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Abstract— This research work explores different machine
learning techniques for recognizing the existence of rapport
between two people engaged in a conversation, based on their
facial expressions. First using artificially generated pairs of
correlated data signals, a coupled gated recurrent unit (cGRU)
neural network is developed to measure the extent of similarity
between the temporal evolution of pairs of time-series signals.
By pre-selecting their covariance values (between 0.1 and 1.0),
pairs of coupled sequences are generated. Using the developed
c¢GRU architecture, this covariance between the signals is
successfully recovered. Using this and various other coupled
architectures, tests for rapport (measured by the extent of
mirroring and mimicking of behaviors) are conducted on real-
life datasets. On fifty-nine (N = 59) pairs of interactants in
an interview setting, a transformer based coupled architecture
performs the best in determining the existence of rapport. To
test for generalization, the models were applied on never-been-
seen data collected 14 years prior, also to predict the existence
of rapport. The coupled transformer model again performed
the best for this transfer learning task, determining which pairs
of interactants had rapport and which did not. The experiments
and results demonstrate the advantages of coupled architectures
for predicting an interactional process such as rapport, even in
the presence of limited data.

I. INTRODUCTION

While the computational analysis of Internet-scale social
network data has enjoyed significant progress in this era of
big-data and deep-learning technologies, the same cannot
necessarily be said for comprehensively analyzing face-to-
face interactions; the types that exist in everyday occur-
rences, such as in classrooms, counseling sessions, meetings
etc.

Research in social psychology has that in a well-
functioning group setting, individuals with high cohesion
and established rapport tend to exhibit different forms of
interactional synchrony'[4]. This includes a mirroring effect,
which occurs when individuals match each other’s facial
expressions and facial articulations subconsciously. It also
includes the mimicking effect, which is a type of mirroring
but with time delays. Interactional synchrony often occurs in
social settings in order to gain and keep rapport.

In this work, we are interested in exploring different
deep sequence learning coupling methods, to model the
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signal exchanges that occur in face-to-face interactions, and
determine whether a pair of interlocutors have established
rapport or not during their interaction with each other. We
pose this problem as a binary classification one, where the
inputs to the classification models are extracted from the
dynamics of the faces of the pair of interlocutors.

The specific objectives of this work therefore, are (i) to
develop a model that can predict if there is rapport between
two individuals; (ii) to ensure that the proposed model gen-
eralizes well on different datasets, i.e. model trained on one
dataset should be able to achieve acceptable performance on
another never-been-seen-before dataset; and (iii) to localize
the regions in the data where rapport occurs.

II. RELATED PRIOR WORK

Neural network based architectures have been applied to
modeling interacting sequences, though not necessarily in
the context of human dyads comunicating with each other.
Liu et al. [11] presented a long short-term memory (LSTM)
based system, to model the similarity in pairs of sentences,
by combining their hidden states in four directions. This and
similar architectures were very computationally expensive as
they coupled in all four directions. Sun et al.[13] proposed
a coupled recurrent network (CRN), which involved two
parallel streams of LSTMs. The hidden state of stream-1 was
concatenated with the input signal of stream-2, and vice-
versa, for every succeeding recurrent step. Along similar
lines, Morais et al.[12] introduced MPED-RNN which used
two parallel streams of GRUs. The hidden states were
combined in a way similar to CRN and the model was used
for anomaly detection in surveillance videos.

Zadeh et al. [1] used a dynamic fusion graph (DFG)
to dynamically attend to vision, language, and audio for
multimodal sentiment classification from videos. Tsai et al.
[14] improved on the performance of DFG, by using a bank
of several transformers on the same modalities for the same
task. Although there is a plethora of related works concerning
fusion techniques for improved classification, we highlight
[1] and [14] as they rely on the inherent alignment of the
three modalities for improved classification. Our work also

!Interactional synchrony refers to how the speech or behavior of two or
more people involved in a conversation become more synchronized with
each other, and they can appear to behave almost in direct response to one
another.
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relies on detecting inherent alignment (mirroring/mimicking)
between the data from the 2 interlocutors. But these models
are extremely data hungry (due to the large number of model
parameters), where the authors trained and tested the models
on 3 different audiovisual datasets - with 2,199 videos,
10,000 videos and over 23,454 movie videos, respectively.
Our collected data consists of 59 videos only!

