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ABSTRACT. We develop a theory of multiplicities and mixed multiplicities of filtrations,
extending the theory for filtrations of m-primary ideals to arbitrary (not necessarily
Noetherian) filtrations. The mixed multiplicities of r filtrations on an analytically un-
ramified local ring R come from the coefficients of a suitable homogeneous polynomial
in r variables of degree equal to the dimension of the ring, analogously to the classical
case of the mixed multiplicities of m-primary ideals in a local ring. We prove that the
Minkowski inequalities hold for arbitrary filtrations. The characterization of equality in
the Minkowski inequality for m-primary ideals in a local ring by Teissier, Rees and Sharp
and Katz does not extend to arbitrary filtrations, but we show that they are true in a
large and important subcategory of filtrations. We define divisorial and bounded filtra-
tions. The filtration of powers of a fixed ideal is a bounded filtration, as is a divisorial
filtration. We show that in an excellent local domain, the characterization of equality
in the Minkowski equality is characterized by the condition that the integral closures of
suitable Rees like algebras are the same, strictly generalizing the theorem of Teissier,
Rees and Sharp and Katz. We also prove that a theorem of Rees characterizing the in-
clusion of ideals with the same multiplicity generalizes to bounded filtrations in excellent
local domains. We give a number of other applications, extending classical theorems for
ideals.

1. INTRODUCTION

In this paper we extend the theory of multiplicities and mixed multiplicities of filtrations
of mp-primary ideals in a local ring R to arbitrary filtrations. We prove that these
multiplicities enjoy good properties and derive applications.

The study of mixed multiplicities of mp-primary ideals in a local ring R with maximal
ideal mp was initiated by Bhattacharya [1], Rees [32] and Teissier and Risler [40]. In [13]
the notion of mixed multiplicities is extended to arbitrary, not necessarily Noetherian,
filtrations of R by mp-primary ideals (mp-filtrations). It is shown in [13] that many basic
theorems for mixed multiplicities of mg-primary ideals are true for mg-filtrations.

The development of the subject of mixed multiplicities and its connection to Teissier’s
work on equisingularity [40] is explained in [16]. A survey of the theory of multiplicities
and mixed multiplicities of mp-primary ideals can be found in [39, Chapter 17], including
discussion of the results of the papers [33] of Rees and [38] of Swanson, and the the-
ory of Minkowski inequalities of Teissier [40], [41], Rees and Sharp [35] and Katz [24].
Later, Katz and Verma [25], generalized mixed multiplicities to ideals that are not all
mp-primary. Trung and Verma [43] computed mixed multiplicities of monomial ideals
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from mixed volumes of suitable polytopes. Mixed multiplicities are also used by Huh in
the analysis of the coefficients of the chromatic polynomial of graph theory in [23].

A notion of mixed multiplicity for arbitrary ideals is introduced by Bhattacharya in [1].
This notion of mixed multiplicity is extended to arbitrary graded families of ideals by Cid
Ruiz and Montano, [6]. We give an alternate definition of multiplicity and mixed multi-
plicity for filtrations of ideals in this paper, which more strictly generalizes the definition
for mp-primary ideals.

All local rings will be assumed to be Noetherian. Let R be a d-dimensional local ring
with maximal ideal mpg. It is shown in [8, Theorem 1.1] and [11, Theorem 4.2] that in a
local ring R, the limit

. ER(R/In)
1) Jm =

exists for all filtrations Z = {I,,} of mp-primary ideals if and only if dim N(R) < dim R,

where N(R) is the nilradical of R. In local rings R which satisfy dim N(R) < dim R, we
may then define the multiplicity of a filtration Z of mpg-primary ideals by

: KR(R/ In)
er(@) = m =aa

The problem of existence of such limits (1) has been considered by Ein, Lazarsfeld
and Smith [14] and Mustata [29]. When the ring R is a domain and is essentially of
finite type over an algebraically closed field k with R/mp = k, Lazarsfeld and Mustata
[27] showed that the limit exists for all mp-filtrations. In [9], Cutkosky proved it in
the complete generality stated above. Lazarsfeld and Mustata use in [27] the method of
counting asymptotic vector space dimensions of graded families using “Okounkov bodies”.
This method, which is reminiscent of the geometric methods used by Minkowski in number
theory, was developed by Okounkov [30], Kaveh and Khovanskii [26] and Lazarsfeld and
Mustata [27]. We also use this method. The fact that dim N(R) = d implies there exists
a filtration without a limit was observed by Dao and Smirnov.

