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Abstract— While a significant amount of work has been
done on the commonly used, tightly-constrained weather-based,
German sign language (GSL) dataset, little has been done for
continuous sign language translation (SLT) in more realistic
settings, including American sign language (ASL) translation.
Also, while CNN-based features have been consistently shown
to work well on the GSL dataset, it is not clear whether
such features will work as well in more realistic settings
when there are more heterogeneous signers in non-uniform
backgrounds. To this end, in this work, we introduce a new,
realistic phrase-level ASL dataset (ASLing), and explore the role
of different types of visual features (CNN embeddings, human
body keypoints, and optical flow vectors) in translating it to
spoken American English. We propose a novel Transformer-
based, visual feature learning method for ASL translation. We
demonstrate the explainability efficacy of our proposed learning
methods by visualizing activation weights under various input
conditions and discover that the body keypoints are consistently
the most reliable set of input features. Using our model, we
successfully transfer-learn from the larger GSL dataset to
ASLing, resulting in significant BLEU score improvements.
In summary, this work goes a long way in bringing together
the AI resources required for automated ASL translation in
unconstrained environments.

I. INTRODUCTION

As many as 5% of Americans are currently Deaf and
Hard-of-Hearing (DHH) [26] and as such, American Sign
Language (ASL) is their primary mode of communication.
But in the hearing-centric world we live in, the majority
of the general population do not understand ASL and inad-
vertently require DHH individuals to communicate in ways
other than their natural mode of communication. But in spite
of its popularity, ASL has received very little computational
research attention, probably due to limited data and the
complexity associated with being a visual language in a
mostly hearing-centric environment.

But the growing successes of translating between spoken
languages have inspired machine translations of visual lan-
guages such as sign language into spoken/written ones and
we discuss several of these methods in this paper. But the
absence of annotated large-scale, parallel phrase-level ASL
datasets and applicable NLP tools potentially qualifies it as
a low-resource language. Hence, in this work, we contribute
to the growing body of work in continuous sign language
analysis through the following:
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Fig. 1: Multi-feature fusion for sign language translation.

o We collect an ASL dataset by recording expert signers
as they sign written English phrases provided. Although
relatively small, to the best of our knowledge it is the
largest phrase-level ASL dataset available. This ASL
linguistic dataset (which we refer to as ASLing) will be
made publicly available, to add to the growing body of
sign language resources. Details are provided in Section
V.

« We develop a novel multi-feature fusion architecture,
cross-feature dual fusion (CFDF), based on transformer
network. This network was designed to translate signing
videos of varying quality, focusing purely on translation
without gloss, the intermediary written symbolic repre-
sentation of a sign language.

« We perform experiments using the multi-feature archi-
tecture on ASLing and compare the results with exper-
iments from the baseline transformer using individual
features on the same dataset.

« We explore the explainability efficacy of the models and
determine how each of the input features contributes to
the final translation. We accomplish this by visualizing
the attention weights over time, highlighting the influ-
ence of each feature over the sequence.

« We improve the performance of the unconstrained and
uncontrolled ASLing dataset by transfer learning from
the larger well-tested German sign language (GSL)
dataset.

In a real-life scenario, the input sign language video
cannot always be captured in a controlled, and well-balanced
environment. Hence, in this work, we perform automated
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SLT on an unconstrained and uncontrolled sign language
dataset (ASLing) using a multi-feature fusion architecture
shown in Fig. 1. The model is adaptive to the variations in
the input frames and attends to different features based on
the level of information rendered.

A. Sign language transcription versus translation

Completely transcribing sign language gestures (or signs)
into written language, or attempting to use only written
language to fully represent signs is an extremely challenging
task. Many signs incorporate movement and space (within
the sign) to modify the meaning. It is therefore challenging
to encapsulate such spatially oriented information into words.

Also, much of sign language grammar is conveyed specif-
ically by facial and body movements, not present in written
texts, thereby rendering them even more challenging to
encapsulate. For these reasons, sign languages are often
transcribed first into an intermediary written representation
called gloss, which captures both the sign-for-sign word
ordering and the different notations needed to account for
spatial-temporal, facial, and body grammar.

Sign language recognition or transcription involves the
process of converting signed visual phrases into gloss,
whereas sign language translation involves going directly
from signs to the spoken version of the language. Unlike
many recent works in sign language analysis [10], [6], where
recognition is used as an added step to boost translation,
in this work, we focus strictly on the challenging task of
translation only, especially when gloss is not available as is
the case for many low-resource sign languages.

