

Laser-based bioprinting for multilayer cell patterning in tissue engineering and cancer research

Haowei Yang¹, Kai-Hung Yang², Roger J. Narayan², and Shaohua Ma¹

¹ Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China

² UNC/NCSU Joint Department of Bioengineering, North Carolina State University, Raleigh, NC 27695

1. Summary

- Bioprinting has shown great potential in the construction of biomimetic structures.
- Laser-based bioprinting can achieve both high cell viability and resolution, enabling the printing sophisticated models with high precision.
- Laser-based bioprinting faces many unsolved challenges associated with the preservation of cell function in processed cells.
- Laser-based bioprinting of structures containing one or more cell types has been used in recent years to create artificial tissues and in vitro cancer models.

2. Abstract

3D printing, or additive manufacturing, is a process for patterning functional materials based on the digital 3D model. A bioink that contains cells, growth factors, and biomaterials are utilized for assisting cells to develop into tissues and organs. As a promising technique in regenerative medicine, many kinds of bioprinting platforms have been utilized, including extrusion-based bioprinting, inkjet bioprinting, and laser-based bioprinting. Laser-based bioprinting, a kind of bioprinting technology using the laser as the energy source, has advantages over other methods. Compared with inkjet bioprinting and extrusion-based bioprinting, laser-based bioprinting is nozzle-free, which makes it a valid tool that can adapt to the viscosity of the bioink; the cell viability is also improved because of elimination of nozzle, which could cause cell damage when the bioinks flow through a nozzle. Accurate tuning of the laser source and bioink may provide a higher resolution for reconstruction of tissue that

may be transplanted used as an *in vitro* disease model. Here, we introduce the mechanism of this technology and the essential factors in the process of laser-based bioprinting. Then, the most potential applications are listed, including tissue engineering and cancer models. Finally, we present the challenges and opportunities faced by laser-based bioprinting.

3. Introduction

According to official statistics, 80,000 individuals in the United States required organ transplantation because of a disease or an accident, with less than a third receiving one from 2000 to 2001. Tissue engineering (TE) (2) was conceived to generate artificial tissue or organs in vitro. Guiding the self-organization of stem cells to normal tissue (3) and constructing a scaffold or environment for cells to develop through bioprinting are the most common methods.(4) As for bioprinting, there are three approaches: autonomous self-assembly, biomimetic processing, and mini-tissues that can be applied to bioprinting.(5) The principle of these approaches is to build a proper environment or scaffold for cells to develop. Collagen, growth factors, and glycoprotein are components of the extracellular matrix (ECM), which supports cell activity.(6, 7) The main steps in bioprinting include imaging, design, printing of the tissue, and use with patients as shown in Figure 1. Structural data collected from the human body through 3D imaging systems such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US) can be used to create a digital representation of tissue architecture.(8) Finally, cells and biomaterials are patterned in a layer by layer manner into a tissue-like structure.

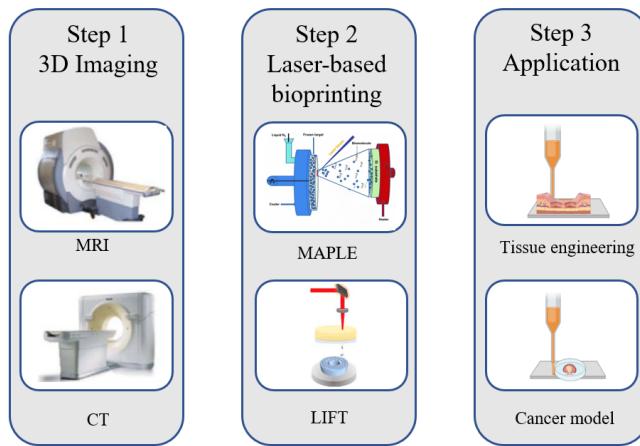


Fig 1. The main process of laser-based bioprinting. The first step is data collection; MRI and CT are used for imaging the targeted tissue and environment to guide the bioprinting. Then, bioink is patterned into the desired structure. There are two commonly used laser-based bioprinting methods, namely MAPLE-based and LIFT-based methods. After the 3D model is constructed, it can be used for tissue repair or as an in vitro cancer model. The LIFT image recreated from (9) tissue engineering and the cancer model image are generated using BioRender.com