Other works include Zhao et al. [17] which involved
a rules-based framework for detecting rapport with virtual
agents, Yu et al. [16] which also implements a transformer
model but analyzes only individual for affect recognition,
both [8] and [6] are dialogue-based engines, where their
analysis of the sentiment of a conversation is more global
than what we consider here. In our work, the interactional
synchrony we measure is local and occurs in bursts; and as
such, is quite different from the sentiment classification of a
conversation.

III. BASELINE METHODS

In this section, we discuss some baseline methods for
modeling interactional synchrony between pairs of signals.
The models can be used either in a regression setting (for
our artificially generated coupled data in Section V-A) or in
a classification setting (for the real-life dyadic datasets in
Sections V-B and V-E)

A. Baseline 1: End-to-End System of GRUs (e2eGRU) with
Late Fusion

As a baseline to investigate the effectiveness of coupling,
we develop a standard system involving two independent
uncoupled GRUs, each GRU modeling the stream of data
from each participant. The final output embedding h}. and
hZ2. are combined and passed through a fully-connected layer
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Fig. 1. The e2eGRU architecture for modeling interacting time-series data.
this architecture as end-to-end because by employing back-
propagation-through-time, the network can be jointly trained
from end-to-end, even though it consists of disparate chains.
The overall architecture can be summed up as

p(y| X", X?) = g(Wy  [hp, h7)) (1)

where y is the prediction from the system; X!, X? represent
data streams 1 and 2 respectively; W), are the weights at

the last time step T'; hi., h2. represent the last hidden mes-
sages along GRU! and GRU? respectively; g(-) introduces
additional nonlinearity in to the system.

Comments:: Although the end-end GRU jointly trains
the disparate models to optimize the task at hand, it misses
any intricate exchanges that happen a few time steps apart.
This model does not take advantage of the benefits of
coupling the hidden states from one time step to the next
as will be seen in our proposed coupled model in Section
IV.
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Fig. 2. The MP-RNN style architecture showing only the encoder with its
message-passing processes

We briefly discuss the Message-Passing Encoder-Decoder
Recurrent Neural Network (MPED-RNN) [12], as its archi-
tecture is also related to our proposed approach. Although
the entire system is an auto-encoder, we focus only on the
encoder component, which consists of two RNN branches
that process local and global data separately. Hence, we
refer to this version as the MP-RNN architecture. The 2
channels interact via cross-branch message passing at each
time step. One main difference between this and many other
architectures is how ReL.U activation is applied to the hidden
state of the opposite stream and then concatenated with the
input signal at the next time step. The authors refer to this
process as message-passing. The original architecture was
used to detect abnormal events in videos of people. The
governing equations are given below.

msg; % = ReLU(W'™%xh})
msgi?t = ReLUW?7! % h2)
hy = GRU\([zy;msgi "), hi_y)
hi = GRUx([z};msg ™), hi_y)
P(ylX", X?) = g(W * [hy; hi)) 2)

One drawback of this model is that it is not clear how
Attention can be applied, due to its cross-branch message
passing mechanism.

IV. OUR PROPOSED MODELS

We propose two additional coupling models that focus on
exploiting the role of attention (single- and multi-head) in
determining the extent to which 2 or more dynamic signals
are interacting.
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A. The coupled GRU (cGRU)
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Fig. 3. (Top:) The cGRU architecture where coupling between chains
is performed at every time step. (Bottom:) The abstraction of the network
from the top image, showing how attention is applied on the coupled hidden
messages H; instead of the individual hidden messages h;.

Figure 3 summarizes this coupling approach. Rather than
simply concatenating the hidden messages from each time
step, we feed the hidden output messages from the different
streams {hF};k = 1---M into a multi-layer perceptron
(MLP) to couple them and fix the dimensionality of the
output hidden messages H® for M chains (but we only work
with 2 chains in this project). The overall architecture can
be summed up as:

H, = f(WH * [htlahtz])
p(yl X', X?) g(Wy = Hr) 3)

where the terms are as defined previously and Hr is the
aggregated output of the MLP at time step T; f(-) and g(+)
are additional nonlinear functions in the system.

