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Abstract

This paper concerns the parameter estimation problem for the quadratic potential
energy in interacting particle systems from continuous-time and single-trajectory
data. Even though such dynamical systems are high-dimensional, we show that the
vanilla maximum likelihood estimator (without regularization) is able to estimate the
interaction potential parameter with optimal rate of convergence simultaneously in
mean-field limit and in long-time dynamics. This to some extend avoids the curse-of-
dimensionality for estimating large dynamical systems under symmetry of the particle
interaction.
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1 Introduction

Dynamical systems of interacting particles have a wide range of applications on
modeling collective behaviors in physics [5], biology [14, 19], social science [15], and
more recently in machine learning as useful tools to understand the stochastic gradient
descent (SGD) dynamics on neural networks [13]. Due to the large number of particles,
such dynamical systems are high-dimensional even for single-trajectory data from each
particle, and statistical learning problems for lower-dimensional interaction functionals
from data are usually challenging [1, 10, 11]. In this paper, we propose a likelihood based
inference to estimate the parameters of the interaction function induced by a potential
energy in an N interacting particle system based on their observed (continuous-time)
trajectories, and establish its statistical guarantees.

1.1 Interacting N-particle systems

In statistical mechanics, microscopic behaviors of a large number of random particles
are related to explain macroscopic physical quantities (such as temperature distribu-
tions). Specifically, a system ofN interacting particles (XN,1

t , . . . , XN,N
t ) can be described

by stochastic differential equations (SDEs) of the form:

dXN,i
t =

1

N

N∑
j=1

b(XN,j
t −XN,i

t )dt+ σdW i
t , (1.1)
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Interacting particle systems

where b : Rd → Rd is a vector field representing the pairwise interaction between the
particles, (W 1

t )t>0, . . . , (W
N
t )t>0 are N independent copies of the standard Brownian

motion in Rd such that W i
0 = 0, and σ ∈ R+ is a diffusion parameter which is assumed

to be constant and known. The scaling in (1.1) puts us in the mean-field regime, where
the pairwise interaction effect is weak and decays on the order of 1/N as the number of
particles N →∞. Thus the total interaction effect remains O(1).

In this paper, we consider the estimation problem of the interaction function b

parametrized by a linear approximation b(x) = Θx for some unknown d× d (symmetric)
positive-definite matrix Θ � 0:

dXN,i
t = Θ(X

N

t −X
N,i
t )dt+ σdW i

t , (1.2)

and X
N

t = N−1
∑N
j=1X

N,j
t . Interaction in stochastic system (1.2) relates to the Hookean

behavior for capturing the linear elasticity where the interaction force b scales linearly
with deformation distance (due to compression and stretch) in the direction from XN,j

t

to XN,i
t . This type of interaction is extensively used to study the large-scale and long-

time dynamics of protein folding as an elastic mass-and-spring network of small Cα
atoms [7, 6].

It is a classical result [18] that the N -particle SDE system (1.1) in the mean-field
limit admits a unique strong solution (XN,i

t )t>0 if b is (globally) Lipschitz, which is the
case for the stochastic system (1.2). Based on the observed continuous-time and single-
trajectory data of the particle movement (XN,1

t )t>0, . . . , (X
N,N
t )t>0 in the interacting

particle system (1.2), our main focus is to estimate the interaction parameter Θ in the
potential energy.

Note that the first-order dynamical system (1.2) evolves as stochastic gradient flows
in Rd:

dXN,i
t

dt
=

1

N

N∑
j=1

∇V (XN,j
t −XN,i

t ) + σξit, (1.3)

which corresponds to a quadratic potential energy V (x) = 1
2x

TΘx and ξit are i.i.d.
standard Gaussian random vectors in Rd. The left-hand side of (1.3) is the observed
velocity vector of particle i at time t and the right-hand side of (1.3) is a linear function of
all particle trajectories at time t corrupted by independent additive Gaussian noise. Thus,
there are Nd SDEs with observed N trajectory data in dimension d to solve in (1.3) and
estimation problem for Θ can be recast as a high-dimensional linear regression problem
in an augmented space RNd (cf. the equivalent form (2.1) in Section 2). Nevertheless,
the trajectory data are temporally dependent samples since the particles are interacting
and dynamic, so that theoretical guarantees on estimating structured coefficients in high-
dimensional linear models with i.i.d. samples are no long applicable in our context [3].
Moreover, due to the symmetry of the particles in law, the regression coefficients
have very special replicated block diagonal structure in RNd, which suggests that
regularization techniques may not necessarily needed in our problem. Indeed, we show
that a direct likelihood-ratio method suffices to estimate Θ with the optimal rate of
convergence in this work.

