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Abstract: We consider the problem of change point detection for high-
dimensional distributions in a location family when the dimension can be
much larger than the sample size. In change point analysis, the widely used
cumulative sum (CUSUM) statistics are sensitive to outliers and heavy-
tailed distributions. In this paper, we propose a robust, tuning-free (i.e.,
fully data-dependent), and easy-to-implement change point test that enjoys
strong theoretical guarantees. To achieve the robust purpose in a nonpara-
metric setting, we formulate the change point detection in the multivariate
U-statistics framework with anti-symmetric and nonlinear kernels. Specif-
ically, the within-sample noise is canceled out by anti-symmetry of the
kernel, while the signal distortion under certain nonlinear kernels can be
controlled such that the between-sample change point signal is magnitude
preserving. A (half) jackknife multiplier bootstrap (JMB) tailored to the
change point detection setting is proposed to calibrate the distribution of
our �∞-norm aggregated test statistic. Subject to mild moment conditions
on kernels, we derive the uniform rates of convergence for the JMB to ap-
proximate the sampling distribution of the test statistic, and analyze its
size and power properties. Extensions to multiple change point testing and
estimation are discussed with illustration from numerical studies.
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1. Introduction

Change point detection problems are commonly seen in many statistical and
scientific areas including functional data analysis [6, 3], time series inspection [7,
35, 60], panel data study [19, 51, 34, 8], with applications to fields of biomedical
engineering [4, 62], genomics [58], financial revenue returns [5, 20, 8] among many
others. Statistical testing and estimation of change points have long history with
extensive literature [24, 7, 32, 5, 9, 43, 42]. This paper studies the problem of
change point detection for high-dimensional distributions (i.e., p � n) from a
location family with shift parameter. Let Xi ∼ Fi, i = 1, . . . , n be a sequence
of independent random vectors taking values in R

p. Our goal is to test whether
or not there is a location shift in the distribution functions Fi. Precisely, let
F = {Fθ(x) = F (x − θ) : θ ∈ R

p} be a location family indexed by the shift
parameter θ, where F = F0 is the standard distribution in F (F0 is arbitrary).
We consider the following hypothesis testing problem:

H0 : Xi
i.i.d.∼ F versus H1 : X1, . . . , Xm

i.i.d.∼ F and Xm+1, . . . , Xn
i.i.d.∼ Fθ,

for some (unknown) m ∈ {1, . . . , n− 1} and θ �= 0.



1098 M. Yu and X. Chen

An advantage of this model is the flexibility of F whose mean parameter can
be non-existing. Before highlighting the robustness from it, we shall first il-
lustrate below the intuition of constructing a test statistic for separating H0

and H1. For brevity, we denote G = Fθ (i.e., G(x) = F (x − θ)) for a fixed θ,
and Yj = Xm+j , j = 1, . . . , n − m. With this notation, we have X1, . . . , Xm

that are independent and identically distributed (i.i.d.) with distribution F and
Y1, . . . , Yn−m that are i.i.d. with distribution G such that the change point
detection problem boils down to the two-sample testing problem for the shift
parameter θ with an unknown change point location m. Since m is unknown,
we may take all possible ordered pairs in the whole sample Xi, i = 1, . . . , n,
such that the within-sample noise (i.e., in each X and Y samples, separately)
cancels out and the between-sample signal is properly preserved under H1. Note
that our change point hypothesis on the location family F is the same as the
location-shift model:

Xi = θ 1(i > m) + ξi, i = 1, . . . , n, where ξi
i.i.d.∼ F are random vectors in R

p .
(1.1)

Viewing θ as the mean-shift, a natural choice for detecting the existence of a
change point shift is to consider the noise cancellations in the empirical mean
differences:

Un =
∑

1�i<j�n

(Xi −Xj). (1.2)

Under H0, we have E[Un] = 0 so that there is no mean-shift signal contained in
Un and the sampling behavior of Un is purely determined by the random noises
ξ1, . . . , ξn. On the other hand, if H1 is true, then E[Un] = −m(n−m)θ. Thus,
if the mean difference θ between the two samples is large enough to dominate
the random behavior of Un (due to noise {ξi}ni=1) under H0, then the statistic
would be able to distinguish H0 between H1.

In practice, a main concern of using Un in (1.2) is its robustness. Specifically,
the (empirical) mean functional is not robust in the sense that its influence
function is unbounded. Further, in the high-dimensional setting, robustness is
a challenging issue since information contained in the data is rather limited.
To address this problem, we view the shift signal θ as a more general location
parameter in the distribution family F without referring to the means. This
simple observation brings a major advantage that change point detection can be
made possible even in cases where the means are undefined (such as the Cauchy
distribution). To achieve the robustness purpose in a nonparametric setting, we
consider a general nonlinear form of (1.2) in the U -statistics framework. Let
h : Rp × R

p → R
d be an anti-symmetric kernel, i.e., h(x, y) = −h(y, x) for all

x, y ∈ R
p. We propose the statistic

Tn = Tn(X
n
1 ) = n1/2

(
n

2

)−1 ∑
1�i<j�n

h(Xi, Xj) (1.3)

to test for H0 against H1. Clearly, Tn is a (scaled) U -statistic of order two. The
anti-symmetry of the kernel h plays a key role in testing for the change point
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in terms of noise cancellations. To see this, under H0 we have E[h(X1, X2)] = 0
and E[Tn] = 0. Observe that

Tn =
2

n1/2(n− 1)

⎧⎨
⎩ ∑

1�i<j�m

h(Xi, Xj) +

m∑
i=1

n−m∑
j=1

h(Xi, Yj) +
∑

1�i<j�n−m

h(Yi, Yj)

⎫⎬
⎭ .

Thus if H1 is true, then E[Tn] ≈ 2n−3/2m(n−m)θh, where θh = E[h(X1, Y1)] is
the change point signal through the kernel h. If θh has a suitable lower bound,
then we expect that Tn can separate H0 and H1. For instance, consider the sign
kernel h(x, y) = sign(x− y), where sign(x) is the component-wise sign operator
of x ∈ R

p (i.e., for j = 1, . . . , p, sign(xj) = −1, 0, 1 if xj < 0, xj = 0, xj > 0,
respectively). Then,

θh,j = E[sign(X1,j − Y1,j)] = 1− 2P(X1,j � Y1,j) = 1− 2P(Δj � θj),

where Δj = ξ1,j − ξm+1,j is a random variable with symmetric distribution.
In particular, if F is the distribution in R

p with independent components such
that each component admits a continuous probability density function φj , j =
1, . . . , p, then under local alternatives (i.e., θ ≈ 0) we have θh,j ≈ −2 φ∗

j (0) θj ,
where φ∗

j is the convolution of the densities of ξ1,j and −ξm+1,j . Hence, θh and θ
have the same magnitude, implying that signal distortion under the sign kernel
is only up to a multiplicative constant.

The mean difference statistic Un in (1.2) is a special case of Tn with the
linear kernel h(x1, x2) = x1 − x2 and d = p. The sign kernel h(x, y) = sign(x−
y) considered above is another important anti-symmetric and bounded kernel,
which is useful if the means are not robust or undefined. Specifically, for the
sign kernel, component-wise median of Tn corresponds to the Hodges-Lehmann
estimator for the component-wise population median of the location difference
before and after the change point [31]. In the univariate case p = d = 1, it is
known that the Hodges-Lehmann estimator is a highly robust version of sample
mean difference (with the linear kernel) against heavy-tailed distributions, and it
has a much higher asymptotic relative efficiency 3/π ≈ 95% (with respect to the
mean) than the sample median at normality [55]. In addition, when the change
point location m is known, Tn is also equivalent to the classical nonparametric
Mann-Whitney test statistic (see e.g., Chapter 12 in [53]).

Since Tn is a d-dimensional random vector, we need to aggregate its compo-
nents to make a decision rule for hypothesis testing. We construct the critical
regions based on the Kolmogorov-Smirnov (i.e., the �∞-norm) type aggregation
of Tn, namely our change point test statistic is

Tn := |Tn|∞ = max
1�k�d

|Tnk|. (1.4)

Then H0 is rejected if Tn is larger than a critical value such as the (1 − α)
quantile of Tn. In Section 2, we will introduce a (Gaussian) multiplier bootstrap
to calibrate the distribution of Tn, and we will establish its non-asymptotic
validity in the high-dimensional setting in Section 3.
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We point out that our test statistic has comparable computational and sta-
tistical properties to the widely used cumulative sum (CUSUM) procedures in
literature. For a classical treatment of the CUSUM (and other change point)
statistics, we refer to [21] as a monograph on the change point analysis. The
CUSUM statistics are defined as a sequence of (dependent) random vectors in
R

p of the form

Zn(s) =

(
s(n− s)

n

)1/2
(
1

s

s∑
i=1

Xi −
1

n− s

n∑
i=s+1

Xi

)
, s = 1, . . . , n− 1.

(1.5)
It is obvious that the CUSUM statistics have a sequential nature in that the
left and right sample averages are examined along all possible change point lo-
cations, which is necessary to estimate the location m. However, if the goal is
only testing for the existence of a change point, this (local) sequential compar-
ison strategy is not as efficient as a global test (1.3), both computationally and
statistically. Consider d = p, which is the case for the sign and linear kernels.
For a general nonlinear kernel, computational cost is O(n2p) for Tn (and also
for Tn). If the kernel is linear (i.e., h(x, y) = x−y), then the computational cost
can be further reduced to O(np) for Tn effortlessly. Thus we call Tn is the global
one-pass Mann-Whitney type test statistic. In contrast, the computational cost
for {Zn(s)}n−1

s=1 is O(n2p) which can reduces to O(np) [39] via dynamic pro-
gramming. Statistically, it has been shown in [61, 38] that a boundary removal
procedure is needed for the (bootstrapped) CUSUM change point test to achieve
the size validity since the distributions of Zn(s) are difficult to approximate at
the boundary points. On the contrary, the test statistic Tn proposed in this
paper does not remove any boundary points because we are able to approxi-
mate the distribution of Tn based on majority of the data points in the sample
X1, . . . , Xn. Thus it is expected that Tn achieves faster rate of convergence in
the error-in-size for the bootstrap calibration. See Remark 2 ahead for a detailed
comparison.

1.1. Literature review and our contribution

Single change point inference has been extensively studied in literature such as
[21, 29, 33] for univariate or fixed multivariate setting.

Using anti-symmetric kernels in U -statistics for location change can be traced
back to [49], which considered a CUSUM-type sequence of two-sample Mann-
Whitney statistics with the sign kernel and took the maximum absolute value
along the sequence as the test statistic. Asymptotic properties of such statistic
for univariate data have been studied in the settings of online and offline change
point problems [22, 27, 30, 40]. To the best of our knowledge, the proposed global
one-pass Mann-Whitney type change point detection procedure in (1.3) based
on a general anti-symmetric kernel without using a CUSUM-type sequence is
new in literature, even in the one-dimensional case.

Second, owing to increasing ability to handle large dimensional data, the focus
migrates to a more challenging stage in high dimension that allows p → ∞ faster
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than n. Therefore, signal aggregation across dimension becomes influential in the
designing of statistics and algorithm. For instance, [38, 61, 57] dealt with sparse
change (i.e. mean structure changes in a sparse subset of coordinates), while
[8, 34, 25] considered �2-type aggregation for dense change. Taking both cases
into account, [25] proposed a scan test statistic aiming at sparser change coupled
with their linear statistic in inference. [19] adopted additional weighted CUSUM-
type factor along coordinate to make the double-CUSUM statistic more adaptive
in detection. The detection rate are also investigated in terms of sparsity and
signal magnitude as well as change point location [25, 44, 59]. We show that our
result achieves optimal minimax rate, cf. Remark 5. For multiple change point
detection which is more challenging and essential in applications, we will discuss
a backward detection (BD) algorithm without introducing external statistics. We
will also discuss an extension to dependent sequence in Remark 6.

Among the change point literature, mean change are widely explored using
CUSUM statistics [38, 61, 19, 20], least-square type statistics [8, 10], U -statistics
[56] and some other kernel based methods [48, 12, 2]. In practice, when error
terms are heavy-tailed, Gaussianity assumption is beyond salvation and becomes
too restrictive. This concern especially highlights the potential of robust non-
parametric methodology (such as nonlinear projection) to avoid direct measure
on mean or higher moments in data distributions. Note that the U -statistic
approach, including our method in this paper, is conducting “global” charac-
terization (either one-sample or two-sample) via kernels to have change point
signals peak. Such kernel concept is different from kernel density estimator or
kernel distance measure for individual observations. Specifically, [48] proposed
CUSUM variant statistic based on kernel transferred data points; [12] smoothed
left and right mean function using kernel density estimation; [2] applied kernel
least-squares criterion to quantify segmentation candidate and estimate change
point locations. Compared to aforementioned papers, our U -statistic approach
starts from a pure testing point-of-view that does not rely on any tuning of
bandwidth or threshold.

The rest of this paper proceeds as follows. The bootstrap calibration for the
distribution of Tn is described in Section 2. Main results for size validity and
power properties of the bootstrap test are derived in Section 3. Extensions to
multiple change point scenario are elaborated in Section 4. We report simulation
study results in Section 5 and real data examples in Section 6. All proofs with
auxiliary lemmas are given in Appendix.

1.2. Notation

For q > 0 and a generic vector x = (x1, . . . , xp)
T ∈ R

p, we denote |x|q =
(
∑p

i=1 |xi|q)1/q for the �q-norm of x and we write |x| = |x|2. For a random vari-
able X, denote ‖X‖q = (E|X|q)1/q. For β > 0, let ψβ(x) = exp(xβ) − 1 be a
function defined on [0,∞) and Lψβ

be the collection of all real-valued random
variables X such that E[ψβ(|X|/C)] < ∞ for some C > 0. For X ∈ Lψβ

,
define ‖X‖ψβ

= inf{C > 0 : E[ψβ(|X|/C)] � 1}. Then, for β ∈ [1,∞),



1102 M. Yu and X. Chen

‖ · ‖ψβ
is an Orlicz norm and (Lψβ

, ‖ · ‖ψβ
) is a Banach space [41]. For β ∈

(0, 1), ‖ · ‖ψβ
is a quasi-norm, i.e., there exists a constant C(β) > 0 such

that ‖X + Y ‖ψβ
� C(β)(‖X‖ψβ

+ ‖Y ‖ψβ
) holds for all X,Y ∈ Lψβ

[1]. Let
ρ(X,Y ) = supt∈R

|P(X � t) − P(Y � t)| be the Kolmogorov distance between
two random variables X and Y . We shall use C1, C2, . . . and K1,K2, . . . to de-
note positive and finite constants that may have different values. The symbol
� (or �,�) denotes greater than (or equal to, smaller than) some rates with
constants omitted and ∨ (or ∧) means the maximum (or minimum) of terms.

Throughout the paper, we assume n � 3 and d � 3 (i.e., logn � 1 and
log d � 1) to simplify some statements and all inference works for d = 1, 2.

2. Bootstrap calibration

To approximate the distribution of Tn, we propose the following bootstrap pro-
cedure. Let e1, . . . , en be i.i.d. N(0, 1) random variables that are independent of
Xn

1 . Define the bootstrapped U -statistic and test statistic as

T �
n = n1/2

(
n

2

)−1 n∑
i=1

⎧⎨
⎩

n∑
j=i+1

h(Xi, Xj)

⎫⎬
⎭ ei and T

�

n := |T �
n|∞ = max

1�k�d
|T �

nk|.

(2.1)
We reject H0 if Tn > q

T
�
n|Xn

1
(1− α), where

q
T

�
n|Xn

1
(1− α) = inf

{
t ∈ R : P(T

�

n � t | Xn
1 ) � 1− α

}
is the (1−α) quantile of the conditional distribution of T

�

n given Xn
1 . Before pre-

senting the rigorous validity of our bootstrap test procedure in terms of the size
and power in Section 3, we shall explain the reason why it can (asymptotically)
separate H0 against H1.

First, suppose H0 is true, i.e., X1, . . . , Xn are i.i.d. with distribution F . Let
g(x) = E[h(x,X1)] and f(x1, x2) = h(x1, x2) − g(x1) + g(x2). Due to the anti-
symmetry of h, we have f(x1, x2) = −f(x2, x1). Then the Hoeffding decompo-
sition of Tn is

Tn = n−1/2
n∑

i=1

2(n− 2i+ 1)

n− 1
g(Xi)︸ ︷︷ ︸

Ln

+n1/2

(
n

2

)−1 ∑
1�i<j�n

f(Xi, Xj)

︸ ︷︷ ︸
Rn

. (2.2)

Since f is degenerate, the linear part Ln is expected to be a leading term of
Tn, and the distribution of Ln (denote as L(Ln)) can be approximated by its
Gaussian analog via matching the first and second moments [17, 13]. Since
E[Ln] = 0 and

Cov(Ln) =
4(n+ 1)

3(n− 1)
Γ ≈ 4

3
Γ with Γ = Cov(g(X1)),
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we expect that L(Ln) ≈ L(Z), where Z ∼ N(0, 4Γ/3), for a large sample size
n. Once the Gaussian approximation result for Tn by Z is established, the rest
of the work is to compare the distribution of Z and the conditional distribution
of T �

n given Xn
1 , both of which are mean-zero Gaussians. Since Cov(T �

n | Xn
1 ) =

4
n(n−1)2

∑n
i=1

∑n
j=i+1

∑n
k=i+1 h(Xi, Xj)h(Xi, Xk)

T , standard concentration in-

equalities for (one-sample) U -statistics in [13] yield that Cov(T �
n | Xn

1 ) ≈ 4Γ/3.
Thus we expect that L(T �

n | Xn
1 ) ≈ L(Z) ≈ L(Tn), from which the size validity

of the bootstrapped change point test based on T
�

n follows.

