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Abstract. In this paper we construct examples of irrational behavior of mul-

tiplicities and mixed multiplicities of divisorial filtrations. The construction

makes essential use of anti-positive intersection products.

1. Introduction

In this paper, we begin by giving an overview of the theory of multiplicities

and mixed multiplicities of (not necessarily Noetherian) filtrations, including an

interpretation of multiplicities and mixed multiplicities of divisorial filtrations as

anti-positive intersection multiplicities. Using this interpretation, we construct a

resolution of singularities of a normal three dimensional local ring and compute the

multiplicities and mixed multiplicities of its divisorial filtrations, showing essentially

irrational behavior.

The study of mixed multiplicities of mR-primary ideals in a Noetherian local ring

R with maximal ideal mR was initiated by Bhattacharya [1], Rees [29] and Teissier

and Risler [35]. In [11] the notion of mixed multiplicities is extended to arbitrary,

not necessarily Noetherian, filtrations of R by mR-primary ideals. It is shown in

[11] that many basic theorems for mixed multiplicities of mR-primary ideals are

true for filtrations.

The development of the subject of mixed multiplicities and its connection to

Teissier’s work on equisingularity [35] can be found in [16]. A survey of the theory of

mixed multiplicities of ideals can be found in [34, Chapter 17], including discussion

of the results of the papers [30] of Rees and [33] of Swanson, and the theory of

Minkowski inequalities of Teissier [35], [36], Rees and Sharp [32] and Katz [18].

Later, Katz and Verma [19], generalized mixed multiplicities to ideals which are

not all mR-primary.

Let R be a Noetherian local ring of dimension d with maximal ideal mR. Let

`R(M) denote the length of an R-module M .

A filtration I = {In}n∈N of a ring R is a descending chain

R = I0 ⊃ I1 ⊃ I2 ⊃ · · ·

of ideals such that IiIj ⊂ Ii+j for all i, j ∈ N. A filtration I = {In} of a local ring R

by mR-primary ideals is a filtration I = {In}n∈N of R such that In is mR-primary
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for n ≥ 1. A filtration I = {In}n∈N of a ring R is said to be Noetherian if
⊕

n≥0 In
is a finitely generated R-algebra.

The nilradical N(R) of R is

N(R) = {x ∈ R | xn = 0 for some positive integer n}.

We have that dimN(R) = d if and only if there exists a minimal prime P of R such

that dimR/P = d and RP is not reduced. Let R̂ be the mR-adic completion of R.

In [6, Theorem 1.1] and [7, Theorem 4.2] we have shown that the limit

(1) lim
n→∞

`R(R/In)

nd

exists for any filtration I = {In} ofR bymR-primary ideals if and only if dimN(R̂) <

d. We observe that the condition dimN(R̂) < d holds if R is analytically unrami-

fied; that is, R̂ is reduced.

The problem of existence of such limits (1) has been considered by Ein, Lazarsfeld

and Smith [14] and Mustaţă [27]. When the ring R is a domain and is essentially

of finite type over an algebraically closed field k with R/mR = k, Lazarsfeld and

Mustaţă [24] showed that the limit exists for all filtrations of R by mR-primary

ideals. Cutkosky proved it in the complete generality stated above in [6] and [7].

These proofs use the theory of volumes of cones of Okounkov [28], Kaveh and

Khovanskii [21] and Lazarsfeld and Mustaţă [24].

We now impose the necessary condition that the dimension of the nilradicalN(R̂)

of the completion R̂ of R is less than the dimension of R, to insure the existence

of limits. We define the multiplicity of R with respect to a filtration I = {In} of

mR-primary ideal to be

eR(I;R) = lim
n→∞

`R(R/In)

nd/d!
.

In the case that I = {In}n∈N is the filtration of powers of a fixed mR-primary ideal

I, the filtration I is Noetherian, and we have that

eR(I;R) = eR(I;R)

is the ordinary multiplicity of R with respect to the ideal R (here we use the notation

eR(I;R) of [34]).

Mixed multiplicities of filtrations are defined in [11]. Let M be a finitely gener-

ated R-module where R is a d-dimensional Noetherian local ring with dimN(R̂) <

d. Let I(1) = {I(1)n}, . . . , I(r) = {I(r)n} be filtrations of R by mR-primary ideals.

In [11, Theorem 6.1] and [11, Theorem 6.6], it is shown that the function

(2) P (n1, . . . , nr) = lim
m→∞

`R(M/I(1)mn1
· · · I(r)mnr

M)

md

is equal to a homogeneous polynomial G(n1, . . . , nr) of total degree d with real

coefficients for all n1, . . . , nr ∈ N.
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We define the mixed multiplicities of M from the coefficients of G, generalizing

the definition of mixed multiplicities for mR-primary ideals. Specifically, we write

(3) G(n1, . . . , nr) =
∑

d1+···+dr=d

1

d1! · · · dr!
eR(I(1)[d1], . . . , I(r)[dr];M)nd11 · · ·ndrr .

We say that eR(I(1)[d1], . . . , I(r)[dr];M) is the mixed multiplicity of M of type

(d1, . . . , dr) with respect to the filtrations I(1), . . . , I(r). Here we are using the

notation

(4) eR(I(1)[d1], . . . , I(r)[dr];M)

to be consistent with the classical notation for mixed multiplicities of M with

respect to mR-primary ideals from [35]. The mixed multiplicity of M of type

(d1, . . . , dr) with respect tomR-primary ideals I1, . . . , Ir, denoted by eR(I
[d1]
1 , . . . , I

[dr]
r ;M)

([35], [34, Definition 17.4.3]) is equal to the mixed multiplicity eR(I(1)[d1], . . . , I(r)[dr];M),

where the Noetherian I-adic filtrations I(1), . . . , I(r) are defined by

I(1) = {Ii1}i∈N, . . . , I(r) = {Iir}i∈N.