1.2 Stochastic Vlasov equation: decoupled mean-field limit

Let ρNt = N−1
∑N
j=1 δXN,j

t
be the empirical measure of the N particles at time t. Then

we can alternatively write (1.1) as

dXN,i
t =

(∫
Rd

b(y −XN,i
t )ρNt (dy)

)
dt+ σdW i

t , (1.4)
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Interacting particle systems

where the drift coefficient vector depends on the individual state XN,i
t and the distri-

bution ρNt (due to interaction). As N →∞ (i.e., in the mean-field limit), the interaction
contributed by any pair of particles in the N -particle system (1.1) vanishes and all parti-
cles are (asymptotically) i.i.d. since they have the same drift and diffusion coefficients
driven by independent standard Brownian motion in Rd. By the law of large numbers,
we see that for any fixed t, ρNt → ρt as N →∞, and the dynamic system (1.4) becomes

dY it =
(∫

Rd

b(y − Y it )ρt(dy)
)

dt+ σdW i
t , (1.5)

where (ρt)t>0 is a non-random measure flow. Since the particles are symmetric in
distribution, ρt is actually the limiting law of each particle Xi

t , i = 1, . . . , N . This defines
a system of independent stochastic Vlasov equations (1.5) with ρt = L(Y it ), which is a
class of Markov processes with nonlinear dynamics [12].

For quadratic potential V (x) = 1
2x

TΘx, the stochastic system (1.2) depends on the

empirical distribution ρNt through the empirical mean X
N

t and it can be decoupled and
approximated by a system of independent mean-reverting processes. Averaging the N
SDEs in (1.2), we see that once again by the law of number numbers,

X
N

t = W
N

t :=
1

N

N∑
i=1

W t
t → 0, as N →∞,

which means that the interaction effect X
N

t becomes deterministic and it is nicely
decoupled in the mean-field limit. Thus we expect that the i-th particle process (XN,i

t )t>0

can be (independently) approximated by a limiting process (Y it )t>0 given by

dY it = −ΘY it dt+ σdW i
t . (1.6)

Note that the processes (Y it )t>0 (1.6) are independent copies of the Ornstein-Uhlenbeck
(OU) processes, which is a linear dynamic system of N independent particles.

1.3 Existing literature

Learnability (i.e., identifiability) of interaction functions in interacting particle sys-
tems under the coercivity condition were studied in [11, 10]. In the noiseless setting,
estimation of the interaction kernel, a scalar-valued function of pairwise distance be-
tween particles in the system, was first studied in [1] for single-trajectory data in the
mean-field limit, where the rate of convergence is no faster than N−1/d. To alleviate
the curse-of-dimensionality, sparsity-promoting techniques were considered for some
structured high-dimensional dynamical systems [2, 17]. [11] showed that a least-squares
estimator achieves the optimal rate of convergence (in the number of observed trajecto-
ries for each particle) for estimating the interaction kernel based on multiple-trajectory
data sampled from a deterministic system with random initialization. Estimation of the
diffusion parameter for interacting particle systems from noisy trajectory data was stud-
ied in [8]. Consistency of parameter estimation of the general McKean-Vlasov equation
by the maximum likelihood estimation is studied in [21]. To the best of our knowledge,
there is no existing work, regularized or not, establishes the optimal rate of convergence
for interaction parameter estimation simultaneously in the large N (mean-field limit)
and large t (long-time dynamics) regime. This work fills this gap for the linear elasticity
interacting particle systems.

1.4 Notation

For two generic vectors a, b ∈ Rd, we use a · b =
∑d
j=1 ajbj to denote the inner

product of a and b. We use ‖a‖ = (a · a)1/2 to denote its Euclidean norm. For a generic
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Interacting particle systems

matrix M , we use ‖M‖ to denote its spectral norm. Denote the set of d× d (symmetric)
positive-definite matrices by Sd×d+ . We use C and c to denote positive universal constants
whose values may vary from place to place.

2 Maximum likelihood estimation

We estimate Θ � 0 by a likelihood based method. In view of propagation of chaos [18],
we assume that the initializations XN,i

0 are some mean-zero independent random vectors
in Rd. Let Wt = (W 1

t , . . . ,W
N
t ) ∈ RNd be the N stacked standard d-dimensional Brown-

ian motion and XN
t = (XN,1

t , . . . , XN,N
t ) ∈ RNd be the stacked observation process. Then

system (1.2) can be rewritten as a higher-dimensional mean-reverting process in the
augmented space RNd:

dXN
t = −ΘHXN

t dt+ ΣdWt, (2.1)

where Θ = diag(Θ, . . . ,Θ) is an (Nd)× (Nd) block diagonal matrix, Σ = diag(σ2, . . . , σ2)

is an (Nd)× (Nd) diagonal matrix, and

H =
1

N


(N − 1)Id −Id . . . −Id
−Id (N − 1)Id . . . −Id

...
...

. . .
...

−Id −Id . . . (N − 1)Id


is an (Nd)× (Nd) interaction matrix. Note that H is a projection matrix H2 = H, which
implies that the interaction effect is homogeneous.