Next, we suppose H1 is true, i.e., X1, . . . , Xm are i.i.d. with distribution F
and Y1, . . . , Yn−m are i.i.d. with distribution G such that G(x) = F (x− θ) and
Yi = Xi+m, i = 1, . . . , n − m. To study the power property, the main idea is
to consider the two-sample Hoeffding decomposition of Tn that is similar to
(2.2). Suppose h(x + c, y + c) = h(x, y) is shift-invariant in terms of location
parameter. Let θh = E[h(X1, Y1)],

Gh(x)=E[h(x, Y1)]−θh=g(x−θ)−θh, Fh(y)=E[h(X1, y)]−θh=−g(y)−θh,

such that E[Gh(X1)] = E[Fh(Y1)] = 0. Define

f̆(x, y) = h(x, y)−Gh(x)− Fh(y)− θh,

which is degenerate such that E[f̆(X1, Y1)] = E[f̆(X1, y)] = E[f̆(x, Y1)] = 0.
Under H1, we may split the U -statistic sum as∑

1�i<j�n

h(Xi, Xj) =
∑

1�i<j�m
m+1�i<j�n

h(Xi, Xj) +
∑

1�i�m
1�j�n−m

h(Xi, Yj),

where the first sum on the r.h.s. of the above equation has mean zero (again,
due to the anti-symmetry of h). Thus, to study the power of Tn (and its boot-

strapped version T
�

n), it suffices to analyze the second sum on the r.h.s. of the
last display above, which is a two-sample U -statistic Vn that admits the follow-
ing Hoeffding decomposition:

Vn =

m∑
i=1

n−m∑
j=1

h(Xi, Yj)

= m(n−m)θh + (n−m)

m∑
i=1

Gh(Xi) +m

n−m∑
j=1

Fh(Yj) +

m∑
i=1

n−m∑
j=1

f̆(Xi, Yj). (2.3)

Since the last three sums on the r.h.s. of (2.3) have mean zero, the power of the
proposed test is determined by the magnitude of θh and the sampling distribu-
tions of other terms involving no θh. For the latter, all of those distributions can
be well estimated and controlled as in H0 since they do not contain the change
point signal. Thus, if |θh|∞ obeys a minimal signal size requirement, then the

power of T
�

n would tend to one.
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Remark 1. It is interesting to note that our bootstrapped U -statistic T �
n in (2.1)

is closely related to the jackknife multiplier bootstrap (JMB) proposed in [13]
for high-dimensional U -statistics and in [15] for infinite-dimensional U -processes
with symmetric kernels. In both settings, the (unobserved) Hájek projection pro-
cess g(·) is estimated by the jackknife procedure and a multiplier bootstrap is
applied to the jackknife estimated process. In our change point detection con-
text, since the kernel is anti-symmetric, averaging the empirical Hájek process
by jackknife would simply be an estimate of zero. Thus, we may only use half
(e.g., a triangular array index subset i < j) of the JMB to estimate g(·). In view
of this connection, we call our bootstrap method is a JMB tailored to change
point detection.

3. Theoretical properties

Let X,X ′ be i.i.d. random vectors with distribution F . Recall that g(x) =
E[h(x,X)] and f(x1, x2) = h(x1, x2) − g(x1) + g(x2) in the Hoeffding decom-
position (2.2). Then E[g(X)] = 0 and E[f(x1, X

′)] = E[f(X,x2)] = 0 for all
x1, x2 ∈ R

p (i.e., f is degenerate). Denote Γ = Cov(g(X)) = E[g(X)T g(X)]. In
this section, we will characterize theoretical properties through d (the dimen-
sion of h) and θh (the expected mean change of h(X,X + θ)) rather than p (the
original dimension of data) or θ (the original location shift parameter) since the
whole procedure is constructed on top of h(X,X ′).

3.1. Size validity

We first establish the validity of the bootstrap approximation to the distribution
of Tn under H0. Let b > 0 be a constant and Dn � 1 which is allowed to increase
with n. We make the following assumptions.

(A1) Egj(X)2 � b2 for all j = 1, . . . , d.
(A2) E|hj(X,X ′)|2+k � Dk

n for all j = 1, . . . , d and k = 1, 2.
(A3) ‖hj(X,X ′)‖ψ1 � Dn for all j = 1, . . . , d.

Condition (A1) is a non-degeneracy requirement for the kernel h. Without (A1),
bootstrap may approximate constant observation through a random process
so that our method is not valid. Conditions (A2) and (A3) impose moment
conditions on the kernel h coupled with the data distribution F . For instance,
when the kernel is bounded, we do not explicitly impose additional assumption
on the data distribution F . Thus conditions (A2) and (A3) are more robust than
the canonical linear kernel when the data distribution has polynomial tails. In
our high-dimensional setting, we allow both p and d to increase with n.

Theorem 3.1 (Size validity of bootstrap test under H0). Suppose H0 is true
and (A1)-(A3) hold. Let γ ∈ (0, e−1) such that log(1/γ) � K log(nd) for some
constant K > 0. Then there exists a constant C := C(b,K) depending only on
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b and K such that

ρ(Tn, T
�

n | Xn
1 ) := sup

t∈R

∣∣∣P(Tn � t)− P(T
�

n � t | Xn
1 )
∣∣∣ � C�n (3.1)

holds with probability at least 1− γ, where

�n =

{
D2

n log
7(nd)

n

}1/6

. (3.2)

Consequently, we have

sup
α∈(0,1)

∣∣∣P(Tn � q
T

�
n|Xn

1
(α))− α

∣∣∣ � C�n + γ. (3.3)

In particular, if log d= o(n1/7), then P(Tn � q
T

�
n|Xn

1
(α))→ α uniformly in α ∈

(0,1) as n→∞.

Theorem 3.1 constructs non-asymptotic bootstrap validity in theory and

guarantees that the α-th quantile of bootstrapped statistic T
�

n|Xn
1 is always

close to the α-th quantile of test statistic Tn. Moreover, the error bound is
uniform over α ∈ (0, 1). The technique for proving Theorem 3.1 extends the
Gaussian approximation theory for U -statistics in [13], which focuses on sym-
metric kernels.

Remark 2 (Comparisons with the CUSUM-based statistics). [38] and [61] pro-
pose CUSUM-based bootstrap tests that require the removal of boundary points
for detecting change points in high-dimensional mean vectors. Specifically, for
the CUSUM statistics (1.5) considered in [61], the test statistic is of the form
Sn = maxs�s�n−s |Zn(s)|∞ for some boundary removal parameter s ∈ [1, n/2].
Accordingly, the Gaussian multiplier bootstrap version of Zn(s) is defined as:

Z�
n(s) =

(
n− s

ns

)1/2 s∑
i=1

ei(Xi −X
−
s )−

(
s

n(n− s)

)1/2 n∑
i=s+1

ei(Xi −X
+

s ),

where X
−
s = s−1

∑s
i=1 Xi and X

+

s = (n− s)−1
∑n

i=s+1 Xi are the left and right

sample averages at s, respectively. Z�
n(s) sequentially inspects the two-sample

distributions before and after all possible change point locations in the interval
[s, n−s]. Then for the special case of linear kernel h(x, y) = x−y and distribution
F satisfying the conditions (A1), (A2), and (A3), the rate of convergence for

S
�

n := maxs�s�n−s |Z�
n(s)|∞ shown in [61] obeys

ρ(Sn, S
�

n | Xn
1 ) � C

{
D2

n log
7(nd)

s

}1/6

with probability at least 1 − γ. Comparing the last display with the rate of

convergence for ρ(Tn, T
�

n | Xn
1 ) in (3.1) and (3.2), we see that the JMB method
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proposed here has better statistical properties than the Gaussian multiplier

bootstrap T
�

n without removing any boundary points in computing Tn and T
�

n.
Consequently this will reduce the error-in-size (3.3) for our bootstrap calibration

T
�

n. Empirical evidence for our algorithm with smaller error-in-size can be found
in Section 5. The main reason for the improved rate is due to the fact that we can
approximate the distribution of Tn based on the majority of the data points in
the entire sample X1, . . . , Xn. In addition, the proposed change point detector

Tn and its JMB calibration T
�

n can be viewed as a nonlinear and one-pass
version of the CUSUM statistics.

Remark 3 (Improved size validity of the bootstrap test). Proof of Theorem 3.1
is based on the Gaussian and bootstrap results for linear partial sums in high di-
mensions [17] and the maximal inequality for degenerate U -statistics [15]. Since
the work of [17], there have been substantial progresses being made to improve
the rate of convergence of Gaussian approximation for partial sums under var-
ious settings. For instance, [18] derived nearly optimal bound for the Gaussian
approximation over hyper-rectangles. Tailored to our change point detection set-
ting, if the correlation matrix of Ln is strongly non-degenerate (i.e., the smallest
eigenvalue of the correlation matrix of Ln is strictly positive), then the rate
of Gaussian approximation to Ln can be sharpened to n−1/2(logn)(log d)3/2.
Combining this with the maximal inequality for Rn, we can improve the overall

bound for ρ(Tn, T
�

n | Xn
1 ) to n−1/4(log(nd))1/2(logn)(log d)1/2.

Let σ∗ be the square root of the smallest eigenvalue of the correlation matrix
of g(X). We assume that

(A2’) E|hj(X,X ′)|4 � D2
n for all j = 1, . . . , d.

(A3’) ‖hj(X,X ′)‖ψ2 � Dn for all j = 1, . . . , d.

Theorem 3.2 (Improved size validity of the bootstrap test under H0). Suppose
H0 is true, σ2

∗ > 0, and (A1), (A2’) and (A3’) hold. Let γ ∈ (0, e−1) such that
log(1/γ) � K log(nd) for some constant K > 0. Then there exists a constant
C := C(b, σ∗,K) depending only on σ∗, b and K such that

ρ(Tn, T
�

n | Xn
1 ) � C�′

n (3.4)

holds with probability at least 1− γ, where

�′
n =

Dn(log(nd))
1/2(logn)(log d)1/2

n1/4
. (3.5)

3.2. Power analysis

Next, we analyze the power of the proposed testing under H1 in terms of
the change point signal θh = E[h(X,X ′ + θ)] and its location m. In our U -
statistic framework, the test implicitly depends on θ through θh, which the
signal strength characterization will relate to. As we have discussed earlier, the
signal magnitudes between θ and θh can be preserved for the robust sign kernel.
Under H1, we assume the following conditions.
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(B1) h is shift-invariant : h(x+ c, y + c) = h(x, y).
(B2) E|hj(X,X ′ + θ) − E[hj(X,X ′ + θ)]|2+� � D�

n for all j = 1, · · · , d
and � = 1, 2.

(B3) ||hj(X,X ′ + θ)− E[hj(X,X ′ + θ)]||ψ1 � Dn for all j = 1, · · · , d.

Condition (B1) is a natural requirement since the within-sample noise cancella-
tion by h should be invariant under data translation in the location-shift model
(1.1). Conditions (B2) and (B3) are in parallel with Condition (A2) and (A3)
in the sense that they quantify the moment and tail behaviors of the centered
version of the kernel h (w.r.t. the distribution F ). In particular, Conditions
(B2) and (B3) separate the location-shift signal from the mean-zero noise, and
if θ = 0, Conditions (B2) and (B3) reduce to Conditions (A2) and (A3). Our
next theorem characterizes the minimal signal strength for detecting the change
point under the alternative hypothesis H1.

Theorem 3.3 (Power of bootstrap test under H1). Suppose H1 is true and
(B1)-(B3) hold in addition to (A1)-(A3). Let ζ ∈ (0, e−1) such that log(1/ζ) �
K log(nd) for some constant K > 0. Suppose m ∧ (n −m) � K ′ log5/2(nd) for
some large enough K ′ > 0. If

m(n−m)|θh|∞ > K0Dnn
3/2 log1/2(nd/α) + C1(b)n

3/2 log1/2(ζ−1) log1/2(d),
(3.6)

for some constants K0 and C1(b), then P(Tn > q
T

�
n|Xn

1
(1−α)) � 1−ζ−C2(b)�n.

Theorem 3.3 provides the lower bound of signal strength that is related to
change point location m and size level α, as well as sample size n and kernel
dimension d. Markedly, our theory derives the tail probability control on the
maximum of two-sample order-two U -statistics.

Remark 4 (Interpretation of Theorem 3.3). Note the first term on the r.h.s. of
(3.6) reflects the Type I error of the bootstrap test (coming from α and �n in
Theorem 3.1), while the second term reflects the connection to the Type II error
under H1 through ζ. If the location shift happens in the middle, i.e., m � n,
then m(n − m) � n2. In this case, the signal strength has to obey |θh|∞ �
Dnn

−1/2 log1/2(nd/α), which matches the power result for the bootstrap test
based on the CUSUM statistics in [61] (cf. Theorem 3.3 therein). If the location
shift occurs at the boundary, for instance m ∧ (n−m) � nβ for β < 1/2, then
the signal has to be |θh|∞ � n1/2−β , which diverges to infinity. Thus, under
our framework, detection is possible for local alternative when the change point
location satisfies m ∧ (n−m) � Dnn

1/2 log1/2(nd).

Remark 5 (Rate optimality for sparse alternative). In [44, Theorem 1], the
authors derived the minimax rate of detection boundary for single change point
case where F is p-dimensional Gaussian distribution with independent entries.
Suppose the location shift only occurs in the first k components with the same
size of ρ > 0, i.e.

θ = (ρ, . . . , ρ︸ ︷︷ ︸
k times

, 0, . . . , 0)�.
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For sparse regime when k = |θ|0 <
√
p log log(8n), let |θh|22 ≈ |θ|22 = kρ2 under

local alternative, then their minimax result reads as

m(n−m)

n
kρ2 � ρ∗(p, n, k) �

(
k log{ep log log(8n)

k2
} ∨ log log(8n)

)
.

Note that,m(n−m) = (m∧(n−m))((m∨(n−m)) � (m∧(n−m))n. Hence, their

result indicates that ρ � (m ∧ (n −m))−1/2
√
log{ ep log log(8n)

k2 } ∨ 1
k log log(8n).

The rate inside square root is up to a logarithm factor through n, p (for example
by plugging in k = 1). On the other hand, our (3.6) in Theorem 3.3 requires

the lower bound ρ � (m ∧ (n −m))−1n1/2 up to log1/2(nd). If m ∧ (n −m) is
bounded away from boundaries, i.e., m � n−m � n, then our result is minimax
optimal.

Remark 6 (Extension of the bootstrap test to time series data). When the noise
sequence ξi in the location-shift model (1.1) is a stationary time series, we need
to modify the bootstrap test statistic to adjust for the temporal dependency
because Eh(Xi, Xj) is no longer zero and there is a bias term to be calibrated
in the bootstrap test. Nonetheless, if the time series ξi is weakly dependent,
then the bias term decays to zero when |i − j| increases. This motivates us to
consider a trimmed version of the bootstrap test by removing summands within
close indices in Tn (and thus T �

n). Let the integer 0 � M < m ∧ (n −m) be a
trimming parameter. We define a generalized U -statistic as

T �
n = n1/2

(
n

2

)−1 ∑
i<j

|i−j|>M

h(Xi, Xj) =
2

n1/2(n− 1)

n−M−1∑
i=1

n∑
j=i+M+1

h(Xi, Xj).

