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Abstract

This paper concerns the parameter estimation problem for the quadratic potential
energy in interacting particle systems from continuous-time and single-trajectory
data. Even though such dynamical systems are high-dimensional, we show that the
vanilla maximum likelihood estimator (without regularization) is able to estimate the
interaction potential parameter with optimal rate of convergence simultaneously in
mean-field limit and in long-time dynamics. This to some extend avoids the curse-of-
dimensionality for estimating large dynamical systems under symmetry of the particle
interaction.
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1 Introduction

Dynamical systems of interacting particles have a wide range of applications on
modeling collective behaviors in physics [5], biology [14, 19], social science [15], and
more recently in machine learning as useful tools to understand the stochastic gradient
descent (SGD) dynamics on neural networks [13]. Due to the large number of particles,
such dynamical systems are high-dimensional even for single-trajectory data from each
particle, and statistical learning problems for lower-dimensional interaction functionals
from data are usually challenging [1, 10, 11]. In this paper, we propose a likelihood based
inference to estimate the parameters of the interaction function induced by a potential
energy in an NN interacting particle system based on their observed (continuous-time)
trajectories, and establish its statistical guarantees.

1.1 Interacting /N-particle systems

In statistical mechanics, microscopic behaviors of a large number of random particles
are related to explain macroscopic physical quantities (such as temperature distribu-

tions). Specifically, a system of N interacting particles (va ’1, ey va N ) can be described
by stochastic differential equations (SDEs) of the form:
1
N, N,j N,i i
dXx; :NZb(Xt I xMhdt 4+ cdWwy, (1.1)
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Interacting particle systems

where b : R? — R? is a vector field representing the pairwise interaction between the
particles, (W})io0,..., (W );>0 are N independent copies of the standard Brownian
motion in R¢ such that W} = 0, and o € R is a diffusion parameter which is assumed
to be constant and known. The scaling in (1.1) puts us in the mean-field regime, where
the pairwise interaction effect is weak and decays on the order of 1/N as the number of
particles N — oco. Thus the total interaction effect remains O(1).

In this paper, we consider the estimation problem of the interaction function b
parametrized by a linear approximation b(z) = Ox for some unknown d x d (symmetric)
positive-definite matrix © > 0:

axNi=oX) — xNYdt + edw?, (1.2)

and Yiv =N"! Zjvzl XtN ”/ Interaction in stochastic system (1.2) relates to the Hookean
behavior for capturing the linear elasticity where the interaction force b scales linearly
with deformation distance (due to compression and stretch) in the direction from XtN J
to XtN " This type of interaction is extensively used to study the large-scale and long-
time dynamics of protein folding as an elastic mass-and-spring network of small C«
atoms [7, 6].

It is a classical result [18] that the N-particle SDE system (1.1) in the mean-field
limit admits a unique strong solution (XtN ’i)@O if b is (globally) Lipschitz, which is the
case for the stochastic system (1.2). Based on the observed continuous-time and single-
trajectory data of the particle movement (X,V'!);>0, ..., (X,""");>0 in the interacting
particle system (1.2), our main focus is to estimate the interaction parameter © in the
potential energy.

Note that the first-order dynamical system (1.2) evolves as stochastic gradient flows
in RY:

dXNZ 1 Y . .
Z - XV + o€l (1.3)

which corresponds to a quadratic potential energy V(z) = %xTG)x and ¢! are i.i.d.
standard Gaussian random vectors in R?. The left-hand side of (1.3) is the observed
velocity vector of particle ¢ at time ¢ and the right-hand side of (1.3) is a linear function of
all particle trajectories at time ¢ corrupted by independent additive Gaussian noise. Thus,
there are Nd SDEs with observed N trajectory data in dimension d to solve in (1.3) and
estimation problem for © can be recast as a high-dimensional linear regression problem
in an augmented space RN (cf. the equivalent form (2.1) in Section 2). Nevertheless,
the trajectory data are temporally dependent samples since the particles are interacting
and dynamic, so that theoretical guarantees on estimating structured coefficients in high-
dimensional linear models with i.i.d. samples are no long applicable in our context [3].
Moreover, due to the symmetry of the particles in law, the regression coefficients
have very special replicated block diagonal structure in R™V¢, which suggests that
regularization techniques may not necessarily needed in our problem. Indeed, we show
that a direct likelihood-ratio method suffices to estimate © with the optimal rate of
convergence in this work.