Let P be the law of the standard (Nd)-dimensional Brownian motion (Wt)t>0 and Q
be the law of the augmented observation process (XN

t )t>0. By the multivariate Girsanov
theorem for changing measures (cf. Theorem 1.12 in [9]), the likelihood ratio of (XN

t )t>0

in (1.2) and (Wt)t>0 is given by the Radon-Nikodym derivative dQ
dP (XN,t

0 , ρt0) =: e`
N
t (A),

where

`
N

t (A) =

N∑
i=1

[
− 1

2

∫ t

0

‖A(X
N

s −XN,i
s )‖2 ds+

∫ t

0

A(X
N

s −XN,i
s ) · dXN,i

s

]
, (2.2)

A ∈ Sd×d+ , XN,t
0 = (XN

s )s∈[0,t], and ρt0 = (ρs)s∈[0,t]. Then the maximum likelihood estimator
(MLE) for Θ is defined as

Θ̂N
t = argmaxA∈Sd×d

+
`
N

t (A). (2.3)

Remark 2.1 (Computing the MLE). The MLE Θ̂N
t in (2.3) is a constrained optimization

problem on the smooth manifold Sd×d+ . Since the objective function `
N

t (A) is quadratic

in A, we may easily maximize `
N

t (A) over all possible d × d matrices in closed form
that may not necessarily be a symmetric positive-definite matrix (cf. equation (3.4)

below), and then project the unconstrained maximizer Θ̃N
t = argmaxA∈Rd×d `

N

t (A) into
Sd×d+ by a procedure called positive-definitization that has been used to estimate high-

dimensional covariance matrix (cf. Section 2.2 in [4]). Let Θ̆N
t =

∑d
j=1 λ̆juju

T
j be its

eigen-decomposition of the symmetrized matrix Θ̆N
t = (Θ̃N

t + (Θ̃N
t )T )/2.

Lemma 2.2 (Positive-definitization preserves the rate). If ‖Θ̃N
t −Θ‖ 6 rn, then ‖Θ̌N

t −Θ‖ 6
3rn, where Θ̌N

t =
∑d
j=1 max(λ̆j , rn)uju

T
j .

Proof of Lemma 2.2. First, triangle inequality yields ‖Θ̆N
t −Θ‖ 6 ‖Θ̂N

t −Θ‖ 6 rn. Note
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that

‖Θ̌N
t −Θ‖ 6 ‖Θ̌N

t − Θ̆N
t ‖+ ‖Θ̆N

t −Θ‖ 6
∣∣∣ d∑
j=1

[
(max(λ̆j , rn)− λ̆j)

]
uju

T
j

∣∣∣+ rn

= max
j∈[d]

∣∣max(λ̆j , rn)− λ̆j
∣∣+ rn.

If λ̆j 6 0, then |rn − λ̆j | 6 rn + |λ̆j | 6 rn + |λ̆j − λj | 6 rn + ‖Θ̆N
t −Θ‖ 6 2rn, where λj is

the j-th positive eigenvalue of Θ. If λ̆j > 0, then |max(λ̆j , rn)− λ̆j | 6 rn. Thus, we have
‖Θ̌N

t −Θ‖ 6 3rn. �

Lemma 2.2 states that the estimator Θ̌N
t =

∑d
j=1 max(λ̆j , rn)uju

T
j projects back Θ̃N

t

into Sd×d with the same rate of convergence as Θ̃N
t . In view of the equivalent theoretical

guarantee, we shall in practice compute the unconstrained version of the MLE Θ̃N
t as

our working definition of the MLE Θ̂N
t . In Section 3, we derive the rate of convergence

for Θ̃N
t and we shall use Θ̂N

t to mean Θ̃N
t .

Next we explain the intuition why the MLE (2.3) works. Note that we can write the
log-likelihood as

`
N

t (A) = N

∫ t

0

tr
[
Ms

(
− 1

2
AAT +AΘ

)]
ds+ σ

N∑
i=1

∫ t

0

A(X
N

s −XN,i
s ) · dW i

s , (2.4)

where Ms = N−1
∑N
i=1(X

N

s −XN,i
s )(X

N

s −XN,i
s )T is the instantaneous mean-field covari-

ance matrix at time point s.
As discussed earlier in Section 1, since the interaction among the N particles in

the mean-field regime is weak, we expect that those particles can be decoupled by
their independent analogs. Let (Y 1

t )t>0, . . . , (Y
N
t )t>0 be independent copies of the OU

processes defined in (1.6). Effectively we can view (Y 1
t )t>0, . . . , (Y

N
t )t>0 as a decoupled

system of the N -particle system (XN,1
t )t>0, . . . , (X

N,N
t )t>0. Based on the decoupled

processes, we can approximate `
N

t (A) by

˜̀
N

t (A) := N

∫ t

0

tr
[
M̃s

(
− 1

2
AAT +AΘ

)]
ds− σ

N∑
i=1

∫ t

0

AY is · dW i
s ,

where M̃s = N−1
∑N
i=1 Y

i
s Y

i
s
T

. Decompose

`
N

t (A) = (`
N

t (A)− ˜̀
N

t (A))︸ ︷︷ ︸
decoupling error

+ (˜̀
N

t (A)− E[˜̀
N

t (A)])︸ ︷︷ ︸
OU fluctuation error

+E[˜̀
N

t (A)]︸ ︷︷ ︸
signal

.