Adding an Attention Unit

One main disadvantage of the cGRU implementation is
its inability to remember all the relevant information in
long sequences, where the system can potentially forget the
earlier portions, by the time it has processed the entire the
sequence. The attention mechanism was forged to resolve
this problem because it directs the focus of the network to
pay greater attention to certain factors when processing data.
We therefore impose attention on the cGRU as part of the
proposed architecture. The coupled hidden states are fed to
an attention head where the unit computes a weighted sum
of hidden states. The high level network graph is shown in

Figure 3b and the equations governing the system are given
as:

T
e = a(H): o = _expler) e=S"asH.
' ST expley) ; Y
Pyl X', X?) = g(o) 4)

The top three equations above define the attention mecha-
nism, which uses a Softmax-like estimator to determine the
influence of each coupled hidden message H at time j.

Benefits:

The benefits of this architecture over previously existing
ones include: (i) the ease to extend to multiple chains without
a significant increase in the number of parameters in the
network (as would be the case with MPDED-RNN and other
similar architectures); (ii) the ability to add an attention
module to the network system using H;, especially when the
number of stream sources is greater than 2. It is not clear
how to accomplish this with other networks discussed in
the literature; (iii) the improved performance over previously
existing methods, when tested with real-life data.

Reproducibility:

Reproducing the proposed technique is fairly straightfor-
ward, where two or more RNN variants (GRU, LSTM, etc)
are each set up to represent the data from a stream of data.
After each time step, the hidden outputs of each RNN are
coupled via an MLP unit, resulting in one ‘“aggregated-
hidden” message H; at time t. The messages at the last
time step are then concatenated and fed into a non-linearity
and finally to the classifier/regressor as the task may be.
The aggregated messages are fed into an Attention unit.
The entire system is jointly trained using standard back-
propagation through time.

B. The coupled Transformer (cXf)

The transformer architecture was introduced by [15] to im-
prove on the attention mechanism, accounting for longer de-
pendencies with a multi-head self-attention mechanism. Un-
supervised learning using transformer-based encoder-decoder
mechanisms was first introduced in the bidirectional encoder
representations from transformers (BERT) [5] for Q&A
language task.

For this coupled Transformer (cXf) model, we build on the
previously existing work by attempting to align or couple
two time series signals using individual transformers, and
then couple the signals using a third one. Where the previous
models aimed at locally coupling signals at each time step,
this coupling occurs at a more global level.

Figure 4 summarizes our next proposed coupling ap-
proach. Synonymous with the hidden messages from previ-
ously described models, we couple the latent representations
from each signal (the outputs of the individual transformers)
using a third coupling transformer. The query (Q), key (K),
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Fig. 4. The cXf architecture where 2 data streams are represented by two
encoding transformers and the coupling between them is achieved by the
decoder.

and values V for each of the individual transformer encoders
are calculated as in Equation (5).

K = linear _key(input )
Qr = linear_query(input ) 5)

Vi = linear_value(input y)

where, linear_key, linear_query, and linear_value are
three individual linear layers learned for the input features
(inputy), where, f € {Personldata, Person2data}.

The attention mechanism for one of the transformer en-
coder layer is shown in Equation (6).

Attention(Ky¢,Qy, Vi) = softmax(

T
QrK; W ©
Vi

The output from each encoder layer is then input to the
final block that attends to the information collectively from
both data streams Consider y; the output from each of the
add and normalization blocks of the encoder, then the input
to the coupling transformer can be written as (7).

= [yfl : yfz] (N

The output of the final coupling transformer is then fed to
a linear layer and finally to the SoftMax rapport classifier.

inpu'tcoupling

V. EXPERIMENTS, DATA AND RESULTS

Although most dynamic processes in nature are coupled,
there is still such a shortage of the availability of such
interacting datasets, especially ones that involve minor delays

— Signal 1
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Fig. 5. Generated synchronized sequences with covariance of 0.5.

as can be observed in mimicry. Even more so, there is a lack
of stochastic models for artificially simulating such coupled
processes in order to study them more effectively.

A. Experiment 1: Testing on controlled synthetic data

To address the lack of highly controlled interacting time-
series data in the community, we implemented a theoretical
method discussed by [9] for generating coupled Gaussian
stochastic processes, with arbitrary correlation functions (not
necessarily auto-correlated or cross-correlated). In this tech-
nique, a Fourier filtering method takes in two uncorrelated
sequences of random numbers and returns two correlated
ones based on a given correlation value.

