VOLUMES OF LINE BUNDLES ON SCHEMES

STEVEN DALE CUTKOSKY AND ROBERTO NUNEZ

ABSTRACT. Volumes of line bundles are known to exist as limits on
generically reduced projective schemes. However, it is not known if they
always exist as limits on more general projective schemes. We show
that they do always exist as a limit on a codimension one subscheme of
a nonsingular projective variety.

1. INTRODUCTION

Suppose that .Z is a line bundle on a d-dimensional proper scheme X
over a field k. The volume of .Z is defined to be the lim sup

. dim; T'(X, .£"™)
(1.1) vol(ZL) = hTrlllsolip /I .
This volume is defined in [11, Definition 2.2.26]. Many important properties
of the volume are derived in this book. The most fundamental question is
if this volume exists as a limit. The volume does in fact exist as a limit in
many cases. The following theorem appears in [2]. Let N'x be the nilradical
of a proper scheme X.

Theorem 1.1. ([2, Theorem 10.7]) Suppose that X is a proper scheme of
dimension d over a field k such that dim Nx < d and £ is a line bundle on
X. Then the limit

dimy D(X, 2™
im y
n—00 n
exists, and so vol(ZL) exists as a limit.

The condition on the nilradical just means that the scheme is reduced at
all generic points of d-dimensional components.

An example of a line bundle on a projective variety where the limit in
Theorem 1.1 is an irrational number is given in Example 4 of Section 7 of
[3].

Theorem 1.1 is proven for line bundles on a nonsingular variety over an
algebraically closed field of characteristic zero by Lazarsfeld (Example 11.4.7
[11]) using Fujita approximation (Fujita [7]). This result is extended by
Takagi [16] using De Jong’s theory of alterations [4] to hold on nonsingular
varieties over algebraically fields of all characteristics p > 0.
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Theorem 1.1 has been proven by Okounkov [15] for section rings of ample
line bundles, for section rings of big line bundles and for graded linear series
by Lazarsfeld and Mustata [12] and Kaveh and Khovanskii [9] when £ is an
algebraically closed field. A local form of this result is given by Fulger in [6].
These last proofs use an ingenious “cone method” introduced by Okounkov
to reduce to a problem of counting points in an integral semigroup. All of
these proofs require the assumption that k is algebraically closed. The proof
of Theorem 1.1 also uses this wonderful cone method.

The cone method applies to graded linear series. Suppose that X is a
proper scheme over a field k. A graded linear series on X is a graded k-
subalgebra L = &,>0Ly, of a section ring &,>oI'(X, £") of a line bundle .#
on X.

The following theorem is a consequence of [2, Theorem 1.4] and [2, The-
orem 10.3].

Theorem 1.2. Suppose that X is a d-dimensional projective scheme over
a field k with d > 0. Let Nx be the nilradical of X. Then the following are
equivalent

1) For every graded linear series L on X there exists a positive integer
r (depending on L) such that the limit
. dlmk L,«n
lim —————
n—oo n

exists.
2) dimNx < d.

The statement 1) = 2) of Theorem 1.2 ([2, Theorem 1.4]) is established
in [3, Theorem 10.3]. It is shown that in any proper k-scheme X such that
dim Nx = d there exists a graded linear series L which has the property
that the limit of 1) does not exist (for any 7). The construction in this proof
is not a section ring of a line bundle. Thus we have the following interesting
question.

Question 1.3. Suppose that X is a projective d-dimensional scheme over a
field and .& is a line bundle on X. Does the volume vol(.¥) exist as a limit?

This question has a positive answer if dim Nx < d by Theorem 1.1.
In this paper we give a positive answer to this question for arbitrary
codimension 1 subschemes of a nonsingular variety.