Concentration bounds developed in Section 4 allow us to control the decoupling and
OU fluctuation errors around zero. Thus information useful for the estimation purpose
comes from the signal part

E[˜̀
N

t (A)] = tr
[( ∫ t

0

E[M̃s]ds
)(
− 1

2
AAT +AΘ

)]
.

Since the matrix
∫ t

0
E[M̃s]ds is positive-definite, we see that the maximizer of E[˜̀

N

t (A)] is
A∗ = Θ. This means that on the population level, the MLE equals to the true parameter.
Combining this with the decoupling and OU fluctuation errors, we can obtain the rate of
convergence for the MLE Θ̂N

t in (2.3).
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3 Rate of convergence

In this section, we derive the rate of convergence for estimating Θ by the MLE Θ̂N
t

in (2.3) from the continuous-time and single-trajectory data for each particle. Below is
the main result of this paper.

Theorem 3.1. Let (XN,1
t )t>0, . . . , (X

N,N
t )t>0 be the d-dimensional N -particle system de-

fined in (1.2) with i.i.d. initialization XN,i
0 ∼ N(0, D) for i = 1, . . . , N . Let θ1 > . . . > θd >

0 and τ1 > . . . > τd > 0 be the ordered eigenvalues of Θ and D, respectively. If

t > Cκ

(
1

θd
+
τ1
σ2

)
and κd

√
log(d/ε)

N
6 c (3.1)

for some universal constants C and c where κ = θ1/θd is the condition number of Θ, then
we have with probability at least 1− 14ε,

∥∥Θ̂N
t −Θ

∥∥ 6 Cd log

(
d

ε

)√( τ1
σ2t

+ 1
)κθ1

Nt
. (3.2)

Theorem 3.1 is non-asymptotic and has several appealing features.
First, the Gaussian initialization is not essential and it can be relaxed to any i.i.d.

initialization with sub-Gaussian distributions with the ψ2 norm controlled by τ1. The
sub-Gaussian tail is necessary to obtain the exponential concentration rate in N , and
the effect of initialization in the approximating OU processes decays exponentially fast
in t (cf. (4.2) in Section 4.1). Error bound in (3.2) also reflects the diminishing effect of
initialization τ1/(σ2t)→ 0 as t→∞.

Second, the conditions in (3.1) are mild. We do not assume that the N -particle
processes (XN,1

t )t>0, . . . , (X
N,N
t )t>0 starts from the stationary distribution (which is a

restrictive assumption), and the (continuous) time complexity of the particle trajectories
is sharp in the following sense. Suppose Θ = diag(θ, . . . , θ) is an isotropic interaction
matrix (i.e., κ = 1) and XN,1

0 = · · · = XN,N
0 = 0 (i.e., τ1 = 0). Observe that the decoupled

N copies of the OU processes to approximate the dynamics of the interacting N -particle
system have the equilibrium distribution as N(0, σ2(2θ)−1Id), and in view of (4.2), it takes
at least Ω(θ−1) time for (XN,1

t )t>0, . . . , (X
N,N
t )t>0 mixing to the steady states (modulo

small decoupling errors in t). In particular, if θ is closer to zero, then the log-likelihood
ratio becomes flatter and thus larger t is necessary to see the information from samples of
the stationary distribution. On the other hand, if the processes start from the stationary
distribution, then this trajectory time lower bound in t is not needed to obtain (3.2),
provided that d

√
N−1 log(d/ε) 6 c which is the case whenever ε is not too small, e.g.,

ε > d exp(−c2N/d2).
Third, it is known that the MLE θ̃t of a one-dimensional OU process dYt = −θYtdt+

σdWt for the parameter θ > 0 has the exact rate of convergence in the sense that√
t(θ̃t − θ) converges in distribution to N(0, 2θ) as t → ∞ (cf. Example 1.35 in [9]).