We have that

(5) eR(I;M) = eR(I [d];M)

if r = 1, and I = {Ii} is a filtration of R by mR-primary ideals. Thus

eR(I;M) = lim
m→∞

`R(M/ImM)

md/d!
.

In [11], it is shown that many classical theorems about mixed multiplicities of

mR-primary ideals continue to hold for filtrations. For instance, the four “Minkowski

inequalities” for mixed multiplicities are proven in [11, Theorem 6.3].

Theorem 1.1. ([11, Theorem 6.3], Minkowski Inequalities) Suppose that R is a

Noetherian d-dimensional local ring with dimN(R̂) < d, M is a finitely generated

R-module and I(1) = {I(1)j} and I(2) = {I(2)j} are filtrations of R by mR-

primary ideals. Then

1) eR(I(1)[i], I(2)[d−i];M)2 ≤ eR(I(1)[i+1], I(2)[d−i−1];M)eR(I(1)[i−1], I(2)[d−i+1];M)

for 1 ≤ i ≤ d− 1.

2) For 0 ≤ i ≤ d,

eR(I(1)[i], I(2)[d−i];M)eR(I(1)[d−i], I(2)[i];M) ≤ eR(I(1);M)eR(I(2);M),

3) For 0 ≤ i ≤ d, eR(I(1)[d−i], I(2)[i];M)d ≤ eR(I(1);M)d−ieR(I(2);M)i

and

4) eR(I(1)I(2));M)
1
d ≤ eR(I(1);M)

1
d + eR(I(2);M)

1
d ,

where I(1)I(2) = {I(1)jI(2)j}.

The Minkowski inequalities were formulated and proven formR-primary ideals by

Teissier [35], [36] and proven in full generality, for mR-primary ideals in Noetherian

local rings, by Rees and Sharp [32]. The fourth inequality, was proven for filtrations
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of R by mR-primary ideals in a regular local ring with algebraically closed residue

field by Mustaţă ([27, Corollary 1.9]) and more recently by Kaveh and Khovanskii

([20, Corollary 7.14]). The inequality 4) was proven with our assumption that

dimN(R̂) < d in [7, Theorem 3.1].

Another important property is that the mixed multiplicities are always nonnega-

tive ([13, Proposition 1.3]). In contrast, the mixed multiplicities are strictly positive

in the classical case of mR-primary ideals ([35] or [34, Corollary 17.4.7]).

Suppose that R is a d-dimensional excellent local domain, with quotient field

K. A valuation ν of K is called an mR-valuation if ν dominates R (R ⊂ Vν and

mν ∩ R = mR where Vν is the valuation ring of ν with maximal ideal mν) and

trdegR/mR
Vν/mν = d− 1.

Suppose that I is an ideal in R. Let X be the normalization of the blowup of

I, with projective birational morphism φ : X → Spec(R). Let E1, . . . , Et be the

irreducible components of φ−1(V (I)) (which necessarily have dimension d−1). The

Rees valuations of I are the discrete valuations νi for 1 ≤ i ≤ t with valuation rings

Vνi = OX,Ei
. If R is normal, then X is equal to the blowup of the integral closure

Is of an appropriate power Is of I.

Every Rees valuation ν that dominates R is an mR-valuation and every mR-

valuation is a Rees valuation of an mR-primary ideal by [31, Statement (G)].

Associated to an mR-valuation ν are valuation ideals

(6) I(ν)n = {f ∈ R | ν(f) ≥ n}

for n ∈ N. In general, the filtration I(ν) = {I(ν)n} is not Noetherian. In a

two-dimensional normal local ring R, the condition that the filtration of valuation

ideals of R is Noetherian for all mR-valuations dominating R is the condition (N)

of Muhly and Sakuma [25]. It is proven in [5] that a complete normal local ring

of dimension two satisfies condition (N) if and only if its divisor class group is a

torsion group. An example is given in [3] of an mR-valuation of a 3-dimensional

regular local ring R such that the filtration is not Noetherian.

Definition 1.2. Suppose that R is an excellent local domain. We say that a

filtration I of R by mR-primary ideals is a divisorial filtration if there exists a

projective birational morphism φ : X → Spec(R) such that X is the normalization

of the blowup of an mR-primary ideal and there exists a nonzero effective Cartier

divisor D on X with exceptional support for φ such that I = {I(mD)}m∈N where

(7) I(mD) = Γ(X,OX(−mD)) ∩R.

We will write

I(D) = {I(mD)}m∈N.
If R is normal, then I(mD) = Γ(X,OX(−mD)). If D =

∑t
i=1 aiEi where the

ai ∈ N and the Ei are prime exceptional divisors of φ, with associatedmR-valuations

νi, then

I(mD) = I(ν1)a1m ∩ · · · ∩ I(νt)atm.
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Rees has shown in [29] that if R is a formally equidimensional Noetherian lo-

cal ring and I ⊂ I ′ are mR-primary ideals such that eR(I;R) = eR(I ′;R), then⊕
n≥0(I ′)n is integral over

⊕
n≥0 I

n (I and I ′ have the same integral closure). An

exposition of this converse to the above cited [34, Proposition 11.2.1] is given in

[34, Proposition 11.3.1], in the section entitled “Rees’s Theorem”. Rees’s theorem

is not true in general for filtrations of mR-primary ideals (a simple example in a

regular local ring is given in [11]) but it is true for divisorial filtrations.

