EXAMPLES OF MULTIPLICITIES AND MIXED
MULTIPLICITIES OF FILTRATIONS

STEVEN DALE CUTKOSKY

ABSTRACT. In this paper we construct examples of irrational behavior of mul-
tiplicities and mixed multiplicities of divisorial filtrations. The construction

makes essential use of anti-positive intersection products.

1. INTRODUCTION

In this paper, we begin by giving an overview of the theory of multiplicities
and mixed multiplicities of (not necessarily Noetherian) filtrations, including an
interpretation of multiplicities and mixed multiplicities of divisorial filtrations as
anti-positive intersection multiplicities. Using this interpretation, we construct a
resolution of singularities of a normal three dimensional local ring and compute the
multiplicities and mixed multiplicities of its divisorial filtrations, showing essentially
irrational behavior.

The study of mixed multiplicities of mpg-primary ideals in a Noetherian local ring
R with maximal ideal mp was initiated by Bhattacharya [1], Rees [29] and Teissier
and Risler [35]. In [11] the notion of mixed multiplicities is extended to arbitrary,
not necessarily Noetherian, filtrations of R by mpg-primary ideals. It is shown in
[11] that many basic theorems for mixed multiplicities of mpg-primary ideals are
true for filtrations.

The development of the subject of mixed multiplicities and its connection to
Teissier’s work on equisingularity [35] can be found in [16]. A survey of the theory of
mixed multiplicities of ideals can be found in [34, Chapter 17], including discussion
of the results of the papers [30] of Rees and [33] of Swanson, and the theory of
Minkowski inequalities of Teissier [35], [36], Rees and Sharp [32] and Katz [18].
Later, Katz and Verma [19], generalized mixed multiplicities to ideals which are
not all mg-primary.

Let R be a Noetherian local ring of dimension d with maximal ideal mp. Let
Lr(M) denote the length of an R-module M.

A filtration Z = {I,, },en of a ring R is a descending chain

R=I1y,>o11>DI,D>---
of ideals such that I;I; C I;4; for all ¢, j € N. A filtration Z = {I,,} of a local ring R

by mpg-primary ideals is a filtration Z = {I,, }nen of R such that I,, is mpg-primary
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for n > 1. A filtration T = {I,, },.en of a ring R is said to be Noetherian if P, In
is a finitely generated R-algebra.
The nilradical N(R) of R is

N(R) = {z € R | z" = 0 for some positive integer n}.

We have that dim N(R) = d if and only if there exists a minimal prime P of R such
that dim R/P = d and Rp is not reduced. Let R be the mpg-adic completion of R.
In [6, Theorem 1.1] and [7, Theorem 4.2] we have shown that the limit
I
(1) lim L(Rd/ )

n—00 n

exists for any filtration Z = {I,,} of R by mg-primary ideals if and only if dim N (R) <
d. We observe that the condition dim N (R) < d holds if R is analytically unrami-
fied; that is, R is reduced.

The problem of existence of such limits (1) has been considered by Ein, Lazarsfeld
and Smith [14] and Mustatad [27]. When the ring R is a domain and is essentially
of finite type over an algebraically closed field & with R/mpr = k, Lazarsfeld and
Mustatd [24] showed that the limit exists for all filtrations of R by mpg-primary
ideals. Cutkosky proved it in the complete generality stated above in [6] and [7].
These proofs use the theory of volumes of cones of Okounkov [28], Kaveh and
Khovanskii [21] and Lazarsfeld and Mustata [24].

We now impose the necessary condition that the dimension of the nilradical N (R)

of the completion R of R is less than the dimension of R, to insure the existence
of limits. We define the multiplicity of R with respect to a filtration Z = {I,,} of
mR-primary ideal to be

v o IR(R/IL)
er(ZiR) = Hm — o
In the case that Z = {I"},en is the filtration of powers of a fixed mg-primary ideal
I, the filtration Z is Noetherian, and we have that

er(Z; R) = er(I; R)

is the ordinary multiplicity of R with respect to the ideal R (here we use the notation
er(I; R) of [34]).

Mixed multiplicities of filtrations are defined in [11]. Let M be a finitely gener-
ated R-module where R is a d-dimensional Noetherian local ring with dim N(R) <
d. Let Z(1) = {I(1),}, ..., Z(r) = {I(r),} be filtrations of R by m g-primary ideals.
In [11, Theorem 6.1] and [11, Theorem 6.6], it is shown that the function

Cr(M/T(V)mny - 1(1)mn, M)

(2) P(ni,...,n.) :n}gnoo "
is equal to a homogeneous polynomial G(nq,...,n,) of total degree d with real

coefficients for all ny,...,n, € N.
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We define the mixed multiplicities of M from the coefficients of G, generalizing
the definition of mixed multiplicities for mg-primary ideals. Specifically, we write

1
3) Gny,...,mp)= > m@(m)[dﬂ,...,I(r)[drl;M)n;h---n;fm

di+-+d.=d
We say that er(Z(1)!%] ... Z(r)*]); M) is the mixed multiplicity of M of type
(dy,...,d,) with respect to the filtrations Z(1),...,Z(r). Here we are using the
notation