~

It is shown in [13] that if R is a local ring such that dim N(R) < d and
Z() = Dm}s - Z(r) = {L(r)m}

are filtrations of mp-primary ideals, then the limit
CR(B/I(D)mn, - L(1)imn,.)

P(nl,...,nr):nlgnoo mi [di
is a homogeneous real polynomial P(nq,...,n,) of degree d for ni,...,n, € N. We may

thus define the mixed multiplicities eg(Z(1)[%1, ..., Z(r)l%]) of these filtrations from the
coefficients of this polynomial, by the expansion

d!
P(ni,...,ny) = Z meR(I(l)[dﬂw"aI(T)[dT])”ill g
di4-+dr=d

In [13], multiplicities er(Z; N) and er(Z(1)I), ... Z(r)l%]; N) are defined for a finitely
generated R-module N and filtrations of mp-primary ideals.

We now extend these definitions to arbitrary filtrations. Let R be an analytically
unramified local ring. Let a be an mp-primary ideal and Z = {I,,} be a filtration of ideals
on R. We have that V(I,,) = V(I;) for all n (Lemma 3.1) where

V(I) = {p € Spec(R) | I C p}
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and we define

s(T) =dimR/I;.
For s € N and a finitely generated R-module N such that dim N < s ([37, Section 2 of
Chapter V] and [5, Section 4.7])

| e(N) if dimN =s
es(“’N){ 0 if dimN < s.
In Proposition 4.2, we show that the limit
lim es(a,R/I,)

m—o0o m4=5/(d — s)!

exists for s > s(Z) if R is analytically unramified, and define the multiplicity es(a,Z) to
be equal to this limit. We have an associativity formula (5),

es(@,2) =) er,(Ty)ea(R/p),
p

where Z, = {(I,)p} and the sum is over all p € Spec(R) such that dimR/p = s and
dim Ry = d — s.

The condition R analytically unramified is used to ensure that the limits eg, (Z,) exist
all for prime ideals p in R.

We then define mixed multiplicities of arbitrary filtrations Z(1) = {I(1)n},...,Z(r) =
{I(r)m}. We show in Theorem 4.3 that for s > max{s(Z(1)),...,s(Z(r))}, the limit

lim es(a, R/ I(1)mny - I(7)mn,.)
m—00 ma=s/(d — s)!

is a homogeneous real polynomial Hg(ny,...,n,) of degree d — s for ny,...,n, € N, which
allows us to define the mixed multiplicities

es(Z(D) L ()l

from the coefficients of this polynomial in Definition 4.4. We have an associativity formula
(15),

es(a, Z() D Ty = 3 ep (P, . T ea( R /)
p
where the sum is over all p € Spec(R) such that dim R/p = s and dim R, = d — s.

We define in Proposition 4.2 and Definition 4.4 the multiplicities es(a,Z; N) and mixed
multiplicities es(a,Z(1),...,Z(r); N) for arbitrary finitely generated R-modules N.

In Section 6, we define divisorial filtrations and s-divisorial filtrations. We prove the
converse to the Rees Theorem 1.1 for s-divisorial filtrations in Theorem 6.7. We prove the
characterization of equality in the Minkowski inequality (3) for s-divisorial filtrations in
Theorem 6.9.

In Section 7, we define bounded filtrations and bounded s-filtrations. We prove the
converse to the Rees Theorem 1.1 for bounded s-filtrations in Theorem 7.4. We prove the
characterization of equality in the Minkowski inequality (3) for bounded s-filtrations in
Theorem 7.6.

In Theorems 6.7, 6.9, 7.4 and 7.6, we have the assumption that R is an excellent local
domain. These theorems generalize the corresponding theorems for divisorial and bounded
filtrations of mpg-primary ideal of [11, Corollary 7.4], [11, Theorem 12.1], [11, Theorem
13.1] and Theorem [11, Theorem 13.2].
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In Examples 7.5 and 7.7 we show that Theorems 7.4 and 7.6 do not extend to arbitrary
bounded or divisorial filtrations (when s > 0 so that the filtrations do not consist of
mp-primary ideals).

Let R be a local ring and Z = {I,,} be a filtration of R. Define the graded R-algebra

R[Z) =) Int™
m>0

and let R[Z] be the integral closure of R[Z] in the polynomial ring R]t].