Theorem 1.4. Let X be a nonsingular projective variety over an arbitrary
field. Let Y C X be a closed subscheme of codimension 1. Let £ be an
invertible sheaf on'Y and d = dimY . Then the limit

. dimg I(Y, .2™)
hm —a
n—oo n

exists, and so vol(L) exists as a limit.
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Since the submission of this paper, Nunez [14] has proven that if X is
a projective variety whose nilradical A(X) satisfies A'(X)? = 0, then the
volumes of all line bundles on X exist.

2. NOTATION AND TERMINOLOGY

Let X be a proper scheme of dimension d over a field k. Let .Z and F be
an invertible sheaf and a coherent sheaf on X, respectively. We define the

£ -volume of F to be

. RO (X, F @ L)
vol ¢ (F) = 117r1n_>solip 7l
where h0(X, F ® £") = dim, H*(X, F @ £").
We say that the .Z-volume of F exists as a limit if the limsup above is
actually a limit. Observe that the .Z-volume of Ox is the volume of .Z.
The volume of a graded linear series L (defined in Section 1) is:

d. K LTL
vol(L) = ligljgp ;I;T.
The index of a graded linear series L on a proper variety is defined to be
(2.1) m(L) =[Z: G

where G is the subgroup of Z generated by {n | L, # 0}.

The following theorem was proven in [12] for certain linear series on pro-
jective varieties over an algebraically closed field and in [9] for arbitrary
linear series on projective varieties over algebraically closed fields. The fol-
lowing theorem follows from [3, Theorem 8.1].

Theorem 2.1. Suppose that X is a d-dimensional proper variety over a
field k, and L is a graded linear series on X. Let m = m(L) be the index of
L. Then

lim —_—
n—o00 n
exists.

When X is a variety, we define the rank of any coherent Ox-module F to
be the dimension of the Ox ,-vector space F,, where 7 is the generic point
of X.

We will often call an invertible sheaf a line bundle.

3. PRELIMINARY RESULTS
3.1. Existence of Limits and Exact Sequences.
Lemma 3.1. Let X be a proper scheme of dimension d over a field k. Let

Z be an invertible sheaf on X. Let

0—=F —Fo—F3—0
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be an exact sequence of coherent Ox-modules. Let {1,2,3} = {i, j,k}. Sup-
pose that the L -volume of F; exists as a limit and that F}, is supported on
a closed subset of dimension strictly less than dim(X). Then the £-volume
of Fj ewists as a limit as well. Moreover,

vol ¢ (Fi) = vol #(Fj).

The proof of this lemma follows from taking cohomology of the short
exact sequence tensored with .Z"”, and the fact that if F is a coherent sheaf
whose support has dimension less than d, then the limit

. (X, FeZLm)
lim 3
n—0 n
for all i (by [5, Proposition 1.31] or [10]).

=0

Corollary 3.2. Let X be a proper scheme over a field k. Let £ be an
invertible sheaf on X. Let

0O=-K—=+F—=G—-C—=0

be an exact sequence of coherent Ox-modules. Suppose that K and C are
supported on closed subsets of dimension strictly less than dim(X). Then
the L -volume of F exists as a limit if and only if the £ -volume of G exists
as a limit and then

vol ¢ (F) = vol #(G).

Proof. We break up the given exact sequence into the following two exact
sequences:

0-K—>F—=>F/K—=0

and

0—-F/K—-G—C—0.

If the Z-volume of F exists as a limit, we apply Lemma 3.1 to the first
sequence to conclude that the same is true for F/K and vol»(F/K) =
vol #(F). Then, by Lemma 3.1 and the second sequence, we see that the
Z-volume of G exists as a limit and vol ¢(F) = vol ¢ (F/K) = vol #(G).
An analogous argument shows that if the .Z-volume of G exists as a limit,
then the same is true for F and vol »(F) = vol #(G).
O

3.2. Non-zero-divisors, Invertible Sheaves, and Cartier Divisors.

Lemma 3.3. Let X be a projective scheme over a field. Let A4 be an
invertible sheaf on X and let o/ be an ample invertible sheaf. Then, there
exists an ng € N such that H*(X, o™ @ #) contains a non-zero-divisor for
n > ng.
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Proof. The ideal sheaf 0 of Ox has an irredundant primary decomposition
0=91N---N 9, where the Q; are primary ideal sheaves for some closed
integral subvarieties V; of X. The V; are the associated subvarieties of X.
Such a decomposition can be found by sheafifying a homogeneous irredun-
dant primary decomposition of the zero ideal in any projective embedding
of X.