We elaborate on the generation method to allow interested
researchers to readily generate similar data or extend the
process. In addition to the generation process described in
Algorithm 1, we will release the code we developed for
generating the simulated synchronized data.

Algorithm 1 Data generating process

procedure DATAGEN(len, C, f1(t,x), fg(t z), delay)
Sza = fft(Cae); Syy = fft(Cyy); Szy = fft(Cay)

1:
2:
3 u = SampleGaussian(len); v = SampleGausszan(len)
4 U= fft(u); V= fft(v)
. . 7 —1 Sy
5: B =1, a=p+cos (7/>
6.
7
8

VSzzxSyy

Agq = V/Sza * cos(a); Bq =/ Szz *sin(a);
Cq = +/Syy * cos(a); D = 4/Syy *sin(a)
X =Ag+xUT + By xVT

9: Y= Cq*U + By x VT

10: o = [if (X))

ey =[if f(Y)]

12: z = z*[1 + delay ]

13: y=y*[1: —delay]

14: Return [f1(1,z1),..., fi(len, Tien)],

15: [f2(1,91), s f2(len, Yren)]
16: end procedure

We successfully simulated 10,000 pairs of correlated sam-
ple data (split into 8000/1000/1000 for train/test/validation
respectively) with correlation factors in the range [0, 1] each
having a sequence length of 100. The correlation factors
were sampled from a uniform distribution. An example of the
output pair of synchronized 100-length sequences generated
by the process is shown in Figure 5, where the sequences
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were generated with a covariance of 0.5 and the prediction
made by the cGRU network for this example was 0.48.

1) Are coupled systems useful for evaluating synchronized
signals? : The first test performed was to establish the
effectiveness of the coupling architecture. To accomplish
this, we trained both an end-to-end GRU and the coupled
GRU architecture using the negative log-likelihood (NLL)
regression loss. The training inputs to the two networks were
the 8,000 pairs of simulated data and the targets were their
known correlation factors (between O and 1); we validated
and tested with 1,000 designated pairs respectively. The goal
here was to recover the numerical correlation factor (or extent
of interaction), given a pair of input test signals. This would
allow us to evaluate the effectiveness of coupling hidden
states, when assessing interacting signals.

Figure 6 shows the plots of the predicted-versus-actual cor-
relation values for the two architectures, empirically demon-
strating that the coupled GRU significantly outperformed
its non-coupled counterpart when estimating the original
covariance between the two input signals.

Predicted vs Actual Predicted vs Actual

Fig. 6. Image on the left shows a plot of predicted vs. actual correlation
values, for 1000 test sequences, as estimated by the end2end GRU; the
image on the right shows the results as estimated by the coupled GRU. The
associated mean errors were 0.25 and 0.0892 respectively.

We also computed the mean of the absolute percent error:

_ 15V |vi-y
fe = ¥ 2im1 ‘T
where Y; is the covariate value used to generate the ith pair,
Y; is the model’s prediction on the same ‘" pair and N is
the total number of testing pairs.

For the same dimensionality of hidden layers (64), the
same number of epochs (50) and the same learning rate
(0.001), the test errors from the e2eGRU and cGRU were
0.25 and 0.0892 respectively.

Observation: With this experiment, we have shown that
a coupled network is capable of modeling the inherent inter-
actions between signals and coupling does indeed improve
the ability to evaluate the interactivity between pairs of input
signals.

B. Experiment 2: Testing on Real-life Interviewing Data

The data for this aspect of testing was obtained from a
study involved in the larger context of deception detection
where we were interested in detecting whether a pair of
interlocutors have established rapport between them or not
during an interview.

Data collection involved the interviewing process between
a retired police officer and an interviewee. The interviewer

> mw E =% o ]

Fig. 7. Sample video frame showing the interviewing process between a
retired police officer (right hand side) and the interviewee on the left hand
side.

was instructed to build rapport with the subject for the
rapport scenarios, while they had on their “game-face” in
the non-rapport scenarios. During the interview, each partic-
ipant’s face was recorded with a separate video camera and a
third camera captured both the interviewer and interviewee
simultaneously in order to preserve spatial information for
body posture analysis (future work). A total of fifty-nine
(N = 59) interviews from the study were used for this
rapport analysis. Thirty of the videos involved interviewers
building rapport with the subjects while the remaining twenty
nine did not.