(3.7)
Under H0, we expect h(Xi, Xj) behaves similarly to the i.i.d. scenario for large
M since the dependency between Xi and Xj is weak. Thus, we have Eh(Xi, Xj)
≈ 0 for |i−j| > M and ET �

n ≈ 0. Under H1, with Eh(Xi, Xj) ≈ θh for i ≤ m < j
and |i− j| > M , we have

ET �
n ≈ n1/2

(
n

2

)−1
⎡
⎣m−M∑

i=1

n∑
j=m+1

+

m∑
i=n−M+1

n∑
j=i+M+1

⎤
⎦Eh(Xi, Xj)

≈ 2n−3/2 [m(n−m)− (M + 1)M/2] θh. (3.8)

There is a natural trade-off in choosing the trimming parameter M to control
the effective signal strength ET �

n under H0 and H1. For larger values of M ,
calibration of the distribution of T �

n would be more accurate. However, the
compromise of signal strength in (3.8) would also be larger. Thus, it would be
harder to detect change point (i.e., to separate H0 from H1) when the temporal
dependence of data is stronger. Similarly as the i.i.d. noise case, we can use the
�∞-norm to construct our test statistic

T
�

n := |T �
n|∞ = max

1�k�d
|T �

nk|, (3.9)
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which separates H0 from H1 when temporal dependence exists.
Let e1, . . . , en−M+1 be i.i.d. N(0, 1) random variables that are independent

of Xn
1 . Define the bootstrapped test statistic

T 	
n = n1/2

(
n

2

)−1 n−M−1∑
i=1

⎧⎨
⎩

n∑
j=i+M+1

h(Xi, Xj)

⎫⎬
⎭ ei (3.10)

and T
	

n := |T 	
n|∞ = max1�k�d |T 	

nk|. We reject H0 if T
�

n > q
T

�
n|Xn

1

(1 − α), the

(1− α) quantile of the conditional distribution of T
	

n given Xn
1 .

When ξi is an independent noise sequence, we simply set M = 0 so that T �
n

and T 	
n reduce to Tn and T �

n, respectively. In Section 5.6, we shall provide some
empirical performance of the trimmed bootstrap test for a vector autoregressive
process ξi.

4. Extensions to multiple change points scenario

4.1. Direct extension to multiple change points testing

Recall Xi ∼ Fi, i = 1, . . . , n as a sequence of independent random vectors taking
values in R

p. Generally, suppose there are ν change points m0 = 0 < m1 < · · · <
mν < mν+1 = n such that

Fmk+1(x) = · · · = Fmk+1
(x) = F (x− θ(k)) and Fmk

�= Fmk+1
for k = 0, . . . , ν.

Without loss of generality, we can assume θ(0) = 0. Consider the alternative
hypothesis with multiple change points

H ′
1 : θ(k) �= θ(k+1) for some mk, k = 0, . . . , ν and ν � 1. (4.1)

Denote Xi = ξi + θ(k) and due to the shift-invariant property (B1) we have

δ(k,k
′) = Eh(Xi, Xj) = Eh(ξi, ξj + (θ(k

′) − θ(k)))

for mk < i � mk+1,mk′ < j � mk′+1.

Let si = mi+1 − mi be the size of data segment that corresponds to the i-th
location shift. Then,

E

⎡
⎣ ∑
1�i<j�n

h(Xi, Xj)

⎤
⎦ =

∑
0�k<k′�ν

sksk′δ(k,k
′) =: Δ̃, (4.2)

where the standardized signal strength is |E[Tn]|∞ = n1/2
(
n
2

)−1|Δ̃|∞. Under
the multiple change points alternative, if signal cancellation does not exist, i.e.
|Δ̃|∞ is away from 0, then we can directly extend the theory as below.
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Lemma 4.1 (Power of the bootstrap test under H ′
1). Suppose H ′

1 is true and
(B1)-(B3) hold in addition to (A1)-(A3). Let ζ ∈ (0, e−1) such that log(1/ζ) �
K log(ν2nd) for some constant K > 0. Suppose ν is a constant. If

|Δ̃|∞ > K0ν
2Dnn

3/2 log1/2(nd/α) +C1(b)n
3/2 log1/2(ζ−1) log1/2(d) + φ, (4.3)

where

φ =K ′
0

{
n3/4 log3/4(nd/α)max

k<k′
(sksk′)1/4|δ(k,k′)|∞+

n1/2 log1/2(nd/α)
∑
k<k′

(sksk′)1/2|δ(k,k′)|∞

}
,

then P(Tn > q
T

�
n|Xn

1
(1−α)) � 1− ζ −C2(b)�n for some constants K0,K

′
0 and

C1(b), C2(b).

Remark 7 (Explanation on φ and connection to single change point case). Com-
pared to (3.6) in Theorem 3.3, there is an additional term φ in (4.3). It comes
from controlling Cov(T �

n | Xn
1 ) under the alternative hypothesis. Consider the

special case of single change point where ν = 1 in (4.1), we may assume m =

s0 < s1 = n − m. Then φ � (m1/4n log3/4(nd) + m1/2n log1/2(nd))|δ(0,1)|∞ �
m(n−m)|δ(0,1)|∞ = |Δ̃|∞ for m � log5/2(nd), i.e., φ is dominated by the l.h.s.
of (4.3). Then our result under H ′

1 reads the same as (3.6).

The l.h.s. of (4.3) is the overall signal strength which does not directly depend
on minimum separation of change points m = min0�k�ν sk or signal strength

like δ̄ = max0�k<k′�ν |δ(k,k
′)|∞ or δ̄′ = min0�k<ν |δ(k,k+1)|∞ that is usually

assumed under CUSUM-based approach [19, 20, 61]. Taking (1.5) for instance,
our framework does not screen out any statistic by visiting each location i =
1, . . . , n−1. Therefore, we allow the product of sksk′δ(k,k

′) dominates the overall
change Δ̃ even if sk or δ(k,k

′) is fairly small. However, it is inconvenient that
signal cancellation in (4.2) cannot be characterized bym or δ̄. Another drawback
is that Δ̃ = 0 can happen even if m � O(n) and δ̄ is large. This issue will be
discussed in the next section. Before that, we discuss two special cases derived
from Lemma 4.1 based on m and δ̄ to make the lemma more informative and
instructional. Besides, we can avoid |δ(k,k′)|∞ being on both sides of (4.3).

1. Suppose δ̄ is upper bounded, for example h is the bounded sign ker-
nel. We have sk < n, which leads to max0�k<k′�ν(sksk′)1/4 � n1/2 and∑

k<k′(sksk′)1/2 � ν2n. Since n � log7(nd), so φ � ν2n3/2 log1/2(nd)δ̄,
which is nearly the same rate as the first part on the r.h.s. of (4.3). There-
fore, φ can be dropped.

2. Suppose {|δ(k,k′)|∞ : 0 � k < k′ � ν} are at the same magnitude and
|Δ̃|∞ is dominated by sksk′ |δ(k,k′)|∞ � m2δ̄ for some pair of (k, k′). Then
a sufficient condition to control Type II error is to have m2δ̄ greater
than the upper bound of φ, namely n3/2 log1/2(nd)δ̄. So we only need

m � n3/4 log1/4(nd). This is weaker than the condition in [19, (B1)] which
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requires m � n6/7. One example of such assumption is the setup in [38]
where each dimension has at most one change.

In summary, we have the following corollary.

Corollary 4.2. Suppose the conditions in Lemma 4.1 are satisfied.
(i) If δ̄ = max0�k<k′�ν |δ(k,k

′)|∞ is bounded, then P(Tn > q
T

�
n|Xn

1
(1 − α)) �

1− ζ − C2(b)�n when

|Δ̃|∞ = |
∑
k<k′

sksk′δ(k,k
′)|∞

> K0ν
2Dnn

3/2 log1/2(nd/α) + C1(b)n
3/2 log1/2(ζ−1) log1/2(d).

(ii) If all |δ(k,k′)|∞ are at the same rate and |Δ̃|∞ > K1m
2δ̄′, then φ in (4.3)

can be dropped when

m = min
0�k�ν

sk � K2n
3/4 log1/4(nd/α).

Consequently, if signals are almost evenly spread (i.e. m � n) and |δ(k,k′)|∞ is
upper bounded, then P(Tn > q

T
�
n|Xn

1
(1− α)) � 1− ζ − C2(b)�n when

|
∑
k<k′

δ(k,k
′)|∞ > K0ν

2Dnn
−1/2 log1/2(nd/α)+C1(b)n

−1/2 log1/2(ζ−1) log1/2(d).

In Remark 4, we have shown that local alternative is detectable when m �
n1/2 log1/2(nd/α). Corollary 4.2 (ii) has a stronger requirement due to extra cost
from handling the possible cancellation in analyzing the general case of multiple
change points. If there is only one change point, then the interpretation of rates
in Lemma 4.1 can be found in Remark 7. A real application for our global test lies
in the special case of monotone signals that have order structures θ1 � · · · � θν
[45].

4.2. Modification to block testing

The direct extension of testing H0 against H ′
1 depends on |Δ̃|∞, which can be 0

even if each |δ(k,k′)|∞ are fairly large. The global test will not help under severe
signal cancellation. One solution is to localize the test such that the problem
can convert to single change point scenario.

Consider performing a block testing in the following way. Divide the sample
into B blocks of size L (n = BL for brevity) where L � 2m. Then each block
contains at most 1 change point. We can apply the original test to the block-
vector data Z1, . . . , ZL ∈ R

Bp, where Zi = vec(Xi, . . . , XbL+i, . . . , X(B−1)L+i).

Let hZ : RBp × R
Bp → R

Bd be the block version extension of h:

hZ(Zi, Zj) = (h(Xi, Xj)
�, . . . , h(X(B−1)L+i, X(B−1)L+j)

�)�.

Note that there is no signal cancellation issue. Denote mZ
k = (mk mod L). Mod-

ified theory of power will depend on signal strength as below.
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Corollary 4.3. Suppose the conditions in Lemma 4.1 hold. If

max
0�k�ν

mZ
k (L−mZ

k )|δ(k,k
′)|∞>K0ν

2DnL
3/2 log1/2(

nd

α
)+C(b)L3/2 log1/2(ζ−1) log1/2(d),

then P
(
Tn > q

T
�
n|Xn

1
(1− α)

)
� 1 − ζ − C2(b)�n for some constants K0 and

C1(b), C2(b).

Note that the rate now depends on L rather than n (except for logarithm
factors). The block test sacrifices sample size to gain the single change-point
structure. In practice, the block parameter L (or equivalently B) needs to be
selected carefully since power depends on the relevant locations of {mZ

k }νk=0.

One solution is to use L = 2n1/2 log1/2(nd) that is discussed in Remark 4 or

L = 2n3/4 log1/4(nd) that is from Corollary 4.2 (ii).

4.3. Discussion on binary segmentation

To deal with multiple change points, binary segmentation (BS) is conceptually
straightforward [19, 20, 61]. The main idea is to recursively estimate change
points by screening sub-segments before and after each estimated location. How-
ever, such process starts from a “global” detection that may miss change points
under unfavorable configuration of signal cancellation. To improve BS, [26] pro-
posed wild binary segmentation (WBS) that randomly draw intervals to localize
searching for change points. Recently, it has been widely adopted [57, 56] owing
to its flexibility and computational efficiency. However, we will not be able to
apply BS or WBS based approaches directly because there is no estimator in
our framework so far.

One solution is to incorporate an external estimator. For example, consider
the U -statistics T (s) =

∑s
i=1

∑n
j=s+1 h(Xi, Xj), s = 1, . . . , n − 1 where h is

the anti-symmetric kernel used in (1.3). It can be shown that for each segment
mk � s− 1 < s � mk+1

ET (s)− ET (s− 1) =

n∑
j=mk+1+1

Eh(Xs, Xj)−
mk∑
i=1

Eh(Xi, Xs) = const.

In other words, within each segment (mk,mk+1], ETl(s) is monotone (l =
1, . . . , p). As a result, max1�s�n−1 |ET (s)|∞ is always attained at one change
point. Therefore, the estimator

m̂ = argmax1�s�n−1|T (s)|∞

can play a role in BS type approach. Similar ideas are discussed in [49, 28, 27, 11]
as applications using U -statistics for estimation of change points. Though it
is fascinating to investigate the consistency of a BS algorithm that combines
estimation using m̂ and our bootstrapping test using Tn, the focus and main
contribution of this paper is to perform a test without visiting each point. So
we leave this algorithm as an open question for future analysis.
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Another solution is to adopt the randomization idea from WBS to conduct
inference in the presence of multiple change points. One can independently sam-
ple BW intervals that are wider than a pre-specified length n′ and obtain a set of
(scaled) test statistics on each interval. Denote the set as TW (Xn

1 ). For a given
level α, we then perform the proposed bootstrap test on the interval whose cor-
responding (scaled) test statistic achieves the (1 − α)-th quantile of TW (Xn

1 ).
If the bootstrap test rejects H0 under level α, then it implies a change point
in this interval, which in turn concludes H ′

1 of at least one change point. The
WBS-type test is summarized in Algorithm 1.

Algorithm 1 WBS-type testing (α, n′) against multiple change points

1: Draw BW random intervals [sb, eb], b = 1, . . . , BW , where start- and end-points are taken
independently and uniformly from {1, . . . , n} such that eb − sb > n′.

2: Denote TW (Xn
1 ) = {max1�k�d |Teb−sb(X

eb
sb )|k, b = 1, . . . , BW }, where

Teb−sb(X
eb
sb ) = (eb − sb)

1/2
(eb − sb

2

)−1 ∑
sb�i<j�eb

h(Xi, Xj)

is our U-statistic on each interval.
3: Let qTW |Xn

1
(1− α) be the (1− α)-th quantile of TW and b′ be the corresponding index.

4: Perform our bootstrap test on [sb′ , eb′ ].
5: if our bootstrap test is significant at level α then
6: reject H0.
7: else
8: reject H

′
1.

9: end if

Note that the tuning parameter of n′ bounds the length of randomly selected
intervals from below. If n′ is too small, for instance n′ = 1, then Step 4 is likely
to end up with a very small interval [eb′ , sb′ ]. Since approximating Covjj(Teb−sb)
on small intervals {[sb, eb]} will not be consistent, it can lead to the failure of size
control under H0. In practice, one may select n′ by applying the Algorithm 1
on {εiXi}ni=1, where the multipliers εi, i = 1, . . . , n are i.i.d. standard Gaussian
random variables that are independent of Xn

1 . Since E(εiXi | Xn
1 ) = 0 and

Cov(εiXi | Xn
1 ) = XiX

T
i , the transformed data {εiXi}ni=1 can mimicH0 without

any structural assumption. Simulation result for Algorithm 1 is presented in
Section A.5 in the Appendix.

4.4. Backward detection approach for change points estimation

As shown in aforementioned forward searching solutions, the drawbacks of BS
include cancellation of signals and requirement of change point estimators. In-
stead of repeatedly splitting intervals after each detection of change point, we
can reversely merge consecutive segments in a backward detection way [47, Sec-
tion 3.2.2]. Then, our test can work as a stopping rule.

Precisely, denote the initial partition of data segments as b
(0)
0 = 0 < b

(0)
1 <

b
(0)
2 < · · · < b

(0)
ν0−1 < n = b

(0)
ν0 and the corresponding data blocks as B(0) =
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{B(0)
1 , B

(0)
2 , . . . , B

(0)
ν0 }, where B

(0)
i = {X

b
(0)
i−1+1

, . . . , X
b
(0)
i
}. For each pair of con-

secutive blocks {B(0)
i , B

(0)
i+1}, i = 1, . . . , νk − 1, we can compute a Dissimilarity

Index based on Tn using truncated data sequence, i.e.

DIi = |Tn(B
(0)
i ∪B

(0)
i+1)|∞

= max
1�k�d

∣∣∣∣∣∣∣(b
(0)
i+1 − b

(0)
i−1)

1/2

(
b
(0)
i+1 − b

(0)
i−1

2

)−1 ∑
b
(0)
i−1+1�i<j�b

(0)
i+1

hk(Xi, Xj)

∣∣∣∣∣∣∣ . (4.4)

Since each component of Tn is the standardized Hodges-Lehmann type estima-
tor of location shift in each dimension, large DIi indicates strong dissimilarity

between B
(0)
i and B

(0)
i+1. Therefore, we can pick the pair of data blocks with

the smallest DI and perform our bootstrapped test to decide whether to merge
them. If the test fails to reject the null hypothesis of no change point, we merge
the two blocks into one. Otherwise, we move on to test the next pair of data
blocks with the second smallest DI. The process will continue until no blocks
can be merged. The Backward Detection (BD) algorithm is summarized in Al-
gorithm 2.

Algorithm 2 Backward Detection: BD(B(k))

1: Start from data blocks as B(k) = {B(k)
1 , B

(k)
2 , · · · , B(k)

νk }
2: Compute the Dissimilarity Index DIi = Tn(B

(k)
i , B

(k)
i+1) as in (4.4) for i = 1, . . . , νk − 1

3: Let i∗ = argminDIi.