Let z1,...,xs € X be a set of distinct closed points such that each V;
contains at least one of these points. Let Z = [[;_, Z,,, where Z,, is the
ideal sheaf of the point z;. We have a short exact sequence of Ox-modules

0—=-7Z—0Ox = @®;_10, — 0.

Tensor this exact sequence with .&/™®.# and take cohomology. By Serre’s
Vanishing Theorem, for n > 0, we have an exact sequence

HY(X, " @ M) = D_1k(z;) = 0,

where k(z;) is the residue field of the point z;. Thus, there exists a section
s € HY(X, ™ ® &) which does not vanish at any of the ;. It follows that
s does not vanish at any of the V; and so s is not a zero-divisor on Oy.

O

For any scheme X, the association D — Ox (D) gives an injective ho-
momorphism from the group of Cartier divisors modulo linear equivalence
to Pic(X) (See [8, Corollary I1.6.14]). Nakai [13] has shown that if X is a
projective scheme over an infinite field then this homomorphism is an iso-
morphism. We deduce the known fact that this is also the case for projective
schemes over arbitrary fields.

Corollary 3.4. Let X be a projective scheme over a field. Then, for
any invertible sheaf £ on X, there exists a Cartier divisor D such that
£ ~ Ox(D). Moreover, under the identification described above, Pic(X) is
generated by effective divisors.

Proof. Choose an ample line bundle & on X. After perhaps replacing <

with a positive power of itself, we can use Lemma 3.3 with .# = Ox to find

a non-zero-divisor t € HY(X, 7). Then & ~ Ox(H), where H := div(t).
Again by Lemma 3.3, for some n € N, we can find a non-zero-divisor

s€ H(X,0x(nH)® Z).

Thus, Ox(nH) ® £ ~ Ox(div(s)). Setting D = div(s) — nH, we get that
L ~0 X (D)

For the last statement of the corollary, simply notice that D is a difference
of effective divisors.

O

If D and E are Cartier divisors on a projective scheme X, we will write
D ~ E if the Ox-modules Ox (D) and Ox (E) are isomorphic.
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3.3. A lemma on volume. We now show that volumes are unaffected by
tensoring with invertible sheaves.

Lemma 3.5. Let X be a projective scheme over a field. Let £ and .4 be
invertible sheaves on X. Suppose that the volume of £ exists as a limit.
Then vol ¢ (M) also exists as a limit and

vol g (M) = vol(L).

Proof. By Corollary 3.4, we can assume that .# = Ox (D) for some Cartier
divisor D. Let us consider first the case where D is effective. We have a
short exact sequence

0—-0x(-D)—-0Ox -0p—0
which, after tensoring with Ox (D), becomes

0—0x —-0x(D)— Op®0Ox (D) —0.
Now, the volume of . ® Ox = £ exists by assumption. Moreover, the
sheaf Op ® Ox (D) is supported on a proper closed set of X. Thus, by
Lemma 3.1, the limit

. RV (X,0x (D)® L") . RY(X,.2™)
lim = = lim —————~=
n—o00 n n—o0 n
exists.
Suppose now that D is an arbitrary Cartier divisor. Thanks to Corol-
lary 3.4, we can write D ~ A — B where both A and B are effective Cartier
divisors. Since B is effective, we have a short exact sequence

0— Ox (—B) = Ox — O — 0.
We can tensor the sequence above with Ox (A) and get

0—0Ox(D)—0Ox(A) - 0p®0x(A) — 0.
Again by Lemma 3.1 we conclude that

. W (X,0x (D) ® 2" . WY (X,0x(A) @2
lim = lim
n—o00 nd n—oo nd
where the limit on the right exists since A is effective as proven above.
Furthermore,

)

0 n 0 n
n—o00 nd n—o00 nd
Thus, vol o () exists as a limit and vol ¢ (#) = vol(.£) whenever # is
invertible.