After the concept of bioprinting was initially described, a variety of bioprinting techniques have emerged in recent years. Extrusion-based bioprinting, inkjet bioprinting, and laser-based bioprinting (LBB) have emerged as powerful technologies for biological reconstruction with micrometer or sub-micrometer scale resolution. (10) In addition, electrospinning is used to create nanofibers; scaffolds containing nanofibers, living cells, and signaling molecules for tissue repair and wound healing.(11) Nanofibers with core–sheath structures have been prepared; core–sheath nanofibers may possess better biological functionality or mechanical properties than single-phase nanofibers.(12) A pressurized gyration approach been recently developed to create nanofibers to produce scaffolds at a higher rate and with lower power consumption than electrospinning.(13)

Matrix-assisted pulsed-laser evaporation direct-write (MAPLE DW) and laser induced forward transfer (LIFT) are types of LBB for nozzle-free direct writing of the matter. MAPLE DW is a direct-write approach that can construct sophisticated tissue structures. The reliability and high precision of MAPLE DW permit its use for processing biomaterials and living cells. (14) LIFT was applied for metal deposition in 1986 (15); it has been successfully tested for the deposition of different materials, mainly metals (16-20), ceramics, and high-temperature superconductors (21). This technology has also been demonstrated to be able to be an efficient tool for liquid-phase or solid-phase material deposition. A wide range of biomaterials such as proteins and DNA can be patterned into 2D and 3D structures with high resolution through LBB.(22) A typical LIFT bioprinting apparatus consists of a laser source, donor ribbon, and collector substrate. The laser source provides the energy for the device to propel the bioink droplet toward a collector substrate. The donor ribbon is both the carrier and the protector of the bioink. An energy absorption layer (EAL) can be added in the middle of the bioink layer and the donor ribbon, which is used to absorb the laser energy and prevent negative effects on cell viability. The collector substrate contains a donor ribbon to receive the bioink droplets. For the sake of minimizing the influence of laser on cell viability, absorption film-assisted LIFT (AFA-LIFT) (23) and blister-actuated LIFT (BA-LIFT) (24) were proposed by adding an energy absorption layer (EAL).

The mechanism and application of LBB have been actively investigated by researchers; however, the complexity of LBB is a largely unexplored area of bioprinting research. This review considers the mechanism and factors

that have a deep influence on the final result in LBB. Furthermore, based on engineered tissues and cancer models, we summarize the applications of LBB. Finally, the challenges and prospects of LBB technology are addressed.

4. Printing mechanisms

The jetting dynamic of targeted material driven by laser printing has been studied by fast-imaging acquisition.(25-27) The process of laser printing can be considered in three parts: 1) application of a high energy laser pulse to a thin biomaterial layer, 2) high-pressure bubble generation, and 3) ejection of a bioink droplet (Figure 2). In the first stage, after the focused laser irradiates the interface between the donor ribbon and the bioink layer, the bioink or EAL absorbs the energy transferred from the laser source. As a result, a steep increase of temperature within a small volume of bioink is generated. Due to rapid vaporization of bioink, a tiny bubble with high pressure will be formed in the bioink layer.(28) Owing to the presence of donor ribbon, the bubble tends to expand toward the free surface of the bioink layer, pushing the bioink vertically. Consequently, a gradient of pressure appears between the bubble sides and its pole; a liquid stream converges at the pole along the bubble walls and increases the pressure at the pole. When the pressure reaches the critical point of bubble collapse, two jets moving in opposite directions are generated. (29) The jet moves from the donor layer at high speed, resulting in ink deposition.

