generated video using the synthesized images, we introduced

Three different sets of frames where the top row shows real images from the infant-sibling dataset and the bottom row shows the emotions

two transformations: rotation and resizing. We first calculate
the target rotation angle 6 based on current iterations i using
the following function:

sin(a * 1) + sin(b * 1)

0= 5 xm

where a,b € [-2,—1]U[1,2]) and m € [0, 10]; a, b and m are
randomly initialized and are reinitialized when the rotation
angle becomes zero again. The rotation is also accompanied
by a resizing factor to prevent the resulting image from
having a black portion (empty pixels after rotation); the
resize factor s, is calculated by the following equation:

tan(6)
(1 4 tan(@)) * sin(0)
Next, we obtain the resize factor s, also based on the current
iteration ¢, which can be calculated by the function:

abs(sin(c * i) + sin(d x 7))

9 *
where ¢,d € [-2,—1]U[1,2]) and n € [0,0.2]. We take the
smaller value min(s, s,-) to perform the resizing.

The net effect is a smooth and more realistic motion in
the synthesized videos. This is applied purely for aesthetic
reasons.

d) Observations: We observed that the synthetically
generated expressions indeed appear to interact in a similar
manner as the original dyads. Paying particular attention
to the babies’ faces, both the arousal and valence transfer
readily to the synthetic images, resulting in natural dynamics
such as eyes closure (for low arousal) and lip widening (for
high valence).

Sy =

=1

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on April 09,2022 at 19:07:59 UTC from IEEE Xplore. Restrictions apply.



V. CONCLUSION AND FUTURE WORK

In conclusion, we successfully developed a 2-part model
that generated realistic-looking faces when provided with an
input image and a target emotion. The target emotion can be
drawn from a continuous 2-D space.

By integrating landmarks in the model, we successfully
generated baby faces whose predicted emotion labels cor-
relate strongly with human annotations, even more so than
state-of-the-art models.

As a part of a larger ongoing study in analyzing the
behavioral patterns of at-risk infants, we are interested in
evaluating a generative model of parent-infant interactions,
to understand the types of interactions occurring in different
phases of the collection experiment.
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