In Theorem [9, Theorem 3.5], it is shown that Rees’s theorem is true for divisorial

filtrations of an excellent local domain.

Theorem 1.3. ([9, Theorem 1.4 and Theorem 3.5]) Suppose that R is a d-dimensional

excellent local domain. Let φ : X → Spec(R) be the normalization of the blowup of

an mR-primary ideal. Suppose that D1 and D2 are effective Cartier divisors on X

with exceptional support such that D1 ≤ D2. Then

eR(I(D1);R) = eR(I(D2);R)

if and only if

I(mD1) = I(mD2) for all m ∈ N.

An algebraic local ring is a local domain which is essentially of finite type over

a field. Let R be a d-dimensional normal algebraic local ring and φ : X → Spec(R)

be the blow up of an mR-primary ideal of R such that X is normal.

In [9], anti-positive intersection products 〈(−D1)d1 ·. . .·(−Dr)
dr 〉 whereD1, . . . , Dr

are effective Cartier divisors on X with exceptional support are defined, generalizing

the positive intersection product of Cartier divisors defined on projective varieties

in [2] over an algebraically closed field of characteristic zero and in [8] over an ar-

bitrary field. The anti-positive intersection multiplicities have the property that if

d1 + · · ·+ dr = d, then 〈(−D1)d1 ·, . . . , ·(−Dr)
dr 〉 is a non positive real number.

It is shown in [9, Theorem 8.3] that we have identities

eR(I(D1)[d1], . . . , I(Dr)
[dr];R) = −〈(−D1)d1 ·, . . . , ·(−Dr)

dr 〉.

In particular, eR(I(D);R) = −〈(−D)d〉. Thus by (3), we have that

(8)
limm→∞

`R(R/I(mn1D1)···I(mnrDr))
md

= −
∑
d1+···+dr=d

1
d1!···dr! 〈(D1)d1 · . . . · (−Dr)

dr 〉nd11 · · ·ndrr .

From the case r = 1, we obtain

(9) lim
m→∞

`R(R/I(mD))

md
= −〈(−D)d〉

d!
.

The interpretation of mixed multiplicities as anti-positive intersection multiplicities

is particularly useful in the calculation of examples. This is the method we use in

the example constructed in this paper.

The multiplicity of a ring with respect to a non Noetherian filtration can be

an irrational number. The following is a very simple example of a filtration of
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mR-primary ideals such that the multiplicity is not rational. Let k be a field and

R = k[[x]] be a power series ring over k. Let In = (xdn
√
2e) where dαe is the round

up of a real number α (the smallest integer which is greater than or equal to α).

Then I = {In} is a filtration of mR-primary ideals such that

eR(I;R) = lim
n→∞

`R(R/In)

n
=
√

2

is an irrational number.

There are also irrational examples determined by the valuation ideals of a discrete

valuation. In Example 6 of [12] an example is given of a normal 3 dimensional local

ring R which is essentially of finite type over a field of arbitrary characteristic and

a divisorial valuation ν on the quotient field of R which dominates R such that the

filtration of mR-primary ideals I(ν) = {I(ν)n} defined by

I(ν)n = {f ∈ R | ν(f) ≥ n}

satisfies that the limit

eR(I(ν);R) = limn→∞
`R(R/In)

n3/3!

is irrational. In this paper we give an example of this behavior in (12), and give

examples of irrational mixed multiplicities.

We define a multigraded filtration I = {In1,...,nr
}n1,...,nr∈N of ideals on a ring R

to be a collection of ideals of R such that R = I0,...,0,

In1,...,nnj−1
,nj+1,nj+1,...,nr

⊂ In1,...,nj−1,nj ,nj+1,...,nr

for all n1, . . . , nr ∈ N and Ia1,...,arIb1,...,br ⊂ Ia1+b1,...,ar+br whenever a1, . . . , ar, b1, . . . , br ∈
N.

A multigraded filtration I = {In1,...,nr} of ideals on a local ring R is a multi-

graded filtration of R by mR-primary ideals if In1,...,nr
is mR-primary whenever

n1 + · · ·+ nr > 0.

In [11, Section 7], we give an example showing that the mixed multiplicities

of filtrations (explained between (2) and (3) of this paper) do not have a good

extension to arbitrary multigraded non Noetherian filtrations I = {In1,...,nr} of

mR-primary ideals, even in a power series ring in one variable over a field. In the

example in [11], we have d = 1 and the function

P (n1, n2) = lim
m→∞

`R(R/Imn1,mn2
)

m
= d
√
n21 + n22e

for n1, n2 ∈ N, where dxe is the round up of a real number x. The function P (n1, n2)

is far from polynomial like.

However, it is shown in [11, Section 7] that the function P (n1, . . . , nr) is polyno-

mial like in an important situation. Let R be an excellent, normal, two dimensional

local ring, and φ : X → Spec(R) be a resolution of singularities. Let E1, . . . , Er
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be the irreducible exceptional divisors of φ, and let {In1,...,nr
} be the multigraded

filtration of mR-primary ideals defined by

In1,...,nr = I(n1E1 + · · ·+ nrEr).

It is shown in [11, Section 7] (using some results from [10]) that the function

(10) P (n1, . . . , nr) = lim
m→∞

`R(R/Imn1,...,mnr
)

m2

is a piecewise rational polynomial function on an abstract complex of rational poly-

hedral sets whose union is (Q≥0)r. This holds, even though the filtration {In1,...,nr
}

is generally not Noetherian.