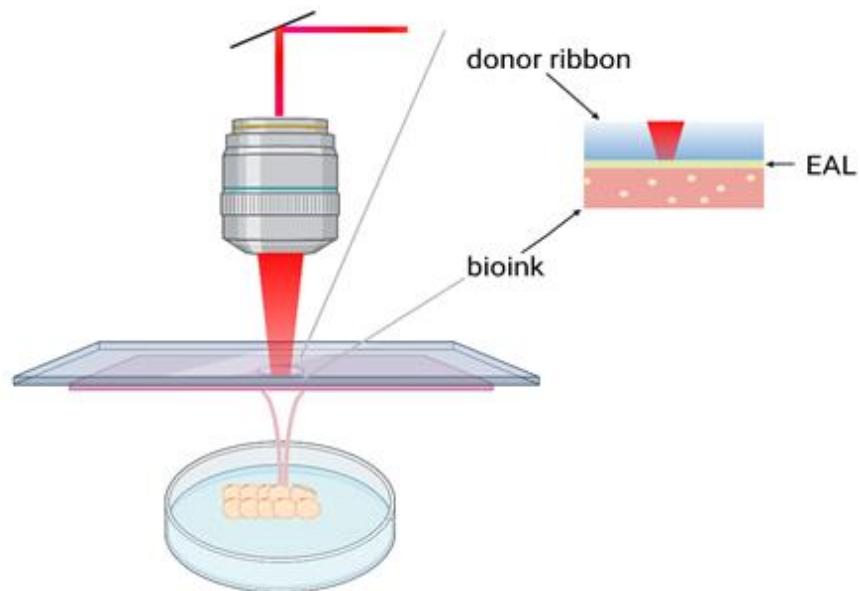


Fig 2. Schematic of LBB, the typical apparatus of LBB consists of three parts, laser source, donor ribbon, and collector substrate. The bioink layer is attached to transparent donor ribbon; an EAL can be added between the donor ribbon and the bioink layer. The laser is focused on the interface between EAL and bioink layer; a tiny bubble is generated by a steep temperature increase, and a jet of material is directed towards the collector substrate. With proper tuning of the laser and the bioink, a homogeneous voxel is printed. The image was created with BioRender.com.

Many improvements have been made to LIFT. For example, absorbing film-assisted laser induced forward transfer (AFA-LIFT), which uses a sacrificial layer of a metal on the ribbon to interact with the laser, improved the cell viability by preventing direct interaction between the bioink and the laser. In (30), silver films with 50–400 nm thickness were applied as absorbing layers. Blister-actuated LIFT (BA-LIFT) contains a thick layer that isolates the cavitation bubble from the bioink (31); a layer of polyimide tape is treated as a thick absorption layer where the blister is formed. The laser energy is absorbed by the thick layer completely; therefore, the shear force of the bubble has a limited effect on cells. The cell membrane may be negatively affected when it is exposed to the stress waves by bubble expansion, creating membrane permeability that enables either permanent rupture or detrimental influx of medium.(32) In the laser induced backward transfer (LIBT) setup, the collector is transparent to the laser wavelength; the laser energy moves through the collector plate and is focused on the donor substrate.(33) In (34), an infrared femtosecond laser is treated as an energy source, and the donor substrate consists of a flat glass slide where a washer has been glued, forming a tank recipient which contains bioink. No absorbing layer is used; the laser is focused on various depths of the bioink to determine the optimal processing parameters. Laser induced side transfer (LIST) utilizes low-energy laser pulses to create a transient micro-bubble at the distal region of a glass microcapillary that contains the bioink (Figure 3 (a)). This process leads to the ejection of the cell-containing micro-jet in a direction that is perpendicular to the irradiation axis.(35) LIST is similar inkjet bioprinting; it treats the glass microcapillary as a nozzle rather than a nozzle-free printing method like LIFT bioprinting. The laser replaces the microheater or a piezoelectric transducer as an energy source to generate bubbles to deposit bioink on the substrate. High-viscosity bioinks were noted to also be suitable for LIST; no

bioink clogging issues were noted.(35) Matrix-assisted pulsed laser evaporation-direct-write (MAPLE-DW) is a laser-based forward transfer direct writing approach that involves bioink processing in ambient air; this approach was introduced by Chrisey et al.(36) In this approach, the laser beam softly transfers a micrometer-dimension amount of bioink to the substrate.(37) The basic setup of MAPLE-DW, which is similar to that of AFA-LIFT, utilizes a low-powered pulsed laser in the ultraviolet or near-ultraviolet region (Figure 3 (b)).

Several significant strengths are associated with LIFT. The use of an EAL is associated with minimal effect on the cell viability or function; this approach is capable of positioning small droplets containing cells and/or biomaterials at high resolution (e.g., resolution at the single-cell level).(38) Patterned cells and biomaterials can be used to generate precise *vitro* models to explore intercellular communication and cell-environment interactions that can enable better understanding of disease and human development processes.(39) Furthermore, this approach provides precise control over the deposition of high-viscosity material and deposition of cells with high densities.(40)