Contrast this with our result, we see the rate of convergence in (3.2) is rate-optimal in
both t and N , as well as θ1. Specifically, for fixed d, we can obtain from Theorem 3.1 the
large N (mean-field limit) and large t (long-time dynamics) asymptotics as:

‖
√
t(Θ̂N

t −Θ)‖ = OP

(
θ1/
√
N
)
, (3.3)

provided that the N particle processes start from a chaotic distribution, which agrees
with the exact asymptotics of the one-dimensional OU process (or more generally, d-
dimensional OU processes with isotropic Θ). In view of the architecture of approximating
the N -particle system by N independent OU processes, the rate we derived in Theo-
rem 3.1 is rate-optimal in t and N , modulo small decoupling errors. We shall highlight

ECP 26 (2021), paper 45.
Page 6/13

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP416
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Interacting particle systems

that long-time dynamic behavior in (3.3) as t→∞ cannot be obtained from the classical
theory of the propagation of chaos (cf. [18]), where Gronwall’s lemma (cf. Appendix
1 in [16]) is typically used to control the decoupling error between the interacting N -
particle processes and their independent analogs. In such case, the decoupling error is
exponentially increasing in t, and thus it cannot be used to yield the rate t−1/2. Our ar-
gument is tailored to the quadratic structure of the interacting potential V (x) = 1

2x
TΘx,

which allows for a far more efficient decoupling strategy (cf. Lemma 4.2).

Proof of Theorem 3.1. Since the objective function `
N

t (A) in (2.4) is quadratic in A, the
first-order optimality condition for the unconstrained optimization problem implies that
the MLE of Θ satisfies

Θ̂N
t = Θ +

(∫ t

0

Msds
)−1(∫ t

0

1

N

N∑
i=1

dW i
s ⊗ (X

N

s −XN,i
s )

)
σ, (3.4)

where we recall Ms = N−1
∑N
i=1(X

N

s −XN,i
s )(X

N

s −XN,i
s )T and a⊗ b denotes the tensor

product of two vectors a and b, i.e., (a⊗ b)jk = ajbk. Let (Y it )t>0, i ∈ [N ] be independent
copies of the OU process driven by the same Brownian motion (W i

t )t>0 in (XN,i
t )t>0,

namely,
dY it = −ΘY it dt+ σdW i

t with Y i0 = XN,i
0 .

First, by triangle inequality,∥∥∥ 1

N

N∑
i=1

∫ t

0

dW i
s ⊗ (X

N

s −XN,i
s )

∥∥∥ 6∥∥∥ 1

N

N∑
i=1

∫ t

0

dW i
s ⊗ (X

N

s −XN,i
s + Y is )

∥∥∥
+
∥∥∥ 1

N

N∑
i=1

∫ t

0

dW i
s ⊗ Y is

∥∥∥
Let g(ε,N, d) = 1 +

√
N−1 log(d/ε). Clearly, g(ε,N, d) 6 g(ε, 1, d). By (4.4) in Lemma 4.1

and (4.7) in Lemma 4.2, there exists a universal constant C > 0 such that for any
ε ∈ (0, 1),

∥∥∥ 1

N

N∑
i=1

∫ t

0

dW i
s ⊗ (X

N

s −XN,i
s )

∥∥∥ 6 Cdg(ε, 1, 1)

√
(τ1 + σ2t) log(d/ε)

Nθd

6 Cd log(d/ε)

√
τ1 + σ2t

Nθd
(3.5)

holds with probability at least 1− 8ε. Next, since∥∥∥(∫ t

0

Msds
)−1∥∥∥ =

1

λmin

( ∫ t
0
Msds

) =
1

λd

( ∫ t
0
Msds

) ,
where λj(M) is the j-th eigenvalue of a symmetric positive semidefinite matrix M

and λmin(M) is the smallest eigenvalue of M , we shall derive a lower bound for

λmin

( ∫ t
0
Msds

)
. Note that

∫ t

0

Msds =

∫ t

0

E[Y is Y
i
s

T
]ds+

1

N

N∑
i=1

∫ t

0

(Y is Y
i
s

T − EY is Y
i
s

T
)ds

+
1

N

N∑
i=1

∫ t

0

[(X
N

s −XN,i
s )(X

N

s −XN,i
s )T − Y is Y is

T
]ds.
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By Weyl’s inequality, we have for all j ∈ [d],

∣∣∣λj(∫ t

0

Msds
)
− λj

(∫ t

0

E[Y is Y
i
s

T
]ds
)∣∣∣ 6∥∥∥ 1

N

N∑
i=1

∫ t

0

(Y is Y
i
s

T − EY is Y
i
s

T
)ds
∥∥∥

+
∥∥∥ 1

N

N∑
i=1

∫ t

0

[(X
N

s −XN,i
s )(X

N

s −XN,i
s )T

− Y is Y is
T

]ds
∥∥∥.

In addition, since E[Y is Y
i
s
T

] = Cov(Y is ) = e−ΘtDe−Θt +σ2(2Θ)−1(Id− e−2Θt), by a second
application of Weyl’s inequality and Jensen’s inequality, we have for all j ∈ [d],∣∣∣λj(∫ t

0

E[Y is Y
i
s

T
]ds
)
− λj

(
tσ2(2Θ)−1

)∣∣∣ 6∥∥∥ ∫ t

0

e−ΘsDe−Θsds−
∫ t

0

σ2(2Θ)−1e−2Θsds
∥∥∥

6
∫ t

0

[
τ1e
−2sθd + σ2(2θd)

−1e−2sθd
]
ds 6

τ1
2θd

+
σ2

4θ2
d

.