(4) er(Z()4 T(r)ldr]; M)

to be consistent with the classical notation for mixed multiplicities of M with
respect to mpg-primary ideals from [35]. The mixed multiplicity of M of type
(di,...,d,) with respect to mpg-primary ideals I, . .., I,., denoted by eR(I{dl], e 7I7Ldr]; M)
([35], [34, Definition 17.4.3]) is equal to the mixed multiplicity er(Z(1)[4], ... Z(r)ld]; M),
where the Noetherian I-adic filtrations Z(1),...,Z(r) are defined by

Z(1) = {Ii}ien, - - Z(r) = {1 }ien.
We have that
(5) er(T; M) = en(T; M)
if r =1, and Z = {I;} is a filtration of R by mg-primary ideals. Thus
er(Z; M) = lim_ 7ZR(Z{ /Id'M ).
In [11], it is shown that many classical theorems about mixed multiplicities of

mp-primary ideals continue to hold for filtrations. For instance, the four “Minkowski
inequalities” for mixed multiplicities are proven in [11, Theorem 6.3].

Theorem 1.1. ([11, Theorem 6.3], Minkowski Inequalities) Suppose that R is a
Noetherian d-dimensional local ring with dim N(R) <d, M is a finitely generated
R-module and Z(1) = {I(1);} and Z(2) = {I(2);} are filtrations of R by mpg-
primary ideals. Then
1) en(Z(1),Z(2)41; M)? < en(T()H, Z(2)l=15 M)er(Z(1)Y, Z(2)l4-+1; 1)
for1<i<d-1.
2) For 0 <i<d,
er(Z(1), 221 M)er(Z(1)11, 2(2)1; M) < er(Z(1); M)er(Z(2); M),
3) For 0 < i < d, ep(Z()l= 7)1, M)? < ep(Z(1); M)?Per(Z(2); M)
and
1) er(TT@); M)¥ < en(T(1); M) + en(T(2); M)*,
where Z(1)Z(2) = {I(1);1(2);}.

=

The Minkowski inequalities were formulated and proven for m z-primary ideals by
Teissier [35], [36] and proven in full generality, for mg-primary ideals in Noetherian
local rings, by Rees and Sharp [32]. The fourth inequality, was proven for filtrations



4 STEVEN DALE CUTKOSKY

of R by mpg-primary ideals in a regular local ring with algebraically closed residue
field by Mustata ([27, Corollary 1.9]) and more recently by Kaveh and Khovanskii
([20, Corollary 7.14]). The inequality 4) was proven with our assumption that
dim N(R) < d in [7, Theorem 3.1].

Another important property is that the mixed multiplicities are always nonnega-
tive ([13, Proposition 1.3]). In contrast, the mixed multiplicities are strictly positive
in the classical case of mp-primary ideals ([35] or [34, Corollary 17.4.7]).

Suppose that R is a d-dimensional excellent local domain, with quotient field
K. A valuation v of K is called an mg-valuation if v dominates R (R C V,, and
m, N R = mp where V, is the valuation ring of v with maximal ideal m,) and
trdeg g/, Vo /My = d — 1.

Suppose that I is an ideal in R. Let X be the normalization of the blowup of
I, with projective birational morphism ¢ : X — Spec(R). Let Ei,..., E; be the
irreducible components of ¢~1(V(I)) (which necessarily have dimension d—1). The
Rees valuations of I are the discrete valuations v; for 1 < ¢ < ¢ with valuation rings
Vi, = Ox g;. If R is normal, then X is equal to the blowup of the integral closure
Is of an appropriate power I® of I.

Every Rees valuation v that dominates R is an mpg-valuation and every mpg-
valuation is a Rees valuation of an mp-primary ideal by [31, Statement (G)].

Associated to an mp-valuation v are valuation ideals

(6) (W) ={f € R|v(f) = n}

for n € N. In general, the filtration Z(v) = {I(v),} is not Noetherian. In a
two-dimensional normal local ring R, the condition that the filtration of valuation
ideals of R is Noetherian for all mpg-valuations dominating R is the condition (N)
of Muhly and Sakuma [25]. It is proven in [5] that a complete normal local ring
of dimension two satisfies condition (N) if and only if its divisor class group is a
torsion group. An example is given in [3] of an mpg-valuation of a 3-dimensional
regular local ring R such that the filtration is not Noetherian.