4: if our bootstrap test rejects the null for the segment [b
(k)
i∗−1, b

(k)
i∗+1] then

5: Repeat the test for i∗ referring to the next smallest DIi until all pairs are examined
6: else
7: Update B

(k+1)
i = B

(k)
i for i < i∗

8: Merge B
(k)
i∗ , B

(k)
i∗+1 into one block B

(k+1)
i∗ = B

(k)
i∗ ∪B

(k)
i∗+1

9: Set B
(k+1)
i = B

(k)
i+1 for i > i∗

10: Perform BD(B(k+1))
11: end if
12: return Estimated blocks B and corresponding segmentation m̂1, . . . , m̂ν̂

Compared to forward detection, BD is able to detect short sequence. Hence,
the Backward Detection algorithm will be more powerful compared to the direct
extension or the block testing at the beginning of this section. There is no
signal cancellation issue for BD. Besides, it can identify change points without
introducing new estimators or statistics. However, there is a risk of Type I error

inflation since BD recursively performs testing procedure. Let b
(0)
i = iM, i =

1, . . . , �n/M�, where �n/M� is the largest integer not exceeding n/M . Then
small M can cause over rejection, while large M may affect estimation accuracy
and bring signal cancellation issue back. We should tune the initial partition
size M carefully. To the best of our knowledge, there is no theoretical result on
the consistency of backward detection in change point estimation. For testing
purpose, we can take M as discussed in Section 4.2. Empirical performance are
investigated in simulation and real data application.
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5. Simulation study

In this section, we first report simulation results of our method in size approx-
imation and power performance under single change point model. Independent
random vectors are generated according to the location-shift model (1.1). Com-
parison with other methods follows. In the end, we evaluate the global test of
direct extension and the Backward Detection of estimation for multiple change
points.

5.1. Simulation setup

We generate i.i.d. ξi from the following distributions.

1. Multivariate Gaussian distribution: ξi ∼ N(0, V ).
2. Multivariate elliptical t-distribution with degree of freedom ν (ν > 2):
ξi ∼ tν(V ) with the probability density function [46, Chapter 1]

f(x; ν, V ) =
Γ(ν + p)/2

Γ(ν/2)(νπ)p/2 det(V )1/2

(
1 +

x�V −1x

ν

)−(ν+p)/2

.

The covariance matrix of ξi is Σ = ν
ν−2V . In our simulation, we use ν = 6.

3. Contaminated Gaussian distribution (i.e., Gaussian mixture model):
ξi ∼ ctm-G(ε, ν, V ) = (1 − ε)N(0, V ) + εN(0, ν2V ) with the probability
density function

f(x; ε, ν, V ) =
1− ε

(2π)p/2 det(V )1/2
exp

(
−x�V −1x

2

)

+
ε

(2πν2)p/2 det(V )1/2
exp

(
−x�V −1x

2ν2

)
.

The covariance matrix of ξi is Σ = [(1− ε) + εν2]V . We set ε = 0.2 and
ν = 2.
4. Scale transformation of Cauchy distribution: ξi = V 1/2ξ

′

i , where ξ
′

i =

(ξ
′

i1, . . . , ξ
′

ip)
T and ξ

′

ij are i.i.d. standard (univariate) Cauchy distribution.

For each distribution, we consider three spatial dependence structures of V .

(I) Independent: V = Idp, where Idp is the p× p identity matrix.
(II) Strongly dependent: V = 0.8J +0.2Idp, where J is the p× p matrix of

all ones.
(III) Moderately dependent: Vij = 0.8|i−j|, i, j = 1, . . . , p.

Unless explicitly indicated, B = 200 bootstrap samples are drawn for each
testing procedure and all results are averaged on 500 simulations. We fix the
sample size n = 500 and dimension p = 600 for single change point scenario and
focus on the performance of two kernels: the linear kernel h(x, y) = x − y and
the sign kernel h(x, y) = sign(x− y).
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Fig 1. Selected setups for comparing R̂(α) along with α. See headlines for corresponding
distribution and kernel.

5.2. Size approximation

Let R̂(α) be the proportion of empirically rejected null hypothesis at significance
level α ∈ (0, 1). There are several observations we can draw from Table 1,
which shows the empirical uniform error-in-size, supα∈(0,1) |R̂(α)−α|. First, the
dependence structure of V does not influence the errors remarkably. Second,
for Gaussian, t6 and contaminated Gaussian (ctm-G) distributions, the two
kernels have very similar errors in size. For the Cauchy distribution which is only
applicable for the sign kernel, error-in-size is comparable with the other three
distribution settings. Therefore, we conclude that underH0, the sign kernel gains
robustness without losing much accuracy. Three example curves are displayed
additional in Figure 1 to visualize the size approximation.

Table 1

Uniform error-in-size under H0.

supα∈(0,1) |R̂(α)− α| linear kernel sign kernel
Gaussian t6 ctm-G Gaussian t6 ctm-G Cauchy

I V = Idp 0.034 0.086 0.040 0.026 0.066 0.032 0.028
II V = 0.8J + 0.2Idp 0.054 0.020 0.058 0.064 0.040 0.050 0.060

III Vij = 0.8|i−j| 0.026 0.048 0.040 0.040 0.036 0.060 0.058

We also compare our test using the linear kernel to the CUSUM counterpart
in [61, BABS] under the same setting with the boundary removal parameter
as s = 40. Table 2 displays corresponding simulation results. By comparing
it to Table 1, we observe that the CUSUM approach suffers from greater size
distortion as it has larger uniform errors in general. When we focus on the
maximum error within the interval α ∈ (0, 0.1] (that are common choices in real
applications), our linear kernel based algorithm still outperforms. In addition,
our test demands no more computational costs and it enjoys flexibility of no
tuning parameter.
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Table 2

Error-in-size supα |R̂(α)− α| for α ∈ (0, 1) and α ∈ (0, 0.1]

supα∈(0,1) |R̂(α)− α| supα∈(0,0.1] |R̂(α)− α|
CUSUM approach CUSUM approach linear kernel

Gaussian t6 ctm-G Gaussian t6 ctm-G Gaussian t6 ctm-G
I 0.072 0.122 0.096 0.040 0.036 0.064 0.012 0.010 0.020
II 0.066 0.044 0.048 0.026 0.014 0.024 0.008 0.014 0.012
III 0.074 0.092 0.066 0.022 0.038 0.048 0.020 0.018 0.012

Fig 2. Selected setups for comparing power curves. See headlines and legends for correspond-
ing distribution, kernel, covariance structures and change point location m.

5.3. Power of the bootstrap test

Under H1, the signal vector is chosen as θ = (θ1, 0, . . . , 0)
T such that θ1 =

|θ|∞. We vary the change point location m = 50, 150, 250. Figure 2 displays
the power curves for different kernels, change point location m and dependence
structure V . The left panel investigates kernel and location impact. Change
point at center m = n/2 = 250 (solid curves) is easier to detect than that of
m = n/10 = 50 at boundary (dashed curves) regardless of the choice of kernel.
For standard Gaussian distribution, the linear kernel has greater power than the
sign kernel when the change occurs at boundary point m = 50, but the relation
reverses when m = 250. The middle panel uses linear kernel as an example to
illustrate the observation that the dependence structure V does not significantly
influence the power, though our �∞-type test statistic has advantage in the
strong dependence case. The right panel displays the power of the sign kernel
for Cauchy distributed data to highlight its robustness to location parameter θ
and the impact from change point position m. Regarding to the exact power
values, see Table 11 (linear kernel) and 12 (sign kernel) in Appendix.

5.4. Comparison with other methods

We compare our U -statistic approach to other competing algorithms in change
point literature. The linear and sign kernels of our approach are used. All of the
four competitors, namely [61, BABS], [38, Jirak], [20, SBS] and [57, Inspect],
are based on CUSUM statistics. Among them, BABS and Jirak are �∞-type
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bootstrap test for single change point using different weights on (s(n − s)/s)
in (1.5), the latter of which needs cross-sectional variance estimation on each
dimension and it is sensitive to mean shift near the center of data sequence. The
last two competitors target on multiple change point estimation where SBS is
thresholded �1-type estimator and Inspect is projection based. We adopt their
single change point version function in corresponding R packages and convert
them to tests using their default threshold computing functions. In our simula-
tion, we set n = 500, p = 600, α = 0.05,m = 150, and set boundary removal as
40 for BABS, Jirak and SBS.

Table 3 compares the power of different tests when the signal θ1 is growing. It
is clear that SBS and Inspect are not suitable in our setting since the location
shift parameter is extremely sparse. When the data generating mechanism is
not standard multivariate Gaussian (i.e. not Gaussian-I in the table), these
two algorithms trigger excessive false alarms when θ = 0 and do not return
monotone powers as θ increase. The other two competitors BABS and Jirak

behave similarly and return slightly higher powers than ours in general. Note
that these two approaches need to pick boundary removal parameter, which can
harm powers if it is too large to include true m in the working interval. The
contrasts between linear and sign kernel have been discussed in the previous
part. Therefore, Table 3 indicates that our method, which enjoys tuning-free
and intermediate-estimation-free properties, is competent in empirical studies.

Table 3

Powers for our method using linear and sign kernels, [61, BABS], [38, Jirak], [20, SBS] and
[57, Inspect].

|θ|∞ Gaussian-I Gaussian-II
linear sign BABS Jirak SBS Inspect linear sign BABS Jirak SBS Inspect

0 0.030 0.049 0.042 0.061 0.764 0.020 0.042 0.037 0.056 0.052 0.092 0.833
0.28 0.088 0.070 0.087 0.110 0.836 0.021 0.216 0.154 0.209 0.232 0.264 0.724
0.44 0.414 0.342 0.502 0.553 0.928 0.006 0.738 0.619 0.756 0.828 0.744 0.458
0.63 0.890 0.830 0.966 0.967 0.976 0.001 0.996 0.982 0.996 0.999 0.926 0.287
0.84 0.998 0.992 1 1 0.966 0.003 1 1 1 1 0.906 0.205
1.08 1 1 1 1 0.972 0.093 1 1 1 1 0.898 0.183
1.35 1 1 1 1 0.954 0.789 1 1 1 1 0.858 0.287
1.66 1 1 1 1 0.938 0.999 1 1 1 1 0.838 0.997
2.00 1 1 1 1 0.936 1 1 1 1 1 0.834 1

|θ|∞ ctm-Gaussian-I t6-II
linear sign BABS Jirak SBS Inspect linear sign BABS Jirak SBS Inspect

0 0.030 0.051 0.020 0.067 0.592 1 0.060 0.068 0.044 0.053 0.060 0.975
0.28 0.036 0.073 0.033 0.076 0.630 1 0.124 0.148 0.109 0.132 0.108 0.942
0.44 0.150 0.189 0.186 0.245 0.752 1 0.418 0.451 0.477 0.537 0.418 0.791
0.63 0.524 0.593 0.675 0.750 0.904 1 0.878 0.912 0.919 0.936 0.856 0.629
0.84 0.940 0.941 0.977 0.987 0.954 1 0.998 1 0.997 1 0.928 0.507
1.08 1 1 0.999 1 0.946 1 1 1 1 1 0.898 0.453
1.35 1 1 1 1 0.938 1 1 1 1 1 0.878 0.609
1.66 1 1 1 1 0.918 1 1 1 1 1 0.846 1
2.00 1 1 1 1 0.902 1 1 1 1 1 0.864 1

For fair comparison, we do not use Cauchy distribution, since all methods,
except for our sign kernel method, will fail when there is no well-defined mean
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parameter in the heavy tailed distribution. Unreported results show that SBS

and Inspect perform better when the mean change is denser. We also remark
that the Double CUSUM Binary Segmentation [19, DCBS] cannot detect any
change point under our setting when |θ|∞ � 2 because the setup is an extremely
sparse case, so the table does not include it.

Section A.6 in Appendix presents some further comparison for the size con-
trol of BABS, Jirak and our linear kernel approach under H0 with fixed p and
boundary removal fraction while varying the sample size n.

5.5. Multiple change-point detection

In the multiple change-point scenario, we first let the k-th component of θ(k) to

have the same location shift, i.e. θ
(1)
1 = θ

(2)
2 = · · · = θ

(ν)
n,ν = δ �= 0. Since change

point estimation can be viewed as a special case of clustering, the accuracy can
be measured by the adjusted Rand index (ARI) [50, 36]. We also report average
ARI over all 500 runs. The bootstrap resampling is 200.

To start with, we consider the direct application of our test using Gaussian
distribution and linear kernel as a representative. Let n = 1000, p = 1200,
α = 0.05, and the two change points (m1,m2) = (300, 600). The powers are
shown in Table 4. Our test works well as there is no signal cancellation.

Table 4

Powers under multiple change point scenario using linear kernel. Here,
(m1,m2) = (300, 600).

δ 0 0.317 0.733 1.282 2.004
Spacial

dependent
structures

I 0.052 0.278 1 1 1
II 0.064 0.510 1 1 1
III 0.070 0.222 0.996 1 1

Next, we apply the Backward Detection algorithm to estimate change points.
We set the initial data blocks as segments of every M = 100 data points and
take the Gaussian distribution with moderate dependence structure (III) for
instance. The estimated change points are summarized in Table 5 (counts and
ARIs) and Figure 3 (estimates). When signal δ = 0.317 is small, BD fails to
rejectH0 in about half of the time (276 out of 500) and it cannot locate the shifts
accurately (small ARIs). However, as signal gets larger, both the number and
the locations of change points can be detected consistently (under proper setup
of initial data blocks). Meanwhile, ARIs are also increasing to 1, which stands for
the perfect estimation. We further add one more change where (m1,m2,m3) =
(300, 600, 800). The results in Table 5 and Figure 3 are similar to that of two
change point case.

Then, we also use the sign kernel to detect location shift for Cauchy dis-
tribution with dependence structure (III). Analogously, initial data blocks are
segments of everyM = 100 data points in sequence. The cases of 2 change points
(m1,m2) = (300, 600) and 3 change points (m1,m2,m3) = (300, 600, 800) are
implemented and the results are shown in Table 6 and Figure 4. Similar con-
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Table 5

Estimation of multiple change points for M = 100: counts and ARIs. Here, the data is
Gaussian distributed with dependence structure (III) and the linear kernel is used.

(m1,m2) = (300, 600) (m1,m2,m3) = (300, 600, 800)
δ 0 0.317 0.733 1.282 2.004 0 0.317 0.733 1.282 2.004

Estimated
number

of
change
points

0 497 276 0 0 0 494 270 0 0 0
1 3 209 0 0 0 6 217 0 0 0
2 0 15 484 492 483 0 13 32 0 0
3 0 0 16 7 17 0 0 455 474 483
4 0 0 0 1 0 0 0 13 25 17
5 0 0 0 0 0 0 0 0 1 0

Sum 500 500 500 500 500 500 500 500 500 500
ARI 0.994 0.195 0.933 0.998 0.996 0.988 0.152 0.920 0.995 0.997

Fig 3. Multiple change point setup using linear kernel at signal level δ = 0.317, 2.004. Upper: 2
change points (m1,m2) = (300, 600). Lower: 3 change points (m1,m2,m3) = (300, 600, 800).

clusion can be drawn except that stronger signal strength is required as Cauchy
distribution has extremely heavy tails.

Lastly, we setM = 1 and repeat the experiment using linear kernel and Gaus-
sian distribution with dependence structure (III). The results are summarized
in Table 7 and Figure 5. Compared to Table 5 and Figure 4 which correspond to
the same setting but M = 100, we can easily observe over rejection issue since
more change points are concluded than the truth for both cases. However, when
signal is large (δ = 2.004), estimated change points still concentrate around the
true mi’s. In practice, a threshold m can be introduced to force merging two
blocks if the cardinality of their union is small.
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Table 6

Estimation of multiple change points for M = 100. Here, the data is Cauchy distributed
with dependence structure (III) and the sign kernel is used.

(m1,m2) = (300, 600) (m1,m2,m3) = (300, 600, 800)
δ 0 0.822 2.320 5.050 10.023 0 0.822 2.320 5.050 10.023

Estimated
number

of
change
points

0 465 44 0 0 0 460 36 0 0 0
1 6 257 0 0 0 11 221 0 0 0
2 6 173 365 470 470 4 172 0 0 0
3 6 9 18 12 10 3 50 401 470 477
4 5 11 21 15 12 8 9 19 11 8
5 6 1 59 1 1 5 6 66 1 0
6 6 5 46 2 7 9 6 14 18 15

Sum 500 500 500 500 500 500 500 500 500 500
ARI 0.930 0.557 0.888 0.986 0.983 0.920 0.495 0.951 0.986 0.989

Fig 4. Multiple change point setup using sign kernel at signal level δ = 0.822, 10.023. Upper: 2
change points (m1,m2) = (300, 600). Lower: 3 change points (m1,m2,m3) = (300, 600, 800).

5.6. Simulation results for time series data

We shall study the empirical performance of the bootstrap test for some de-
pendent process ξi. In our simulation, we consider the stationary vector au-
toregression of order 1 (denote as VAR(1)) error process: ξi = Aξi−1 + ηi =∑∞

k=0 A
kηi−k, where {ηi}i∈Z is a sequence of i.i.d. mean-zero random vectors

in R
p and A is a p× p coefficient matrix, where random matrix A is generated

with i.i.d. N(0, 1) entries. To ensure the stationarity of ξi process, A is normal-
ized such that ‖A‖2 = 1/1.8 < 1. The distribution and covariance defined in
Section 5.1.
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Table 7

Estimation of multiple change points for M = 1. Here, the data is Gaussian distributed with
dependence structure (III) and linear kernel is used.