Combining the last two inequalities and using (4.3) in Lemma 4.1 and (4.8) in Lemma 4.2,
we deduce that there is a universal constant c such that with probability at least 1− 6ε,

λmin

(∫ t

0

Msds
)
>
σ2t

2θ1
− τ1

2θd
− σ2

4θ2
d

− Cdτ1 + σ2t

2θd

√
log(d/ε)

N
> c

σ2t

θ1
, (3.6)

where the last inequality follows from the conditions in (3.1). Now, putting together (3.4),
(3.5) and (3.6), we conclude that there exists a universal constant C such that (3.2) holds
with probability at least 1− 14ε. �

4 Technical lemmas

This section provides key technical results for bounding the fluctuation of the OU pro-
cess and the decoupling error of the N -particle system by the associated N independent
d-dimensional Ornstein-Uhlenbeck processes.

4.1 Concentration inequalities for Ornstein-Uhlenbeck processes

The d-dimensional Ornstein-Uhlenbeck (OU) process (Yt)t>0 with an isotropic diffu-
sion parameter is a mean-reverting stochastic process defined by the following stochastic
differential equation:

dYt = −ΘYtdt+ σdWt, (4.1)

where (Wt)t>0 is the standard Brownian motion in Rd such that W0 = 0, Θ ∈ Sd×d+ is the
mean-reverting drift parameter, and σ > 0 is the scalar diffusion parameter. The solution
to (4.1) is given by

Yt = e−ΘtY0 + σ

∫ t

0

eΘ(s−t) dWs, (4.2)

where eΘ =
∑∞
k=0 Θk/k! is the matrix exponential function. From (4.2), we see that

Yt|Y0 ∼ N(e−ΘtY0, σ
2
∫ t

0
e2Θ(s−t)ds). Suppose the initialization Y0 has mean zero and

covariance matrix D, and Y0 is independent of (Wt)t>0. Then we have E[Yt] = 0 and
Σt := Cov(Yt) = e−ΘtDe−Θt+σ2(2Θ)−1(Id−e−2Θt). As t→∞, the stationary distribution
Yt is N(0, σ2(2Θ)−1).

Denote g(ε,N, d) = 1 +
√
N−1 log(d/ε). Let θ1 > . . . > θd > 0 and τ1 > . . . > τd > 0 be

the ordered eigenvalues of Θ and D, respectively.
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Lemma 4.1 (Concentration inequalities for the OU process). Let dYt = −ΘYtdt+ σdWt

be the d-dimensional OU process defined in (4.1) with Y0 ∼ N(0, D) being independent
of (Wt)t>0. Suppose that (Y 1

t )t>0, . . . , (Y
N
t )t>0 are independent copies of (Yt)t>0. Then

there exists a universal constant C > 0 such that for any ε ∈ (0, 1),

P
(∥∥∥ 1

N

N∑
i=1

∫ t

0

(Y is Y
i
s

T − EY is Y
i
s

T
)ds
∥∥∥ > Cdτ1 + σ2t

θd

( log(d/ε)

N
+

√
log(d/ε)

N

))
6 2ε,

(4.3)

P
(∥∥∥ 1

N

N∑
i=1

∫ t

0

dW i
s ⊗ Y is

∥∥∥ > Cdg(ε,N, 1)

√
(τ1 + σ2t) log(d/ε)

Nθd

)
6 4ε. (4.4)

Proof of Lemma 4.1. Denote U is = Y is Y
i
s
T − EY is Y

i
s
T

and U is = (U is,jk)j,k∈[d]. Let λ > 0

and fix a j, k ∈ [d]. By the exponential Markov inequality and the independence of the
processes (Y it )t>0, we have for all x > 0,

P
( 1

N

N∑
i=1

∫ t

0

U is,jkds > x
)
6 exp(−λx)

N∏
i=1

E
[

exp
( λ
N

∫ t

0

U is,jkds
)]
. (4.5)

Since Y i0 ∼ N(0, D), we have Yt ∼ N(0, e−ΘtDe−Θt + σ2(2Θ)−1(Id − e−2Θt)) for t > 0.
Thus, for all 0 6 s 6 t,

Var(Y isj) 6 ‖Cov(Y is )‖ 6 ‖e−Θs‖2 ‖D‖+ σ2 ‖(2Θ)−1‖ ‖Id − e−2Θs‖ 6 τ1e−2sθd + σ2(2θd)
−1,

and ‖Y isj‖2ψ2
6 C Var(Y isj) 6 C (τ1e

−2sθd + σ2(2θd)
−1) for some universal constant C.