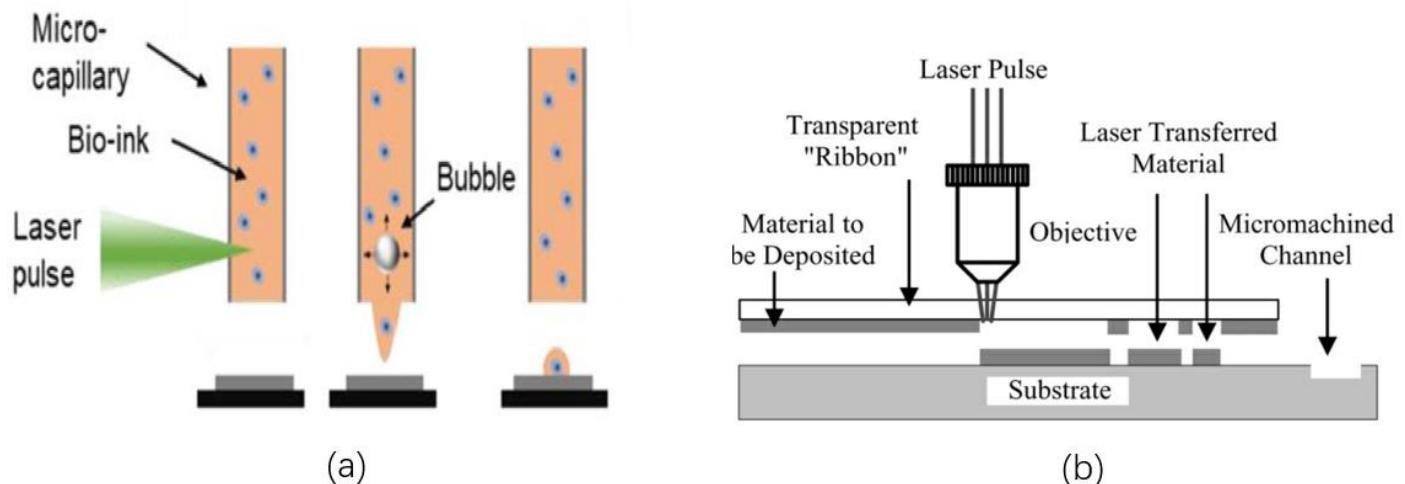


Fig 3. (a) Overview of LIST. The laser is focused on the capillary distal end to generate a small bubble; a small volume of bioink is pushed towards the substrate.(35) (b) Overview of MAPLE DW system.(41)

Optimization of the bioink viscosity, laser pulse energy, and other processing parameters can minimize cell or DNA damage for tissue engineering applications. (42) For example, the laser source, the optical focusing scheme,

the pulse duration, and the laser wavelength are important parameters.(43) 1064 nm (44-46) and 193 nm (47-49) laser source is used by most researchers for bioprinting applications.(50)

It was shown that infrared lasers do not affect the physicochemical characteristics of bioinks.(51) The energy of the 2940 nm laser is mostly absorbed by water, enabling bioprinting with hydrogel EALs or the avoidance of the use of EALs.(52) Ultraviolet lasers emit light with a higher energy density; in the absence of an EAL, ultraviolet light-bioink interactions may be associated with DNA double-strand breaks. (50) The 193 nm wavelength laser energy is absorbed by many hydrogels; this laser is compatible with hydrogel EALs or the avoidance of the use of EALs.(47) The pulse duration of the laser also defines the LBB transfer dynamics.(51) Nanosecond and femtosecond laser have been applied for LIFT bioprinting; femtosecond laser sources may also be useful for LIFT bioprinting.(54)

In addition to the laser source, the transfer process is also affected by the bioink thickness on the ribbon and the rheological behavior of the bioink (50); altering the rheological behavior of the bioink changes the jetting dynamics, droplet formation, and optimal processing regime. Generally, bioinks consist of cells as well as materials such as hydrogels; alginate, gelatin, Matrigel®, and collagen are commonly used in laser-based bioprinting; the cellular viability rate is affected by the type of material.(53) The hydrogel concentrations could affect the formation of droplets of the bioink. The viscosity of hydrogel is highly related to its concentration.(40) For example, higher alginate concentrations resulted in lower cell viability levels; this phenomenon was associated with nutrient transport limitations at higher alginate concentrations.(55)

Cells are another crucial component of bioinks. For tissue engineering, cell type depends on the study goals and cell availability. Animal-derived cells such as mouse fibroblasts (NIH3T3) and mouse bone marrow-derived mesenchymal stromal cells (mBE-MSC) are used in many LIFT bioprinting studies. The concentration and distribution of cells in bioinks also affect the process of bioprinting; avoiding local variations in the homogeneity of cell-laden bioinks is an important parameter in bioink development.(47)

