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Abstract

Sign language translation without transcription has only re-
cently started to gain attention. In our work, we focus on im-
proving the state-of-the-art translation by introducing a multi-
feature fusion architecture with enhanced input features. As
sign language is challenging to segment, we obtain the input
features by extracting overlapping scaled segments across the
video and obtaining their 3D CNN representations. We exploit
the attention mechanism in the fusion architecture by initially
learning dependencies between different frames of the same
video and later fusing them to learn the relations between dif-
ferent features from the same video. In addition to 3D CNN
features, we also analyze pose-based features.

Our robust methodology outperforms the state-of-the-art sign
language translation model by achieving higher BLEU 3 -
BLEU 4 scores and also outperforms the state-of-the-art se-
quence attention models by achieving a 43.54% increase in
BLEU 4 score. We conclude that the combined effects of fea-
ture scaling and feature fusion make our model more robust in
predicting longer n-grams which are crucial in continuous sign
language translation.

Index Terms: sign language translation, transformer, attention,
multi-feature.

1. Introduction

Research on automated sign language understanding has been
limited, especially when compared with its spoken language
counterpart. Sign language interpretation can be challenging
due to the lack of easy accessibility to human interpreters - sign
language interpreters can be expensive and not readily available.
Automating the process of sign language translation (SLT) can
therefore greatly facilitate the communication between signing
and non-signing people in the community.

Sign language typically comprises of hand movements, facial
movements/ expressions, body movements, location references,
and sometimes lip movements [1, 2]. The unit components of
sign language are not directly translatable to their spoken word
counterparts; rather, signs are directly related to an intermedi-
ary symbolic language called gloss. Gloss can be viewed as the
written form of sign language and is useful for transcription.
More information on gloss is provided in Section 2. As glosses
align directly with signs (unlike spoken words), initial studies
in automated SL understanding required them as an intermedi-
ate step in performing translation, a problem we refer to more
appropriately as recognition or transcription. The availability
of gloss simplifies the task of SL understanding, as the model
first performs gloss-based recognition and as a secondary step,
translates the gloss to text [3]. Alignment-based loss functions
such as the connectionist temporal classification (CTC) loss are
used and they go a long way in facilitating the process.

But for real-time sign language understanding in real-world sit-
uations, where gloss is unavailable, it is imperative to design SL

Copyright © 2021 ISCA

1c2919@rit.edu,

2292

ionvcs@rit.edu

systems that can bypass the need for gloss during translation.
We propose such a system where we directly perform contin-
uous sign language translation (SLT) without gloss, a signifi-
cantly more challenging task.

In this work, we aim to study the effects of feature scaling and
Seature fusion for SLT by introducing a multi-feature fusion at-
tention architecture. As sign language is hard to segment, we
perform feature scaling as a pre-processing step to find the
boundaries of the signs.

Our specific contributions are listed below:

* We present an SLT framework that uses a feature scal-
ing mechanism to implicitly locate sign boundaries, thus
improving the overall SLT mechanism. We also extract
scaled, pose-based features (explained in more detail in
Section 5). Similar to word boundary segmentation in
speech, sign segmentation is a challenging problem and
the use of feature scaling facilitates this.

* We develop a novel multi-feature fusion architecture,
which implements self-attention on individual scaled
features by attending to information between different
blocks of frames. The self-attention from each of the
individual features is then fused and passed to an inter-
mediary multi-feature attention block that relates all the
features (explained in more detail in Section 6).

* We perform ablations, which show that our proposed
multi-feature fusion architecture outperforms the current
state-of-the-art results, when applied on the well-known
RWTH-PHOENIX-Weather SL dataset [3] (explained in
more detail in Section 7).

2. Sign Language Transcription - Gloss

The transcribed form of sign language is commonly referred to
as glossing [4, 5]. The process of first transcribing visual sign
language to its exact symbolic gloss form and then extending
this to the spoken language form has been performed by deep
learning researchers [3]. We describe this process as SL recog-
nition or transcription.