(m1,m2) = (300, 600) (m1,m2,m3) = (300, 600, 800)
δ 0 0.317 0.733 1.282 2.004 0 0.317 0.733 1.282 2.004

Estimated
number

of
change
points

0 475 205 0 0 0 477 195 0 0 0
1 21 230 3 0 0 20 224 0 0 0
2 3 59 367 343 344 3 77 51 0 0
3 1 5 114 135 133 0 4 324 289 293
4 0 1 16 22 23 0 0 111 167 172
5 0 0 0 0 0 0 0 13 38 32
6 0 0 0 0 0 0 0 1 6 2
8 0 0 0 0 0 0 0 0 0 1

Sum 500 500 500 500 500 500 500 500 500 500
ARI 0.950 0.186 0.634 0.785 0.858 0.954 0.160 0.582 0.747 0.834

Fig 5. Multiple change point setup using M = 1 and linear kernel at signal level
δ = 0.317, 2.004. Upper: 2 change points (m1,m2) = (300, 600). Lower: 3 change points
(m1,m2,m3) = (300, 600, 800).

We first use the linear kernel h(x, y) = x− y and consider different trimming
parameters M = 2, 5, 10, 15. We fix n = 500, p = 600, B = 200 and m = n/2
under the location-shift model of single change point. Let R̂(α) be the propor-
tion of empirically rejected null hypothesis in 500 simulations. In Table 8 which
provides uniform error-in-size supα∈[0,1] |R̂(α) − α|, we can observe that larger
M needs to be selected if stronger dependence (i.e., the compound symmetry
structure II) presents regardless of distribution families. This is the trade-off
effect through M . We can also find that the best error-in-sizes in each column
are comparable to the corresponding values in Table 1. This indicates the effec-
tiveness of our modified approach under temporal dependency. Figure 6 displays
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two examples of R̂(α) under H0 and power under H1, where the signal vector
is chosen as θ = (θ1, 0, . . . , 0)

T such that θ1 = |θ|∞.
Next we use sign kernel h(x, y) = sign(x − y) and consider the trimming

parameters M = 2, 5, 10. For illustration purpose, we only select the data-
generating schemes of Cauchy distribution with Covariance I-III and ctm-Gau-
ssian distribution with Covariance III. The other parameters remain the same
as above. The uniform error-in-size for each scenario is give in Table 9. In gen-
eral, M = 2 works the best under each scenario. The non-linear projection by
the sign kernel makes the correlation between data pairs weaker. Therefore, it
makes the sign kernel more attractive in terms of its robustness against weak
temporal dependency. Similarly, two examples are given in Figure 7.

Table 8

Uniform error-in-size for linear kernel under H0, where ξi are from VAR(1) process. The
columns and rows display the distribution of ηi as defined in Section 5.1 and different

trimming parameter M , respectively. The smallest errors in each column are highlighted.

supα∈[0,1] |R̂(α)− α| Gaussian t6 ctm-Gaussian
I II III I II III I II III

M=2 0.058 0.092 0.030 0.054 0.082 0.028 0.038 0.086 0.054
M=5 0.076 0.088 0.056 0.092 0.074 0.050 0.058 0.082 0.086
M=10 0.128 0.064 0.102 0.134 0.080 0.080 0.106 0.084 0.136
M=15 0.180 0.066 0.150 0.172 0.086 0.126 0.156 0.094 0.174

Table 9

Uniform error-in-size for sign kernel under H0, where ξi are from VAR(1) process. The
columns and rows disply the distribution of ηi as defined in Section 5.1 and different

trimming parameter M , respectively. The smallest errors in each column are highlighted.

supα∈[0,1] |R̂(α)− α| Cauchy (I) Cauchy (II) Cauchy (III) ctm-Gaussian (III)

M=2 0.068 0.057 0.068 0.060
M=5 0.094 0.062 0.096 0.088
M=10 0.144 0.078 0.150 0.142

6. Real Data Applications

6.1. Single change point: Enron email dataset

Enron Corporation used to be one of the leading American energy companies.
In an accounting scandal, Enron share prices decreased from around $80 during
the summer of 2000 to pennies at the end of 2001. The bankruptcy was filed on
12/02/2001 and it became the largest bankruptcy reorganization in American
history at that time. The Enron email dataset that contains more than 500,000
messages from about 150 users (mostly senior management) was publicly avail-
able during the investigation by the Federal Energy Regulatory Commission in
2002. 1

1 The raw data is organized in folders (http://www.cs.cmu.edu/~enron/) and its tabu-
lar format version is available at https://data.world/brianray/enron-email-dataset. The
timeline of major events can be found at http://www.agsm.edu.au/bobm/teaching/BE/Enron/
timeline.html.

http://www.cs.cmu.edu/~enron/
https://data.world/brianray/enron-email-dataset
http://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html
http://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html
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Fig 6. Empirical rejection rate R̂(α) under H0 and power under H1 in selected time-series
data-generating schemes: (Left) Gaussian distribution with covariance structure II; (Right)
ctm-Gaussian distribution with covariance structure III. (Parameters: n = 500, p = 600,
kernel h(x, y) = x− y, and trimming parameters M = 2, 5, 10, 15.)

We study the collection of messages sent in 2000-2001. To test for the exis-
tence of an abrupt changes in email discussions, our analysis is based on the
number of emails sent from each user. In order to exclude the yearly trend
and temporal dependence, we apply our method to Xij which is the difference
of emails sent from user j on the i-th day for the two years. The leap day
(02/29/2000) and the users who were inactive during 2000 or 2001 are removed
such that the final data matrix (Xij)i=1,...,n;j=1,...,p is of dimension n = 365
and p = 101. We set bootstrap repetition number B = 2000. For the linear
kernel, our test statistic has the value Tn = 561.49 and the 95% quantile of
bootstrapped statistic is 117.17. For the sign kernel, our test statistic has the
value Tn = 8.95 and the 95% quantile of bootstrapped statistic is 1.44. Both
tests reject the null hypothesis of no abrupt change. As an illustration of the
test results, the aggregated trend of Yi =

∑101
j=1 Xij in Figure 8 indicates the

presence of extensive email communication from the second half of 2000 to the
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Fig 7. Empirical rejection rate R̂(α) under H0 and power under H1 in selected time-series
data-generating schemes: (Left) Cauchy distribution with covariance structure II; (Right)
ctm-Gaussian distribution with covariance structure III. (Parameters: n = 500, p = 600,
kernel h(x, y) = sign(x− y), and trimming parameters M = 2, 5, 10.)

first half of 2001. Our test confirms that there was abnormal email activity in
these two years.

6.2. Multiple change point: micro-array dataset

The array comparative genomic hybridization data, ACGH [37, R package ecp],
consists of p = 43 patients with bladder tumor. We consider to detect change
points among their DNA copy number profiles each of which contains n = 2215
log-intensity-ratio fluorescent measurements. We apply the BD algorithm using
linear kernel and set bootstrap repeats 1000, significance level α = 0.01 and
initial data block size M = 2. The measurements for the first 10 individuals
are shown in Figure 9. Our BD algorithm finds 32 change points that marked
in red vertical dashed lines. This number is in a reasonable level as indicated
in [57] where the authors only reported 30 most significant ones while their de-
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Fig 8. Trend of Yi =
∑101

j=1 Xij for Enron email dataset.

Fig 9. Real data study: aCGH data. Here, we set B = 1000, α = 0.01 and the linear kernel.

fault Inspect algorithm found 254 change points. The ARI between ours and
the bootstrap-assisted binary segmentation [61, BABS] which identifies 27 change
points is 0.779. As shown in Table 10, the two methods have overlapped detec-
tion that are close loci numbers such as (73, 74), (342, 344), . . . , (2143, 2142).

Table 10

Identified change point locations (loci numbers on genome) in ACGH dataset.

BABS 73, 185, 263, 342, 428, 521, 581, 657, 741, 801, 871, 960, 1051, 1141, 1216, 1276,
1367, 1427, 1503, 1563, 1664, 1724, 1836, 1905, 1965, 2044, 2143.

BD 74, 136, 174, 248, 280, 344, 448, 528, 544, 624, 658, 744, 810, 876, 932, 1022,
1050, 1140, 1220, 1282, 1366, 1418, 1500, 1560, 1642, 1726, 1850, 1908, 1964,
2022, 2084, 2142.
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Appendix A: Proofs and additional numeric results

A.1. Proof of main results

Throughout the whole proofs, we assume d � 2, n � 3 and n � log7(nd)
otherwise the rates will automatically hold. The Ki > 0, i = 1, 2, . . . and C > 0
are large constants that may vary part by part.

Proof of Theorem 3.1. Suppose H0 is true. Without loss of generality, we may
assume �n � 1.

Step 1. Gaussian approximation to Tn.
Denote Γ = Cov(g(X1)). Since the kernel h is anti-symmetric, we have

E[g(X1)] = 0. Thus E[Ln] = 0 and

Cov(Ln) = n

(
n

2

)−2 n∑
i=1

(n+ 1− 2i)2 Cov(g(Xi)) =
4(n+ 1)

3(n− 1)
Γ.

By Jensen’s inequality, we have E|gj(Xi)|2+k � Dk
n for k = 1, 2, and ‖gj(Xi)‖ψ1

� Dn. Then it follows

1

n

n∑
i=1

(
2

n− 1

)2+k

|n− 2i+ 1|2+kE|gj(Xi)|2+k � Dk
n,∥∥∥∥2(n− 2i+ 1)

n− 1
gj(Xi)

∥∥∥∥
ψ1

� Dn.

In addition, note that 1
n

∑n
i=1 4

(
n−2i+1
n−1

)2

Γjj = n+1
n−1 · 4

3Γjj � 4
3b > 0. By

Proposition 2.1 in [17] (applied to the max-hyperrectangles), we have

ρ(Ln, Zn) �
{
D2

n log
7(nd)

n

}1/6

= �n,

where Zn = max1�j�d Znj and Zn ∼ N(0, 4(n+1)
3(n−1)Γ). Let Z ∼ N(0, 4Γ/3). By

the Gaussian comparison inequality (cf. Lemma C.5 in [14]), we have

ρ(Zn, Z) �
(

4

3n
|Γ|∞ log2 d

)1/3

.

Since Γjj � 1+E|gj(X1)|3 � 1+Dn � 2Dn, it follows from the Cauchy-Schwarz
inequality that

ρ(Zn, Z) �
(
Dn log

2 d

n

)1/3

� �n.

Then by triangle inequality, we have
ρ(Ln, Z) � ρ(Ln, Zn) + ρ(Zn, Z) � �n. (A.1)

Applying Corollary 5.6 in [15] with k = 2, we have

E

(
max
1�j�d

|Rnj |
)

� Dnn
−1/2 log d. (A.2)
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Then for any t ∈ R and a > 0, we have

P
(
Tn � t

)
� P

(
Ln � t+ a−1E[|Rn|∞]

)
+ P

(
|Rn|∞ > a−1E[|Rn|∞]

)
�(i) P

(
Ln � t+ a−1E[|Rn|∞]

)
+ a

�(ii) P
(
Z � t+ a−1E[|Rn|∞]

)
+ C�n + a

�(iii) P
(
Z � t

)
+ Ca−1E[|Rn|∞]log1/2 d+ C�n + a

�(iv) P
(
Z � t

)
+ CDna

−1n−1/2 log3/2 d+ C�n + a,

where step (i) follows from Markov’s inequality, step (ii) from the Gaussian
approximation error bound (A.1) for the linear part, step (iii) from Nazarov’s
inequality (cf. Lemma A.1 in [17]), and step (iv) from the maximal inequality
(A.2) for the degenerate term. Likewise, we can deduce the reverse inequality

P
(
Tn � t

)
� P

(
Z � t

)
− CDna

−1n−1/2 log3/2 d− C�n − a.

Choosing a = n−1/4D
1/2
n log3/4 d, we get ρ(Tn, Z) � C�n.

Step 2. Bootstrap approximation to Tn. Recall the definition of T �
n in (2.1),

T �
n|Xn

1 ∼ N(0, 4Γ̂n) where

Γ̂n =
1

n(n− 1)2

n∑
i=1

n∑
j=i+1

n∑
k=i+1

h(Xi, Xj)h(Xi, Xk)
T . (A.3)

By Lemma A.1, P

(
|Γ̂n − Γ/3|∞ � K3

{
D2

n log(nd)
n

}1/2
)

� γ. Therefore, [13,

Lemma C.1] confirms that with probability greater than 1− γ

ρ(Z, T
�

n|Xn
1 ) �

[
|4Γ̂n − 4Γ/3|∞ log2(nd)

]1/3
�
{
D2

n log
5(nd)

n

}1/6

� �n.

In conclusion, ρ(Tn, T
�

n|Xn
1 ) � ρ(Tn, Z) + ρ(Z, T

�

n | Xn
1 ) � C(b,K)�n.

Proof of Theorem 3.2. This proof is similar to the proof of Theorem 3.1 so that
only the key steps are given below. Without loss of generality, we may assume
�′

n ≤ 1.

Step 1. Gaussian approximation to Tn. Let Γ = Cov(g(X1)), then Cov(Ln)

= 4(n+1)
3(n−1)Γ. So the correlation matrix of Ln is the same as the correlation ma-

trix of g(X1). By (A1), σ2
j = Covjj(Ln) � b. By Jensen’s inequality, under

(A2), we have E|gj(Xi)|2+k � Dk
n for k = 1, 2, whereas under (A3’), we have

‖gj(Xi)‖ψ2 � Dn. Therefore,

1

n

n∑
i=1

E

∣∣∣∣2(n− 2i+ 1)

(n− 1)σj
gj(Xi)

∣∣∣∣4 � 2

n

n∑
i=1

E |gj(Xi)|4 /σ4
j � 2D2

n/b
2 � B2

n,%%%%2(n− 2i+ 1)

(n− 1)σj
gj(Xi)

%%%%
ψ2

� 2||gj(Xi)||ψ2/σj � 2Dn/b
1/2 � Bn,
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where Bn = 2Dn(b
−1 ∨ b−1/2). By [18, Corollary 2.1], the Conditions (M) and

(E.2) are satisfied so that

ρ(Ln, Zn) � K1

(
Bn(log d)

3/2(logn)

n1/2σ2
∗

∨ Bn(log d)
2

n1/2σ∗

)
� C1(b)(σ

−2
∗ ∨ σ−1

∗ )�′
n,

(A.4)

where Zn = max1�j�d Znj and Zn ∼ N(0, 4(n+1)
3(n−1)Γ). Let Z ∼ N(0, 4Γ/3). We

still have

ρ(Zn, Z) � C2(b)
D

1/3
n log2/3 d

n1/3
� C2(b)�

′
n.

Hence, by triangle inequality, ρ(Ln, Z) � ρ(Ln, Zn) + ρ(Zn, Z) � C3(b, σ∗)�
′
n,

where C3(b, σ∗) � C1(b)(σ
−2
∗ ∨ σ−1

∗ ) + C2(b).

Note that, by choosing a = n−1/4D
1/2
n log3/4 d, the following approximation

still holds

ρ(Tn, Z) � C3Dna
−1n−1/2 log3/2 d+ C3�

′
n + a � (2C3 + 1)�′

n.

Step 2. Bootstrap approximation to Tn. Recall T
�
n|Xn

1 ∼ N(0, 4Γ̂n). By [18,
Lemma 2.1],

ρ(Z, T
�

n|Xn
1 ) � K2

V log d

b2σ2
∗

(
1 ∨ | log V

b2σ2
∗
|
)
,

where
P
(
V = |Γ̂n − Γ/3|∞ � K3Dnn

−1/2 log1/2(nd)
)
� 1− γ

by Lemma A.1. Without loss of generality, we assume �′
n � 1. Then, with

probability greater than 1 − γ, V � K3n
−1/4 log−1 n log−1/2 d � K3n

−1/4. If
V b−2σ−2

∗ � 1, then

| log V

b2σ2
∗
| � C4(b, σ∗) log(n),

so that ρ(Z, T
�

n|Xn
1 ) � C5(b, σ∗)V (log d)(log n) and therefore (3.4) holds. If

V b−2σ−2
∗ < 1, then observing that the function f(x) = x| log x| � e−1(1−t)−1xt

for any 0 < t < 1 on x ∈ (0, 1), we have

ρ(Z, T
�

n|Xn
1 ) � K2(log d)(V b−2σ−2

∗ )t.

Taking t = 1/2 and plugging in V � K3Dnn
−1/2 log1/2(nd), we still have (3.4)

holds with probability greater than 1− γ.