By Lemma 2.7.7 in [20], ‖Y isjY isk‖ψ1 6 ‖Y isj‖ψ2‖Y isk‖ψ2 6 C (τ1e
−2sθd + σ2(2θd)

−1). This
together with Jensen’s inequality imply that∥∥∥ ∫ t

0

U is,jkds
∥∥∥
ψ1

6
∫ t

0

∥∥U is,jk∥∥ψ1
ds 6 C θ−1

d (τ1 + σ2t).

Using the moment-generating function property of sub-exponential random variables (cf.
Proposition 2.7.1 in [20]), we have∣∣∣ λ
N

∣∣∣ 6 c

maxi ‖
∫ t

0
U is,jkds‖ψ1

=⇒ E
[

exp
( λ
N

∫ t

0

U is,jkds
)]
6 exp

(
C
λ2

N2

∥∥∥ ∫ t

0

U is,jkds
∥∥∥2

ψ1

)
.

Thus, for 0 < λ < cNθd/(τ1 + σ2t), we can bound

E
[

exp
( λ
N

∫ t

0

U is,jkds
)]
6 exp

(
C
λ2

N2

N∑
i=1

∥∥∥ ∫ t

0

U is,jkds
∥∥∥2

ψ1

)
6 exp

(
C
λ2(τ1 + σ2t)2

Nθ2
d

)
.

Combining the last inequality with (4.5) and optimizing the bound over λ, we have

P
( 1

N

N∑
i=1

∫ t

0

U is,jkds > x
)
6 exp

{
−min

[ Nθ2
dx

2

4C(τ1 + σ2t)2
,

cNθdx

2(τ1 + σ2t)

]}
.

Equivalently, we can write the above inequality as: for all ε ∈ (0, 1),

P
( 1

N

N∑
i=1

∫ t

0

U is,jkds > C
τ1 + σ2t

θd

( log(1/ε)

N
+

√
log(1/ε)

N

))
6 ε. (4.6)

Applying the same argument to −U is,jk, together with the union bound over j, k ∈ [d] and
using the fact that ‖M‖ 6 dmaxj,k∈[d] |Mjk| for any d× d matrix M , we obtain (4.3).
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Next we prove (4.4). Denote Zit =
∫ t

0
dW i

s ⊗ Y is . Clearly E[Zit ] = 0d×d. Moreover,
(Zit)t>0, . . . , (Z

N
t )t>0 are independent continuous local martingales vanishing at zero with

quadratic variation [Zi]t := ([Zijk]t)j,k∈[d] is given by [Zijk]t =
∫ t

0
|Y isk|2ds. Moreover, the

process Z
N

s = 1
N

∑N
i=1 Z

i
s is also a local martingale vanishing at zero with quadratic

variation [Z
N

jk]t = 1
N2

∑N
i=1

∫ t
0
|Y isk|2ds. Note that E[Zijk]t 6

∫ t
0
‖Σs‖ds 6 (2θd)

−1(τ1 + σ2t)

and E[Z
N

jk]t 6 (2Nθd)
−1(τ1 + σ2t). Applying (4.6) on the diagonal entries (U is,kk)k∈[d],

we have P([Z
N

jk]t > Ctg(ε,N, 1)2(τ1 + σ2t)(Nθd)
−1) 6 ε. By Bernstein’s inequality for

continuous local martingales (cf. Exercise (3.16) on page 145 in [16]), we get

P
(

sup
06s6t

1

N

N∑
i=1

Zis,jk > Cxg(ε,N, 1)

√
τ1 + σ2t

Nθd

)

6P
(

sup
06s6t

Z
N

s,jk > Cxg(ε,N, 1)

√
τ1 + σ2t

Nθd
, [Z

N
]t 6 Cg(ε,N, 1)2 τ1 + σ2t

Nθd

)
+ ε

6 exp
(
− Cx2

2

)
+ ε.

Choosing x =
√

2 log(d2/ε) and applying the union bound, we have with probability at
least 1− 2ε,

max
j,k∈[d]

sup
06s6t

1

N

N∑
i=1

Zis,jk 6 Cg(ε,N, 1)

√
(τ1 + σ2t) log(d/ε)

Nθd

Applying the same argument to −Zis and using ‖M‖ 6 dmaxj,k∈[d] |Mjk| for any d × d
matrix M , we obtain (4.4). �

4.2 Decoupling error bounds for N-particle systems

Lemma 4.2 (Decoupling error bounds for the N -particle system). Let (XN,1
t )t>0, . . . ,

(XN,N
t )t>0 be the d-dimensional N -particle system defined in (1.2) with i.i.d. initialization

XN,i
0 ∼ N(0, D) for i = 1, . . . , N . Then there exists a universal constant C > 0 such that

for any ε ∈ (0, 1),

P
(∥∥∥ 1

N

N∑
i=1

∫ t

0

dW i
s ⊗ (X

N

s −XN,i
s + Y is )