The lengths of the videos ranged from 6 to 10 minutes
per conversational pair. The videos were then sampled at 30
frames per second, so that a 7-minute video would yield
12,600 frames. Because these are too long for a tempo-
ral model, each video was divided into non-overlapping
segments of 100 frames. All segments from a video were
assigned with same overall label of the video. We split the
59 interview videos into 45/6/8 for training, validation and
testing respectively and the splits were performed at the
video level, not segment-level. We shuffled the splits and
repeated the test ten times.

We extracted 17 AUs over time, on the frontal facing
videos for each participant and applied OpenFace [2], for
facial action unit detection. We also extracted 68 landmarks
via DLib[10] from each participants face on every frame.
These served as the dynamic input features to the models
we tested.

The goal here was to classify the interaction between a
conversational pair into has_rapport or no_rapport interac-
tion - a binary classification problem.

1) Recognizing rapport in the interview dataset: The
four networks we evaluate here are the 2 baselines: (i) the
e2eGRU (from Section III-A), (ii) the MPED-RNN described
in Section III-B; and the three newly proposed methods: (iii)
¢GRU and (iv) cGRU with Attention, both in Section IV-A;
and lastly, (v) coupled transformer (cXf) model described in
Section IV-B . Each of the networks handled the same two
streams of data, whose inputs were either 17 AUs or the 68
face landmark points extracted from the interview videos. To
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Fig. 8.

Face-to-face condition in the virtual human project from USC

significantly augment the data, we used an overlapping 100-
width sliding window to generate the segments from which
the input features were extracted.

Training scheme: We split the 59 interview videos into
45/6/8 for training, validation and testing respectively. We
trained the end-to-end GRU, coupled GRU, coupled GRU
with attention, MPED-RNN and coupled transformer to
predict rapport between two conversing individuals, on the
AB Rapport dataset. We used cross entropy as our loss
function and applied the Adam optimizer with a different
learning rates for each model. Learning rates were selected
with trial and error to give the best training performance for
that model.

We trained all our models with two input configurations,
one with landmarks as the input and the other with action
units. All the configurations were trained and tested 10 times.
Each run was started with randomly initialized weights, with
no transfer learning from last run. For each run, training
set, validation set and test set were randomly selected.
We calculated the average accuracy for each model with
each input configuration. The mean accuracy is tabulated in
Table I, column AB Rapport. The delta between the mean
and extremum is tabulated in “Delta”column. To visually
compare the different models and variants of input data
(landmarks or action units), the results are shown in Figure
9.

C. Experiment 3: Generalizability: Transfer Learning to a
Never-before-seen Dataset

The third experiment was designed to study how well
the proposed models could generalize to a dataset not seen
before. This publicly available data collected in 2007 by
Gratch et al. [7], was part of a larger virtual human study de-
signed to investigate the importance of contingent feedback®
in creating feelings of rapport.

A camera was placed in front of each speaker and a third
one was attached to the ceiling to record the speaker and

2The authors defined contingency as nonverbal feedback by the listener,
such as facial expressions, nods or posture shifts that are tightly coupled
to what the speaker is doing at the moment. Non-contingent feedback is
defined as the listener feedback similar in frequency and characteristics to
the contingent feedback, but not coupled with the speaker.

listener. The speakers were told to narrate a story while the
listener (a confederate) listened. We used only the condition
where both the speaker and listener were humans (as opposed
to other conditions involving virtual characters), since this
most closely matched our previous data. Figure 8 shows an
example of a face-to-face session during data collection. This
condition consisted of 20 pairs of conversants.

After the experiment, the speakers completed a post-
interview questionnaire which consisted of various questions
on a 10-point rapport scale. For positive rapport, we used the
cases where both participants indicated on the post-interview
questionnaire that they experienced rapport > 6 with their
partner. Other cases were treated as no rapport. We then
converted the scale into rapport(1)/non-rapport(0), to comply
with our previously trained models.

We applied the models we trained from the previous exer-
cise (from the AB deception interviews) to investigate how
well they generalize. No additional training was performed
on this dataset; we used the available data only for inference.