Proof of Theorem 3.3. Denote Tn = Tn(X
n
1 ) = n1/2

(
n
2

)−1∑
1�i<j�n h(Xi, Xj)

and T ξ
n = Tn(ξ

n
1 ) = n1/2

(
n
2

)−1∑
1�i<j�n h(ξi, ξj). Define

Δ̃ = n−1/2

(
n

2

)
{Tn(X

n
1 )− Tn(ξ

n
1 )} =

∑
1�i<j�n

h(Xi, Xj)− h(ξi, ξj).
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Note that, T
ξ

n = |Tn(ξ
n
1 )|∞ � 2n−1/2(n− 1)−1|Δ̃|∞ − Tn. It follows that

Type II error = P
(
Tn � q

T
�
n|Xn

1
(1− α) | H1

)
� P

(
T

ξ

n � 2n−1/2(n− 1)−1|Δ̃|∞ − q
T

�
n|Xn

1
(1− α) | H1

)
� P

(
T

ξ

n � q
T

ξ
n
(1− βn) | H1

)
+

P
(
q
T

�
n|Xn

1
(1− α) + q

T
ξ
n
(1− βn) � 2n−1/2(n− 1)−1|Δ̃|∞ | H1

)
� βn + P

(
q
T

�
n|Xn

1
(1− α) + q

T
ξ
n
(1− βn) � 2n−3/2|Δ̃|∞ | H1

)
.

Let γ = ζ/8. Now denote

Δ1 = γ−1Dn log(d){m(n−m)}1/2,
Δ2 = Dn{m(n−m)}1/2{m ∧ (n−m)}1/2 log1/2(nd),
Δ3 = Dnn

3/2 log1/2(nd/α),

Δ4 = n3/2 log1/2(γ−1) log1/2(d).

We will quantify |Δ̃|∞, q
T

�
n
(1− α) and q

T
ξ
n
(1− βn) to conclude that the Type

II error is bounded when |θh|∞ satisfies (3.6).
(1) Quantify |Δ̃|∞. Without loss of generality, we may assume n1 = m �

n−m = n2. Recall (2.3) where Vn = Vn(X
n
1 ). Denote Vn(ξ

n
1 ) in similar way. By

shift-invariant assumption and the two-sample projection in Section 2,

Δ̃ = Vn(X
n
1 )− Vn(ξ

n
1 ) =

n1∑
i=1

n2∑
j=1

h(Xi, Yj)− h(Xi, Yj − θ)

=

n1∑
i=1

n2∑
j=1

g(Yj − θ)− g(Yj) + f̆(Xi, Yj)− f̆(Xi, Yj − θ)

= n1n2θh + n1

n2∑
j=1

{−g(Yj)− θh}+ n1

n2∑
j=1

g(Yj − θ)

+

n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)−
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj − θ). (A.5)

By Lemma A.5, with probability smaller than γ,

n1|
n2∑
j=1

[−g(Yj)− θh]|∞ � K1Dnn1n
1/2
2 log1/2(nd) = K1Δ2.

Similarly, n1|
∑n2

j=1 g(Yj − θ)|∞ � K2Δ2 with probability smaller than γ. By
Lemma A.6,

E
∣∣ n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)
∣∣
∞ � K3Δ1γ.
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From Markov inequality, P
(
|
∑n1

i=1

∑n2

j=1 f̆(Xi, Yj)|∞ � K3Δ1

)
� γ.

Similarly, |
∑n1

i=1

∑n2

j=1 f̆(Xi, Yj − θ)|∞ � K4Δ1 with probability smaller than
γ. Therefore,

|Δ̃|∞ � n1n2|θh|∞ − |n1

n2∑
j=1

[−g(Yj)− θh]|∞ − |n1

n2∑
j=1

g(Yj − θ)|∞

− |
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)|∞ − |
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj − θ)|∞

� n1n2|θh|∞ − (K1 +K2)Δ2 − (K3 +K4)Δ1

with probability no smaller than 1− 4γ.
(2) Bound q

T
�
n
(1 − α). Recall T �

n|Xn
1 ∼ Nd(0, 4Γ̂n), where Γ̂n is defined in

(A.3). By the Bonferroni inequality, P
(
T

�

n > t|Xn
1

)
� 2d

[
1− Φ(t/2ψ)

]
, where

ψ
2
= max1�l�d Γ̂n,ll. By the Cauchy-Schwarz inequality, for each l = 1, . . . , d,⎧⎨
⎩∑

i<j,k

hl(Xi, Xj)hl(Xi, Xk)

⎫⎬
⎭

2

�

⎧⎨
⎩∑

i<j,k

h2
l (Xi, Xj)

⎫⎬
⎭
⎧⎨
⎩∑

i<j,k

h2
l (Xi, Xk)

⎫⎬
⎭

=

⎧⎨
⎩∑

i<j,k

h2
l (Xi, Xj)

⎫⎬
⎭

2

,

which implies

Γ̂n,ll � n−1(n− 1)−2
n∑

i=1

∑
i<j

(n− i)h2
l (Xi, Xj) � (n− 1)−2

n∑
i=1

∑
i<j

h2
l (Xi, Xj).

By Condition [A2] and [B2], Eh2
l (Xi, Xj) � E|hl(Xi, Xj) − Ehl(Xi, Xj)|2 +

|Ehl(Xi, Xj)|2 � Dn + |θh|2∞ 1(1 � i � m < j � n) for any 1 � l � d and
1 � i < j � n. From Lemma A.2, it shows that with probability grater than
1− γ,

ψ
2 � (n− 1)−2

{
t� + max

1�l�d

n∑
i=1

∑
i<j

Eh2
l (Xi, Xj)

}
� D2

n + |θh|2∞ n−2{n1n2 + n
1/2
1 n2 log

1/2(nd) + n2 log
3(nd) log(γ−1)}︸ ︷︷ ︸

δn

.

Therefore, ψ � K5

[
Dn + |θh|∞δ

1/2
n

]
. In addition, for Φ−1(1−α/(2d)) = tα > 0

(as d > 1), Gaussian tail bound (Chernoff method) shows tα � [2 log(2d/α)]
1/2

.
Then, with probability greater than 1− γ,

q
T

�
n
(1−α) � 2ψΦ−1(1−α/(2d)) � K6n

−3/2
(
Δ3 + |θh|∞

{
n3 log(2d/α)δn

}1/2)
.
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Since n2 � n/2 and n1 � log5/2(nd), the rate of
{
n3 log(2d/α)δn

}1/2 � n1n2

leads to q
T

�
n|Xn

1
(1 − α) � K6n

−3/2(Δ3 + n1n2|θh|∞). For bounded kernel h,

a simpler bound of ψ � K5Dn directly lead to q
T

�
n|Xn

1
(1 − α) � K6n

−3/2Δ3

without assuming n1 � log5/2(nd).

(3) Bound q
T

ξ
n
(1 − βn). Note that T

ξ

n has the same distribution as Tn|H0.

By the approximation in Theorem 3.1 Step 1, we have ρ(T
ξ

n, Z) � C1�n

holds for Z ∼ Nd(0, 4Γ/3) with probability grater than 1 − γ. Since ||Z||ψ2 �
C2(b) log

1/2(d) by [54, Lemma 2.2.2] and P(Z > t) � 2 exp
{
−( t

||Z||ψ2

)2
}

�
2 exp

{
−C2(b)

−2 log−1(d)t2
}
. Choosing t = C3(b) log

1/2(γ−1) log1/2(d) for large

enough C3(b), we have P(Z > t) � 2γ. Hence, P(T
ξ

n > t) � P(Z > t) + C1�n.
Let βn = 2γ + C1�n. Then with probability grater than 1− γ,

q
T

ξ
n
(1− βn) � C3(b) log

1/2(γ−1) log1/2(d) = C3(b)n
−3/2Δ4.

Combining Step (1)-(3), when m(n − m)|θh|∞ > 2(K3 + K4)Δ1 + 2(K1 +
K2)Δ2 +K6Δ3 + C3(b)Δ4,

|Δ̃|∞ � 1

2
n3/2

{
q
T

�
n
(1− α) + q

T
ξ
n
(1− βn)

}
with probability no smaller than 1− 6γ. That is, the Type II error is less than
6γ+ βn = 8γ+C1�n, where we set ζ = 8γ. As (Δ1 ∨Δ2) � Δ3, the conclusion

of Theorem 3.3 immediately follows for some large enough K � 2
∑6

i=1 Ki.

Proof of Lemma 4.1. Let

Δ̃ =
∑

1�i<j�n

h(Xi, Xj)− h(ξi, ξj) =
∑
k<k′

Δ̃(k,k′),

where
Δ̃(k,k′) =

∑
mk<i�mk+1

mk′<j�mk′+1

h(Xi, Xj)− h(ξi, ξj).

Similar to the proof of Theorem 3.3, we shall quantify |Δ̃|∞, q
T

�
n
(1 − α) and

q
T

ξ
n
(1 − βn) to conclude that the Type II error is bounded when |δ|∞ satisfies

(4.3).
(1) Quantify |Δ̃|∞.

Δ̃(k,k′) = sksk′δ(k,k
′)+ sk

∑
mk′<j�mk′+1

{−g(Xj − θ(k))− δ(k,k
′)}

+ sk
∑

mk′<j�mk′+1

g(Xj − (θ(k
′) − θ(k)))

+
∑

mk<i�mk+1

mk′<j�mk′+1

f̆(Xi, Xj)−
∑

mk<i�mk+1

mk′<j�mk′+1

f̆(Xi, Xj − θ(k)).
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Applying the results in Step (1) to
∑

k<k′ Δ̃(k,k′), we have each of the following
inequalities satisfied with probability greater than 1− γ:

|
∑
k<k′

sk
∑

mk′<j�mk′+1

{−g(Xj − θ(k))− δ(k,k
′)}|∞

�
∑
k<k′

K1Dn(sksk′)1/2n1/2 log1/2(nd) � K1ν
2Dnn

3/2 log1/2(nd);

|
∑
k<k′

sk
∑

mk′<j�mk′+1

g(Xj − (θ(k
′) − θ(k)))|∞

�
∑
k<k′

K2Dn(sksk′)1/2n1/2 log1/2(nd) � K2ν
2Dnn

3/2 log1/2(nd);

|
∑
k<k′

∑
mk<i�mk+1

mk′<j�mk′+1

f̆(Xi, Xj)|∞ + |
∑
k<k′

∑
mk<i�mk+1

mk′<j�mk′+1

f̆(Xi, Xj − θ(k))|∞

�
∑
k<k′

K3γ
−1Dn(sksk′)1/2 log d � K3ν

2Dnn
3/2 log1/2(nd).

Combining all pairs of (k, k′) for 0 � k < k′ � ν, it follows

|Δ̃|∞ = |
∑
k<k′

Δ̃(k,k′)|∞

� |
∑
k<k′

sksk′δ(k,k
′)|∞ − (K1 +K2 +K3)ν

2Dnn
3/2 log1/2(nd)

with probability greater than 1− 3γ.
(2) Bound q

T
�
n
(1− α). Under H ′

1, T
�
n|Xn

1 ∼ Nd(0, 4Γ̂n), where Γ̂n is defined

the same as in (A.3). To control the magnitude of |
∑

1�i<j�n h
2
l (Xi, Xj)|, note

that ∑
1�i<j�n

=
∑

mk<i�mk+1

mk′<j�mk′+1

0�k<k′�ν

+
∑

mk<i<j�mk+1

0�k�ν

.

So we can modify Lemma A.2 from the following two cases. For the case of
Ck,k′ = {mk < i � mk+1 � mk′ < j � mk′+1} where i, j are in different

segments, Eh2
l (Xi, Xj) � Dn+ |δ(k,k

′)
l |2, based on modified Lemma A.2 we have

P
(
max
1�l�d

|
∑
Ck,k′

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)| �

max
k<k′

K4(D
2
n + |δ(k,k′)|2∞)(sksk′)1/2n1/2 log1/2(nd)

)
� γ.

For the case of Ck = {mk < i < j � mk+1} where i, j are in the same segments,
|Ehl(Xi, Xj)|2 � Dn and

P

(
max
1�l�d

|
∑
Ck

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)| � K5D
2
nn

3/2 log1/2(nd)

)
� γ.
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Take t� = D2
nn

3/2 log1/2(nd)+maxk<k′(sksk′)1/2|δ(k,k′)|2∞n1/2 log1/2(nd). Then,
adding all Ck and Ck,k′ together,

ψ
2
= max

1�l�d
Γ̂n,ll

� (n− 1)−2K6

{
t� + max

1�l�d

n∑
i=1

∑
i<j

Eh2
l (Xi, Xj)

}

� K6

{
D2

n + n−3/2 log1/2(nd)max
k<k′

(sksk′)1/2|δ(k,k′)|2∞

+ n−2
∑
k<k′

sksk′ |δ(k,k′)|2∞

}

holds with probability greater than 1−(ν+1)(ν+2)γ/2. Therefore, q
T

�
n
(1−α) �

K7ψtα, where tα = Φ−1(1− α/(2d)) � 2 log1/2(nd/α) and

ψ � K6

{
Dn + n−3/4 log1/4(nd)max

k<k′
(sksk′)1/4|δ(k,k′)|∞

+n−1
∑
k<k′

(sksk′)1/2|δ(k,k′)|∞

}
.

(3) Bound q
T

ξ
n
(1− βn). Since T

ξ

n does not depend on H ′
1, it obeys the same

bound

q
T

ξ
n
(1− βn) � C(b) log1/2(γ−1) log1/2(d) = C(b) log1/2(γ−1) log1/2(d)

with probability grater than 1− γ for βn = 2γ + C1�n.

Combining Step (1)-(3), when

|
∑
k<k′

sksk′δ(k,k
′)|∞

>K0ν
2Dnn

3/2 log1/2(nd/α)

+ C(b)n3/2 log1/2(γ−1) log1/2(d)

+K ′
0 log

1/2(nd/α)

{
n3/4 log1/4(nd)max

k<k′
(sksk′)1/4|δ(k,k′)|∞

+n1/2
∑
k<k′

(sksk′)1/2|δ(k,k′)|∞

}
,

the Type II error will be smaller than βn + {4 + (ν + 1)(ν + 2)/2}γ for βn =
2γ +C1�n. Substitute γ by {4+ (ν +1)(ν +2)/2}−1ζ, we reach the conclusion
of theorem.
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A.2. Proof of lemmas in theorems

Lemma A.1 (Bounding |Γ̂n − Γ/3|∞ under H0.). Suppose all the conditions
in Theorem 3.1 hold. Let Γ = Cov(g(X1)) and Γ̂n be defined as in (A.3). Then
with probability greater than 1− γ,

|Γ̂n − Γ/3|∞ � K0

(
D2

n log(nd)

n

)1/2

.

Proof of Lemma A.1. Note Γ=Cov(E[h(X,X1)|X])=E[h(X1, X2)h(X1, X3)
T ]

and let Γ2 = E[h(X1, X2)h(X1, X2)
T ]. Then

EΓ̂n =
1

n(n− 1)2

n∑
i=1

(n− i)(n− i− 1)Γ +
1

n(n− 1)2

n∑
i=1

(n− i)Γ2

=
n− 2

3(n− 1)
Γ +

1

2(n− 1)
Γ2.

Note that, the summation in Γ̂n can split into two parts

n∑
i=1

∑
j,k>i

=

n∑
i=1

∑
j �=k>i

+

n∑
i=1

∑
j=k>i

.

In Steps 1 and 2 below, we will deal with

Γ̂n1 =
1

n(n− 1)2

n∑
i=1

∑
j �=k>i

h(Xi, Xj)h(Xi, Xk)
T and

Γ̂n2 =
1

n(n− 1)2

n∑
i=1

∑
j=k>i

h(Xi, Xj)h(Xi, Xk)
T ,

where Γ̂n = Γ̂n1 + Γ̂n2. Then conclusion will be made in Step 3.
Step 1: Term Γ̂n1 = 1

n(n−1)2

∑n
i=1

∑
j �=k>i h(Xi, Xj)h(Xi, Xk)

T .

Define H(x1, x2, x3) to be h(x1, x2)h(x1, x3)
T . To symmetrize H, let

H ′(Xi, Xj , Xk) =
∑

π3
H̃(Xπ3(i), Xπ3(j), Xπ3(k)), where

H̃(Xi, Xj , Xk) =

{
H(Xi, Xj , Xk), if i < j �= k,
0, otherwise

,

and π3 is a permutation of {i, j, k}. Then,

Γ̂n1 =
1

n(n− 1)2

∑
i<j �=k

H(Xi, Xj , Xk) =
1

n(n− 1)2

∑
i �=j �=k

H̃(Xi, Xj , Xk)

=
1

6n(n− 1)2

∑
i �=j �=k

H ′(Xi, Xj , Xk)
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is a U -statistics of order 3 and EΓ̂n1 = n−2
3(n−1)Γ. Let

Wn =
(n− 3)!

n!

∑
i �=j �=k

H ′(Xi, Xj , Xk) =
6(n− 1)

n− 2
Γ̂n1.