∥∥∥ > Cdg(ε, 1, 1)

√
(τ1 + σ2t) log(d/ε)

Nθd

)
6 4ε,

(4.7)

P
(∥∥∥ 1

N

N∑
i=1

∫ t

0

[(X
N

s −XN,i
s )(X

N

s −XN,i
s )T − Y is Y is

T
]ds
∥∥∥

6 Cd
g(ε, 1, d)√

N

[g(ε, 1, d)√
N

+ g(ε,N, d)
]τ1 + σ2t

2θd

)
6 4ε. (4.8)

Proof of Lemma 4.2. Recall definitions of the N -particle system and the associated ap-
proximating N independent OU processes: for i ∈ [N ],

dXN,i
t = Θ(X

N

t −X
N,i
t )dt+ σdW i

t and dY it = −ΘY it dt+ σdW i
t ,

where (XN,i
t ) and (Y it ) are driven by the same Brownian motion (W i

t ) and Y i0 = XN,i
0 .

Averaging the processes (XN,i
t ) over i ∈ [N ], we get dX

N

t = σdW
N

t := σN−1
∑N
i=1 dW i

t ,

i.e., the mean process (
√
NX

N

t ) of the N particles has the same law as a standard
Brownian motion rescaled by σ. Combining the last three expressions, we obtain that

d(X
N

t −X
N,i
t + Y it ) = σdW

N

t −Θ(X
N

t −X
N,i
t + Y it ),
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which implies that the difference process ∆N,i
t = X

N

t −X
N,i
t +Y it between the N -particle

system and the decoupled OU processes is an OU process with respect to (W
N

t ), i.e., we
have for all i ∈ [N ],

d∆N,i
t = −Θ∆N,i

t dt+ σdW
N

t with ∆N,i
0 = Y

N

0 ∼ N(0, N−1D). (4.9)

Equation (4.9) means that the processes (∆N,1
t ), . . . , (∆N,N

t ) are the same mean-reverting

OU processes, all driven by (W
N

t ). Thus ∆
N

t = ∆N,i
t for all i ∈ [N ], andN−1

∑N
i=1

∫ t
0

dW i
s⊗

∆N,i
s =

∫ t
0

dW s⊗∆
N

t . Now applying (4.4) in Lemma 4.1 to the averaged difference process

(∆
N

t ) with diffusion parameter N−1/2σ and initialization variance N−1D, we obtain (4.7).
Next we prove (4.8). By the triangle inequality and the Cauchy-Schwarz inequality,

∥∥∥ 1

N

N∑
i=1

∫ t

0

[(X
N

s −XN,i
s )(X

N

s −XN,i
s )T − Y is Y is

T
]ds
∥∥∥

6
∥∥∥ 1

N

N∑
i=1

∫ t

0

∆N,i
s ∆N,i

s

T
ds
∥∥∥+

∥∥∥ 1

N

N∑
i=1

∫ t

0

[∆N,i
s Y is

T
+ Y is∆N,i

s

T
]ds
∥∥∥

6
∥∥∥ ∫ t

0

∆
N

s ∆
N

s

T
ds
∥∥∥+ 2

(∫ t

0

‖∆N

s ‖2ds
) 1

2
(∫ t

0

1

N

N∑
i=1

‖Y is ‖2ds
) 1

2

.

Since (∆
N

t ) is an OU process, we have ‖
∫ t

0
E[∆

N

s ∆
N

s

T
]ds‖ 6 N−1

∫ t
0
‖Σs‖ds 6 (τ1 +

σ2t)(2Nθd)
−1, and by (4.3),

P
(∥∥∥∫ t

0

[∆
N

s ∆
N

s

T
− E∆

N

s ∆
N

s

T
]ds
∥∥∥ > Cdτ1 + σ2t

Nθd
(log(d/ε) +

√
log(d/ε))

)
6 2ε.

So we have with probability at least 1− 2ε,∥∥∥ ∫ t

0

∆
N

s ∆
N

s

T
ds
∥∥∥ 6 Cdg(ε, 1, d)2 τ1 + σ2t

Nθd
.

Next, applying (4.6) to the process (∆
N

t ) and the union bound, we have

P
(

max
j∈[d]

∫ t

0

(|∆N

sj |2 − E |∆N

sj |2)ds > C
τ1 + σ2t

Nθd
(log(d/ε) +

√
log(d/ε))

)
6 ε.

This gives ∫ t

0

‖∆N

s ‖2ds 6 d max
j∈[d]

∫ t

0

|∆N

sj |2ds 6 Cdg(ε, 1, d)2 τ1 + σ2t

Nθd
,

where the last inequality holds with probability at least 1− ε. Similar argument yields

P
( 1

N

N∑
i=1

∫ t

0

‖Y is ‖2ds > Cdg(ε,N, d)2 τ1 + σ2t

θd

)
6 ε.

Then (4.8) follows from putting all pieces together. �
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