II. RELATED WORKS

Natural language processing (NLP) has laid a strong
foundation for sign language translation. In the following
subsections, we will discuss how NLP tasks have evolved
to perform sign language translation as well as some of
the recent multi-modality and multi-feature techniques that
inspired our work in this paper.

A. Evolution of sign language translation:

Neural machine translation (NMT) in NLP involves trans-
lating text from one language to another. A probabilistic con-
tinuous translation model was introduced by Kalchbrenner
and Blunsom [18] and in the deep learning era Sutskever
et al. [40] introduced multilayered LSTM for text-to-text
translation. Further improvements on the sequence modeling
were achieved by using attention mechanisms. Some of the
SOTA work with attention using long short-term memory
(LSTMs) for the text-to-text tasks followed in [2], [46],
[25]. To account for longer dependencies Vaswani et al. [43]
introduced the transformer model with a multi-head self-
attention mechanism without using any recurrent neural net-
works (RNN) for text-to-text translation. This work further
expanded towards other text-to-text tasks such as text clas-
sification, question-answering (Q&A), summarization, etc,
in the Generative Pre-training (GPT) models (GPT 1 -3)
[34], [35], [4]. Unsupervised mechanisms were introduced

in bidirectional encoder representations from transformers
(BERT) [13] for Q&A tasks.

The text translation tasks further evolved towards video
captioning. One of the most popular SOTA methods was
introduced by Venugopalan, et al. [44] where the sequence
of video frames was passed as input to a two-layer LSTM,
and one word at a time describing the video was predicted as
output. Other methods for video-to-text with LSTM models
improved upon the base models by using attention mech-
anism variations [50], [15], [30], [3], [29]. The transformer
model was also expanded further for video captioning, visual
Q&A tasks using the transformer and BERT models and by
performing co-attention [52], [8], [38], [39], [24], [11].

Video captioning methods can be extended to sign lan-
guage translation and recognition tasks. Word/gloss level
sign language recognition became popular from the image
captioning/ gesture recognition tasks for predicting different
hand, mouth shapes, and signs [27], [20], [21], [23], [47],
[32]. Continuous sign language translation is a complex
task when compared to word-level sign language translation
which is more of a classification task. Variants of RNNs
for continuous sign language were seen in DeepASL [14]
with bidirectional deep RNN, hybrid model using temporal
convolutions and bidirectional gated recurrent unit (BGRU)
in [45], a multi-layered attention-based LSTM network in
[10], and a two-layered LSTM network with different hand,
body, face features for Chinese sign language (CSL) [51] for
SLT, to name a few. Connectionist temporal classification
(CTC) loss based processing was used by [16],[33],[9] to
improve upon the SLT task. Transformer based models are
also gaining popularity for SLT tasks. Camgoz et al.[6] used
the transformer model with CTC loss and performed sign
language recognition and translation with features obtained
from their CNN-LSTM-HMM model trained on gloss in-
formation [19]. Other variations of the transformer model
considering gloss were seen in [48],[49].

B. Gloss-aligned visual features

In this section, we briefly review one of the more suc-
cessful input features that has been used for sign language
understanding. The model used by several researchers [5],
[6], yielding good metrics on benchmark datasets are based
on a CNN-LSTM-HMM model [19]. The CNN-LSTM (Con-
volution Neural Network, Long Short-Term Memory) part
is initially trained as a classifier in a weakly supervised
manner to identify the gloss based classes, hand, and mouth
shapes; then the probabilities from the CNN-LSTM model
are fed to a hidden Markov model (HMM), further used
for alignment. This CNN model is then initialized with the
pretrained weights and used to extract features for the sign
language video under consideration. Hence gloss is used also
in the feature extraction process.

III. METHODOLOGY

We investigate the efficacy of a novel multi-feature archi-
tecture (inspired by [43], [42], [1]), the CFDF transformer
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model and compare it with a single-feature transformer-based
architecture.

A. The single-feature transformer:

For each of the feature embeddings, the positional encod-
ing is added to take into consideration, the frame order as
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shown in (1).

PE(os50i) = sin(pos/100002i/dmodez)

PE(posit1) = cos(pos/ 100007/ moder ) (1)

This input is then fed to a 1D convolutional layer and the
embeddings are fed to the transformer encoder which learns
multi-head self-attention. The query (Q), key (K), and values
V for an individual transformer encoder is calculated as (2).

Ky = linear key(inputy)
Qy = linear_query(inputy)
Vi = linear_value(input )

2

where, linear_key, linear_query, and linear_value are three
individual linear layers learned for the input feature (inputy)
and f € {CNN, OP, OF}. Hence, we compute the key, query
and value parameters for CNN, OpenPose (OP), optical
flow (OF), extracted from the sign language video. These
highlight the different modalities being evaluated.