Definition 1.2. Suppose that R is an excellent local domain. We say that a
filtration Z of R by mp-primary ideals is a divisorial filtration if there exists a
projective birational morphism ¢ : X — Spec(R) such that X is the normalization
of the blowup of an mpg-primary ideal and there exists a nonzero effective Cartier
divisor D on X with exceptional support for ¢ such that Z = {I(mD)},,eny where

(7) I(mD) =T(X,0x(—mD))NR.
We will write
Z(D) = {I(mD)}men.
If R is normal, then I(mD) = ['(X,Ox(—mD)). If D = >'_, a;E; where the
a; € N and the F; are prime exceptional divisors of ¢, with associated m g-valuations

v;, then
I(mD) = I(Vl)mm n---N I(Vt)atm'
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Rees has shown in [29] that if R is a formally equidimensional Noetherian lo-
cal ring and I C I’ are mp-primary ideals such that eg(I; R) = er(I’; R), then
P, (I")" is integral over @, -, I" (I and I’ have the same integral closure). An
exp(;sition of this converse to the above cited [34, Proposition 11.2.1] is given in
[34, Proposition 11.3.1], in the section entitled “Rees’s Theorem”. Rees’s theorem
is not true in general for filtrations of mp-primary ideals (a simple example in a
regular local ring is given in [11]) but it is true for divisorial filtrations.

In Theorem [9, Theorem 3.5], it is shown that Rees’s theorem is true for divisorial
filtrations of an excellent local domain.

Theorem 1.3. ([9, Theorem 1.4 and Theorem 3.5]) Suppose that R is a d-dimensional
excellent local domain. Let ¢ : X — Spec(R) be the normalization of the blowup of
an mg-primary ideal. Suppose that D1 and D+ are effective Cartier divisors on X
with exceptional support such that Dy < Dy. Then

6R(I(D1); R) = eR(I(Dg); R)

if and only if
I(mDy) = I(mD3) for all m € N.

An algebraic local ring is a local domain which is essentially of finite type over
a field. Let R be a d-dimensional normal algebraic local ring and ¢ : X — Spec(R)
be the blow up of an mp-primary ideal of R such that X is normal.

In [9], anti-positive intersection products ((—D1)%-...-(=D,)% ) where D, ..., D,
are effective Cartier divisors on X with exceptional support are defined, generalizing
the positive intersection product of Cartier divisors defined on projective varieties
in [2] over an algebraically closed field of characteristic zero and in [8] over an ar-
bitrary field. The anti-positive intersection multiplicities have the property that if
di +---+d, =d, then ((—=D;)%-,...,-(=D,)%) is a non positive real number.

It is shown in [9, Theorem 8.3] that we have identities

er(Z(D) M, Z(D)* R) = —((=D1)"-,.. (D)),
In particular, egr(Z(D); R) = —{((—D)%). Thus by (3), we have that

limy,—y oo ER(R/I(m’rnDlgml'(mnTDT))
(8) " i Cw
= =Y ditotdpmd Tt (D) - (=Dp) T )ngt g

From the case r = 1, we obtain

o i (a(R/ImD) __(=D)Y)

m—00 md d!

The interpretation of mixed multiplicities as anti-positive intersection multiplicities
is particularly useful in the calculation of examples. This is the method we use in
the example constructed in this paper.

The multiplicity of a ring with respect to a non Noetherian filtration can be
an irrational number. The following is a very simple example of a filtration of
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mp-primary ideals such that the multiplicity is not rational. Let k& be a field and
R = k[[z]] be a power series ring over k. Let I, = (z/"V21) where [a] is the round
up of a real number « (the smallest integer which is greater than or equal to «).
Then 7 = {I,,} is a filtration of mg-primary ideals such that

er(Z; R) = lim @ =2

n—oo

is an irrational number.

There are also irrational examples determined by the valuation ideals of a discrete
valuation. In Example 6 of [12] an example is given of a normal 3 dimensional local
ring R which is essentially of finite type over a field of arbitrary characteristic and
a divisorial valuation v on the quotient field of R which dominates R such that the
filtration of mpg-primary ideals Z(v) = {I(v),} defined by

I(v), ={f € R|v(f) > n}
satisfies that the limit

(r(R/1,)

is irrational. In this paper we give an example of this behavior in (12), and give
examples of irrational mixed multiplicities.

We define a multigraded filtration Z = {I,,, . n, }n,,...n,.en of ideals on a ring R
to be a collection of ideals of R such that R = I . o,

Inls-~-’nnj71 nitlnpr,.,nye C Inlwn’njfl’nj7nj+17~~~gn7-

forallng,...,n, € Nand I, .o, Ib;,..6. C lay+by,...,an+b, Wheneveray,...,a,,by,...

N.

A multigraded filtration Z = {I,,, . .} of ideals on a local ring R is a multi-
graded filtration of R by mp-primary ideals if I,,,, . ,, is mg-primary whenever
ny+---+mn,. >0.

In [11, Section 7], we give an example showing that the mixed multiplicities
of filtrations (explained between (2) and (3) of this paper) do not have a good
extension to arbitrary multigraded non Noetherian filtrations Z = {I,,, .. n,.} of
mp-primary ideals, even in a power series ring in one variable over a field. In the
example in [11], we have d = 1 and the function

IRT KR(R/Imnhmnz) _ 2 2
P(ny,ng) = m}gnoo - [m1

for ny,ne € N, where [z] is the round up of a real number z. The function P(n1,n2)
is far from polynomial like.