5. Applications

Tissue engineering

LBB has the capability for printing a combination of cells with other biological compounds in a layer-by-layer fashion to generate living structures for the replacement of diseased or defective biological tissues.(56) For example, Sorkio et al. used a system with a 2940 nm laser and hydrogel EAL containing glycerol and Matrigel® to fabricate 3D cornea-mimicking structures.(45) Like building blocks, Pirlo et al. stacked 2D bio-papers to form a 3D structure.(57) The stacking structures supported the formation of human umbilical vein endothelial cell (HUVEC) networks. Wu and Ringeisen fabricated 3D branch structures through the co-culture of human umbilical vein smooth muscle cells (HUVSMCs) and HUVECs.(58) Tissue patches are also promising structures for use in tissue engineering. Gaebel et al. fabricated a cardiac patch containing HUVECs and hMSCs; they printed the cells onto a defined-pattern scaffold made from polyester urethane urea; the patch was transplanted for healing infarcted rat hearts.(59) Laser-based bioprinting has also been applied to bone regeneration. Enhancement of infarcted heart function after application of the patches was demonstrated. Keriquel et al. showed that LIFT can be used as an in situ surgical therapy. Mesenchymal stromal cells were be printed along with nanoscale hydroxyapatite and collagen to facilitate bone regeneration in a murine calvaria defect model; this in situ approach shows great potential for tissue repair.(60)

Cancer models

The mechanisms associated with the development and growth of tumors have not been fully understood. 3D bioprinting can also be used to build disease models such as cancer models to study cell-cell interactions and cell-environment interactions.(39). Bioprinting can be used to create cancer models with an appropriate of cells and biomaterials in various regions. This approach be used to build an in vitro replica of a tumor. Furthermore, the characteristics of the tumor microenvironment that affect the biological function of the tumor may be replicated.(61) In addition, the high resolution of LBB makes it a useful tool to build a cancer model that enables the evaluation of cancer cell interactions with normal cells.

In (62), a single layer of mouse cancer cells was printed using LBB to verify the feasibility of a heterogeneous multilayer cancer model; this approach showed that the embryonal carcinoma cells retained their differentiated features after printing. In (63), human osteosarcoma (MG-63) cells were patterned into a three-dimensional structure. The cells retained high viability rates after processing; more than 95% of printed cells exhibited normal function. Based on LBB, a miniaturized spheroids array model of pancreatic ductal adenocarcinoma was constructed to study the factors that contribute to cancer progression.(64) This cancer model in vitro could also be used to understand the effect of chemotherapy on cancer cells. In (61), a human breast cancer model was prepared using LBB to investigate the relationship between tumor size and drug action. Core-shell structures containing self-aggregating embryonic stem cells and breast cancer cells were demonstrated. Variations in the uptake of transferrin, a ligand for receptor-mediated delivery, were associated with differences in spheroid size.

6. Conclusions

Current limitations

1. The long-term impact on cell function after the LBB process needs to be addressed. Gene expression and other function-specific markers can be used to evaluate cells after printing to demonstrate the functionality of LBB.
2. Efforts have been made to optimize the laser and bioink for each LBB application. The laser and bioink are two important factors that define cell viability and printing resolution associated with the LBB process.

Prospects

1. As mentioned above, the development of complex multicellular systems using LBB is a focus of recently published and ongoing research efforts. Many natural tissues contain several cell types that form a complex microenvironment; cell-cell interactions enable the normal function of these tissues. Since each cell type may require a different culture environment, balancing the environmental parameters in systems containing multiple cell types remains a challenge.
2. Computer-aid cell kinetics modeling is essential for understanding the function of LBB-processed structures. For example, cells will migrate, proliferate, and undergo apoptosis after the LBB process. In addition, the

LBB-processed structure will undergo structural changes due to cell metabolism over time. Predicting the structure and function of LBB-processed structures over time will enable the development of structures with enhanced functionality.

LBB is an emerging approach for bioprinting; although LBB technology is associated with several limitations, it shows significant promise for use in both tissue engineering and as a manufacturing approach for in vitro models.

Acknowledgments

The authors acknowledge Alexander K. Nguyen for discussions on the LIFT process. We have no financial conflicts of interest.

Author Contributions

writing-original draft preparation, and writing—review and editing, H.Y., K.H.Y.; Writing—review and editing, supervision, S.M. and R.J.N.

Funding

The authors wish to acknowledge support from North Carolina State University’s GEARS (Global Education, Academics and Research Skills) Program.