Glosses can differentiate between finger-spelling and complete
word signs. For example, most proper nouns like names of peo-
ple are often finger-spelled and this can be written symbolically
as f5. Other constructs of gloss include LOC indicating location,
++ indicating a repetition of sign, and repeated references to a
pre-defined multi-dimensional space with some specific mean-
ing. For example, a signer can assign a 3D space to a particular
construct, "Jason", and refer to that space whenever the signer
wants to mention "Jason", as a way to avoid to finger-spelling
every time. Gloss readily captures such complex constructs.

Annotating SL via glossing requires specialized skills and can
be expensive. SL understanding can become a very challenging
task if it solely relies on gloss. Much of the current compu-
tational research work in SL understanding [3, 6] use gloss as
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an intermediate step before converting to spoken language text.
However, work done using gloss cannot be easily extended to
datasets where gloss is not available, specifically when we tar-
get low-resource sign languages.

For this reason, the main focus of this paper is to perform con-
tinuous SL translation without using any prior transcriptions.
Our work outperforms current state-of-the-art results for SL
translation without gloss.

Figure 1: Canonical OpenPose representation.

3. Related Works

Sign language translation can be loosely categorized into word
level and sentence level translations. Most of the word level
translations involve classification of signs or in other words ac-
tion/ gesture recognition [7, 8, 9, 10, 11, 12, 13]. Word-level
classification or recognition is a simpler task when compared to
continuous sign translation.

Gloss based SL recognition falls into the classification cate-
gory. This is usually performed using the CTC loss [3, 14, 15].
Glosses are also used to pretrain a network like a CNN-LSTM-
HMM (Convolution Neural Network — Long Short-Term Mem-
ory — Hidden Markov Model) model which aligns the glosses
with the input frames. After training, new frames can be passed
through the pre-trained CNN to obtain new set of features that
can be fed in as input to the translation model [6]. Very recently
researchers are bringing their attention to this problem [16] and
focusing on improving SLT models when gloss is not available.

SLT architectures have evolved over time and borrowed inspira-
tion from many state-of-the-art sequence-to-sequence networks
[17, 18, 19], sequence-to-sequence with attention [20, 21, 3].
Most of the recent architectures leverage the attention mecha-
nism in the transformer model due to its capability to predict
longer tokens than typical sequence networks [22, 23, 24, 25,
26, 14, 15].

4. Dataset

The publicly available German RWTH-PHOENIX-Weather
dataset [3] is collected from weather forecast airings. We use
7096/519/642 train/val/test samples. The original resolution of
frames is 210 x 260 with each video recorded at 25 frames per
second. The dataset was signed by 9 individuals.
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5. Input features
5.1. Pose features

We extract pose features from OpenPose [27], an open-source
toolkit for extracting body keypoints. We obtain x, y locations
for 25 body-joint keypoints, 21 keypoints for each hand, and
70 facial landmark keypoints, resulting in 274 points per frame.
We keep the order of the joints the same as the original authors
[27]. For frames where the lower body information is not avail-
able, the landmarks are zeroed out. We obtain a canonical form
of the frame keypoints, by centering all points to the origin and
scaling them to the same size. Examples of the canonical form
of OpenPose points is shown in Figure 1 !.

5.2. Scaled Features
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Figure 3: 3D CNN Feature scaling. Scale 8 (blue), Scale 12
(green), Scale 16 (orange) are shown (best viewed in color).

As sign language is challenging to segment, we aim to find im-
plicit boundaries of signs by scaling the input frames. We ap-
ply a sliding window encompassing multiple frames across the
video, resulting in overlapping video segments. The length of
the sliding window can be 8, 12, or 16. The frames in each
video segment is passed to the pre-trained Inception 3D CNN
[28] model to obtain an output 1024 feature vector. This vec-
tor (or CNN embedding) is obtained for each video segment as
shown in Figure 3. The features obtained from each of these
three scaling mechanisms are fed to the multi-feature fusion
model as shown in Figure 2.