However, it is shown in [11, Section 7] that the function P(ng,...,n,) is polyno-
mial like in an important situation. Let R be an excellent, normal, two dimensional
local ring, and ¢ : X — Spec(R) be a resolution of singularities. Let Fi,..., E,
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be the irreducible exceptional divisors of ¢, and let {I,,, . .} be the multigraded
filtration of mp-primary ideals defined by
Inl,...,nr = [(TLlEl + -+ TLTET).

It is shown in [11, Section 7] (using some results from [10]) that the function

(10) P(na,....ny) = lim B T n,)

m—o0 m?2

is a piecewise rational polynomial function on an abstract complex of rational poly-
hedral sets whose union is (Q>¢)". This holds, even though the filtration {I,,, .., }
is generally not Noetherian.

The function P(ng,...,n,) of (10) is in fact given by the anti-intersection product
(9) on the resolution of singularities. The anti-positive intersection product of (9)
is in this case the ordinary intersection product of the Zariski decomposition of —D
(where D =n1Ey + -+ 4+ n,.E,.).

In Theorem 1.4 below, we give an example of such a function on a resolution of
singularities of a normal three dimensional excellent local ring with two irreducible
exceptional divisors such that the function P(nj,ns) is a piecewise polynomial
function on an abstract complex of polyhedral sets, but the polynomials and the
polyhedral sets are not rational.

In this paper, we compute the functions

lim lr(R/I(mD)) and Tim Lr(R/I(mny1D1)I(mnaDs))

m— o0 m3 m—o0 md

and the associated multiplicities and mixed multiplicities
er(Z(D); R) and er(Z(D1),Z(D2); R)

in a specific example. We compute the anti-positive intersection numbers in order to
determine these functions. Let k be an algebraically closed field. We construct a 3-
dimensional normal algebraic local ring R over k and the blow up ¢ : X — Spec(R)
of an mp-primary ideal such that X is nonsingular with two irreducible exceptional
divisors, which we denote by S and F. Theorems 1.4 and 1.5 below refer to this
example. These theorems are proven in this paper.

The resolution of singularities of a three dimensional normal local ring which we
construct is similar to the one constructed in [12, Example 6], referred to above,
which is used to give an example of a valuative filtration with irrational multiplicity.
In [12, Example 6], no details of the construction or analysis of the example are
given. We give complete details in this paper. We illustrate the application of
anti-positive intersection products in the proof.

Theorem 1.4. Let D =nS + jF with n,j € N. Then

33n3 ifj<n
i REID)) _J 7sns — 8102 + 2702 +95° ifn<j<n(3- )
m—oo m

(27 - 52) 2 ifn(3-%) <
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In particular,

198n3 ifj<n
en(T(D): R) = { 468n® — 48602 + 162nj% +545% ifn<j<n (3 - ?)
(382 - ) 7 itn (3 ) <

As a consequence, we have that

(1) -~ CR(R/I(mF)) _ (2007 93
m—o0 m3 169 338
and
12042 273
12 I(F):R)= —= - = *°
( ) eR( ( )aR) 169 169 5

giving an example of a divisorial valuation ¥ = v dominating R such that egr(Z(v); R) =
er(Z(F); R) is an irrational number, where Z(v) = {I(v).,} and I(v),, is the valu-
ation ideal I(v),, = {f € R | v(f) > m}.

Theorem 1.5. Forn,j € N,

(R/I(mnS) (mjF))

lim,,— 0o
891 99\/ 6021 _ 27V3) 2 | (2007 _ 9v3) ;3
_33"+< + )"3+(169_338)"]+(W_ﬁ>3'

In particular, the mixed multiplicities are

er(Z(S)Bl; R) = er(Z(S); R) = 198

er(Z(S), Z(F); R) = 891 4 993
enlZ(S). 1)) — 12 —
en(Z(FY; B) = ca(T(F): ) = 1982 — /8

2. ANTI-POSITIVE INTERSECTION PRODUCTS

2.1. The construction of anti-positive intersection products. In this sub-
section we review the construction of anti-positive intersection products in [9].

Anti-positive intersection products generalize the positive intersection products
of Cartier divisors defined on projective varieties in [2] over an algebraically closed
field of characteristic zero and in [8] over an arbitrary field.

Let K be an algebraic function field over a field k. An algebraic local ring of
K is a local ring R that is a localization of a finitely generated k-algebra and is a
domain whose quotient field is K with maximal ideal mg. Let R be a d-dimensional
algebraic normal local ring of K. Let BirMod(R) be the directed set of blowups
¢ : X — Spec(R) of an mp-primary ideal I of R such that X is normal.

Suppose that ¢ : X — Spec(R) is in BirMod(R). Let {Fi,...,E;} be the
irreducible exceptional divisors of ¢. We define M'(X) to be the subspace of the
real vector space E1R + --- + E;R that is generated by the Cartier divisors. An
element of M!(X) will be called an R-divisor on X. We will say that D € M!(X)
is a Q-Cartier divisor if there exists n € Z, such that nD is a Cartier divisor.
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In Section 6.1 of [9], we define a natural intersection product (Dy - Dy ... Dg)
on X for Di,...,Dq € M'(X). The intersection product is a restriction of the one
defined in [22].