1.2 Stochastic Vlasov equation: decoupled mean-field limit

Let pl¥ = N~1 E -1 XN s be the empirical measure of the IV particles at time ¢. Then
we can alternatlvely wr1te (1.1) as

dxNt = (/}R by — XtN’i)piN(dy))dt + odW}, (1.4)
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where the drift coefficient vector depends on the individual state XtN " and the distri-
bution pI{V (due to interaction). As N — oo (i.e., in the mean-field limit), the interaction
contributed by any pair of particles in the N-particle system (1.1) vanishes and all parti-
cles are (asymptotically) i.i.d. since they have the same drift and diffusion coefficients
driven by independent standard Brownian motion in R¢. By the law of large numbers,
we see that for any fixed t, p) — p; as N — oo, and the dynamic system (1.4) becomes

dy; = (/}Rd by fYti)pt(dy)>dt+odWZ, (1.5)

where (p;):>0 is a non-random measure flow. Since the particles are symmetric in
distribution, p; is actually the limiting law of each particle X},i = 1,..., N. This defines
a system of independent stochastic Vlasov equations (1.5) with p; = E(Yt"), which is a
class of Markov processes with nonlinear dynamics [12].

For quadratic potential V(z) = 27Oz, the stochastic system (1.2) depends on the

empirical distribution p}¥ through the empirical mean Yiv and it can be decoupled and
approximated by a system of independent mean-reverting processes. Averaging the N
SDEs in (1.2), we see that once again by the law of number numbers,

N
—N  —N 1
X, =W, ::N;thﬁo, as N — oo,

which means that the interaction effect Yﬁv becomes deterministic and it is nicely
decoupled in the mean-field limit. Thus we expect that the i-th particle process (va "0
can be (independently) approximated by a limiting process (Y;');>0 given by

dY} = —eY/dt + odWy. (1.6)

Note that the processes (Y;'):>o (1.6) are independent copies of the Ornstein-Uhlenbeck
(OU) processes, which is a linear dynamic system of N independent particles.

1.3 Existing literature

Learnability (i.e., identifiability) of interaction functions in interacting particle sys-
tems under the coercivity condition were studied in [11, 10]. In the noiseless setting,
estimation of the interaction kernel, a scalar-valued function of pairwise distance be-
tween particles in the system, was first studied in [1] for single-trajectory data in the
mean-field limit, where the rate of convergence is no faster than N —1/d_ To alleviate
the curse-of-dimensionality, sparsity-promoting techniques were considered for some
structured high-dimensional dynamical systems [2, 17]. [11] showed that a least-squares
estimator achieves the optimal rate of convergence (in the number of observed trajecto-
ries for each particle) for estimating the interaction kernel based on multiple-trajectory
data sampled from a deterministic system with random initialization. Estimation of the
diffusion parameter for interacting particle systems from noisy trajectory data was stud-
ied in [8]. Consistency of parameter estimation of the general McKean-Vlasov equation
by the maximum likelihood estimation is studied in [21]. To the best of our knowledge,
there is no existing work, regularized or not, establishes the optimal rate of convergence
for interaction parameter estimation simultaneously in the large N (mean-field limit)
and large ¢ (long-time dynamics) regime. This work fills this gap for the linear elasticity
interacting particle systems.

1.4 Notation

. d
For two generic vectors a,b € RY, we use a - b =

i=1
1/2 to denote its Euclidean norm. For a generic

ajb; to denote the inner
product of a and b. We use |ja|| = (a - a)
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matrix M, we use ||M || to denote its spectral norm. Denote the set of d x d (symmetric)
positive-definite matrices by SiXd. We use C and c to denote positive universal constants
whose values may vary from place to place.

2 Maximum likelihood estimation

We estimate © > 0 by a likelihood based method. In view of propagation of chaos [18],
we assume that the initializations Xév " are some mean-zero independent random vectors
in R%. Let W, = (W},...,W}) € RV’ be the N stacked standard d-dimensional Brown-
ian motion and X} = (XtN’l, e ,XtN’N) € RV be the stacked observation process. Then
system (1.2) can be rewritten as a higher-dimensional mean-reverting process in the
augmented space RV?:

dXN = —@HXNdt + XdW,, (2.1)

where © = diag(©,...,0) is an (Nd) x (Nd) block diagonal matrix, > = diag(o?,...,0?)
is an (Nd) x (Nd) diagonal matrix, and

(N - 1)1, "y . I,
y N — 1)1, _I,
gL ( )
N : : - :
_I I, .. (N=1Iy

is an (Nd) x (Nd) interaction matrix. Note that H is a projection matrix H? = H, which
implies that the interaction effect is homogeneous.