In Section 6, we define divisorial filtrations. Suppose that R is a local domain. Let v
be a divisorial valuation of the quotient field of R which is nonnegative on R. We have
the valuation ideals

IW)m ={f € R[v(f) 2m}
for m € N. The prime ideal p = I(v); is called the center of ¥ on R. We say that v is an
s-valuation if dim R/p = s.

A divisorial filtration of R is a filtration Z = {I,,,} such that there exist divisorial

valuations vy,...,v, and ay,...,a, € R>g such that for all m € N,

I, = I(Vl)[maﬂ n---N I(V’I‘)[mar]'

An s-divisorial filtration of R is a filtration Z = {I,,,} such that there exist s-valuations
Vi,...,vp and aq,...,a, € R>g such that for all m € N,

I, = I(Vl)[mal] Mn---N I(Vr)[ma”.

Observe that the trivial filtration Z = {I,,, }, defined by I,,, = R for all m, is a degenerate
case of a divisorial filtration and is a degenerate case of an s-divisorial filtration for all s.
The nontrivial 0-divisorial filtrations are the divisorial mg-filtrations of [11].

We will often denote a divisorial filtration Z on a local domain R by Z = Z(D). The
motivation for this notation comes from the concept of a representation of a divisorial
filtration on an excellent local domain, defined before Theorem 6.7.

In Section 7, we define bounded filtrations and bounded s-filtrations. If Z(D) is a
divisorial filtration, then R[Z(D)] is integrally closed in R[t]; that is, R[Z(D)] = R[Z(D)].

A filtration Z = {I,} on R is said to be a bounded filtration if there exists a divisorial
filtration Z(D) on R such that R[Z] = R[Z(D)]. A filtration Z = {I,,} on R is said to
be a bounded s-filtration if there exists an s-divisorial filtration Z(D) on R such that
R[I] = R[Z(D)].

If I is an ideal, then the I-adic filtration is bounded (Lemma 7.2). Further, the filtration
of integral closures of powers of an ideal I, and symbolic filtrations are bounded.

In Section 5, we extend some classical inequalities for multiplicities and mixed multiplic-
ities of mp-primary ideals to filtrations, generalizing the inequalities of [13] for filtrations
of mp-primary ideals to arbitrary filtrations. We also extend some other classical inequali-
ties for multiplicities of ideals to filtrations. We first prove the following theorem, which is
proven in Theorem 5.1. This theorem is proven for mpg-primary filtrations in [13, Theorem
6.9], [10, Theorem 1.4].

Theorem 1.1. (Theorem 5.1) Let R be an analytically unramified local ring of dimension
d, N be a finitely generated R-module, a be an mp-primary ideal and T = {I,,}, J = {Jn}
be filtrations of ideals of R with J C Z. Suppose R[I] is integral over R[J|. Then
(1) s(Z) = s(J),
(i) es(a,Z;N) = es(a, J; N) for all s such that s(Z) = s(J) < s <d.
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The converse of Theorem 1.1 fails for arbitrary filtrations, as shown by a simple example
of filtrations of mpg-primary ideals in [13]. A famous theorem of Rees [32] (also [39,
Theorem 11.3.1]) shows that if R is a formally equidimensional local ring and J C I are
mp-primary ideals, then the converse of Theorem 1.1 does hold for the J-adic and I-adic
filtrations J = {J"} C T = {I"}. In this situation, the Rees algebra of I, &, ~,I" is
integral over the Rees algebra of J, €,,~, J", if and only if the integral closures of ideals

I = J are equal, which is the condition of Rees’s theorem. In Theorem 7.4, we prove
that if J is a bounded s-filtration and Z is an arbitrary filtration with J C Z, then the
converse of Theorem 1.1 holds. This generalizes the theorem for bounded filtrations of
mp-primary ideals in [11, Theorem 13.1].

The Minkowski inequalities were formulated and proven for mpg-primary ideals in re-
duced equicharacteristic zero local rings by Teissier [40], [41] and proven in full generality
for mp-primary ideals in arbitrary local rings, by Rees and Sharp [35]. The same inequal-
ities hold for filtrations. They were proven for mpg-filtrations in local rings R such that
dim N(R) < dim R in [13, Theorem 6.3]. We prove them for arbitrary filtrations in an
analytically unramified local ring in Theorem 5.3. In the following theorem, we state the
fundamental inequality from which all other inequalities follow, (i) of Theorem 1.2, and
the most famous inequality (ii) (The Minkowski Inequality).