We will say that a divisor F' = a1E;y + -+ - + a; By € MY(X) is effective if a; > 0
for all 4, and anti-effective if a; < O for all . This defines a partial order < on
M*Y(X) by A < B if B — A is effective. The effective cone EF(X) is the closed
convex cone in M'(X) of effective R-divisors. The anti-effective cone AEF(X) is
the closed convex cone in M!(X) consisting of all anti-effective R-divisors.

We will say that an anti-effective divisor F € M!(X) is numerically effective
(nef) if

(F-C)>0

for all closed curves C in ¢! (mp). The nef cone Nef(X) is the closed convex cone in
M*'(X) of all nef R-divisors on X. There is an inclusion of cones Nef(X) C AEF(X).
We define a divisor F € M!(X) to be ample if F is a formal sum F = Y a;F;
where F; are ample anti-effective Cartier divisors and a; are positive real numbers.
A divisor D is anti-ample if —D is ample. We define the convex cone

Amp(X) = {F € M*(X) | F is ample}.

We have that Amp(X) C Nef(X), the closure of Amp(X) is Nef(X), and the
interior of Nef(X) is Amp(X), as in [22], [23, Theorem 1.4.23].

Suppose that X € BirMod(R). Let E,..., E,. be the exceptional components
of X for the morphism X — Spec(R). For 0 < p < d, we define MP?(X) to be the
direct product of M*(X) p times, and we define M°(X) = R. For 1 < p < d, we
define LP(X) to be the vector space of p-multilinear forms from MP?(X) to R, and
define L°(X) = R.

The intersection product gives us p-multilinear maps

(13) MP(X) — L4P(X)

for 0 < p <d.
We have that BirMod(R) is a directed set by the R-morphisms Y — X for X, Y €
BirMod(R). There is at most one R-morphism X — Y for X,Y € BirMod(X).
The set {MP(Y;) | Y; € BirMod(R)} is a directed system of real vector spaces,
where we have a linear mapping f; : MP(Y;) — MP(Y}) if the natural birational
map fi; : Y; = Y; is an R-morphism. We define

MP(R) = lim M (;)

Anti-positive intersection products (aj - ... - a,) for anti-effective a1,...,q, €
M*(R) are defined in [9, Definition 7.4], generalizing the positive intersection prod-
ucts defined on projective varieties in [2] over an algebraically closed field of char-
acteristic zero, and in [8, Definition 4.4] over an arbitrary field. The anti-positive
intersection product {aj - ...- ag) of d anti-effective divisors aq,...,aq € M'(R) is
always a non positive real number.
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The proof of the following proposition is similar to that of [8, Proposition 4.12],
replacing the reference to [8, Proposition 4.3] with [9, Proposition 7.3], and replac-
ing the use of the continuity statement of [8, Proposition 4.7] with the continuity
statement of [9, Proposition 7.5].

Proposition 2.1. Suppose that ay,...,a, € M'(R) are anti-effective. Then the
anti-positive intersection product (o -. . .-y is the least upper bound of all ordinary
intersection products By -... B in LA=P(R) with 3; € M'(R) anti-effective and nef
and B; < ay.

2.2. yg(D) and anti-positive intersection products. Let ¢ : X — spec(R) €
BirMod(R). Let E4,..., E be the irreducible exceptional divisors of ¢.

Suppose that D =Y a;E; is an effective Q-Cartier divisor on X. If D is Cartier,
then I'(X,Ox(—D)) is an mp-primary ideal since R is normal. Write I(D) =
I(X, Ox(~D)).

Let vg, be the natural discrete valuation with valuation ring Ox g,.

Let r be a fixed positive integer such that rD is a Cartier divisor. Define

Trm, g, (rD) = min{vg, (f) | f € (X, Ox(=mrD))},

Trm, B, (rD)
rm

and g, (D) = inf,,
have that

. The real number g, (D) is independent of r. We

for all 4, and
I(mrD) =T(X,0x(—mrD)) =T(X, OX(—(Z mryg, (D)E;])

for all m € N (this is shown in [9, Lemma 3.1]). Here [z] denotes the round up of

a real number .
Lemma 2.2. Suppose that D is anti-nef. Then vg, (D) = a; for all i.

Proof. If —D is ample, then Ox (—mrD) is generated by global sections if r is such
that rD is Cartier and m > 0. Thus for all ¢, there exists f € I'(X, Ox(—rmD))
such that vg, (f) = mra;. Thus vyg, (D) = a;.