Let P be the law of the standard (/Nd)-dimensional Brownian motion (W,);>¢ and @
be the law of the augmented observation process (X} );>o. By the multivariate Girsanov
theorem for changing measures (cf. Theorem 1.12 in [9]), the likelihood ratio of (Xév )t>0

in (1.2) and (Wy);>0 is given by the Radon-Nikodym derivative j—g(Xé\”t,pg) = el (W),
where
_ 1 [t _ . Lt . .
B=3[-3 / JACEY = X217 ds + / AX] - xM-axM @2
- 0 0

=1

Ae SiXd, Xév’t = (XY)seqo,, and ply = (ps)sefo,1- Then the maximum likelihood estimator
(MLE) for © is defined as

ey = ArgMAaX 4 cgix ZiV(A). (2.3)

Remark 2.1 (Computing the MLE). The MLE é{v in (2.3) is a constrained optimization
problem on the smooth manifold SiXd. Since the objective function Ziv (A) is quadratic
in A, we may easily maximize Z,{V(A) over all possible d x d matrices in closed form
that may not necessarily be a symmetric positive-definite matrix (cf. equation (3.4)

below), and then project the unconstrained maximizer (:){V = argmax 4 cpdaxd ZiV(A) into
SiXd by a procedure called positive-definitization that has been used to estimate high-

dimensional covariance matrix (cf. Section 2.2 in [4]). Let C:),fv = Z;l:l :\jujujT be its
eigen-decomposition of the symmetrized matrix O = (6N + (6N)7) /2.
Lemma 2.2 (Positive-definitization preserves the rate). If |ON —©|| < r,,, then ||©ON —0|| <

N e v p
3rn, where ©;" = >0 max(Aj, rn)uju; .

Proof of Lemma 2.2. First, triangle inequality yields |©Y — @] < ||©6N — O|| < r,,. Note
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that

T
j

If A; <0, then [r, — Aj| < 7 + [N <rn + A = Aj| <7 + O — O] < 27y, where ) is
the j-th positive eigenvalue of ©. If )\ > 0, then |max()\J,rn) A ;| < ryn. Thus, we have
16N — 0| < 3r,. ]

Lemma 2.2 states that the estimator O = ijl max(X;, rn)ujul projects back O
into $¢*¢ with the same rate of convergence as (:),{V . In view of the equivalent theoretical
guarantee, we shall in practice compute the unconstrained version of the MLE (:)iV as
our working definition of the MLE éév . In Section 3, we derive the rate of convergence
for ©) and we shall use O to mean O} .

Next we explain the intuition why the MLE (2.3) works. Note that we can write the
log-likelihood as

_N t 1 al K N 7 7
A):N/O tr [MS(—§AAT+A®)}ds+oZ/O AXY - xNiyawi, (2.4

where M, = N~1 Y 1( — XNa)(XY — XN4)T i the instantaneous mean-field covari-
ance matrix at time pomt S.

As discussed earlier in Section 1, since the interaction among the N particles in
the mean-field regime is weak, we expect that those particles can be decoupled by
their independent analogs. Let (Y,!)i>o, ..., (Y;")i>0 be independent copies of the OU
processes defined in (1.6). Effectively we can view (Y;!);>o,. .., (Y;")i>0 as a decoupled
system of the N-particle system (XV'');>0,...,(X"");50. Based on the decoupled

processes, we can approximate ZﬁV(A) by

7 A) ZN/Ottr [Ms(—;AAT—FA@)}dS—Ué/OtAKi'dWSi»

where M, = N-' 3V viyi". Decompose

-N -N =N =N =N —N
6 (A) = (4, (A) =&, (A) + (4, (A) — E[(, (A)]) +E[¢, (A)].
——

decoupling error OU fluctuation error signal

Concentration bounds developed in Section 4 allow us to control the decoupling and
OU fluctuation errors around zero. Thus information useful for the estimation purpose
comes from the signal part

B, (A)] = tr [(/Ot E[Ms]ds) ( - %AAT + A@)].