For the stand-alone feature test, each of the three different
input features (CNN, OP, and OF) are fed to the standalone
transformer encoders one at a time and the performance
results are recorded. The governing equation is:

Attention(Ky,Qy,Vy) = so ftmax(
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B. Cross-feature dual fusion transformer:

The cross-feature architecture is shown in Fig. 2. Three
different input features are simultaneously fed to the multi-
feature cross-attention (CA) block after adding the positional
encoding (PE) information. These inputs are passed through
a 1D convolutional network before passing to the next stage.

To understand the CFDF architecture, let us consider one
cross-attention block (Multi-feature cross-attention-1) from
Fig 2, details expanded and shown in Fig. 3.

Equation (4) describes how the attention for the two cross-
feature transformer models attending on the CNN features as
the base feature is calculated:

T
. NNK,
Cross_attention) = softmax( Qci\/diOP)VOP
k
T
. vV K, 4
Cross_attentiony = softmax( QevvKor Wor @

VA

where, Qcyny (CNN feature modality), Kpop (OpenPose
feature modality), Vpp (OpenPose feature modality) acts as
the query, key, and value inputs, respectively, for the first
cross-feature transformer and Qcyy (CNN feature modality),
Kor (optical flow modality), Vor (optical flow modality),
respectively, for the second. Similarly, cross-attentions are
calculated for the other multi-feature cross-attention block 2
and 3 with their respective base features.

The fused output from the cross-feature transformer block
is passed over to the self-attention block (expanded and
shown in Fig. 3) where the model learns a higher degree of
attention between the cross-feature attention blocks. Similar
representations are obtained from the other cross-multi-
feature attention blocks and self-attention blocks. The output
from each of the self-attention blocks is further fused before
passing through a final linear layer to learn the projections.

The output of the encoder which represents the relation
between different features of the input video is passed
as input to the multi-head attention block of the decoder
thus learning the cross-attentions between the different sign
features and the attentions from the words. The decoder takes
in as input the word embeddings and performs masked-multi
head attention by masking the future words. CFDF encoder
output is fed to the multi-head attention block in the decoder
where it learns the encoder-decoder attention and predicts the
words after passing through a feed-forward network, linear,
and softmax layers.

C. Training Information

The CFDF transformer model is trained on 1027 ASLing
samples and tested on 257 held out samples. Adam opti-
mization is used with a learning rate of 1e=* and a weight
decay rate of 1e~%3. The maximum length of frames in each
batch is chosen as the input sequence length for the encoder
and the decoder is fixed at a maximum caption length of 30
based on the average length of the captions. The model has
128.17 million trainable parameters.

CFDF models were trained for 70 - 150 epochs. Other
optimal model settings used are encoder-decoder embedding

size of 512, along with 3 encoder and decoder layers, and 8
multi-head attention blocks.

IV. DATASETS
A. Sign Language Datasets

We evaluate our cross-feature fusion method on the low-
resource American sign language dataset (ASLing) and the
well annotated German sign language dataset (GSL).

Fig. 4: Dataset samples: the top row shows the GSL signers in a
controlled and constrained setting and the bottom row shows the
ASLing signers in a real-life, more naturalistic setting. Compare
the clothing of the signers as well as the backgrounds in the two
datasets. Also, observe the lighting conditions in both datasets.

B. American Sign Language (ASL)

The American Sign Language (ASLing) dataset consists of
1027 training and 257 testing samples. We interchangeably
use ASLing and ASL, both refer to the same dataset in
our work. These videos were collected at 10 frames per
second and were annotated by 7 signers. Each frame is of
450 x 600 size. The ASL dataset consists of a wide variety
of topics unlike GSL that is more constrained on weather-
related topics.

Although ASLing is currently the largest phrase-based
ASL corpus, the data is very noisy (collected in real-life
settings) and is thus challenging to analyze. The presence of
poor illumination during collection results in low quality im-
ages, making the dataset even more challenging to analyze.
These issues are in contrast with the GSL dataset which was
collected under significantly more controlled conditions.

The word cloud in Fig. 5 (a) shows the organization of
different words in the dataset. Note the variation in ASL
word topics compared to GSL. The word and sentence
repetition frequency for the ASLing dataset is shown in Fig.
7. Please contact the authors for the dataset.

C. German Sign Language (GSL)

The German Sign Language (GSL) dataset is ob-
tained from the weather forecast airings from the RWTH-
PHOENIX-Weather dataset publicly available [28]. The
dataset consists of 7096/519/642 train/val/test samples. Each
frame is of 210 x 260 size and the videos were recorded at 25
frames per second. The dataset is annotated by 9 signers. The
word cloud in Fig. 5 (b) depicts that the dataset is limited to
a particular subject area. The sentence repetition and word
repetition are shown in Fig. 7.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on April 09,2022 at 19:17:44 UTC from |IEEE Xplore. Restrictions apply.