Now suppose that —D is nef. Given € > 0, there exists an anti-ample effective
Q-Cartier divisor A on X such that A = > ¢;E; with a; < ¢; < a; + € for all 4.
Let r be such that rA and rD are Cartier divisors. For m > 0, there exists f €
I'(X,Ox(—mrA)) such that vg, (f) = mre; < mra; +mre. Thus yg, (D) < a; + €.
Since this is true for all €, we have that vg, (D) = a;. O

Lemma 2.3. Suppose that D € M*(X) is an effective Q-Cartier divisor such that
—> g, (D)E; is nef. Suppose that Y — Spec(R) € BirMod(R) and there exists
a factorization ¢ 1 Y — X. If G € MY (Y) is an effective and anti-nef Q-Cartier
divisor such that —G < ¢*(—D) then —G < ¢Y*(— > vg,(D)E;).
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Proof. Let Fy, ..., Fs be the irreducible exceptional divisors of Y — Spec(R). Since
—> " vE,(D)E; is nef, we have that > vg, (v*(D))F; = v*(>_vg,(D)E;). Write
G =3 ¢;F;. Since —G is nef, we have that v, (G) = g¢; for all i. Since

Oy (—mrG) C Oy (=¢"(mrD))

whenever rG, rD are Cartier divisors and m > 0, we have that vg, (D) < vg,(G) =
g; for all 4. Thus

~G < =Y yn WD) E =~ (Y 5. (D)Ey).

The following proposition is a consequence of Proposition 2.1 and 2.3.

Proposition 2.4. Suppose that Dy,...,Dq € M*(X) are effective Q-Cartier di-
visors such that the divisors — Y vg,(D;)E; are nef for 1 < j < d. Then the
positive intersection product (—Dy-,...,-— Dyg) is the ordinary intersection product

(=2 e (D1)E; ... - = > vE,(Da) Ey).

3. INTERSECTION THEORY ON PROJECTIVE SURFACES

In this section we review some material on intersection theory on Projective
varieties. We refer to [22] and [23]. Let k be an algebraically closed field. Let T be
a nonsingular projective surface over k. Then (Pic(T)/ =) ® R, where = denotes
numerical equivalence, is a finite dimensional real vector space. We will often abuse
notation, identifying the class of an invertible sheaf Or(D) with the class of the
divisor D.

We will denote the closure of the real cone in (Pic(T")/ =) ® R generated by the
classes of effective divisors by Eff(T) and the closure of the real cone in (Pic(T)/ =
) ® R generated by the classes of numerically effective divisors by Nef(T'), and the
closure of the real cone in (Pic(T")/ =) ® R generated by the classes of ample divisors
by Amp(T).

If V is a nonsingular r-dimensional projective variety and D1, ..., D, are divisors
on V we will denote the intersection product of Dy,..., D, on V by (D1 -Dg-...-
D,)y. When there is no danger of confusion about the ambient variety, we will
simply write (D1 - Dy - ...~ D,.).

4. AN EXAMPLE

In this section, we construct a resolution of singularities of a three dimensional
normal local ring, and compute the multiplicities and mixed multiplicities of its di-
visorial filtrations. This resolution of singularities is similar to the one constructed
in [12, Example 6], which is used to give an example of a filtration of a divisorial
valuation with irrational multiplicity. In [12, Example 6], no details of the con-
struction or analysis of the example are given. We give complete details in this
section.



12 STEVEN DALE CUTKOSKY

Let k& be an algebraically closed field, Let W be an elliptic curve over k£ and
S be the abelian surface S = W x W. Let m; : S - W and 7o : S — W be
the two projections. Let p € W be a closed point, A = nf(p), B = m;(p) and
A CW x W = S be the diagonal. Let V' be the real subspace of (Pic(S)/ =) @ R
generated by the classes of A, B and A. As shown in [4] and [12, Example 4], we
have that V has dimension 3 and

(A*) = (A?)=(B*)=0and (A-B)=(A-A)=(B-A)=1.
Further, Amp(S) = Eff(S) = Nef(S), and V N Eff(S) is the real cone which is the

component of
{zA+yB + A | (xA+yB + zA)? > 0}
which contains the ample divisor A + B + A.
If j,n > 0 we have that

(14) n(A+2B+3A) —j(A+ B+ A) € Eff(S) ifandonlyifj<n<2\é§>.

The canonical divisor of the Abelian surface S is Kg = 0.

Let X be the projective bundle X = P(Os(—3(A + 2B + 3A)) & Og) with
projection w : X — S. Identify the section of 7 corresponding to the natural
surjection of Og-modules

Os(—3(A+2B+3A)) ® Os — Os(—3(A+ 2B + 3A))
with S (c.f. [17, Proposition 7.12]). Then Ox (1) = Ox(S) and
Ox(9) ® Og =2 Og(—=3(A + 2B + 3A)).

A canonical divisor on X is Kx = —25 + 7*(—3(A 4+ 2B + 3A)) (this can be
seen by applying adjunction on a fiber of m and then on the section S). The Picard
group of X is

Pic(X) = Ox(1)Z @ n*Pic(S).
Suppose that T" is an effective divisor on X. Then I" ~ n.S + 7*(L) for some divisor
L on X. We have that n = (I'- g) > 0 for a fiber g of 7. Since T is effective,

0<h?’(X,0x(T)) = h°S,Sym™ (Os(—3(A+2B +3A)) @ Og) ® Og(L)))
= Y h%(S,0s(L —i3(A+ 2B+ 3A))).
Thus L € Eff(S).
Let T be the section of 7 corresponding to the surjection of Og-modules
Os(—3(A+2B+3A)) & Os — Os.