Since the matrix fot IE[M,]ds is positive-definite, we see that the maximizer of E[@ZV (A)] is
A* = ©. This means that on the population level, the MLE equals to the true parameter.
Combining this with the decoupling and OU fluctuation errors, we can obtain the rate of
convergence for the MLE (:),{V in (2.3).
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3 Rate of convergence

In this section, we derive the rate of convergence for estimating © by the MLE @{V
in (2.3) from the continuous-time and single-trajectory data for each particle. Below is
the main result of this paper.

Theorem 3.1. Let (XV'") >0, ..., (XtN’N)t}o be the d-dimensional N-particle system de-
fined in (1.2) with i.i.d. initialization Xév” ~N(O,D)fori=1,...,N.Let0, > ... > 6; >
Oand 7y > ... > 74 > 0 be the ordered eigenvalues of © and D, respectively. If

1 n log(d/e)
> — 41 o)« )
t/Cﬁ(ad—&—Jz) and kd N <ec (3.1)

for some universal constants C' and ¢ where x = 6 /6, is the condition number of ©, then
we have with probability at least 1 — 14e,

16N — 0| < Cdlog (fj) (%—Fl)% (3.2)

Theorem 3.1 is non-asymptotic and has several appealing features.

First, the Gaussian initialization is not essential and it can be relaxed to any i.i.d.
initialization with sub-Gaussian distributions with the > norm controlled by 7;. The
sub-Gaussian tail is necessary to obtain the exponential concentration rate in N, and
the effect of initialization in the approximating OU processes decays exponentially fast
in ¢ (cf. (4.2) in Section 4.1). Error bound in (3.2) also reflects the diminishing effect of
initialization 71 /(0%t) — 0 as t — oo.

Second, the conditions in (3.1) are mild. We do not assume that the N-particle
processes (X"'1)i0,..., (X"N);>¢ starts from the stationary distribution (which is a
restrictive assumption), and the (continuous) time complexity of the particle trajectories
is sharp in the following sense. Suppose © = diag(4,...,#) is an isotropic interaction
matrix (i.e., x = 1) and X(J,V’1 =... = X(])V’N =0 (i.e., 71 = 0). Observe that the decoupled
N copies of the OU processes to approximate the dynamics of the interacting N-particle
system have the equilibrium distribution as N(0,02(20)~'1,;), and in view of (4.2), it takes
at least Q(6~!) time for (X,V"");>0,. .., (X"");>0 mixing to the steady states (modulo
small decoupling errors in ¢). In particular, if 6 is closer to zero, then the log-likelihood
ratio becomes flatter and thus larger ¢ is necessary to see the information from samples of
the stationary distribution. On the other hand, if the processes start from the stationary
distribution, then this trajectory time lower bound in ¢ is not needed to obtain (3.2),
provided that dy/N~!log(d/e) < ¢ which is the case whenever ¢ is not too small, e.g.,
e > dexp(—c*N/d?).

Third, it is known that the MLE 6, of a one-dimensional OU process dY; = —0Y;dt +
odW, for the parameter # > 0 has the exact rate of convergence in the sense that
Vt(8; — 0) converges in distribution to N(0,20) as t — oo (cf. Example 1.35 in [9]).
Contrast this with our result, we see the rate of convergence in (3.2) is rate-optimal in
both ¢t and N, as well as 0. Specifically, for fixed d, we can obtain from Theorem 3.1 the
large N (mean-field limit) and large ¢ (long-time dynamics) asymptotics as:

IVE©Y —©)ll = 0r (01/VN), (33)

provided that the N particle processes start from a chaotic distribution, which agrees
with the exact asymptotics of the one-dimensional OU process (or more generally, d-
dimensional OU processes with isotropic ©). In view of the architecture of approximating
the N-particle system by N independent OU processes, the rate we derived in Theo-
rem 3.1 is rate-optimal in ¢t and N, modulo small decoupling errors. We shall highlight
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that long-time dynamic behavior in (3.3) as ¢t — oo cannot be obtained from the classical
theory of the propagation of chaos (cf. [18]), where Gronwall’s lemma (cf. Appendix
1 in [16]) is typically used to control the decoupling error between the interacting N-
particle processes and their independent analogs. In such case, the decoupling error is
exponentially increasing in ¢, and thus it cannot be used to yield the rate t~'/2. Our ar-
gument is tailored to the quadratic structure of the interacting potential V(z) = %xTG)a:,
which allows for a far more efficient decoupling strategy (cf. Lemma 4.2).