The function P (n1, . . . , nr) of (10) is in fact given by the anti-intersection product

(9) on the resolution of singularities. The anti-positive intersection product of (9)

is in this case the ordinary intersection product of the Zariski decomposition of −D
(where D = n1E1 + · · ·+ nrEr).

In Theorem 1.4 below, we give an example of such a function on a resolution of

singularities of a normal three dimensional excellent local ring with two irreducible

exceptional divisors such that the function P (n1, n2) is a piecewise polynomial

function on an abstract complex of polyhedral sets, but the polynomials and the

polyhedral sets are not rational.

In this paper, we compute the functions

lim
m→∞

`R(R/I(mD))

m3
and lim

m→∞

`R(R/I(mn1D1)I(mn2D2))

md

and the associated multiplicities and mixed multiplicities

eR(I(D);R) and eR(I(D1), I(D2);R)

in a specific example. We compute the anti-positive intersection numbers in order to

determine these functions. Let k be an algebraically closed field. We construct a 3-

dimensional normal algebraic local ring R over k and the blow up φ : X → Spec(R)

of an mR-primary ideal such that X is nonsingular with two irreducible exceptional

divisors, which we denote by S and F . Theorems 1.4 and 1.5 below refer to this

example. These theorems are proven in this paper.

The resolution of singularities of a three dimensional normal local ring which we

construct is similar to the one constructed in [12, Example 6], referred to above,

which is used to give an example of a valuative filtration with irrational multiplicity.

In [12, Example 6], no details of the construction or analysis of the example are

given. We give complete details in this paper. We illustrate the application of

anti-positive intersection products in the proof.

Theorem 1.4. Let D = nS + jF with n, j ∈ N. Then

lim
m→∞

`R(R/I(mD))

m3
=


33n3 if j < n

78n3 − 81n2j + 27nj2 + 9j3 if n ≤ j < n
(

3−
√
3
3

)(
2007
169 −

9
√
3

338

)
j3 if n

(
3−

√
3
3

)
< j.
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In particular,

eR(I(D);R) =


198n3 if j < n

468n3 − 486n2j + 162nj2 + 54j3 if n ≤ j < n
(

3−
√
3
3

)(
12042
169 −

27
√
3

169

)
j3 if n

(
3−

√
3
3

)
< j.

As a consequence, we have that

(11) lim
m→∞

`R(R/I(mF ))

m3
=

(
2007

169
− 9
√

3

338

)
and

(12) eR(I(F );R) =
12042

169
− 27

√
3

169
,

giving an example of a divisorial valuation ν = νF dominatingR such that eR(I(ν);R) =

eR(I(F );R) is an irrational number, where I(ν) = {I(ν)m} and I(ν)n is the valu-

ation ideal I(ν)m = {f ∈ R | ν(f) ≥ m}.

Theorem 1.5. For n, j ∈ N,

limm→∞
`R(R/I(mnS)I(mjF ))

m3

= 33n3 +
(

891
26 + 99

√
3

26

)
n2j +

(
6021
169 −

27
√
3

338

)
nj2 +

(
2007
169 −

9
√
3

338

)
j3.

In particular, the mixed multiplicities are

eR(I(S)[3];R) = eR(I(S);R) = 198

eR(I(S)[2], I(F )[1];R) = 891
13 + 99

√
3

13

eR(I(S)[1], I(F )[2];R) = 12042
169 −

27
√
3

169

eR(I(F )[3];R) = eR(I(F );R) = 12042
169 −

27
√
3

169 .

2. Anti-positive intersection products

2.1. The construction of anti-positive intersection products. In this sub-

section we review the construction of anti-positive intersection products in [9].

Anti-positive intersection products generalize the positive intersection products

of Cartier divisors defined on projective varieties in [2] over an algebraically closed

field of characteristic zero and in [8] over an arbitrary field.

Let K be an algebraic function field over a field k. An algebraic local ring of

K is a local ring R that is a localization of a finitely generated k-algebra and is a

domain whose quotient field is K with maximal ideal mR. Let R be a d-dimensional

algebraic normal local ring of K. Let BirMod(R) be the directed set of blowups

φ : X → Spec(R) of an mR-primary ideal I of R such that X is normal.

Suppose that φ : X → Spec(R) is in BirMod(R). Let {E1, . . . , Et} be the

irreducible exceptional divisors of φ. We define M1(X) to be the subspace of the

real vector space E1R + · · · + EtR that is generated by the Cartier divisors. An

element of M1(X) will be called an R-divisor on X. We will say that D ∈M1(X)

is a Q-Cartier divisor if there exists n ∈ Z+ such that nD is a Cartier divisor.
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In Section 6.1 of [9], we define a natural intersection product (D1 ·D2 · . . . ·Dd)

on X for D1, . . . , Dd ∈M1(X). The intersection product is a restriction of the one

defined in [22].

We will say that a divisor F = a1E1 + · · ·+ atEt ∈M1(X) is effective if ai ≥ 0

for all i, and anti-effective if ai ≤ 0 for all i. This defines a partial order ≤ on

M1(X) by A ≤ B if B − A is effective. The effective cone EF(X) is the closed

convex cone in M1(X) of effective R-divisors. The anti-effective cone AEF(X) is

the closed convex cone in M1(X) consisting of all anti-effective R-divisors.

We will say that an anti-effective divisor F ∈ M1(X) is numerically effective

(nef) if

(F · C) ≥ 0

for all closed curves C in φ−1(mR). The nef cone Nef(X) is the closed convex cone in

M1(X) of all nef R-divisors onX. There is an inclusion of cones Nef(X) ⊂ AEF(X).