References

1. Ozbolat IT, Chen H. Manufacturing living things. *Industrial Engineer*. 2013;45(1):30-4.
2. Langer R, Vacanti JP. Tissue engineering. *Science*. 1993 May 14;260(5110):920-6.
3. Woodford C, Zandstra PW. Tissue engineering 2.0: guiding self-organization during pluripotent stem cell differentiation. *Current opinion in biotechnology*. 2012 Oct 1;23(5):810-9.
4. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. *Biomaterials*. 2009 Apr 1;30(12):2164-74.

5. Murphy SV, Atala A. 3D bioprinting of tissues and organs. *Nature biotechnology*. 2014 Aug;32(8):773-85.
6. Blache U, Stevens MM, Gentleman E. Harnessing the secreted extracellular matrix to engineer tissues. *Nature biomedical engineering*. 2020 Apr;4(4):357-63.
7. Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G. Tissue engineering and developmental biology: going biomimetic. *Tissue engineering*. 2006 Dec 1;12(12):3265-83.
8. Horn TJ, Harrysson OL. Overview of current additive manufacturing technologies and selected applications. *Science progress*. 2012 Sep;95(3):255-82.
9. Sun W, Starly B, Daly AC, Burdick JA, Groll J, Skeldon G, Shu W, Sakai Y, Shinohara M, Nishikawa M, Jang J. The bioprinting roadmap. *Biofabrication*. 2020 Feb 7;12(2):022002.
10. Koo S, Santoni SM, Gao BZ, Grigoropoulos CP, Ma Z. Laser-assisted biofabrication in tissue engineering and regenerative medicine. *Journal of Materials Research*. 2017 Jan;32(1):128-42.
11. Chen S, John JV, McCarthy A, Xie J. New forms of electrospun nanofiber materials for biomedical applications. *Journal of Materials Chemistry B*. 2020;8(17):3733-46.
12. Mahalingam S, Huo S, Homer-Vanniasinkam S, Edirisinghe M. Generation of core-sheath polymer nanofibers by pressurised gyration. *Polymers*. 2020 Aug;12(8):1709.
13. Alenezi H, Cam ME, Edirisinghe M. Experimental and theoretical investigation of the fluid behavior during polymeric fiber formation with and without pressure. *Applied Physics Reviews*. 2019 Dec 15;6(4):041401.11.
14. Riggs BC, Dias AD, Schiele NR, Cristescu R, Huang Y, Corr DT, Chrisey DB. Matrix-assisted pulsed laser methods for biofabrication. *MRS bulletin*. 2011 Dec;36(12):1043-50.
15. Bohandy J, Kim BF, Adrian FJ. Metal deposition from a supported metal film using an excimer laser. *Journal of Applied Physics*. 1986 Aug 15;60(4):1538-9.
16. Kántor Z, Szörényi T. Dynamics of long-pulse laser transfer of micrometer-sized metal patterns as followed by time-resolved measurements of reflectivity and transmittance. *Journal of applied physics*. 1995 Aug 15;78(4):2775-81.

17. Sano T, Yamada H, Nakayama T, Miyamoto I. Experimental investigation of laser induced forward transfer process of metal thin films. *Applied surface science*. 2002 Jan 28;186(1-4):221-6.

18. Bohandy J, Kim BF, Adrian FJ, Jette AN. Metal deposition at 532 nm using a laser transfer technique. *Journal of Applied Physics*. 1988 Feb 15;63(4):1158-62.

19. Zergioti I, Mailis S, Vainos NA, Papakonstantinou P, Kalpouzos C, Grigoropoulos CP, Fotakis C. Microdeposition of metal and oxide structures using ultrashort laser pulses. *Applied Physics A: Materials Science & Processing*. 1998 Feb 9;66:579-82.

20. Esrom H, Zhang JY, Kogelschatz U, Pedraza AJ. New approach of a laser-induced forward transfer for deposition of patterned thin metal films. *Applied surface science*. 1995 Feb 1;86(1-4):202-7.

21. Fogarassy E, Fuchs C, Kerhervé F, Hauchecorne G, Perriere J. Laser-induced forward transfer of high-T_c YBaCuO and BiSrCaCuO superconducting thin films. *Journal of applied physics*. 1989 Jul 1;66(1):457-9.

22. Fernández-Pradas JM, Florian C, Caballero-Lucas F, Sopeña P, Morenza JL, Serra P. Laser-induced forward transfer: Propelling liquids with light. *Applied Surface Science*. 2017 Oct 1;418:559-64.

23. Hopp B, Smausz T, Antal Z, Kresz N, Bor Z, Chrisey D. Absorbing film assisted laser induced forward transfer of fungi (*Trichoderma conidia*). *Journal of applied physics*. 2004 Sep 15;96(6):3478-81.