Proof of Theorem 3.1. Since the objective function ?ﬁv (A) in (2.4) is quadratic in A4, the
first-order optimality condition for the unconstrained optimization problem implies that
the MLE of O satisfies

. t -1, 1t X . N _
o) =0+ (/0 Msds> (/0 5 2 dWie (X, fX;V*Z)) 7, (3.4)
=1

where we recall M, = N1 Z;N:l(YiV — xNi) (XY — X¥4)T and a ® b denotes the tensor
product of two vectors a and b, i.e., (a @ b) ;i = a;by. Let (Y')i>0,4 € [N] be independent
copies of the OU process driven by the same Brownian motion (W;);>o in (X;¥"*);0,
namely,

dY} = —OY/dt + odW; with Y§ = XV

First, by triangle inequality,

1 N t . —N .
HN E / dWy @ (X _Xév’z)
i=170

N t
1 . —N ; ;
< 75 dWig (X, — XNi4y?
HNi_l/O s®( s s + s)

1Lt
— dW!®Y!
+HN; s ® s

Let g(e, N,d) =1+ /N—1log(d/e). Clearly, g(e, N,d) < g(¢,1,d). By (4.4) in Lemma 4.1
and (4.7) in Lemma 4.2, there exists a universal constant C' > 0 such that for any
e € (0,1),

N t
1 N , (m1 + o?t)log(d/¢)
— dWi® (X, — XNMYH| < Cdg(e, 1,1
HN;/O wie (X - XN)|| < cdgle, >\/ N,
T1 + o2t
< Cdl Lo .
Cdlog(d/e) NG, (3.5)

holds with probability at least 1 — 8¢. Next, since

t -1 1 1
L N (T T )

where \;(M) is the j-th eigenvalue of a symmetric positive semidefinite matrix M
and Apin(M) is the smallest eigenvalue of M, we shall derive a lower bound for

/\min<f0t Msds). Note that
t t . .T 1 N t . .T . .T
/ Msds:/ E[YiY! ]ds+—Z/ (ViYF —EYIY! )ds
0 0 Ni—l 0

N t
— X, - XX, - X" —=Y'Y! |ds.
F o IO = —xT —vas
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By Weyl's inequality, we have for all j € [d],

([ ) = ([ ey <[5 X [ onv - mviv
=1
N

1 b N in =N i
20 [ - xn ) - xr
1=1
= Vv s

In addition, since E[Y7Y?' | = Cov(Y7) = e=®*De=®t 4 ¢2(20)~1(I, — e~20%), by a second
application of Weyl’s inequality and Jensen’s inequality, we have for all j € [d],

t ' .
‘)\j (/ E[YSiYSiT]ds) — )\j (t02(2@)—1)‘ gH / e~ 95 D955 — / 02(2@)—16—265(18“
0 0 ;
t ? 0 ™o o’
< —2s04 229 —1 _Qde g— o
/0 [Tie +0%(204)" "€ ]ds %, + 7
Combining the last two inequalities and using (4.3) in Lemma 4.1 and (4.8) in Lemma 4.2,

we deduce that there is a universal constant c such that with probability at least 1 — 6¢,

2

t ot 1 o 71 + 0%t [log(d/e) o2t
min Ms 2 - - - 2 ) .
A ( /0 ds) 2, 20, 12 7 ag, N “0, (3.6)

where the last inequality follows from the conditions in (3.1). Now, putting together (3.4),
(3.5) and (3.6), we conclude that there exists a universal constant C such that (3.2) holds
with probability at least 1 — 14¢. ]

4 Technical lemmas

This section provides key technical results for bounding the fluctuation of the OU pro-
cess and the decoupling error of the N-particle system by the associated N independent
d-dimensional Ornstein-Uhlenbeck processes.

4.1 Concentration inequalities for Ornstein-Uhlenbeck processes

The d-dimensional Ornstein-Uhlenbeck (OU) process (Y;);>¢ with an isotropic diffu-
sion parameter is a mean-reverting stochastic process defined by the following stochastic
differential equation:

dY; = —0Yidt + odWy, (4.1)