O

Remark. With the assumptions of the above lemma, we have that vol(.Z)
exists as a limit if and only if vol o (#) exists as a limit.
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3.4. Ideal sheaves on nonsingular varieties. The following result is es-
sentially [1, Lemma 13.8]. It is stated in [1] for nonsingular quasi-projective
varieties over algebraically closed fields, but the proof given there carries
over without modifications to the case of arbitrary fields.

Lemma 3.6 ([1, Lemma 13.8]). Suppose that X is a quasi-projective non-
singular variety over an arbitrary field and T is an ideal sheaf on X. Then
there exists an effective divisor D on X and an ideal sheaf J on X such
that the support of Ox /J has codimension greater than or equal to 2 in X
and T = Ox(—D)J.

4. NILRADICALS AND VOLUMES

The following proposition is the main ingredient in our proof of Theo-
rem 1.4.

Proposition 4.1. Let X be an irreducible projective scheme over a field k.
Let N be the nilradical of X. Let £ be an invertible sheaf on X. Suppose
that vol o (N @) exists as a limit for any invertible sheaf 4. Then vol(Z)
exists as a limit as well.

Proof. Let o/ be an ample invertible sheaf on X. We tensor the short exact

sequence

res

(4.1) 0N —=0x = Ox
with &7 to obtain

—0

red

0N > o 25 200y, — 0.

red
By Lemma 3.3, after perhaps replacing A with a positive power of itself,
we can find a section a € H°(X,.A) such that « is not a zero-divisor. This
condition is equivalent to the fact that a does not vanish along any asso-
ciated subvariety of X. In particular, since X,.q is one of the associated
subvarieties, we have that the restriction a|x, , of o to X,.q is nonzero.
The section « induces a short exact sequence

(4.2) 0= 1% O0x =0 —0,

where H = div(a) is a (d — 1)-dimensional scheme.

Similarly, after perhaps replacing & with a positive power of &7, we can
assume that there is a section 8 € H(X, o ® .£) such that its restriction
Blx,.q 10 Xreq is nonzero.

For all n € NT we have restriction maps

®,: HO(X, ") = H)(Xyea, (ZL]x,.)")-
Notice that the vector spaces L, = ®, (H°(X,£™)) fit together into a
linear series L associated to .Z|x, , on X,cq.
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We consider now the following two cases:
Case 1: Suppose that there exists ng > 0 such that the restriction map

HO(Xa ‘Q{_l ® gno) — HO(XT6d>JZ{_1 & ($|de)n0)
is not zero. That is, there exists v € HY(X, &' ® £™) such that its
restriction v|x, , to X,eq is not zero. But then f|x, , ® v|x,., is a nonzero
element of L,,4+1 since X,¢q is a variety. Moreover, for the same reason,
alx,., ®v|x,., is a nonzero element of L, and this implies that the linear
series L has index 1(the index of L is defined in (2.1)).
By [2, Theorem 8.1] (Theorem 2.1), the limit

. dimg L,
lim —
n—00 n
exists.
After tensoring (4.1) with £™, taking global sections, using the additivity
of dimension, and dividing by n¢ we get that the limit

WX, v . dimg L, .. WYX, NeZLm)
lim ——= = lim ———— + lim
n—o00 nd n—o00 nd n—oo nd
exists, since the limit on the right exists by taking .# = Ox in our assump-

tion. In particular, we observe that

vol (L) = vol(L) 4+ vol ¢ (N).
Case 2: Suppose now that for all n > 0 the restriction map

H (X, o '@ L") = H (Xyea, @ @ (ZL]x,..)")
is the zero map. After tensoring (4.1) with &/ ~! ® £" and taking global
sections we see that this implies that