=

tirewind

northwes thigh
(a) AsLing word cloud (b) GSL word cloud

Fig. 5: Word cloud for the GSL and ASLing datasets (best viewed
in color).
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Fig. 6: Embedding space for the GSL and ASLing datasets using
PCA (best viewed in color) (Red - ASLing, Blue - GSL).

To understand the distribution of the two datasets, we
converted the German words to English and projected the
word2vec embeddings using PCA for both the GSL and ASL
dataset as shown in Fig. 6. The ASL (shown in red) dataset is
widely spread out whereas the GSL (shown in blue) dataset
covers a very confined subject.

D. Feature Selection

To take full advantage of the multi-feature fusion models,
we consider three different features from the input video that
highlight different modalities. We extract 2048 dimension
CNN ResNet50 [17] features for each frame, pretrained on
ImageNet [12]; these provide information on the visual RGB
frames. We obtain 25 points for the body, 21 points for each
hand, and 70 face points from OpenPose [7]. These points are
(x,y) locations of the body, hands, and face. We convert these
raw locations into a canonical, smoothed, and normalized
form which helps the model in better learning and training
without exploding gradients. The canonical form is obtained
by scaling and centering the points. To perform smoothing
we use Savitzky-Golay (SavGol) [36] and perform frame-
to-frame smoothing and finally normalize the points to fall
between 0 — 1. We also extract 2048 dimension vector for
each frame from optical flow [37], [41] which provide the
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Fig. 7: Top: Word repetition frequency for unique utterances.
Bottom: Sentence repetition frequency. Y-axis represents the log10
scale.

flow-based information between consecutive frames.

V. RESULTS
A. CFDF performance

We test our cross feature model on the low-resource
ASLing dataset. We initially trained our model using only a
single attention block belonging to individual features which
mainly learns self-attention to understand how much each
of the individual features contributes. Further, we train our
CFDF multi-feature fusion model using all three feature
inputs. Our CFDF multi-feature fusion model performs better
than the individual features by obtaining a 3 —4 points
increase across BLEU 1-BLEU 4 scores. BLEU-BiLingual
Evaluation Understudy [31] is a popular metric used to test
the efficacy of predicted sentences with respect to the ground
truth. n-grams (number of words) from predicted caption are
compared with n-grams from the ground truth. Comparing
individual words (1-gram) is referred to as BLEU 1, two
words (2-gram) as BLEU 2, and so on.

Further, to test the efficacy of our architectures we
train our CFDF model on the well-constrained, and well-
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Fig. 8: AOtention visualization (best viewed in color). (a) best sample from the GSL dataset, (b), (c) best samples from the ASL dataset.
(1) ResNet50 based fused features, (2) optical flow based fused features, (3) OpenPose based fused features. The samples chosen for
visualization were one of the few where the BLEU 1 - BLEU 4 scores were close to 100%.

TABLE I: Ablation study comparing the performance of the CFDF
multi-feature architecture with the single-feature architecture. The
ablation study was performed on the low-resource ASLing dataset.
The results show the BLEU 1 to BLEU 4 (B1, B2, etc) values;
TL is the result of transfer learning from the GSL dataset, R50 -
ResNet50, OP - OpenPose, OF - Optical Flow

gray!50Architecture B1 B2 B3 B4
ResNet50 features only (R50) 10.70 4.67 3.21 2.66
OpenPose features only (OP) 10.23 6.79 5.8 5.36
Optical Flow features only (OF) 8.95 4.70 3.39 2.86
CFDF 13.98 7.64 5.60 4.59

| CFDF(TL) ™~~~ ~ ~ ~ ~ ~ | 2239 | 1596 | 13.56 | 12.25 |

controlled! GSL dataset and fine-tune the ASLing model
by transfer learning from GSL to ASLing. Transfer learning
shows significant improvement in the BLEU scores where
the BLEU 1 and BLEU 4 scores improved by approximately
8 points. We are continually expanding the current ASLing
dataset so that increased data size along with transfer learning
will continue to boost the BLEU scores.

The high BLEU scores achieved in some of the state-of-
the-art SLT work [6], [10], [5] is due to the presence of
gloss or gloss-based features. With respect to an architecture
that performs translation without gloss [22] like ours, we
perform very similarly on the GSL dataset by achieving
a 12.09 BLEU 4 scores against their 13.48 with different
features.