Consider X1, X2, X3 to be the features processed by CNNjg,
CNN;2 and CNN;¢ as shown in Equation (1); where CNN,,, is
the i3D pre-trained CNN network whose inputs take m-frames.

X1 € CNNg{z1,22,..,Zn}
X5 € CNNyo{z1, 2, .., 0 } )
X3 € CNN16{1‘1,$2,~~7mn}

X4 € OPg{z1, 22, .., 20}

Each z; in x1, 22, .., x, represents a group of frames; i.e. x1
for scale 8 is equivalent to frames [0, 1, ...7], 2 is equivalent to
frames [2, 3, ...9] and so on. For OpenPose we take the center
frame which is a good representation for the whole segment.

I'These sample frames are not from the GSL dataset described in this
paper.
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Figure 2: Multi-feature fusion architecture for sign language translation (best viewed in color). (Notations are described in Section 6.)

Having overlapping frames in the segment is important, as the
model learns better from the repetition of signs. Mirror padding
is applied wherever needed, so that the total number of frames
for each video is the same for all three scales.

6. Methodology

To perform SLT, we introduce a multi-feature fusion architec-
ture, shown in Figure 2. The model performs self-attention on
individual features. The attention from individual features is
then fed as input to the multi-feature attention (MFA) module
which performs fused attention. The fused attention obtained
from the encoder portion is then passed on to the decoder. The
decoder takes as input the word embeddings, specifically the
words predicted from previous time steps. The encoder output
is used in the encoder-decoder attention block to attend to in-
formation between the visual features + pose and word embed-
dings. The decoder then outputs spoken language translation.

The subsections below describe various blocks of the multi-
feature fusion architecture in detail.

6.1. Encoder

The pose and visual features obtained from the scaling mech-
anism are shown in Equation (1). Here, X1, X», and X3 are
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features obtained through the implicit boundary segmentation
processed by C'N Ng, CN Ni2, CN Ny, respectively.

Positional encoding is added to the input embeddings before
passing it to the self-attention blocks. The positional encoding
is essential to maintain the order information.

Each of the self-attention blocks
(SONNS, SCNN12, SCNN167 Sops) compute the impor—
tance of each frame with respect to all the frames by initially
performing a dot product between them (Qors, Kops).
The Softmax obtained from the dot product is then used to
calculate the actual weight that each frame has in the original
input by multiplying it again with the input frames (Vops).
This attention calculation for one of the blocks Sops is
mathematically described in Equation (2).

QoprsKbps

Self Attention (SAops) = Softmax(
Vdy

YVorps
)

This attention is then passed on to a feed-forward network
which learns two linear layers. Similar to the original imple-
mentation [22] we retain the add and norm blocks, and, skip
connections.

The output from individual self-attention blocks are then fused



Table 1: Results on the GSL dataset using the multi-feature fusion architecture

Architecture BLEU1 | BLEU2 | BLEU3 | BLEU4
Conv2d-RNN [3] 27.10 15.61 10.82 8.35
Conv2d-RNN [3] + Luong Attention [21] 29.86 17.52 11.96 9.00
Conv2d-RNN [3] + Bahdanau Attention [29] 32.24 19.03 12.83 9.58
TSPNet-Sequential [16] 35.65 22.80 16.60 12.97
TSPNet-Joint [16] 36.10 23.12 16.88 13.41
Transformer (CNNg) (Ours) 25.22 16.29 11.87 9.31
Transformer (CNN;2) (Ours) 24.48 16.01 11.71 9.31
Transformer (CNN1¢) (Ours) 25.96 17.09 12.52 9.91
Transformer (OPg) (Ours) 21.83 13.85 10.34 8.28
Multi-feature fusion (CNNg, CNNj2, CNNj¢) (Ours) 29.34 19.86 14.81 11.83
Multi-feature fusion (CNNg, CNN72, CNNy4, OPg) (Ours) 33.59 23.07 17.25 13.75

and passed onto the MFA module that now learns relations be-
tween the four features as shown in Equation (3).