We define a divisor F ∈ M1(X) to be ample if F is a formal sum F =
∑
aiFi

where Fi are ample anti-effective Cartier divisors and ai are positive real numbers.

A divisor D is anti-ample if −D is ample. We define the convex cone

Amp(X) = {F ∈M1(X) | F is ample}.

We have that Amp(X) ⊂ Nef(X), the closure of Amp(X) is Nef(X), and the

interior of Nef(X) is Amp(X), as in [22], [23, Theorem 1.4.23].

Suppose that X ∈ BirMod(R). Let E1, . . . , Er be the exceptional components

of X for the morphism X → Spec(R). For 0 < p ≤ d, we define Mp(X) to be the

direct product of M1(X) p times, and we define M0(X) = R. For 1 < p ≤ d, we

define Lp(X) to be the vector space of p-multilinear forms from Mp(X) to R, and

define L0(X) = R.

The intersection product gives us p-multilinear maps

(13) Mp(X)→ Ld−p(X)

for 0 ≤ p ≤ d.

We have that BirMod(R) is a directed set by the R-morphisms Y → X forX,Y ∈
BirMod(R). There is at most one R-morphism X → Y for X,Y ∈ BirMod(X).

The set {Mp(Yi) | Yi ∈ BirMod(R)} is a directed system of real vector spaces,

where we have a linear mapping f∗ij : Mp(Yi) → Mp(Yj) if the natural birational

map fij : Yj → Yi is an R-morphism. We define

Mp(R) = lim
→
Mp(Yi)

Anti-positive intersection products 〈α1 · . . . · αp〉 for anti-effective α1, . . . , αp ∈
M1(R) are defined in [9, Definition 7.4], generalizing the positive intersection prod-

ucts defined on projective varieties in [2] over an algebraically closed field of char-

acteristic zero, and in [8, Definition 4.4] over an arbitrary field. The anti-positive

intersection product 〈α1 · . . . ·αd〉 of d anti-effective divisors α1, . . . , αd ∈M1(R) is

always a non positive real number.
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The proof of the following proposition is similar to that of [8, Proposition 4.12],

replacing the reference to [8, Proposition 4.3] with [9, Proposition 7.3], and replac-

ing the use of the continuity statement of [8, Proposition 4.7] with the continuity

statement of [9, Proposition 7.5].

Proposition 2.1. Suppose that α1, . . . , αp ∈ M1(R) are anti-effective. Then the

anti-positive intersection product 〈α1 ·. . .·αp〉 is the least upper bound of all ordinary

intersection products β1 · . . . ·βp in Ld−p(R) with βi ∈M1(R) anti-effective and nef

and βi ≤ αi.

2.2. γE(D) and anti-positive intersection products. Let φ : X → spec(R) ∈
BirMod(R). Let E1, . . . , Et be the irreducible exceptional divisors of φ.

Suppose that D =
∑
aiEi is an effective Q-Cartier divisor on X. If D is Cartier,

then Γ(X,OX(−D)) is an mR-primary ideal since R is normal. Write I(D) =

Γ(X,OX(−D)).

Let νEi
be the natural discrete valuation with valuation ring OX,Ei

.

Let r be a fixed positive integer such that rD is a Cartier divisor. Define

τrm,Ei(rD) = min{νEi(f) | f ∈ Γ(X,OX(−mrD))},

and γEi(D) = infm
τrm,Ei

(rD)

rm . The real number γEi(D) is independent of r. We

have that

γEi
(D) ≥ ai

for all i, and

I(mrD) = Γ(X,OX(−mrD)) = Γ(X,OX(−d
∑

mrγEi
(D)Eie)

for all m ∈ N (this is shown in [9, Lemma 3.1]). Here dxe denotes the round up of

a real number x.

Lemma 2.2. Suppose that D is anti-nef. Then γEi(D) = ai for all i.

Proof. If −D is ample, then OX(−mrD) is generated by global sections if r is such

that rD is Cartier and m � 0. Thus for all i, there exists f ∈ Γ(X,OX(−rmD))

such that νEi(f) = mrai. Thus γEi(D) = ai.

Now suppose that −D is nef. Given ε > 0, there exists an anti-ample effective

Q-Cartier divisor A on X such that A =
∑
ciEi with ai ≤ ci < ai + ε for all i.

Let r be such that rA and rD are Cartier divisors. For m � 0, there exists f ∈
Γ(X,OX(−mrA)) such that νEi

(f) = mrci < mrai +mrε. Thus γEi
(D) ≤ ai + ε.

Since this is true for all ε, we have that γEi(D) = ai. �

Lemma 2.3. Suppose that D ∈M1(X) is an effective Q-Cartier divisor such that

−
∑
γEi

(D)Ei is nef. Suppose that Y → Spec(R) ∈ BirMod(R) and there exists

a factorization ψ : Y → X. If G ∈ M1(Y ) is an effective and anti-nef Q-Cartier

divisor such that −G ≤ ψ∗(−D) then −G ≤ ψ∗(−
∑
γEi

(D)Ei).
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Proof. Let F1, . . . , Fs be the irreducible exceptional divisors of Y → Spec(R). Since

−
∑
γEi(D)Ei is nef, we have that

∑
γFi(ψ

∗(D))Fi = ψ∗(
∑
γEi

(D)Ei). Write

G =
∑
giFi. Since −G is nef, we have that γFi

(G) = gi for all i. Since

OY (−mrG) ⊂ OY (−ψ∗(mrD))

whenever rG, rD are Cartier divisors and m > 0, we have that γFi
(D) ≤ γFi

(G) =

gi for all i. Thus

−G ≤ −
∑

γFi
(ψ∗(D))Fi = −ψ∗(

∑
γEi

(D)Ei).