Apply Lemma E.1 in [13] to H ′ for α = 1/2, η = 1 and δ = 1/2,

P
(n
3
|Wn − EWn|∞ � 2EZ1 + t

)
�

exp

(
− t2

3ζ
2

n

)
+ 3 exp

⎡
⎣−

(
t

K1||M ||ψ1/2

)1/2
⎤
⎦ , (A.6)

where

EWn = EH ′(X1, X2, X3) = 2Γ,

Z1 = max
1�m1,m2�d

∣∣∣∣∣∣
[n3 ]−1∑
i=0

[
H ′

m1,m2(X
3i+3
3i+1 )− EH ′

m1,m2

]∣∣∣∣∣∣ ,
ζ
2

n = max
1�m1,m2�d

[n2 ]−1∑
i=0

EH ′ 2
m1,m2

(X3i+3
3i+1 ),

M = max
1�m1,m2�d

max
0�i�[n3 ]−1

∣∣H ′
m1,m2

(X3i+3
3i+1 )

∣∣ .
and H ′

m1,m2(x1, x2, x3) = H ′
m1,m2

(x1, x2, x3)1{maxm1,m2 |H′
m1,m2

(x1,x2,X3)|�τ}
for τ = 8EM . By Cauchy-Schwarz and Condition (A2),

EH ′ 2
m1,m2

(X3i+3
3i+1 ) � 2EH2

m1,m2
(X3i+3

3i+1 )

�
(
Eh4

m1(X3i+1, X3i+2)
)1/2 (

Eh4
m2(X3i+1, X3i+3)

)1/2 � D2
n.

So ζn � n1/2Dn. From (i) [54, Lemma 2.2.2], (ii) the fact of ||X2||ψ1/2
= ||X||2ψ1

and (iii) Condition (A3), we obtain

||M ||ψ1/2

= || max
m1,m2

max
i

hm1(X3i+1, X3i+2)hm2(X3i+1, X3i+3)||ψ1/2

�(i) K2 log
2(nd) max

m1,m2

max
i

||hm1(X3i+1, X3i+2)hm2(X3i+1, X3i+3)||ψ1/2

� K ′
2 log

2(nd)max
m1

max
i

||h2
m1

(X3i+1, X3i+2)||ψ1/2

=(ii) K
′
2 log

2(nd)max
m1

max
i

||hm1(X3i+1, X3i+2)||2ψ1

�(iii) K
′
2 log

2(nd)D2
n,

where the ranges of indices are 1 � m1,m2 � d and 0 � i � n
3 − 1. By [16,

Lemma 8],

EZ1 � K3

{√
log d ζn + log d ||M ||ψ1/2

}
� K4[n log(nd)D2

n]
1/2.
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Therefore, (A.6) leads to

P
(
|Γ̂n1 − EΓ̂n1|∞ �4K4n

−1/2Dn log
1/2(nd) + t

)
� exp

(
− nt2

3D2
n

)
+ 3 exp

[
−

√
nt

K1K2
1/2 log(nd)Dn

]
.

Recall K log(nd) � log(1/γ) � 1 and n � D2
n log

7(nd). Choose

t∗ = K5

√
D2

n log(nd)

n

for some large enough K5 > 0. Then,

P
(
|Γ̂n1 − EΓ̂n1|∞ � t∗

)
� γ

K2
5

3K + 3γ

K
1/2
5

KK1K
1/2
2 � γ/2.

Step 2: Term Γ̂n2 = 1
n(n−1)2

∑n
i=1

∑
j=k>i h(Xi, Xj)h(Xi, Xk)

T .

Let H(x1, x2) = h(x1, x2)h(x1, x2)
T . Denote W ′

n = (n−2)!
n!

∑
i �=j H(Xi, Xj) =

2(n− 1)Γ̂n2. By Lemma E.1 in [13],

P
(n
2
|W ′

n − EW ′
n|∞ � 2EZ ′

1 + t
)

� exp

(
− t2

3ζ ′
2

n

)
+ 3 exp

⎡
⎣−

(
t

K6||M ′||ψ1/2

)1/2
⎤
⎦ ,

where

EW ′
n = E[H(X1, X2)] = Γ2,

Z ′
1 = max

1�m1,m2�d

∣∣∣∣∣∣
[n2 ]−1∑
i=0

[
Hm1,m2(X

2i+2
2i+1 )− EHm1,m2

]∣∣∣∣∣∣ ,
ζ ′

2

n = max
1�m1,m2�d

[n2 ]−1∑
i=0

EH2
m1,m2

(X2i+2
2i+1 ),

M ′ = max
1�m1,m2�d

max
0�i�[n2 ]−1

∣∣Hm1,m2(X
2i+2
2i+1 )

∣∣ .
In addition, Hm1,m2(x1, x2) = Hm1,m2(x1, x2)1{maxm1,m2 |Hm1,m2 (x1,x2)|�τ} for
τ = 8EM ′. Similarly,

EH2
m1,m2

(X2i+2
2i+1 ) �

(
Eh4

m1(X
2i+2
2i+1 )

)1/2 (
Eh4

m2(X
2i+2
2i+1 )

)1/2 � D2
n.

So ζ ′n � n1/2Dn. In addition,

||M ′||ψ1/2
= || max

1�m1,m2�d
max

0�i�n
2 −1

hm1(X
2i+2
2i+1 )hm2(X

2i+2
2i+1 )||ψ1/2
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� K7 log
2(nd) max

1�m1�d
max

0�i�n
2 −1

||hm1(X2i+1, X2i+2)||2ψ1

� K7 log
2(nd)D2

n.

Then by [16, Lemma 8], we have EZ ′
1 � K8[n log(nd)D2

n]
1/2. Similar to Step 1,

taking t′ ∗ = K9

√
D2

n log(nd)
n for some large enough K9 > 0, we end up with

P (|W ′
n − EW ′

n|∞ � t′ ∗) � γ/2,

i.e. P
(
|Γ̂n2 − Γ2|∞ � (n− 1)−1 · t′ ∗

)
� γ/2.

Step 3: Approximating Γ̂n to Γ/3. By Cauchy-Schwarz inequality and Con-
dition (A2),

|Γ|∞ = max
1�m1,m2�d

|Ehm1(X1, X2)Ehm2(X1, X3)|

� max
1�m1�d

|Eh2
m1(X1, X2)| � max

1�m1�d
|Eh4

m1(X1, X2)|1/2 � Dn,

|Γ2|∞ = max
1�m1,m2�d

|Ehm1(X1, X2)Ehm2(X1, X2)|

� max
1�m1�d

|Eh2
m1(X1, X2)| � Dn.

Notice that

|Γ̂n − Γ/3|∞ � |Γ̂n − EΓ̂n|∞ + |EΓ̂n − Γ/3|∞,

where

|EΓ̂n − Γ/3|∞ � 1

3(n− 1)
|Γ|∞ +

1

2(n− 1)
|Γ2|∞ � n−1Dn � K10

√
D2

n log(nd)

n
.

Combine Step 1 and 2 and take t0 = K0

√
D2

n log(nd)
n for someK0 > K10+K9+K5

large enough, we have

P
(
|Γ̂n − Γ/3|∞ � t0

)
� γ.

Lemma A.2 (Bounding max1�l�d |
∑n

i=1

∑
i<j h

2
l (Xi, Xj)− Eh2

l (Xi, Xj)| un-
der H1.). Suppose all the conditions in Theorem 3.1 and Theorem 3.3 hold. Let
γ ∈ (0, e−1) such that log(γ−1) � K log(nd) and suppose n1 = m � n−m = n2.
Then the following holds with probability greater than 1−γ for some large enough
constant K�

max
1�l�d

|
n∑

i=1

∑
i<j

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)| � K�t�,

where t� = D2
nn

3
2 log

1
2 (nd) + |θh|2∞[n

1
2
1 n2 log

1
2 (nd) + n2 log

3(nd) log(γ−1)].
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Proof of Lemma A.2. Note that h2
l (x, y) = h2

l (y, x) and the summation breaks
down to

n∑
i=1

∑
i<j

=

m∑
i=1

m∑
j=i+1

+

m∑
i=1

n∑
j=m+1

+

n∑
i=m+1

n∑
j=i+1

.

Apply [13, Lemma E.1] to Γ̂1 = 1
n1(n1−1)

∑
1�i<j�n1

h(Xi, Xj)h(Xi, Xj)
T , cal-

culation (similar to Lemma A.1 Step 2) shows

P
(
|Γ̂1 − EΓ̂1|∞ �K1[Dnn

−1/2
1 log1/2(d) +D2

nn
−1
1 log3 (n1d)] + t

)
� exp

(
−n1t

2

3D2
n

)
+ 3 exp

[
−
( √

n1t

K2Dn log(n1d)

)]
.

Take t1 = K3[Dnn
−1/2
1 log1/2(nd) ∨D2

nn
−1
1 log3(nd) log(γ−1)]. It follows that

n1t1
2

D2
n

� D2
n log(nd) � log(γ−1) and

√
n1t1

Dn log(n1d)
�
(
log3(nd) log(γ−1)

log2(n1d)

)1/2

� log(γ−1).

So P
(
|Γ̂1 − EΓ̂1|∞ � t1

)
� γ/3 for some large enoughK3. Therefore, the diago-

nal part obeys the same bound such that the first term
∑m

i=1

∑m
j=i+1 h

2
l (Xi, Xj)

has a tail bound

P

⎛
⎝(m

2

)−1

max
1�l�d

|
m∑
i=1

m∑
j=i+1

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)|∞ � t1

⎞
⎠ � γ/3.

Next, apply the two-sample tail bound Lemma A.4 to the middle term. Thus,

P

⎛
⎝ 1

m(n−m)
max
1�l�d

|
m∑
i=1

n∑
j=m+1

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)|∞ � t2

⎞
⎠ � γ/3

holds for t2 = K4B
2
n[n1

−1/2 log1/2(nd) ∨ n1
−1 log3(nd) log(1/γ)], where Bn =

Dn + |θh|∞. At last for the third term, applying [13, Lemma E.1] to Γ̂2 =
1

n2(n2−1)

∑
1�i<j�n2

h(Yi, Yj)h(Yi, Yj)
T , we have

P
(
|Γ̂2 − EΓ̂2|∞ �K5(D

2
nn

−1
2 log(n2d))

1/2 + t
)

� exp

(
−n2t

2

3D2
n

)
+ 3 exp

[
−
( √

n2t

K6Dn log(n2d)

)]
.

Since n2 = n − m � n/2 and n � D2
n log

7(nd), it suffices to take t3 =

K7Dnn
−1/2 log1/2(nd) such that

n2t3
2

D2
n

� log(nd) and

√
n2t3

Dn log(n2d)
� D−1/2

n n1/4 log−3/4(nd) � log(γ−1).
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Then, the third term has a tail bound

P

⎛
⎝(n−m

2

)−1

max
1�l�d

|
n∑

i=m+1

n∑
j=i+1

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)|∞ � t3

⎞
⎠ � γ/3.

Since there exists a large enough constant K� such that

(n2
1t1) ∨ (n1n2t2) ∨ (n2

2t3)

�K�
{
D2

nn
3
2 log

1
2 (nd) + |θh|2∞[n

1
2
1 n2 log

1
2 (nd) + n2 log

3(nd) log(γ−1)]
}
=: t�,

we conclude P
(
max1�l�d |

∑n
i=1

∑
i<j h

2
l (Xi, Xj)− Eh2

l (Xi, Xj)| � 3t�
)

� γ.

A.3. Lemma for tail probability of the maximum of two-sample
U-statistics

Let Xn1
1 and Y n2

1 be two random samples taking values in a measurable space
(S,S). Suppose Xi ∼ F are independent with Yj ∼ G. Let h : S2 → R

d be a
measurable function and

Tn =
1

n1n2

n1∑
i=1

n2∑
j=1

h(Xi, Yj)

be the two-sample U -statistics. WLOG, we may first assume n1 � n2. Consider
a permutation πn2 on Y n2

1 and the sum of first n1 pairs
∑n1

i=1 h(Xi, Yπn2 (i)
)

X1 · · · Xn1

↓ ↓
Yπn2 (1)

· · · Yπn2 (n1) Yπn2 (n1+1) · · · Yπn2 (n2)

The symmetry leads to
∑

πn2

∑n1

i=1 h(Xi, Yπn2 (i)
) = (n2 − 1)!

∑n1

i=1

∑n2

j=1 h(Xi,

Yj), i.e.

1

n2!

∑
πn2

n1∑
i=1

h(Xi, Yπn2 (i)
) =

1

n2

n1∑
i=1

n2∑
j=1

h(Xi, Yj).

This representation reduce the bounds on Z = n1|Tn− θh|∞ to those of |V |∞ =
|
∑n1

i=1 h(Xi, Yi)− θh|∞, where θh = Eh(X1, Y1). Define

h(x, y) = h(x, y)1{ max
1�k�d

|hk(x, y)| � τ}, τ > 0

Z1 = max
1�k�d

∣∣∣∣∣
n1∑
i=1

hk(Xi, Yi)− Eh̄k

∣∣∣∣∣
M = max

1�k�d
max

1�i�n1

|hk(Xi, Yi)|
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ζ
2

n1
= max

1�k�d

n1∑
i=1

Eh2
k(Xi, Yi)

By similar argument of Lemma E.1 in [13], we have the following result.

Lemma A.3 (Sub-exponential inequality for the maxima of centered two-sam-
ple U -statistics). Let X1, · · ·Xn1 and Y1, · · ·Yn2 be two independent sets of iid
random vectors from F and G, respectively. Suppose n1 � n2 and ||hk(X1,
Y1)||ψα < ∞ for α ∈ (0, 1] and all k = 1, · · · , d. Let τ = 8E[M ], then for any
0 < η � 1 and δ > 0, there exists a constant C(α, η, δ) > 0 such that

P(Z�(1+η)EZ1+t)�exp

(
− t2

2(1 + δ)ζ
2

n1

)
+3 exp

[
−
(

t

C(α, η, δ)||M ||ψα

)α]
(A.7)

holds for all t > 0.

Proof of Lemma A.3. See Lemma E.1 in [13].

By Lemma A.3, we can have the following result.

Lemma A.4 (Tail bound of the maxima of two-sample U -statistics in second
order). Let X1, · · ·Xn1 and Y1, · · ·Yn2 be two independent sets of iid random
vectors from F and G, respectively. Let n = min{n1, n2}, n = max{n1, n2}
and ζ ∈ (0, 1) be a constant s.t. log(ζ−1) � K log(nd). Suppose ||hk(X1, Y1) −
Ehk(X1, Y1)||ψ1 � Dn and E|hk(X1, Y1) − Ehk(X1, Y1)|2+� � D�

n for all k =
1, · · · , d and � = 1, 2. Denote Bn = Dn + |θh|∞, where θh = Eh(X1, Y1). Then,

P( max
1�k�d

| 1

n1n2

n1∑
i=1

n2∑
j=1

h2
k(Xi, Yj)− Eh2

k(Xi, Yj)| � t∗) � ζ (A.8)

holds for t∗ = K0B
2
n{n−1/2 log1/2(nd) + n−1 log3(nd) log(1/ζ)}.

Proof of Lemma A.4. Without loss of generality, we may assume Dn � 1. Let

Hk(x, y) = h2
k(x, y), k = 1, . . . , d, and define Z, Z1, M and ζ

2

n1
for H accord-

ingly. Apply Lemma A.3 to H(x, y) and follow the fact ||M ||2 � ||M ||ψ1/2
=

||
√
M ||2ψ1

, we have

P(Z � 2EZ1 + t) � exp

(
− t2

3ζ̄2n1

)
+ 3 exp

[
−
( √

t

K1||
√
M ||ψ1

)]
.

Note that ||hk(X1, Y1)||ψ1 � ||hk(X1, Y1)−Ehk(X1, Y1)||ψ1+||Ehk(X1, Y1)||ψ1 �
Dn + ||θh,k||ψ1 = Bn and Eh4

k(X1, Y1) � E|hk(X1, Y1)− θh,k|4 + |θh,k|4 � D2
n +

|θh|4∞ � B4
n. By Lemma 2.2.2 in [54],

||
√
M ||2ψ1

= || max
1�k�d

max
1�i�n1

|hk(Xi, Yi)|||2ψ1

� K3(log(n1d)max
k,i

||hk(Xi, Yi)||ψ1)
2
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= K3 log
2(n1d)B

2
n.

Since ζ
2

n1
= max1�k�d

∑n1

i=1 Eh
4
k(Xi, Yi) � n1B

4
n, by Lemma 8 in [16] and

Jensen inequality,

EZ1�K4[log
1/2(d)ζn1

+log(d)||M ||2]�K5(B
2
nn

1/2
1 log1/2(n1d)+B2

n log
3(n1d)).