Theorem 1.2. (Minkowski Inequalities) Let R be an analytically unramified local ring of
dimension d, N be a finitely generated R-module, a be an mp-primary ideal, T = {I;} and
J ={J;} be filtrations of ideals of R. Let max{s(Z),s(J)} <s<d and k :=d —s.

(i) Let k> 2. For 1 <i<k—1,

es(a, Z0, JF1 N)? < ey(a, Z0HY, g1 N ey (a, 201, g4I ),

(71) s(ZJ) = max{s(Z),s(J)} and es(a,IJ;N)% <es(a,Z; N)%—{—es(a, J; N)%, where
IJVZZ{GJ}}

There is a characterization of when equality holds for m p-primary ideals in the Minkowski
Inequality by Teissier [42] (for Cohen-Macaulay normal two-dimensional complex analytic
R), Rees and Sharp [35] (in dimension 2) and Katz [24] (in complete generality).

They have shown that if R is a formally equidimensional local ring and I, J are mp-
primary ideals then the Minkowski inequality

er(I]) = ep(I)d + ep(J)a

holds if and only if there exists a,b € Z~q such that the integral closures 1% = Jb are
equal. This condition is equivalent to the statement that the integral closures of the Rees
algebras of I® and J® are equal; that is, there exist positive integers a and b such that

(2) D rengn =" gngn,

n>0 n>0

We show in Theorem 5.4 that if 7 and J are filtrations on an analytically unramified
local ring R and there exist a,b € Z~q such that the integral closures of the R-algebras
®n>0lant™ and ©p>0Jpnt" are equal, then the Minkowski equality

(3) es(0,IT; N) 75 = ey(a,Z; N) 75 + ey(a, J; N) s

holds. However, if Z and J are filtrations on an analytically unramified local ring R such
that the Minkowski Equality (3) holds, then in general, the integral closures of the R-

algebras @p,>0lunt" and @,>0Jp,t" are not equal for all a,b € Z~(, even for filtrations of
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mp-primary ideals in a regular local ring (so that s = 0), as is shown in a simple example
in [13].

In Theorem 7.6, we show that if Z(1) and Z(2) are two nontrivial bounded s-filtrations
in an excellent local domain R, then the Minkowski Equality holds if and only if there
exist positive integers a and b such that there is equality of integral closures

> IVt = I(2)pnt™,

n>0 n>0

giving a complete generalization of the Teissier, Rees and Sharp, Katz Theorem for
bounded s-filtrations. This theorem was proven for bounded filtrations of mpg-primary
ideals in [11, Theorem 13.2].

In Lemma 5.7, we prove that if 7 (i) C Z(i) are filtrations for 1 < i < r on an analytically
unramified local ring and N is a finitely generated R-module, then we have inequalities of
mixed multiplicities

es(a, Z(DN) T NY < egla, TN T ()l N
for s > max{s(7(1)),...,s(J(r))}.

In Proposition 5.9, we generalize a formula on multiplicity of specialization of ideals
([22], [28, formula (2.1)]) to filtrations.

In Theorem 8.5, we extend a theorem of Boger ([3], [39, Corollary 11.3.2]) about equi-
multiple ideals in a formally equidimensional local ring to a theorem about bounded s-
filtrations in an excellent local domain.

An ideal I in a local ring R is equimultiple if ht(I) = ¢(I) where £(I) is the analytic
spread of I. In an excellent local domain, our theorem is strictly stronger that Boger’s
theorem, even for I-adic filtrations. We show in Corollary 8.3 that the I-adic filtration of
an equimultiple ideal is a bounded s-filtration where s = dim R — ht(/). In Example 8.4,
we show that there are ideals I whose I-adic filtration is a bounded s-filtration, but I is
not equimultiple.

2. NOTATION

We will denote the nonnegative integers by N and the positive integers by Z~q, the set
of nonnegative rational numbers by Q>¢ and the positive rational numbers by Q~g. We
will denote the set of nonnegative real numbers by R>q and the positive real numbers by
Rso. For a real number x, [z] will denote the smallest integer that is > x and |[z| will
denote the largest integer that is < x. If F1, ..., F, are prime divisors on a normal scheme
X and ay,...,a, € R, then |> a;E;]| denotes the integral divisor ) |a;|F; and [> a;E;]
denotes the integral divisor » [a;|E;.