�

The following proposition is a consequence of Proposition 2.1 and 2.3.

Proposition 2.4. Suppose that D1, . . . , Dd ∈ M1(X) are effective Q-Cartier di-

visors such that the divisors −
∑
γEi

(Dj)Ei are nef for 1 ≤ j ≤ d. Then the

positive intersection product 〈−D1·, . . . , ·−Dd〉 is the ordinary intersection product

(−
∑
γEi

(D1)Ei · . . . · −
∑
γEi

(Dd)Ei).

3. Intersection theory on projective surfaces

In this section we review some material on intersection theory on Projective

varieties. We refer to [22] and [23]. Let k be an algebraically closed field. Let T be

a nonsingular projective surface over k. Then (Pic(T )/ ≡) ⊗ R, where ≡ denotes

numerical equivalence, is a finite dimensional real vector space. We will often abuse

notation, identifying the class of an invertible sheaf OT (D) with the class of the

divisor D.

We will denote the closure of the real cone in (Pic(T )/ ≡)⊗R generated by the

classes of effective divisors by Eff(T ) and the closure of the real cone in (Pic(T )/ ≡
)⊗ R generated by the classes of numerically effective divisors by Nef(T ), and the

closure of the real cone in (Pic(T )/ ≡)⊗R generated by the classes of ample divisors

by Amp(T ).

If V is a nonsingular r-dimensional projective variety and D1, . . . , Dr are divisors

on V we will denote the intersection product of D1, . . . , Dr on V by (D1 ·D2 · . . . ·
Dr)V . When there is no danger of confusion about the ambient variety, we will

simply write (D1 ·D2 · . . . ·Dr).

4. An example

In this section, we construct a resolution of singularities of a three dimensional

normal local ring, and compute the multiplicities and mixed multiplicities of its di-

visorial filtrations. This resolution of singularities is similar to the one constructed

in [12, Example 6], which is used to give an example of a filtration of a divisorial

valuation with irrational multiplicity. In [12, Example 6], no details of the con-

struction or analysis of the example are given. We give complete details in this

section.
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Let k be an algebraically closed field, Let W be an elliptic curve over k and

S be the abelian surface S = W × W . Let π1 : S → W and π2 : S → W be

the two projections. Let p ∈ W be a closed point, A = π∗1(p), B = π∗2(p) and

∆ ⊂ W ×W = S be the diagonal. Let V be the real subspace of (Pic(S)/ ≡)⊗ R
generated by the classes of A,B and ∆. As shown in [4] and [12, Example 4], we

have that V has dimension 3 and

(∆2) = (A2) = (B2) = 0 and (A ·B) = (A ·∆) = (B ·∆) = 1.

Further, Amp(S) = Eff(S) = Nef(S), and V ∩ Eff(S) is the real cone which is the

component of

{xA+ yB + z∆ | (xA+ yB + z∆)2 ≥ 0}

which contains the ample divisor A+B + ∆.

If j, n ≥ 0 we have that

(14) n(A+ 2B + 3∆)− j(A+B + ∆) ∈ Eff(S) if and only if j < n

(
2−
√

3

3

)
.

The canonical divisor of the Abelian surface S is KS = 0.

Let X be the projective bundle X = P(OS(−3(A + 2B + 3∆)) ⊕ OS) with

projection π : X → S. Identify the section of π corresponding to the natural

surjection of OS-modules

OS(−3(A+ 2B + 3∆))⊕OS → OS(−3(A+ 2B + 3∆))

with S (c.f. [17, Proposition 7.12]). Then OX(1) ∼= OX(S) and

OX(S)⊗OS ∼= OS(−3(A+ 2B + 3∆)).

A canonical divisor on X is KX = −2S + π∗(−3(A + 2B + 3∆)) (this can be

seen by applying adjunction on a fiber of π and then on the section S). The Picard

group of X is

Pic(X) = OX(1)Z⊕ π∗Pic(S).

Suppose that Γ is an effective divisor on X. Then Γ ∼ nS+π∗(L) for some divisor

L on X. We have that n = (Γ · g) ≥ 0 for a fiber g of π. Since Γ is effective,

0 < h0(X,OX(Γ)) = h0(S,Symn (OS(−3(A+ 2B + 3∆))⊕OS)⊗OS(L)))

=
∑n
i=0 h

0(S,OS(L− i3(A+ 2B + 3∆))).

Thus L ∈ Eff(S).

Let T be the section of π corresponding to the surjection of OS-modules

OS(−3(A+ 2B + 3∆))⊕OS → OS .

Then OX(1) ⊗ OT ∼= OS so that T ∩ S = ∅. Further, OX(T ) ∼= OX(S + 3(A +

2B+ 3∆)). Now 3(A+ 2B+ 3∆) is very ample on S (by the theorem in Section 17

[26]), so the complete linear system |T | on X is base point free, and thus induces a

projective morphism X → Z which contracts S. Suppose that γ is an irreducible
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curve on X which is not contained in S and is not a fiber of π. Let γ be the image

of γ by π in S which is a curve. We have that

(γ · T )X = (γ · (S + π∗(3(A+ 2B + 3∆))))X
= deg(OX(S + π∗(3(A+ 2B + 3∆)))⊗Oγ)

≥ deg(OX(π∗(3(A+ 2B + 3∆)))⊗Oγ)

= deg(γ/γ)(γ · 3(A+ 2B + 3∆))S > 0

by the projection formula ([15, Example 7.1.9]), and since A + 2B + 3∆ is ample.