MFA = (SAcnnsDSAcnn12@SAcnn, 6 DSAops) (3)

6.2. Decoder

The decoder begins to output predicted words upon receiving
the start-of-sentence < s > token. Only the words at the par-
ticular time-step are visible to the decoder. The embeddings
are passed through a self-attention block for learning inter-
relations between words. The decoder implements attention,
feed-forward network, add and norm, and skip connections sim-
ilar to the encoder. In addition to the above blocks, the decoder
implements encoder-decoder joint attention in the multi-head
attention block. The output obtained from the decoder is the
spoken language equivalent of the sign language, thus perform-
ing continuous SLT.

7. Experiments and Results
7.1. Training Information

The multi-feature fusion architecture is trained on 7096 samples
from the GSL dataset. We obtained the best performance by
implementing 3 layers in the encoder and decoder, along with 2
heads for multi-head attention in both the encoder and decoder.

During training, ground truth words were fed in to the decoder
at every time step and future words were masked out so that
the model learning did not underfit. Whereas, during inference
time, only predicted words at each time step are fed to the next
time step, for a fair evaluation of the model. We selected an
initial learning rate of 1e~°* and a weight decay rate of 1e~%%.
The model saturated after 80 epochs. We used an encoder em-
bedding size of 256 and a custom decoder embedding size of
256 X #of features.

We evaluated our models on the test set by calculating BLEU
[30] scores. BLEU score is evaluated by comparing the pre-
dicted n-grams with the ground truth n-grams. BLEU 1 pre-
dicts /-gram words, i.e. it looks for matching individual words
from predicted to ground truth. BLEU 1 scores are usually high
due to this as the order of words does not matter. The task gets
challenging as the model proceeds towards predicting longer
grams. 2-gram words compare two consecutive words, 3-gram
compare 3 consecutive words, and so on. Because we are per-
forming continuous SLT, BLEU 3 and 4 metrics are the most
crucial for our evaluation.
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7.2. Performance Evaluation

To test the efficacy of our scaling mechanisms, we initially
ran the single-input baseline transformer (on each of Scyns,
ScnnNi12, SenNi6, So pg) using their respective individual fea-
tures. From the results shown in Table 1 we can see that baseline
scaled features perform better than some of the state-of-the-art
methods like Conv2d-RNN, for BLEU 3 and 4. [3].

In addition to individual features, we perform a tri-feature ex-
periment by passing only the three scaled CNN features through
the multi-feature fusion architecture. Our model outperformed
the best sequence model Conv2d-RNN, with attention [3] by
achieving a 43.53% higher BLEU 4 score.

Our proposed model improves the translation results with the
addition of OpenPose features and the 4-feature network out-
performs the state-of-the-art [16] by achieving higher BLEU 3
and 4 scores.

8. Conclusion

In this work, we studied the effects of implicit boundary seg-
mentation in signs and the effects of multi-feature fusion archi-
tecture for sign language translation without transcription. Us-
ing a sliding window approach we segmented the input video
into multiple segments with overlapping frames. Our fusion ar-
chitecture performed different levels of fusion, firstly it learned
self-attention by learning relationships between different frames
of the input video, and secondly, it performed multi-feature at-
tention by learning the relations between the four sets of fea-
tures.

Our model out-performed the recent state-of-the-art translation
model by achieving higher BLEU 3 - BLEU 4 scores. It outper-
formed the state-of-the-art sequence networks with attention, by
achieving a 43.53 % higher BLEU 4 score. Higher n-gram ac-
curacy (BLEU 3, BLEU 4) indicates that the model is robust
enough in predicting longer grams. In future, we will consider
benchmarking on larger datasets.
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