A local ring is assumed to be Noetherian. The maximal ideal of a local ring R will be
denoted by mp. The quotient field of a domain R will be denoted by QF(R). We will
denote the length of an R-module M by ¢i(M). Excellent local rings have many excellent
properties which are enumerated in [18, Scholie IV.7.8.3]. We will make use of some of
these properties without further reference.

3. FILTRATIONS

A filtration Z = {I,, } nen of ideals on a ring R is a descending chain

R=Iy>oL>I,D>---
6



of ideals such that I;I; C I;y; for all 4,5 € N. A filtration Z = {I,,} of ideals on a local
ring (R, mp) is a filtration of R by mpg-primary ideals if I,, is mp-primary for n > 1. A
filtration Z = {1, }nen of ideals on a ring R is called a Noetherian filtration if @, < I is
a finitely generated R-algebra. -

If I C Ris an ideal, then V(I) = {p € Spec(R) | I C p}. f Z = {I,,} and J = {J,} are
filtrations of R, then we will write Z C J if I,, C J,, for all n.

For any filtration Z = {I,,} and p € Spec R, let Z, denote the filtration Z, = {I,, Ry}

Let R be a local ring and Z = {I,,} be a filtration of R. As defined in the introduction,
the graded R-algebra

R[] =) Int™

m2>0

and R[Z] is the integral closure of R[Z] in the polynomial ring R][t].

Lemma 3.1. Let R be a local ring and Z = {I,,} be a filtration of ideals of R. The following
hold.
(i) Foralln>1,V(l1) =V (l,) and dim R/I; = dim R/I,.
(i3) If T = {Jn} is a filtration of ideals of R such that J C I and the R-algebra R[Z]
is a finitely generated R[J]-module then V (I,) =V (Jp,) for all n,m > 1.

Proof. (i) Since {I,} is a filtration, for all integers n > m > 1, we have I", C I,, C Ip,.
Therefore V(I;) = V(I,,) for all n > 1. Hence min Ass R/I; = min Ass R/I,, for all n > 1.
Thus for all n > 1, dim R/I; = dim R/L,.

(17) Let {a1, ..., a,} be a generating set of the R-algebra R[Z] as an R[J]-module. Suppose
dega; = d; for all i = 1,...,7r and d = max{dy,...,d,}. Then for all n > d + 1, we have
Jn C I, C Jp—g. Since by (1), V(J,) = V(J1) for all m > 1, we have V(I,) = V(J,).
Again by using (1), we get V(I,) = V(J,,) for all n,m > 1. O

Definition 3.2. Let R be a local ring and T = {I,} be a filtration of ideals of R. We
define the dimension of the filtration T to be s(T) = dim R/I,, (for anyn >1).

The dimension s(Z7) is well-defined by Lemma 3.1 (7). In the case of the trivial filtration
Z = {I,}, where I,, = R for all n, we have that s(Z) = —1.

Definition 3.3. Let R be a d dimensional local ring and T = {I,,} be a filtration of ideals
of R. For s € N, we define

A(Z) =minAssR/I; ﬂ{p € Spec R : dim R/p = s},
the set of minimal primes p of I such that dim R/p = s.

Example 3.4. The embedded associated primes that appear in the ideals in a filtration
T = {I,} may be infinite in number.

A simple example is as follows. Let k& be an infinite field, and let {c;}icz., be a countable
set of distinct elements of k. Let R = k[z,y, z](,,,-) be the localization of a polynomial
ring over k in three variables. Let I, = 2""!(z, 2 — a,y) for n € Z~o. T = {I,,} is thus a
filtration. The associated primes of I,, = (2" 1) N (2"*2, 2 — apy) are (2) and (2,7 — apy).
This is in contrast to the fact that the associated primes of the filtration of powers of an
ideal I in a local ring is a finite set [4].

Lemma 3.5. Let R be a local ring and suppose that T = {I,} is a filtration of R. Then
the following are equivalent.
7



1) R[t] is integral over 3, ~o Int".
2) I = R.
3) T is the trivial filtration.