Thus X \ S → Z is finite to one. Let Z be the normalization of Z in the function

field of X. Then there is an induced birational projective morphism λ : X → Z

such that S is contracted to a point q of Z and X \ S → Z − q is an isomorphism.

The divisor −S is relatively ample for λ since OX(−S)⊗OS is ample on S. Thus

there exists n > 0 such that X is the blow up of the ideal sheaf λ∗OX(−nS) of Z,

which has the property that the support of OZ/λ∗OX(−nS) is the point q.

The divisor A+B + ∆ is ample on S so 3(A+B + ∆) is very ample (Theorem

in Section 17 [26]). Thus by Bertini’s theorem ([17, Theorem II.8.18 and Remark

III.7.9]) there exists an integral and nonsingular curve C on S such that C ∼
3(A+B+ ∆). Let IC be the ideal sheaf of C in X. Let τ : Y → X be the blow up

of C, so that Y = Proj(⊕n≥0InC). Let F = Proj(⊕n≥0InC/I
n+1
C ) be the exceptional

divisor and let τ : F → C be the induced morphism.

The composed morphism Y → Z contracts F and the strict transform S of S

to the point q of Z and is an isomorphism everywhere else, and is the blow up of

an ideal sheaf I of OZ such that the support of OZ/I is the point q. The map τ

induces an isomorphism of S and S.

Let G = π∗(C) which is an integral nonsingular surface in X. We have that C

is the scheme theoretic intersection of G and S. Thus

(OX(−S)⊗OC)⊕ (OX(−G)⊗OC) ∼= IC/I2C ,

and so F = P(OX(−S) ⊗ OC) ⊕ (OX(−G) ⊗ OC)). We have that OY (−F ) =

ICOY = OY (1), so OY (−F )⊗OF ∼= OF (1).

The Picard group of F is

Pic(F ) = OF (1)Z⊕ τ∗Pic(C).

A canonical divisor of Y is KY = τ∗KX+F = −2S−F+(πτ)∗(−3(A+2B+3∆)).

Since τ∗(S) = S + F and C is (isomorphic) to the scheme theoretic intersection

of F and S, we have that

OY (S)⊗OS ∼= OS(−3(2A+ 3B + 4∆)).

We have that

OY (−nS − jF )⊗OS ∼= OX(−nS)⊗OS(−(j − n)C)
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so by (14),

(15) OY (−nS − jF )⊗OS ∈ Eff(S) if and only if j < n

(
3−
√

3

3

)
.

We have that F ∼= P(E) where E = OC ⊕ (OX(H) ⊗ OC) with H = S − G (by

[17, Proposition V.2.2]). Let C0 be the section of τ corresponding to the natural

surjection of OC-modules E → OX(H)⊗OC . Then OF (C0) ∼= OP(E)(1) and since

OX(H)⊗OC ∼= OS(−3(2A+ 3B + 4∆))⊗OC ,

we have that

(C2
0 )F = degOX(H)⊗OC = (3(A+B+∆)·3(−2A−3B−4∆))S = −9×18 = −162.

Let f be a fiber of τ over a closed point of C.

Let KF be a canonical divisor of F . By adjunction, we have

(16) OF (KF ) ∼= OY (KY +F )⊗OF ∼= OY (−2S+(πτ)∗(−3(A+2B+3∆)))⊗OF .

By adjunction on f and C0,

(17) OF (KF ) ∼= OF (−2C0)⊗ τ∗(OC(KC)⊗OX(H)).

Let CS be the scheme theoretic intersection of S and F , which is an integral curve

which is a section over τ . Comparing (16) and (17), we have that

OF (−2CS) ∼= OF (−2C0)⊗τ∗(OC(KC)⊗OX(H)⊗OS(3(A+2B+3∆))) ∼= OF (−2C0)

since OC(KC) ∼= OX(G) ⊗ OC by adjunction, as OX(G) ⊗ OS ∼= OS(C). Since

(C2
0 )F < 0, we have that C0 = CS .

We have that

τ∗(OX(S)⊗OC) ∼= τ∗OX(S)⊗OF ∼= OY (S + F )⊗OF ∼= OF (CS)⊗OY (F ).

Thus

OY (F )⊗OF ∼= OF (−C0)⊗ τ∗(OX(S)⊗OC),

where

deg(OX(S)⊗OC) = degOS(−3(A+ 2B + 3∆))⊗OC
= (−3(A+ 2B + 3∆) · 3(A+B + ∆))

= −9× 12 = −108.

Thus OY (F )⊗OF is represented in (Pic(F )/ ≡)⊗ R by the class of −C0 − 108f .

Suppose that γ is an irreducible curve on F which is not equal to C0 and is not

equal to a fiber over a closed point of C. There exists n ∈ Z and a divisor δ on C

such that γ ∼ nC0 + τ∗(δ). Then (γ · f) > 0 implies n > 0 and (γ ·C0) ≥ 0 implies

n(C2
0 ) + deg δ ≥ 0. Thus deg δ ≥ −n(C0)2 = n162 > 0.

We now compute

(γ2) = n2(C2
0 ) + 2n deg δ ≥ n2(C2

0 )− 2n2(C2
0 ) = −n2(C2

0 ) > 0.

Thus C0 is the only irreducible curve on F with negative intersection number.
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It follows that Eff(F ) = R+C0 + R+f and

Nef(F ) = {nC0 +mf | n,m ≥ 0 and m ≥ 162n} = R+(C0 + 162f) + R+f.

Let j = n
(

3−
√
3
3

)
. On F , we have the numerical equivalence

(−nS − jF ) · F ≡ (j − n)C0 + 108jf = n

(
2−
√

3

3

)
C0 + 108n

(
3−
√

3

3

)
f.