Similar to the previous experiment, we extracted both
landmarks data and action units from the faces. Each video
was split into non-overlapping 100 frame segments. All
20 pairs of interactants were tested using the pre-trained
networks and the classification results are given in Table I,
column ICT Rapport.

TABLE I
VALIDATION RESULTS FOR THE AB RAPPORT DATASET AND THE
TRANSFER LEARNING PERFORMANCE ON USC ICT RAPPORT DATASET.

*TRAINING THIS MODEL WAS SO SLOW, THAT WE COULD ONLY PERFORM A SINGLE RUN.

\ | Input Type | AB Rapport | Deltas | ICT Rapport |

GRU Landmarks 67.44 12.54 59.18
Action Units 5342 7.27 59.549

c¢GRU Landmarks 57.5 1.83 51.81
Action Units 62.98 10.97 60.549

cGRU w/ Landmarks 72.5 7.98 59.75
Attention Action Units 74.15 5.97 63.98
MPED-RNN#* Landmarks 70.4 NA 44.0
Action Units 79.14 NA 53.37

Transformer Landmarks 81.97 6.64 67.22
Action Units 75.71 2.93 62.277

Observation: From the results of this and the previous ex-
periment, we show that (i) our proposed coupled transformer
model can recognize rapport better than the other networks,
in the presence of real data which can be noisy, having
interactions that might be delayed relative to each other, or
occur sporadically. (ii) our coupled systems generalize well
to data that has never been seen before by the networks and
the coupled transformer model also performs the better than
all the others.

D. Experiment 4: Execution Time Comparison

We bench-marked the time needed to train one iteration
for each the models we are investigating. For running the
benchmark, we used a batch size of 256. The execution time
of all the models are tabulated in table II.
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Fig. 9. A visual comparison of the different models with different inputs
tested on the Rapport datasets

TABLE I
TIMING COMPARISON FOR DIFFERENT MODELS

\ Model | Feature | Time |
GRU Landmarks 7.8ms
Action Units 9.3ms
cGRU Landmarks 97ms
Action Units 92ms
c¢GRU w/ Landmarks 93ms
Attention Action Units 97ms
MPED-RNN Landmarks 351ms
Action Units | 364ms
cXf Landmarks 32ms
Action Units 40ms

Observation: From Table II, we observe that there is no
clear advantage in choosing landmarks over action units as
far as the execution time is concerned for the models. Of
the five bench-marked, the end-to-end GRU has the lowest
execution time, probably due to the simplicity of model. The
coupled transformer takes more time than the GRU, but is
significantly faster than both cGRU and cGRU with attention.
This is due to the lack of recurrence, which simplifies
training. Coupled GRU and coupled GRU with attention have
similar execution times because of the similarity in their
architectures. Message Passing Encoder Decoder RNN is the
slowest as this architecture requires a significant amount of
memory copies in its implementation; this slows down the
model considerably.

E. Experiment 5: Synchrony Detection by Visualizing Trans-
former Attention

In this test, we are interested in localizing the regions of
high synchrony in a video segment labeled as having rapport.
To accomplish this, first we only test on time segments that
have the rapport label. Next, we select samples that gave the
lowest losses during testing, as these were the samples the
model was most confident of its predictions.

Figure 11 illustrates some frames from such a sample
having rapport and the corresponding Attention map is

Mutual-Attention 1o

|| | o4
T
60

0 20 40 80 100
Sequence
Fig. 10. Attention intensities from the 4-head coupling transformer.

The bottom two heads are from the Interviewer and the top 2 from the
Interviewee. Attention is high for all rows where synchrony is strong.

F.1.871.000

[.1;351.000

Fig. 11.  Top: example of strong synchrony instances from interviewee
(frames 7851-71); bottom: same overlapping instance from interviewer
(frames 7851-63)

displayed in Figure 10. The actual video (along with others
are provided in the Supplementary material) shows a lot of
overlapping nodding and smiling actions between the pair.

VI. DISCUSSION AND CONCLUSION

We have demonstrated that even in the presence of very
limited data, we are able to computationally detect a complex
social phenomenon such as rapport between 2 interactants,
by measuring for the presence of synchrony using their
facial expression data. We accomplished this with two novel
deep-learning based technologies where a system of two or
more neural networks can receive inputs from multiple data
streams (one network per stream) and couple them either
via the hidden outputs from each network, or by using
a Transformer. Unlike the MP-RNN model, our proposed
manners of coupling signals allows for working with of an
arbitrary number of input data streams, without the system
exploding in the number of parameters or increasing in the
hidden message dimensions.