where (W;);>¢ is the standard Brownian motion in R? such that Wy, =0, © € S‘fd is the
mean-reverting drift parameter, and ¢ > 0 is the scalar diffusion parameter. The solution
to (4.1) is given by
t
Y, = e Oy, + a/ e®G= qw,, 4.2)
0
where ¢©® = ZZ‘LO @k/k! is the matrix exponential function. From (4.2), we see that
Y;|Yo ~ N(e Y, 02 fg e?©(s=1)ds). Suppose the initialization Y, has mean zero and
covariance matrix D, and Y} is independent of (W;);>o. Then we have E[Y;] = 0 and
Y = Cov(Y;) = e ©*De 0 +02(20) 1 (I;— e~ 20"). Ast — oo, the stationary distribution
Y; is N(0,0%(20)71).
Denote g(e, N,d) =1+ y/N~tlog(d/e). Let 01 > ... >0 >0and 7 > ... > 74 > 0 be
the ordered eigenvalues of © and D, respectively.
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Lemma 4.1 (Concentration inequalities for the OU process). Let dY; = —0Y;dt + odW;
be the d-dimensional OU process defined in (4.1) with Yy ~ N(0, D) being independent
of (Wy)¢>0. Suppose that (Y;!);>o, ..., (Y} )i>0 are independent copies of (Y;):>o. Then
there exists a universal constant C' > 0 such that for any ¢ € (0, 1),

{43 [0 ] et g () BT o
(4.3)
P+ i /0 “awi o V| > cdgle, N, 1)\/ e Gjé)eiog(d/g)) S de @4

Proof of Lemma 4.1. Denote U = YY" — EYiY" and Ui = (UZ jr)jkela- Let A >0

87

and fix a j, k € [d]. By the exponential Markov inequality and the independence of the
processes (Y;):>o, we have for all z > 0,

Z/ Jkds < exp(—Az) f[lE {exp (% /Ot U;jkdsﬂ. (4.5)

Since Yj ~ N(0,D), we have Y; ~ N(0,e=®*De=®t + ¢2(20)~1(I; — e~29)) for t > 0.
Thus, forall 0 < s < ¢,

Var(Y;) < [|Cov(Y))|| < le™®°|*[|DI| + 0 (20) || | 1a — e7%°|| < mie™ > + 0% (200) ",
and [|Y}[l3, < CVar(Y)) < C(re 2% + 02(204)~ ') for some universal constant C.

Y ler <MYl Yill, < C(rie™?% + 02(204)7"). This
together with Jensen'’s inequahty imply that

H/ kdsH / H JkHw 0951(T1+02t).

Using the moment-generating function property of sub-exponential random variables (cf.
Proposition 2.7.1 in [20]), we have

‘A‘< ¢ :>E{ep()\/U‘ ds)}<ep(0/\2H/tUi dsHQ)
N - X —_— L ex _— 5.4 .
N max | [y UL judsllo, N Jo oot N2 o o7
Thus, for 0 < A < ¢N6y/(m1 + o%t), we can bound
by AQ Zt 2
E [exp (N/ U’ kds)} < exp Z H/ kdsH < exp (C%;)).
Combining the last inequality with (4.5) and optimizing the bound over A, we have

) NO2z2 cNOyx
Z/ gkds = eXp{ T [40(7’1 j—a?t)y 2(my + Uzt)} }

Equivalently, we can write the above inequality as: for all € € (0, 1),

SED oY N T LI R ra) ) B

Applying the same argument to —U’ jx» together with the union bound over j, k € [d] and
using the fact that || M/|| < d max; ke[d] M;y,| for any d x d matrix M, we obtain (4.3).
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Next we prove (4.4). Denote Z} = fot dW! ® Y. Clearly E[Z}] = 04xq. Moreover,
(Z)i>0, - - -+ (Z))i>0 are independent continuous local martingales vanishing at zero with
quadratic variation [Z°]; := ([Z]]¢); ke[a) is given by [Z},]; = fo |V |*ds. Moreover, the
process Z]j = % va 1 Z! is also a local martingale vanishing at zero with quadratic
variation [7;-\;]t = LYY fo |Y,.|?ds. Note that E[Z,]; fo [1Zs/lds < (204) (1 + 02t)
and ]E[?;-\,Z]t < (2N64)~'(11 + 0°t). Applying (4.6) on the diagonal entries (U ;. )ked),

we have IP([??,L]t > Ctg(e, N,1)*(11 + 0?t)(N6,)~') < e. By Bernstein’s inequality for
continuous local martingales (cf. Exercise (3.16) on page 145 in [16]), we get

T + o2t
su Zt > Czg(s, N, 1 7>
(0<SI<)t Z ar > Crgl ) \ Néa

TI+0%t N 5 T1 + 0%t
<]P( ZN > Cxgle, N 1)y | 22 7™, < Cgle, N1 7)
Sup Lo 2 zg(e, N, 1) NG, (2] < Cg(e,N, 1) No, ) e
Cz?
gexp(—T)—i—g.