24. Turkoz E, Fardel R, Arnold CB. Advances in blister-actuated laser-induced forward transfer (ba-lift). *Laser Printing of Functional Materials: 3D Microfabrication, Electronics and Biomedicine*. 2018 Jan 4:91-121.

25. Zhang Z, Xiong R, Mei R, Huang Y, Chrisey DB. Time-resolved imaging study of jetting dynamics during laser printing of viscoelastic alginate solutions. *Langmuir*. 2015 Jun 16;31(23):6447-56.

26. Zhang Z, Xiong R, Corr DT, Huang Y. Study of impingement types and printing quality during laser printing of viscoelastic alginate solutions. *Langmuir*. 2016 Mar 29;32(12):3004-14.

27. Ali M, Pages E, Ducom A, Fontaine A, Guillemot F. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. *Biofabrication*. 2014 Sep 12;6(4):045001.

28. Fernández-Pradas JM, Serra P. Laser-induced forward transfer: a method for printing functional inks. *Crystals*. 2020 Aug;10(8):651.

29. Duocastella M, Fernández-Pradas JM, Morenza JL, Serra P. Time-resolved imaging of the laser forward transfer of liquids. *Journal of applied physics*. 2009 Oct 15;106(8):084907.

30. Smausz T, Hopp B, Kecskeméti G, Bor Z. Study on metal microparticle content of the material transferred with absorbing film assisted laser induced forward transfer when using silver absorbing layer. *Applied surface science*. 2006 Apr 30;252(13):4738-42.

31. Marquez A, Gómez-Fontela M, Lauzurica S, Candorcio-Simon R, Munoz-Martin D, Morales M, Ubago M, Toledo C, Lauzurica P, Molpeceres C. Fluorescence enhanced BA-LIFT for single cell detection and isolation. *Biofabrication*. 2020 Feb 26;12(2):025019.

32. Lee S, Doukas AG. Laser-generated stress waves and their effects on the cell membrane. *IEEE Journal of Selected Topics in Quantum Electronics*. 1999 Jul;5(4):997-1003.

33. Kuznetsov AI, Koch J, Chichkov BN. Laser-induced backward transfer of gold nanodroplets. *Optics express*. 2009 Oct 12;17(21):18820-5.

34. Desrus H, Chassagne B, Moizan F, Devillard R, Petit S, Kling R, Catros S. Effective parameters for film-free femtosecond laser assisted bioprinting. *Applied optics*. 2016 May 10;55(14):3879-86.

35. Orimi HE, Kolkooh SS, Hooker E, Narayanswamy S, Larrivée B, Bouteopoulos C. Drop-on-demand cell bioprinting via Laser Induced Side Transfer (LIST). *Scientific reports*. 2020 Jun 16;10(1):1-9.

36. Chrisey DB, Pique A, Modi R, Wu HD, Auyeung RC, Young HD. Direct writing of conformal mesoscopic electronic devices by MAPLE DW. *Applied Surface Science*. 2000 Dec 15;168(1-4):345-52.

37. Caricato AP, Luches A. Applications of the matrix-assisted pulsed laser evaporation method for the deposition of organic, biological and nanoparticle thin films: a review. *Applied Physics A*. 2011 Nov;105(3):565-82.

38. Riester D, Budde J, Gach C, Gillner A, Wehner M. High speed photography of laser induced forward transfer (LIFT) of single and double-layered transfer layers for single cell transfer. *Journal of Laser Micro Nanoengineering*. 2016 Jul 1;11(2):199.

39. Mao S, Pang Y, Liu T, Shao Y, He J, Yang H, Mao Y, Sun W. Bioprinting of in vitro tumor models for personalized cancer treatment: a review. *Biofabrication*. 2020 Jul 7;12(4):042001.

40. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J, Guillemot F. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. *Biomaterials*. 2010 Oct 1;31(28):7250-6.

41. Wu PK, Ringeisen BR, Callahan J, Brooks M, Bubb DM, Wu HD, Piqué A, Spargo B, McGill RA, Chrisey DB. The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. *Thin Solid Films*. 2001 Nov 1;398:607-14.

42. Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N, Bernemann I, Glasmacher B, Chichkov B. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. *Tissue Engineering Part C: Methods*. 2011 Jan 1;17(1):79-87.

43. Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB. Laser-based direct-write techniques for cell printing. *Biofabrication*. 2010 Jul 12;2(3):032001.