Therefore,

P

(
max
1�k�d

| 1

n1n2

n1∑
i=1

n2∑
j=1

h2
k(Xi, Yj)− Eh2

k|

� K5B
2
n[n

−1/2
1 log1/2(d) + n−1

1 log3(n1d)] + t

)

� exp

(
−n1t

2

3B4
n

)
+ 3 exp

[
−
( √

n1t

K1K3Bn log(n1d)

)]
Recall n = n1 and n = n2.
(i) If n � K6 log

5(nd) log2(1/ζ), then take t∗1 = KB2
nn

−1/2 log1/2(nd) such that

n1t
∗
1
2

B4
n

= log(nd) � log(1/ζ) and

√
n1t∗1

Bn log(n1d)
� n1/4 log−3/4(nd) � log(1/ζ).

(ii) If n � K6 log
5(nd) log2(1/ζ), then take t∗2 = KB2

nn
−1 log3(nd) log(1/ζ) such

that

n1t
∗
2
2

B4
n

� n−1 log6(nd) log2(1/ζ) � log(1/ζ) and√
n1t∗2

Bn log(n1d)
= log1/2(nd) log1/2(1/ζ) � log(1/ζ).

Observing B2
n[n

−1/2
1 log1/2(d) + n−1

1 log3(n1d)] � t∗1 + t∗2 =: t∗. Hence,

P( max
1�k�d

| 1

n1n2

n1∑
i=1

n2∑
j=1

h2
k(Xi, Yj)− Eh2

k| � t∗) � ζ.

A.4. Lemma for two-sample Hoeffding decomposition

Lemma A.5 (Tail bound of the maxima of the first order projection). Let
X1, . . . , Xn be i.i.d. random vectors from F and Y is independently draw from
G. Suppose θh = Eh(X1, Y ), ||hk(X1, Y ) − θhk||ψ1 � Dn and E|hk(X1, Y ) −
θhk|2+� � D�

n for all k = 1, . . . , d and � = 1, 2. Let ζ ∈ (0, 1) be a constant s.t.
log(ζ−1) � K log(nd). Define the projection Gh(x) = Eh(x, Y )− θh. Then,

P

(
|

n∑
i=1

Gh(Xi)|∞ � KDn{n1/2 log1/2(nd) ∨ log2(nd)}
)

� ζ.
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Therefore when n � log3(nd),

P

(
|

n∑
i=1

Gh(Xi)|∞ � KDnn
1/2 log1/2(nd)

)
� ζ.

Proof of Lemma A.5. Let Z = max1�k�d |
∑n

i=1[Ghk(Xi)]|, σ2 =
max1�k�d

∑n
i=1 E[Ghk(Xi)]

2 and M = max1�i�n max1�k�d |Ghk(Xi)|. By [1,
Theorem 4],

P (Z � 2EZ + t) � exp (− t2

3σ2
) + 3 exp (− t

K1||M ||ψ1

).

By Jensen inequality, E|Ghk(Xi)|2 = E|E[hk(Xi, Y )−θhk|Xi]|2 � E|hk(Xi, Y )−
θhk|2 � Dn and ||Ghk(Xi)||ψ1 � ||hk(Xi, Y )− θhk||ψ1 � Dn. So σ2 � nDn. By
[1, Lemma 2.2.2] and [16, Lemma 8],

||M ||ψ1 � K2 log(nd)max
i,k

||Ghk(Xi)||ψ1 � K2Dn log(nd) and

EZ�K3{σ
√
log d+||M ||ψ1 log d}�K4{

√
n log(d)Dn+log(nd) log(d)Dn}.

Take t∗ = K5Dn{n1/2 log1/2(nd) ∨ log2(nd)}, simple calculation shows P(Z �
t∗) � ζ.

Lemma A.6 (Maximal inequality for canonical two-sample U -statistics). Let
X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent sets of iid random vectors from
F and G, respectively. Let θh = Eh(X1, Y1), n1 � n2 and d � 2. Suppose
||hm(X1, Y1) − θh,m||ψ1 � Dn and E|hm(X1, Y1) − θh,m|2+� � D�

n for all m =
1, . . . , d and � = 1, 2. We have

E|
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)|∞

�KDn log(d)
{
log(d) log(n2d) + (n1n2)

1/2

+ [n2 log(d) log
2(n2d)]

1/2 + [n1n
2
2 log(d)]

1/4
}
.

Proof of Lemma A.6. The structure of this proof is similar to the one-sample
version in [13, Thm 5.1]. By constructing randomization from iid Rademacher
random variables (i.e. P(εi = ±1) = 1

2 for all εi and ε′j , i = 1, . . . , n1, j =
1, . . . , n2), [23, Thm 3.5.3] shows

E|
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)|∞ � K1E|
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)εiε
′
j |∞

Fix anm = 1, . . . , d. Let Λm be a (n1+n2)-by-(n1+n2) matrix with zero diagonal

blocks, where Λm
ij = f̆m(Xi, Yj−n1) if 1 � i � n1, n1 + 1 � j � n1 + n2 and
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Λm
ij = 0, otherwise. Apply Hanson-Wright inequality [52, Thm 1] conditioning

on Xn1
1 and Y n2

1 ,

P
(
εTΛmε|Xn1

1 Y n2
1

)
� 2 exp[−K2 min{ t2

|Λm|2F
,

t

||Λm||2
}],

where εT = (ε1, . . . , εn1 , ε
′
1, . . . , ε

′
n2
) and t > 0. Denote V1 = max1�m�d |Λm|F

and
V2 = max1�m�d ||Λm||2. Let

t∗ = max{V1

√
log d

K2
, V2

log d

K2
},

such that

E[ max
1�m�d

|εTΛmε||Xn1
1 , Y n2

1 ] =

∫ ∞

0

P

(
max

1�m�d
|εTΛmε| � t|Xn1

1 , Y n2
1

)
dt

� t∗ + 2d

∫ ∞

t∗
max{exp (−K2t

2

V 2
1

), exp (−K2t

V2
)}.

Apply the tail bound of standard Gaussian random variables 1−Φ(x) � φ(x)/x
for x > 0, and note that d � 2, we have

2d

∫ ∞

t∗
exp (−K2t

2

V 2
1

)dt � V1√
2K2

∫ ∞

√
2 log d

exp (−s2

2
)ds � V1√

K2 log d
� K2V1.

Similarly,

2d

∫ ∞

t∗
exp (−K2t

V2
)dt � 2V2/K2.

By Jensen’s inequality and the fact V2 � V1, we have

E|
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)εiε
′
j |∞ � K1E[t

∗ +K2V1 + 2V2/K2] � K3(log d)EV1

� K3(log d)(E max
1�m�d

|Λm|2F )1/2. (A.9)

Our last task is to bound

I
def
= E max

1�m�d
|Λm|2F = E[ max

1�m�d

n1∑
i=1

n2∑
j=1

f̆2
m(Xi, Yj)].

Consider Hoeffding decomposition of f̆2
m,

f̆m
0 (x1, y1) = f̆2

m(x1, y1)− f̆m
1 (x1)− f̆m

2 (y1)− Ef̆2
m,

where f̆m
1 (x1) = Ef̆2

m(x1, Y )− Ef̆2
m and f̆m

2 (y1) = Ef̆2
m(X, y1)− Ef̆2

m for X ∼
F |= Y ∼ G are two random vectors independent from Xn1

1 , Y n2
1 , and all x1, y1

from the measurable space of F and G, respectively. Then,

E[ max
1�m�d

n1∑
i=1

n2∑
j=1

f̆2
m(Xi, Yj)]
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=E[ max
1�m�d

n1∑
i=1

n2∑
j=1

f̆m
0 (Xi, Yj) + f̆m

1 (Xi) + f̆m
2 (Yj) + Ef̆2

m]

�E[|
n1∑
i=1

n2∑
j=1

f̆m
0 (Xi, Yj)|∞] + n2E[|

n1∑
i=1

f̆m
1 (Xi)|∞]

+ n1E[|
n2∑
j=1

f̆m
2 (Yj)|∞] + n1n2 max

1�m�d
Ef̆2

m. (A.10)

Note that, conditioning on Xn1
1 , Hoeffding inequality shows for t > 0

P

(
|

n1∑
i=1

f̆m
1 (Xi)εi| > t|Xn1

1

)
� 2 exp (− t2

2
∑n1

i=1 f̆
m
1 (Xi)2

).

Denote M = maxi,j,m |f̆m(Xi, Yj)|. Following arguments in beginning and the
symmetrization inequality [54, Lemma 2.3.1], we have

E|
n1∑
i=1

f̆1(Xi)|∞ �
√

log d E

√√√√max
m

n1∑
i=1

f̆m
1 (Xi)2

� K4

√
log d

√
n1 max

m
Ef̆4

m + log d||M ||44, (A.11)

E|
n2∑
j=1

f̆2(Yj)|∞ �
√

log d E

√√√√max
m

n2∑
j=1

f̆m
2 (Yj)2

� K5

√
log d

√
n2 max

m
Ef̆4

m + log d||M ||44, (A.12)

E|
n1∑
i=1

n2∑
j=1

f̆0(Xi, Yj)|∞ � log d E

√√√√max
m

n1∑
i=1

n2∑
j=1

f̆m
0 (Xi, Yj)2�K6 log d

√
I||M ||2.

(A.13)

The last step of (A.11) comes from [13, Equation (58)]. The (A.12) follows the
same procedure. And the first step of (A.13) is dealt the same way as (A.9) with

E

√√√√max
m

n1∑
i=1

n2∑
j=1

f̆m
0 (Xi, Yj)2 � 2

[
E

√
max
m

∑
i,j

f̆4
m(Xi, Yj)

+ E

√
max
m

∑
i,j

(E[f̆2
m(Xi, Y ′

j )|Xn1
1 ])2

+ E

√
max
m

∑
i,j

(E[f̆2
m(X ′

i, Yj)|Y n2
1 ])2

+ E

√
max
m

∑
i,j

(Ef̆2
m(Xi, Yj))2

]
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� K6

√
I
√
EM2.

Since ||hm(X1, Y1)−θh,m||ψ1 � Dn and E|hm(X1, Y1)−θh,m|2+� � D�
n, we know

maxm Ef̆4
m � D2

n and ||M ||4 � ||M ||ψ1 � K7Dn log(n1n2d) � 2K7Dn log(n2d).

In addition, we have Dq = maxm[E|f̆m(X,Y )|q]1/q � Dn. Plug (A.11)-(A.13)
in (A.10) and the solution of quadratic inequality for I gives

I � K8

{
||M ||22 log2 d+ n1n2D2 + n2

√
log d

√
n1D4 + log d||M ||44

+n1

√
log d

√
n2D4 + log d||M ||44

}
.

Therefore, the square-root of I is less than the square-root of each term on
RHS. Plug the result in (A.9). A simplified result is obtained in the statement
of Lemma A.6.

A.5. Additional simulation and tables

Table 11

Powers report of our method using linear kernel. Here, n = 500, p = 600, α = 0.05 and
change point locations are tm = m/n = 5/10, 3/10, 1/10.

Gaussian t6 ctm-Gaussian
|θ|∞ I II III I II III I II III

tm = 5/10
0 0.042 0.050 0.032 0.058 0.060 0.040 0.052 0.050 0.048

0.28 0.100 0.178 0.082 0.082 0.134 0.072 0.066 0.102 0.070
0.44 0.436 0.628 0.390 0.186 0.420 0.212 0.154 0.356 0.200
0.63 0.886 0.970 0.896 0.610 0.828 0.590 0.554 0.810 0.578
0.84 0.996 1 0.996 0.926 0.988 0.912 0.918 0.990 0.910

tm = 3/10
0 0.030 0.042 0.066 0.038 0.060 0.026 0.030 0.072 0.060

0.28 0.088 0.216 0.108 0.068 0.124 0.036 0.036 0.156 0.082
0.44 0.414 0.738 0.384 0.222 0.418 0.178 0.150 0.440 0.200
0.63 0.890 0.996 0.908 0.594 0.878 0.634 0.524 0.846 0.570
0.84 0.998 1 0.998 0.930 0.998 0.960 0.940 0.996 0.940

tm = 1/10
0 0.054 0.060 0.050 0.064 0.058 0.060 0.054 0.054 0.064

0.63 0.082 0.210 0.086 0.078 0.126 0.082 0.058 0.118 0.086
0.84 0.190 0.472 0.224 0.144 0.278 0.120 0.116 0.240 0.120
1.08 0.446 0.768 0.446 0.268 0.492 0.252 0.208 0.470 0.230
1.35 0.756 0.966 0.770 0.486 0.762 0.516 0.444 0.760 0.462
2.00 0.998 1.000 0.998 0.954 0.996 0.960 0.962 0.994 0.956

In this section, we test the performance of the WBS-type procedure (Al-
gorithm 1). Let n = 500, p = 600, B = 200, BW = 200, n′ = 0.2n = 100
and data be i.i.d. Gaussian distributed with covariance structure III. The two
change points are (m1,m2) = (150, 300) and only the k-th component of the

k-th change point has signal θ
(1)
1 = θ

(2)
2 = δ �= 0. The powers along δ for each

α = 0.01, 0.05, 0.1 are shown in the rows of Table 13. We find that when δ = 0,
the power is close to the nominal levels, respectively. Besides, the power grows
as δ increases.
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Table 12

Powers report of our method using sign kernel. Here, n = 500, p = 600, α = 0.05 and change
point locations are tm = m/n = 5/10, 3/10, 1/10.

Gaussian t6 ctm-Gaussian Cauchy
|θ|∞ I II III I II III I II III |θ|∞ I II III

tm = 5/10
0 0.056 0.043 0.048 0.066 0.062 0.066 0.067 0.032 0.055 0 0.054 0.062 0.039

0.28 0.136 0.289 0.147 0.110 0.229 0.099 0.105 0.204 0.083 0.71 0.403 0.651 0.432
0.44 0.566 0.870 0.624 0.452 0.738 0.479 0.364 0.674 0.397 1.23 0.971 1 0.981
0.63 0.977 1 0.971 0.915 0.996 0.913 0.854 0.980 0.872 1.91 1 1 1
0.84 1 1 1 0.998 1 1 0.988 1 0.998 2.79 1 1 1

tm = 3/10
0 0.049 0.037 0.047 0.039 0.068 0.056 0.051 0.049 0.055 0 0.055 0.035 0.065

0.28 0.070 0.154 0.068 0.058 0.148 0.078 0.073 0.104 0.083 0.71 0.257 0.386 0.280
0.44 0.342 0.619 0.342 0.218 0.451 0.230 0.189 0.427 0.240 1.23 0.829 0.969 0.876
0.63 0.830 0.982 0.848 0.663 0.912 0.706 0.593 0.872 0.628 1.91 1 1 1
0.84 0.992 1 0.996 0.975 1 0.973 0.941 0.994 0.945 2.79 1 1 1

tm = 1/10
0 0.042 0.046 0.065 0.053 0.046 0.046 0.050 0.048 0.050 0 0.057 0.059 0.080

0.63 0.078 0.139 0.082 0.063 0.107 0.078 0.060 0.110 0.075 1.91 0.216 0.394 0.243
0.84 0.147 0.309 0.155 0.097 0.231 0.132 0.104 0.218 0.110 2.79 0.410 0.680 0.433
1.08 0.305 0.580 0.336 0.214 0.458 0.248 0.183 0.423 0.222 3.95 0.627 0.873 0.647
1.35 0.523 0.796 0.588 0.405 0.706 0.439 0.367 0.660 0.351 5.47 0.806 0.931 0.806
2.00 0.891 0.992 0.931 0.794 0.964 0.834 0.815 0.950 0.828 10.02 0.937 0.980 0.933

Table 13

Power of U-statistics based WBS-type testing.

Power
δ

0 0.317 0.733 1.282 2.004
α = 0.01 0.012 0.046 0.806 0.900 0.908
α = 0.05 0.032 0.100 0.818 0.898 0.926
α = 0.1 0.088 0.198 0.882 0.926 0.938

A.6. Additional comparisons with BABS and Jirak

We further compare the size control of [61, BABS], [38, Jirak] and our linear
kernel approach under H0. As suggested, we fix p = 100 and vary n from 50 to
300. The bootstrap repeat is B = 200, ξi are i.i.d. Gaussian with dependence
structure III, and each simulation repeats 500 times. The boundary removal
parameters in BABS and Jirak are both 0.1n.

From Figure 10a, we can find that all three methods have a decreasing trend
when n grows, but our U -statistic approach has the lowest uniform error-in-
size supα∈[0,1] |R̂(α) − α| under each choice of n. This confirms that our U -
statistic test performs better than the others for small n. From Figure 10b
where empirical rejection rates at α = 0.05, 0.1 are provided, we may observe
that the difference among three methods diminishes for n = 300. However,
our approach is closer to the corresponding nominal significance level except
for n = 50. Therefore, the simulation indicates that the no-boundary-removal
property in our proposed test is beneficial to size control under small sample
size.
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Fig 10. Comparison of size control among BABS, Jirak and our method using linear kernel.
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