H X Nod o) =H(X, a4 'o2Lm
for all n > 0. Since vol (N ® o/ ~!) exists by assumption, we have that the
limits

. RX Ned oL . WX, e
lim = lim
n—o0 nd n—oo nd
exist.
Now we tensor the short exact sequence (4.2) with ™ to get

05t P 5 "= 0y L™ —0.
Since the scheme H is (d—1)-dimensional, by [5, Proposition 1.31], h°(H, (Z|H)")
can grow at most as n?~!. Thus, after taking global sections we see that the
limit
RO(X, ™ hO(X, o/ 1 "
limi( ’g)zlim (X, 22"

n—00 nd n—00 nd
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exists and in this case

vol (L) = vol (N ® @7 1).

5. PROOF OF THEOREM 1.4

As a first step towards proving Theorem 1.4, we address the case where
the subscheme Y has an invertible ideal sheaf.

Proposition 5.1. Let X be a nonsingular projective variety over an arbi-
trary field. Let D be an effective divisor. Regard D as a closed subscheme
of X with ideal sheaf Ox(—D) and let £ be a invertible sheaf on D. Then

the volume of £ exists as a limit.

We begin by proving this result in the special case where D has a single
irreducible component.

Proposition 5.2. Let X be a nonsingular projective variety over an arbi-
trary field and let E be a prime divisor on X. For m € N, let mE be the
closed subscheme of X with ideal sheaf Ox(—mE). Let £ be an invertible
sheaf on mE. Then, the volume of £ exists as a limit.

Proof. We proceed by induction on m, where the case m = 1 follows from
[2, Proposition 8.1] since E is a projective variety. Fix some m > 1. Let
us begin by noticing that since X is nonsingular, the nilradical A/ of the
scheme mFE is equal to Ox(—F) ® O(;,—1)g- Thus, we can regard N as an
invertible O(,,_1)g-module.

By Proposition 4.1, it is enough to prove that vol ¢ (N ® .#) exists as a
limit for any invertible sheaf .# on mE. By induction, vol(Z|(;,—1)g) exists
as a limit. Furthermore, the sheaf N’ ® .# is an invertible O(m—1)g-module.
By Lemma 3.5,

fUOlf‘(m—l)E N @A) = vol(L|(m-1)E)

and these volumes exist as limits. Now, for any n € N, since NV is both an
Ompe-module and an O(,,_1)g-module, we have that

H®(mE,N @ .4 © 2" = H® (m ~ 1)E,N @ M & (L)m-1yp)")

and hence the limit

0 n
voly(N @ A) = lim H (mBEN& #3827

n—00 nd

=volg|, s N @A)

exists. Moreover, we see that

vol g (N @ M) = vol(L|(m-1)E)-
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Proof of Proposition 5.1. Consider an arbitrary effective divisor D = Z§:1 a; B;
on X. We have an exact sequence

t
(5.1) O%K%OD%@O%.EZ.*)CHO.
i=1
We claim that X = 0 and C' is supported in dimension at most d — 1. Take
p € D and let f; be a local equation for F; at p. The stalk at p of the map
Op — @ioaiEi is
O N O
X.p X.p

2

g DT
which is an injection since Ox j is a UFD and the f; are irreducible elements.
Further, let p € E; \ U E;. Then, except for f;, all the f; become units
in Ox, and hence the map Op, — @®;0q,E, p is an isomorphism. Thus,
supp(C) C Uix;(E; N Ej). Each volume vol(Z|q,E,;) exists as a limit by
Proposition 5.2 and so vol(Z ® (©;04,E,;)) = >, v0l(L4;E,;) exists as a
limit. Thus we can apply Lemma 3.1 to the exact sequence (5.1) to see that

t
vol(L) =Y vol(Lla,5,)
i=1
exists as a limit.

O

We are now ready to give the proof of Theorem 1.4. Recall that X is
a nonsingular projective variety over an arbitrary field and Y is a closed
subscheme of X of codimension 1. We have that dimY = d so that dim X =
d+1.