Then Ox (1) @ Or = Og so that TNS = . Further, Ox(T) = Ox(S + 3(A +
2B +3A)). Now 3(A+2B+3A) is very ample on S (by the theorem in Section 17
[26]), so the complete linear system |T'| on X is base point free, and thus induces a
projective morphism X — Z which contracts S. Suppose that 7 is an irreducible
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curve on X which is not contained in S and is not a fiber of 7. Let 7 be the image
of v by 7 in S which is a curve. We have that

(v- (S +7*(3(A+ 2B +3A))))x
deg(Ox (S +7*(3(A+ 2B +3A)))® O,)
deg(Ox (m*(3(A+ 2B + 3A))) ® O,)
deg(v/7)(7 - 3(A + 2B + 3A))s > 0

(v-T)x

v

by the projection formula ([15, Example 7.1.9]), and since A + 2B + 3A is ample.
Thus X \ S — Z is finite to one. Let Z be the normalization of Z in the function
field of X. Then there is an induced birational projective morphism A : X — Z
such that S is contracted to a point ¢ of Z and X \ S — Z — ¢ is an isomorphism.
The divisor —S is relatively ample for A since Ox(—S) ® Og is ample on S. Thus
there exists n > 0 such that X is the blow up of the ideal sheaf \.Ox(—nS) of Z,
which has the property that the support of O-/A.Ox(—nS) is the point g.

The divisor A+ B + A is ample on S so 3(A+ B + A) is very ample (Theorem
in Section 17 [26]). Thus by Bertini’s theorem ([17, Theorem I1.8.18 and Remark
I11.7.9]) there exists an integral and nonsingular curve C' on S such that C' ~
3(A+ B+ A). Let Z¢ be the ideal sheaf of C'in X. Let 7 : Y — X be the blow up
of C, so that Y = Proj(®,>0Z%). Let F = Proj(®,>0Z%/Zet) be the exceptional
divisor and let 7 : FF — C be the induced morphism.

The composed morphism Y — Z contracts F and the strict transform S of S
to the point ¢ of Z and is an isomorphism everywhere else, and is the blow up of
an ideal sheaf 7 of Oy such that the support of Oz/Z is the point q. The map 7
induces an isomorphism of S and S.

Let G = 7*(C) which is an integral nonsingular surface in X. We have that C
is the scheme theoretic intersection of G and S. Thus

(Ox(=8) ® Oc) & (0Ox(—G) ® O¢) = Ic/TE,

and so F' = P(Ox(—95) ® O¢) & (Ox(—G) ® O¢)). We have that Oy (—F) =
IcOy = Oy(l), SO Oy(—F) QR O & Op(l).
The Picard group of F is

Pic(F) = Op(1)Z @ 7*Pic(C).

A canonical divisor of Y is Ky = 7*Kx+F = —25—F+(77)*(=3(A+2B+3A)).
Since 7*(S) = S + F and C is (isomorphic) to the scheme theoretic intersection
of F and S, we have that

Oy (S) ® Og = Os(—3(24 + 3B + 4A)).
We have that

Oy(*ngij) ® Og > O0x(—nS) ® Os(—(j — n)C)
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so by (14),

(15) Oy (—nS — jF) ® Og € Eff(S) if and only if j <n (3 - \/3§> .

We have that F = P(£) where £ = O¢ & (Ox(H) ® O¢) with H = S — G (by
[17, Proposition V.2.2]). Let Cy be the section of T corresponding to the natural
surjection of Oc-modules £ — Ox(H) ® Oc. Then Op(Cp) = Op(g) (1) and since

we have that
(C3)r = deg Ox(H)®Oc = (3(A+B+A)-3(—24A-3B—4A))s = —9x 18 = —162.

Let f be a fiber of 7 over a closed point of C.
Let Kr be a canonical divisor of F. By adjunction, we have

(16) Op(Kp) = Oy (Ky +F)®O0p = Oy (=254 (77)*(—3(A+2B+3A))) ® OF.
By adjunction on f and Cj,
(17) Or(Kr) =2 Op(—2Cy) @ 7 (Oc(Kc) @ Ox (H)).

Let Cg be the scheme theoretic intersection of S and F, which is an integral curve
which is a section over 7. Comparing (16) and (17), we have that

Or(—2C35) = Op(—2Co)®T" (Oc (Kc)©0x (H)®0s5(3(A+2B+3A))) = Op(—2C))

since O¢(K¢) = Ox(G) ® O¢ by adjunction, as Ox(G) ® Os = Og(C). Since
(C3)r < 0, we have that Cy = Cg.
We have that
THOx(S) ® O¢) 2 7*0x(S) ® Op 2 Oy (S + F) ® Op =2 Op(Cg) ® Oy (F).
Thus
Oy(F) QR0 = OF(—O()) ®7*(OX(S) & Oc),

where

deg(Ox(S) ® O¢) deg Os(—3(A+ 2B + 3A)) ® O
(—3(A+2B +3A)-3(A+ B+ A))

-9 x 12 = —108.