Letting a = n
(

2−
√
3
3

)
and b = 108n

(
3−

√
3
3

)
, we have that

b

a
=

108

33

(
51 + 3

√
3
)
> 162.

Now suppose that j = n. Then

(−nS − jF ) · F ≡ 108jf.

The nature of the sections of OY (−nS− jF ) for n, j ∈ N is determined by which

of three separate regions of the positive quadrant of the plane contains the point

(n, j). They are:

1) j < n

2) n ≤ j < n
(

3−
√
3
3

)
and

3) n
(

3−
√
3
3

)
< j.

In case 1),

(18) OY (−nS − jF )⊗OF 6∈ Eff(F ).

In case 2),

(19) OY (−nS − jF )⊗OS ∈ Nef(S) and OY (−nS − jF )⊗OF ∈ Nef(F ).

In case 3),

(20) OY (−nS − jF )⊗OS 6∈ Eff(S).

Let R = OZ,q (q is the point on Z which S and F contract to) and U =

Y ×Z Spec(R) with the natural projective morphism U → Spec(R) induced by

Y → Z. The morphism U → Spec(R) is the blow up of the m-primary ideal Iq.
An effective Cartier divisor D = nS + jF on U is anti-nef on U if and only if

OY (−D)⊗OS ∈ Nef(S) and OY (−D)⊗OF ∈ Nef(F ). If D is anti-nef on U , then

γS(D) = n and γF (D) = j by Lemma 2.2.

We deduce the following theorem.

Theorem 4.1. Let D = nS + jF with j, n ∈ N, an effective exceptional divisor on

U .

1) Suppose that j < n. Then γS(D) = n and γF (D) = n.

2) Suppose that n ≤ j < n
(

3−
√
3
3

)
. Then γS(D) = n and γF (D) = j.

3) Suppose that n
(

3−
√
3
3

)
< j. Then γS(D) = 3

9−
√
3
j and γF (D) = j.

In all three cases, −γS(D)S − γF (D)F is nef on U .
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Proof. If D is in case 1), then Γ(U,OU (−nm(S + F ))) = Γ(U,OU (−mD)) for all

m ∈ N by (18) and S + F is anti-nef on U by (19). If D is in case 2), then D

is anti-nef on U by (19). If D is in case 3), then Γ(U,OU (−d m3j

9−
√
3
S + mjF e)) =

Γ(U,OU (−mD)) for all m ∈ N by (20) and 3
9−
√
3
S+F is anti-nef on U by (19). �

From Theorem 4.1, (9) and Proposition 2.4, we have that for D = nS+ jF with

m, j ∈ N,

(21) lim
m→∞

`R(R/I(mD)

m3
= −

((−γS(D)S − γF (D)F )3)

3!
,

and we have by (3), Theorem 4.1, (8) and Proposition 2.4 that

(22)

limm→∞
`R(R/I(mnS)I(mjF ))

m3 =
∑
i1+i2=3

1
i1!i2!

eR(I(1)[i1], I(2)[i2])ni1ji2

=
∑
i1+i2=3

−1
i1!i2!

(
(−γS(S)S − γF (S)F )i1 · (−γS(F )S − γF (F )F

)i2
)ni1ji2

=
∑
i1+i2=3

−1
i1!i2!

((
−S − F

)i1 · (− 3
9−
√
3
S − F

)i2)
ni1ji2 .

We now make equations (21) and (22) explicit. To compute the necessary inter-

section numbers, we use the facts that

OY (S)⊗OS ∼= OS(−3(2A+ 3B + 4∆)), OY (F )⊗OS ∼= OS(3(A+B + ∆)),

OY (S)⊗OF ∼= OF (C0), OY (F )⊗OF ≡ OF (−C0 − 108f),

to calculate that

(S
3
) = (−3(2A+ 3B + 4∆) · −3(2A+ 3B + 4∆))S = 9× 52 = 468

(S
2 · F ) = (−3(2A+ 3B + 4∆) · 3(A+B + ∆))S = −9× 18 = −162

(S · F 2) = (3(A+B + ∆) · 3(A+B + ∆))S = 9× 6 = 54

(F 3) = ((−C0 − 108f) · (−C0 − 108f))F = 9× 6 = 54.

The formulas of Theorems 1.4 and 1.5 of the introduction are now a consequence

of Theorem 4.1, equations (21) and (22) and the above formulas computing inter-

section multiplicities.
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assoicié une valuation diviorielle, Ann. Inst. Fouriier 50 (2000) 105 - 112.

[4] S.D. Cutkosky, Zariski decomposition of divisors on algebraic varieties, Duke Math.

J. 53 (1986), 149-156.

[5] S.D. Cutkosky, On unique and almost unique factorization of complete ideals II,

Inventiones Math. 98 (1989), 59-74.

[6] S.D. Cutkosky, Asymptotic multiplicities of graded families of ideals and linear

series, Advances in Mathematics 264 (2014), 55 - 113.

[7] S.D. Cutkosky, Asymptotic Multiplicities, Journal of Algebra 442 (2015), 260 - 298.

[8] S.D. Cutkosky, Teissier’s problem on inequalities of nef divisors, J. Algebra Appl.

14 (2015).



EXAMPLES OF MULTIPLICITIES AND MIXED MULTIPLICITIES OF FILTRATIONS 17

[9] S.D. Cutkosky, Mixed multiplicities of divisorial filtrations, Advances in Math. 358

(2019).

[10] S.D. Cutkosky, Jürgen Herzog and Ana Reguera, Poincaré series of resolutions of
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