Achieving a decent BLEU score on a well-balanced
dataset is a challenge in itself. Our work takes it one step
further by focusing on a low-resource, unconstrained dataset
ASLing where we achieve acceptable BLEU scores as seen
in Table L.

Furthermore, we show that CNN features obtained are not
always the best as it mainly depends on the quality of the
input video. With a less noisy dataset like GSL, the CNN
features extracted from 3D convolution networks, ResNet50,
work well. However, they can fail in settings where the image
quality is poor. We, therefore, use a fusion of features (CNN,
location-based, flow-based) and the models proposed adapt

I'Well-constrained and controlled refers to videos collected with a uniform
background, the homogeneous appearances of the signers, their similar
distances from the camera.

to these features based on the quality of frames and infor-
mation rendered from the frames. We confirm this further by
visualizing the attention weights for select frames from GSL
and ASLing datasets, described in the next subsection.

B. Attention visualization

To understand the contribution of these three sets of
features we looked at one of the test samples that gave the
best BLEU scores for the GSL and the ASL dataset. The
attention visualization is shown in Fig. 8.

The x-axis on the visualization are the different frames
of the video under consideration and the y-axis is the
combination of features. To visualize we store the attention
weights from the last layer of each CFDF encoder and plot
the heatmap against the sequence of frames.

Fig. 8 (a) shows the attention for one of the best test
samples of the GSL dataset. From the frames, we can see
that all the frames are pretty uniform in terms of the person
annotating and the background. Thus, the model seems to be
attending to ResNet50 based fused features almost equally in
all the frames. The model attends to the optical flow based
fused features where there is motion between the frames,
for example, frames 13 - 32, 63 - 70, see a lot of changes
between the consecutive frames leading to higher attention in
these areas whereas, frames 47 — 61 seem to have less motion
between the signs leading to less attention. The model attends
to OpenPose based fused features strongly for some sections
of the video. Similarly, we picked a couple of samples from
the ASL dataset which performed the best. From Fig. 8 (b)
we can see that the frames under consideration are very dark
in terms of the RGB visualization. The quality of the frames
has a direct impact on the ResNet50 based fused features
hence the model does not attend as well when the image
quality is poor. We see a similar pattern in both the datasets
where the model attends fairly well to optical flow based
features. We see a similar trend with OpenPose based fused
features as well. We see similar trends in the other ASL
sample as shown in Fig. 8 (c) where the image quality is
low so the model does not attend as much to ResNet50 and
optical flow based fused features.

Overall, we can see that the model often attends to
OpenPose based fused features the most as OpenPose di-
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rectly targets the hand, body, face keypoints which are the
most essential for sign language. The model benefits from
ResNet50 whenever there is a good quality video and benefits
from optical flow whenever the flow movements between
the frames are prominent. In a real-life scenario, there is
no surety of having a good quality sign video, controlled
image, prominent hand, and body movements, and/or face
expressions. In situations like these, if only one of the
features is used as input to the model, the output may not be
accurate as the model could not attend to details based on the
input feature. However, with fusion using CFDF, the model
learns to attend to information from each of the features
whenever and wherever applicable making the model robust
to the changes in a real-life scenario.

VI. CONCLUSION

In this work, we introduced the unconstrained ASLing
dataset collected in real-world settings, where the participants
could dress in their regular everyday clothes (with multiple
textures and colors) andthe signing videos were collected in
arbitrary, unconstrained settings including the dorm rooms of
DHH students. We focused on developing models to help us
understand how best to perform high-quality ASL translation
with multi-feature models, and in the absence of any gloss
information.

To this end, we introduced the cross-feature dual-fusion
(CFDF) architecture, and provided it with multiple features
(ResNet50 visual embeddings, OpenPose - body, hands, and
face keypoints, and optical flow - frame-to-frame motion
vectors) as inputs. We observed that this model dynamically
attended to the ResNet50 features when the visual quality of
the input frame was good, but the model attended more to
the keypoints (body, hands, and face) for most of the frames.
The model also attended to optical flow whenever there was
a lot of movement and good flow-based information in the
inputs.

We discovered that we could successfully fine tune from a
larger dataset (GSL) to boost the performance of the multi-
feature fusion models on the ASLing dataset. This transfer
learning paradigm significantly increased the resulting BLEU
1-4 scores on ASLing. To understand the inner workings of
the models, we visualized the attention weights based on the
three fused features and found that the model dynamically
learned and attended to each of these features based on the
input frame type.

In summary, in our research, we focus on improving
the AI resources for ASL, which is still a low-resource
language, in spite of all the resources readily available for
its spoken/written counterpart.
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