We tested our models on synthetically coupled data and
on noisy, real-life face data sets where we successfully
detected rapport. We then transferred the trained models to
data collected over 13 years prior (poorer resolution images,
different experimental conditions, subjective measures of
rapport) and still successfully detected rapport between pairs
of conversants. We have showed that our transformer-based
coupled system is most robust and consistently gives good
performance on real-life datasets.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on April 09,2022 at 19:11:12 UTC from IEEE Xplore. Restrictions apply.



REFERENCES

[11 A. Bagher Zadeh, P. P. Liang, S. Poria, E. Cambria, and L.-P. Morency.
Multimodal language analysis in the wild: CMU-MOSEI dataset and
interpretable dynamic fusion graph. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics -
Long Papers, ACL, pages 2236-2246. Association for Computational
Linguistics, jul 2018.

[2] T. Baltrusaitis, P. Robinson, and L. P. Morency. Constrained local
neural fields for robust facial landmark detection in the wild. In 2013
IEEE International Conference on Computer Vision Workshops, pages
354-361, Dec 2013.

[3] M. Brand, N. Oliver, and A. Pentland. Coupled hidden markov models
for complex action recognition. In cvpr, volume 97, page 994, 1997.

[4] T. L. Chartrand and J. A. Bargh. The chameleon effect: the per-
ception-behavior link and social interaction. J. Pers. Soc. Psychol,
76(2):893-910, 1999.

[5] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[6] D. Ghosal, N. Majumder, S. Poria, N. Chhaya, and A. Gelbukh.

Dialoguegen: A graph convolutional neural network for emotion

recognition in conversation. arXiv preprint arXiv:1908.11540, 2019.

J. Gratch, N. Wang, J. Gerten, E. Fast, and R. Duffy. Creating rapport

with virtual agents. In International workshop on intelligent virtual

agents, pages 125-138. Springer, 2007.

[8] D. Hazarika, S. Poria, A. Zadeh, E. Cambria, L.-P. Morency, and
R. Zimmermann. Conversational memory network for emotion recog-
nition in dyadic dialogue videos. In Proceedings of the conference.
Association for Computational Linguistics. North American Chapter.
Meeting, volume 2018, page 2122. NIH Public Access, 2018.

[9] T. Jamali and G. Jafari. Method for generating two coupled gaussian
stochastic processes. arXiv preprint arXiv:1602.04697, 2016.

[10] V. Kazemi and J. Sullivan. One millisecond face alignment with an
ensemble of regression trees. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1867-1874, 2014.

[11] P. Liu, X. Qiu, and X. Huang. Modelling interaction of sentence pair
with coupled-Istms. arXiv preprint arXiv:1605.05573, 2016.

[12] R. Morais, V. Le, T. Tran, B. Saha, M. Mansour, and S. Venkatesh.
Learning regularity in skeleton trajectories for anomaly detection in
videos. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[13] L. Sun, K. Jia, Y. Shen, S. Savarese, D. Y. Yeung, and B. E. Shi.
Coupled recurrent network (crn). arXiv preprint arXiv:1812.10071,
2018.

[14] Y. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L. Morency, and
R. Salakhutdinov. Multimodal transformer for unaligned multimodal
language sequences. In Proceedings of the Association for Computa-
tional Linguistics (ACL), pages 6558-6569, 2019.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017.

[16] H. Yu, L. Gui, M. Madaio, A. Ogan, J. Cassell, and L.-P. Morency.
Temporally selective attention model for social and affective state
recognition in multimedia content. In Proceedings of the 25th ACM
international conference on Multimedia, pages 1743-1751, 2017.

[17] R. Zhao, T. Sinha, A. W. Black, and J. Cassell. Socially-aware virtual
agents: Automatically assessing dyadic rapport from temporal patterns
of behavior. In International conference on intelligent virtual agents,
pages 218-233. Springer, 2016.

[7

—

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on April 09,2022 at 19:11:12 UTC from IEEE Xplore. Restrictions apply.



		2022-01-08T22:21:08-0500
	Certified PDF 2 Signature