Thus Oy (F) ® Op is represented in (Pic(F)/ =) ® R by the class of —Cy — 1087.
Suppose that 7 is an irreducible curve on F which is not equal to Cy and is not

equal to a fiber over a closed point of C'. There exists n € Z and a divisor § on C
such that v ~ nCo +77(9). Then (v- f) > 0 implies n > 0 and (- Cy) > 0 implies
n(C2) +degd > 0. Thus degd > —n(Cp)? = nl62 > 0.

We now compute

(72) = nQ(C’S) +2ndegd > nz(Cg) — 2n2(Cg) = —nQ(C’g) > 0.

Thus Cy is the only irreducible curve on F' with negative intersection number.



EXAMPLES OF MULTIPLICITIES AND MIXED MULTIPLICITIES OF FILTRATIONS 15

It follows that Eff(F) = R, Co + R, f and
Nef(F) = {nCy +mf | n,m >0 and m > 162n} = R, (Cy + 162f) + R f.

Let j=n (3 - \/g) On F, we have the numerical equivalence

3
(nSjF)'F(jn)Co+108jfn<2?) Coy + 108n (3?) f

Letting a =n (2 — %) and b = 108n (3 — ?), we have that

g - % (51 +3\/§) > 162.

Now suppose that j =n. Then
(—nS — jF) - F = 1085 f.
The nature of the sections of Oy (—nS — jF) for n, j € N is determined by which

of three separate regions of the positive quadrant of the plane contains the point
(n,j). They are:

S

2; n<j<n(3-4)and
3) n(3-%F) <.

In case 1),
(18) Oy (—nS — jF) ® Op ¢ EH(F).
In case 2),
(19) Oy (—nS — jF) ® Og € Nef(S) and Oy (—nS — jF) ® Op € Nef(F).
In case 3),
(20) Oy (—nS — jF) ® Og € Eff(S).

Let R = Oz, (¢ is the point on Z which S and F contract to) and U =
Y x5 Spec(R) with the natural projective morphism U — Spec(R) induced by
Y — Z. The morphism U — Spec(R) is the blow up of the m-primary ideal Z,.
An effective Cartier divisor D = nS + jF on U is anti-nef on U if and only if
Oy (—D) ® Oz € Nef(S) and Oy (—D) ® Op € Nef(F). If D is anti-nef on U, then
Y5(D) =n and yp(D) = j by Lemma 2.2.

We deduce the following theorem.

Theorem 4.1. Let D = nS + jF with j,n € N, an effective exceptional divisor on
U.

1) Suppose that j <n. Then vg(D) =n and yp(D) = n.

2) Suppose that n < j <n (3 - @) Then vg(D) = n and yrp(D) = j.

3) Suppose that n (3 - ?) < j. Then vg(D) = 9_3\/53' and yr(D) = j.
In all three cases, —yg(D)S — v (D)F is nef on U.
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Proof. If D is in case 1), then T'(U, Oy (—nm(S + F))) = T'(U, Oy (=mD)) for all
m € N by (18) and S + F is anti-nef on U by (19). If D is in case 2), then D
is anti-nef on U by (19). If D is in case 3), theg ', OU(—fQT%S +mjF])) =
I'(U, Oy (—mD)) for all m € N by (20) and 9_3\/§S+F is anti-nef on U by (19). O

From Theorem 4.1, (9) and Proposition 2.4, we have that for D = nS + jF with

m?j 6 N7

(21) f R(B/ImD) _ (=75(D)S —yr(D)F))

m—soo m3 3!

and we have by (3), Theorem 4.1, (8) and Proposition 2.4 that

lim,, oo KR(R/I(mTZBS)I(mJ’F)) _ Zz‘l+z’2=3 il!lizleR(I(l)[iﬂ,1(2)[i2])ni1ji2

(22) = Zi1+i2:3 2177112‘ ((*'Y§(S)S - ”)’F(E)F)il ) (*’Y§(F)§* ’YF(F)F)i2)nilji2

. ((_s SF) (53,5 F) ) g

We now make equations (21) and (22) explicit. To compute the necessary inter-

section numbers, we use the facts that

Oy (S) ® Og = Og(—3(2A + 3B + 4A)), Oy (F) ® O5 = Os(3(A+ B + A)),
Oy(g) QR Op = OF(C()), Oy(F) QRO = OF(—C() — 108f)7
to calculate that

(S°) = (=3(2A + 3B + 4A) - —3(2A + 3B + 4A))s = 9 x 52 = 468

(% F) = (=3(2A+ 3B +4A) - 3(A+ B+ A))g = —9 x 18 = —162
(§-F)=3(A+B+A)-3(A+B+A)s=9x%x6=>54
(F3) = ((—Co — 108f) - (—=Co — 108f))r = 9 x 6 = 54.

The formulas of Theorems 1.4 and 1.5 of the introduction are now a consequence

of Theorem 4.1, equations (21) and (22) and the above formulas computing inter-
section multiplicities.
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