Choosing = = y/2log(d?/¢) and applying the union bound, we have with probability at
least 1 — 2¢,

(11 + o?t) log(d/e)
max suptNZ sk < Cgle, N, 1)\/

J:k€ld] 0<s< NOqg

Applying the same argument to —Z! and using ||M|| < dmax; xe(q |M;x| for any d x d
matrix M, we obtain (4.4). ]

4.2 Decoupling error bounds for N-particle systems

Lemma 4.2 (Decoupling error bounds for the N-particle system). Let (XtN’l)t>07 e
(XtN N )t>0 be the d-dimensional N-particle system defined in (1.2) with i.i.d. initialization
Xév’i ~ N(0,D) fori =1,...,N. Then there exists a universal constant C' > 0 such that
for any € € (0,1),

1 N ¢ —N
i N i
IP(H;l/O dW! ® (X X" +Y

> Cdg(s,l,l)\/(ﬁ + o2t) log(d/s)) < le.

Nog
4.7)

(|3 10 XY X7 i
< Cdg(i’/]%d) [g(i’/]lv’d) +g(e, N, d)} “;05%) <de. (4.8)

Proof of Lemma 4.2. Recall definitions of the N-particle system and the associated ap-
proximating N independent OU processes: for i € [N],

AxN = oX) — xNYdt + odW and dY; = —OYjdt + odW},

where (X}V'") and (Y}) are driven by the same Browman motion (Wt) and Yj = x}.

Averaging the processes (X,") over i € [N], we get dXt = Jth =oN~! Zi:l dW,
i.e., the mean process (WY?{) of the N particles has the same law as a standard
Brownian motion rescaled by ¢. Combining the last three expressions, we obtain that

AX, = XN+ V) = 0dW, —0(X, — XM +Y7),
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which implies that the difference process Aiv "+ = Yﬁv - XtN oy Y} between the N-particle

system and the decoupled OU processes is an OU process with respect to (Wév) i.e., we
have for all i € [N],

dAM = —eANMdt + odW, with A)' =Yg ~N(0,N7'D), (4.9)

Equation (4.9) means that the processes (AN'!), ..., (AN") are the same mean-reverting
OU processes, all driven by (Wiv) Thus Ziv =AM foralli € [N],and N1 SN | fot dWi®
AN = fot dW, ®Zﬁv . Now applying (4.4) in Lemma 4.1 to the averaged difference process

(Ziv ) with diffusion parameter N~'/?¢ and initialization variance N ~'D, we obtain (4.7).
Next we prove (4.8). By the triangle inequality and the Cauchy-Schwarz inequality,

N t
1 _ o _ o
N2 [T - xPEE — x T vy Tas
=1 0

< 121\3/ ANIANT ]|+ Hli/t[AN’iYiT—FYiAN’iT]dsH
N P 0 S S N P o S S S S
< /tAi,VAiVTdSH + 2</t Aiv|2ds>é(/t 1 ﬁ: HY;indS)%'
0 ) 0 o N =

— _ N—NT
Since (Aiv) is an OU process, we have ||f0t E[AiVAiv Jds|| < N‘lfot 1Zs]lds < (71 +
o%t)(2N6;)~1, and by (4.3),

T + o2t

No, (log(d/e) + log(d/é—)))gQE.

t N NT _ N_NT
]P(H/[AiVAiV ~EAVAY ]dsH>Cd
0

So we have with probability at least 1 — 2¢,

T+ ot

t

__N—NT

AVAN Hng 1,42 ot
H/O S S S g(E ) N@d

Next, applying (4.6) to the process (Aiv) and the union bound, we have

™+ ot

No, (log(d/e) + log(d/g))) <e.

t

IP(max/ (BYP - EEY2)ds > C
j€ldl Jo

This gives

1 + 0%t

t t
—N —N
/ |AL ||?ds < d max/ |A,;17ds < Cdgl(e, 1,d)* ———,
0 0 Né’d

J€ld]

where the last inequality holds with probability at least 1 — €. Similar argument yields

N t 2
1 : 71+ 0“1
]P(— Yi|2ds > Cd ,N,d27)< .
N2 ) s > Cagte, NP <
Then (4.8) follows from putting all pieces together. [ |
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