44. Koch L, Deiwick A, Franke A, Schwanke K, Haverich A, Zweigerdt R, Chichkov B. Laser bioprinting of human induced pluripotent stem cells—the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. *Biofabrication*. 2018 Apr 25;10(3):035005.

45. Sorkio A, Koch L, Koivusalo L, Deiwick A, Miettinen S, Chichkov B, Skottman H. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. *Biomaterials*. 2018 Jul 1;171:57-71.

46. Kawecki F, Clafshenkel WP, Auger FA, Bourget JM, Fradette J, Devillard R. Self-assembled human osseous cell sheets as living biopapers for the laser-assisted bioprinting of human endothelial cells. *Biofabrication*. 2018 Apr 30;10(3):035006.

47. Zhang Z, Xu C, Xiong R, Chrisey DB, Huang Y. Effects of living cells on the bioink printability during laser printing. *Biomicrofluidics*. 2017 May 15;11(3):034120.

48. Zhang Z, Chai W, Xiong R, Zhou L, Huang Y. Printing-induced cell injury evaluation during laser printing of 3T3 mouse fibroblasts. *Biofabrication*. 2017 Jun 20;9(2):025038.

49. Vinson BT, Phamduy TB, Shipman J, Riggs B, Strong AL, Sklare SC, Murfee WL, Burow ME, Bunnell BA, Huang Y, Chrisey DB. Laser direct-write based fabrication of a spatially-defined, biomimetic construct as a potential model for breast cancer cell invasion into adipose tissue. *Biofabrication*. 2017 May 11;9(2):025013.

50. Antoshin AA, Churbanov SN, Minaev NV, Zhang D, Zhang Y, Shpichka AI, Timashev PS. LIFT-bioprinting, is it worth it?. *Bioprinting*. 2019 Sep 1;15:e00052.

51. Rémy M, Kériquel V, Correa MM, Guillotin B, Guillemot F. Creation of highly defined mesenchymal stem cell patterns in three dimensions by laser-assisted bioprinting. *Journal of Nanotechnology in Engineering and Medicine*. 2015 May 1;6(2):021006.

52. Ishikawa I, Aoki A, Takasaki AA. Potential applications of Erbium: YAG laser in periodontics. *Journal of periodontal research*. 2004 Aug;39(4):275-85.

53. Yusupov V, Churbanov S, Churbanova E, Bardakova K, Antoshin A, Evlashin S, Timashev P, Minaev N. Laser-induced Forward transfer hydrogel printing: A defined route for highly controlled process. *International Journal of Bioprinting*. 2020;6(3);271.

54. Petit S, Kérourédan O, Devillard R, Cormier E. Femtosecond versus picosecond laser pulses for film-free laser bioprinting. *Applied optics*. 2017 Nov 1;56(31):8648-55.

55. Gudapati H, Yan J, Huang Y, Chrisey DB. Alginate gelation-induced cell death during laser-assisted cell printing. *Biofabrication*. 2014 Aug 14;6(3):035022.

56. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. *Nature biomedical engineering*. 2020 Apr;4(4):370-80.

57. Pirlo RK, Wu P, Liu J, Ringeisen B. PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP™. *Biotechnology and bioengineering*. 2012 Jan;109(1):262-73.

58. Wu PK, Ringeisen BR. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). *Biofabrication*. 2010 Mar 10;2(1):014111.

59. Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, Gruene M, Toelk A, Wang W, Mark P, Wang F. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. *Biomaterials*. 2011 Dec 1;32(35):9218-30.

60. Keriquel V, Oliveira H, Rémy M, Ziane S, Delmond S, Rousseau B, Rey S, Catros S, Amédée J, Guillemot F, Fricain JC. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. *Scientific reports*. 2017 May 11;7(1):1-0.

61. Kingsley DM, Roberge CL, Rudkouskaya A, Faulkner DE, Barroso M, Intes X, Corr DT. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. *Acta Biomaterialia*. 2019 Sep 1;95:357-70.

62. Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S, Auyeung RY, Spargo BJ. Laser printing of pluripotent embryonal carcinoma cells. *Tissue engineering*. 2004 Mar 1;10(3-4):483-91.

63. Barron JA, Spargo BJ, Ringeisen BR. Biological laser printing of three dimensional cellular structures. *Applied Physics A*. 2004 Sep;79(4):1027-30.

64. Hakobyan D, Médina C, Dusserre N, Stachowicz ML, Handschin C, Fricain JC, Guillermet-Guibert J, Oliveira H. Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. *Biofabrication*. 2020 Apr 10;12(3):035001.