Proof of Theorem 1.4. Let Zy C Ox be the ideal sheaf of Y. By Lemma 3.6,
Iy = Ox(—D)J where D > 0 and codim (supp (Ox/J)) > 2. The natural
morphism of Oy-modules

Ox . Ox Oy
Ox(-D)J  Ox(-D) = J
is an isomorphism away from the support of Ox/J. Moreover, we have
that vol ¢ (Ox/Ox(—D)) = vol(£|p) exists as a limit by Proposition 5.1
and vol (Ox/J) = 0 by [5, Proposition 1.31]. Thus, by Corollary 3.2, the
volume of .Z exists as a limit and

vol(ZL) = vol(Z|p).



VOLUMES OF LINE BUNDLES ON SCHEMES 11

REFERENCES

[1] Cutkosky, S. D. (2018). Introduction to Algebraic Geometry (Vol. 188).
American Mathematical Soc.

[2] Cutkosky, S. D. (2014). Asymptotic multiplicities of graded families of ideals
and linear series. Advances in Mathematics, 264, 55-113.

[3] Cutkosky, S. D. and V. Srinivas V. (1993), On a problem of Zariski on
dimensions of linear systems, Ann. Math. 137, 531 - 559.

[4] de Jong, A. J. (1996), Smoothness, semi-stability and alterations, Publica-
tions Mathematiques I.H.E.S. 83, 51 - 93.

[5] Debarre, O. (2013). Higher-dimensional algebraic geometry. Springer Science
& Business Media.

[6] Fulger, M. Local volumes of Cartier divisors over normal algebraic varieties,
Ann. Inst. Fourier 63, 1993 - 1847.

[7] Fujita, T. (1994). Approximating Zariski decomposition of big line bundles,
Kodai Math. J. 17, 1-3.

[8] Hartshorne, R. (2013). Algebraic geometry (Vol. 52). Springer Science and
Business Media.

[9] Kaveh, K., and Khovanskii, A. G. (2012). Newton-Okounkov bodies, semi-
groups of integral points, graded algebras and intersection theory. Annals of
Mathematics, 925-978.

[10] Kiironya, A. (2006). Asymptotic cohomological functions on projective va-
rieties, Amer. J. Math. 128, 1475 - 1519.

[11] Lazarsfeld, R. K. (2017). Positivity in Algebraic Geometry, I and II, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, vols 48 and 49, Springer Ver-
lag, Berlin 2004.

[12] Lazarsfeld, R., and Mustata, M. (2009). Convex bodies associated to linear
series. In Annales scientifiques de I’'Ecole normale supérieure (Vol. 42, No.
5, pp. 783-835).

[13] Nakai, Y. (1963). Some fundamental lemmas on projective schemes. Trans-
actions of the American Mathematical Society, 109(2), 296-302.

[14] Nuiflez, R. (2020), Volumes of line bundles as limits on generically nonre-
duced schemes, arXiv:2009.08249.

[15] Okounkov, A. (2003). Why would multiplicities be log-concave?, in The orbit
method in geometry and physics, Progr. Math. 213, 329-347.

[16] Takagi, S. (2007), Fujita’s approximation theorem in positive characteristics,
J. Math. Kyoto Univ, 47, 179 - 202.

STEVEN DALE CUTKOSKY, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIs-
SOURI, CoLuMBIA, MO 65211, USA
Email address: cutkoskys@missouri.edu

ROBERTO NUNEZ, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA,
MO 65211, USA
Email address: rnhvb@mail .missouri.edu



	1. Introduction
	2. Notation and Terminology
	3. Preliminary Results
	3.1. Existence of Limits and Exact Sequences
	3.2. Non-zero-divisors, Invertible Sheaves, and Cartier Divisors
	3.3. A lemma on volume
	3.4. Ideal sheaves on nonsingular varieties

	4. Nilradicals and Volumes
	5. Proof of thm: existencelimitscodimension1inNonsingular
	References