Proof. Suppose that ¢ is integral over ) ., I,t". Then there exist n € Z~o and a; € I;
for 0 < i < n such that t"* + (a1t)t" ' 4 -+ + (ant") = 0. Thus 1 € (a1, ...,a,) C I;. O
Suppose that R is a local ring and Z = {I,,} is a filtration of R. The integral closure
Yonso Int™ of D7 <o Int™ in R[t] is a graded R-algebra > -, Int" = > -, Knt", where
K = {K,} is a filtration of R (by [39, Theorem 2.3.2]).
If I is an ideal in a local ring R, let I denote its integral closure.

Lemma 3.6. Let R be a local ring and T = {I,,} be a filtration. Then
RZ] = Jmt™
m>0
where {J} is the filtration
I ={f € R| f" € Ly, for some r > 0}.

The proof of Lemma 3.6 for mp-filtrations in [11, Lemma 5.5] extends immediately to
arbitrary divisorial filtrations.

Remark 3.7. If T = {I"} is the adic-filtration of the powers of a fized ideal I, then
Jp = I" for all n.

Lemma 3.8. Suppose that R is a local ring, T = {1,,} is a filtration of R and p € Spec(R).

Let R[I] = ®n>0Kn. Then the integral closure D, < InRyt™ of 37, <o InRpt™ in Ry[t] is
ano K, R,t".

Lemma 3.9. Let R be a local ring, T = {I,} be a filtration of R and R[] = ©p>0Kp.
Let K = {K,}. Then

1) V(L) = V(K1)

2) s(Z) = s(K).

Proof. By Lemmas 3.5 and 3.8, p ¢ V([1) if and only if > 5o [nRpt" = R,[t] which

holds if and only if }_, o K, Rpt" = R,[t], and this last condition holds if and only if
p & V(K1) O

4. MULTIPLICITIES OF FILTRATIONS

Let a be an mpg-primary ideal of R and N be a finitely generated R-module with
dim N = r. Define

If s > r =dim N, define ([37, V.2], [5, 4.7])

| ea(N) if dim N = s
es(a, N) = { 0 if dim NV < s.

Example 4.1. The function eq(N) of an mg-primary ideal a does not extend to a function
eA(N) of a filtration A = {a,} of mgr-primary ideals on finitely generated R-modules N,
even on a regular local ring.
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The existence of such an example follows from [8, Example 5.3]. Let k be a field and
R be the d dimensional power series ring over k, R = k[[z1,...24-1,y]]. In [8, Example
5.3], a filtration A = {a,} of mpg-primary ideals is constructed such that if p is the prime
ideal p = (y) of R, then the limit

i (R Jan(Bfp™)
oo K91/(d—1)!

does not exist for any m > 2. In the example, a function o : Z; — Q4 is constructed
such that letting N, = (x1,...,24-1)", and defining a,, = (Nn,yNn_U(n),yQ), we have
that A = {a,} is a filtration of mp-primary ideals on R for which the above limits do not
exist.

Let R be an analytically unramified local ring of dimension d, N be a finitely generated
R-module and Z = {I,,} is a filtration of mp-primary ideals. Then the multiplicity of Z is
defined by

. ER(N / Iy N )
er(Z,N) := ngnoo i
This limit exists by [8, Theorem 1.1] and [13, Theorem 6.6]. We further define the multi-
plicity of the trivial filtration Z = {I,,}, where I, = R for all n, to be eg(Z, N) = 0. We
write eg(Z) = er(Z, R).

Suppose that Z is a filtration of R and that s > s(Z). Let N be a finitely generated R-
module. Suppose that p is a prime ideal of R such that dim R/p = s. Then dim R, < d—s
with equality if R is equidimensional and catenary. The catenary condition holds, for
instance, if R is regular or R is excellent. Define the filtration Z, = {I, R, }. Then we have
that

(4) CRy (Ip’ Np) o nh—>Holo ndim Rp/ dim R,!
exists.

We will frequently make use of the fact that if R is a local ring which is analytically
unramified and p € Spec(R) is a prime ideal, then R, is analytically unramified ([39,
Proposition 9.1.4]).

Proposition 4.2. Suppose that R is an analytically unramified local ring, N is a finitely
generated R-module and a is an mp-primary ideal and T is a filtration on R. Suppose that
s € N is such that s(Z) < s < d. Then the limit

o 1 es(a,N/I,N)
es@ TiN) = lim oo
exists. Further,

(5) GS(O,I; N) = ZeRp(IP7Np)6a(R/p)
p

where the sum is over all p € Spec(R) such that dimR/p = s and dim R, = d — s.

Proof. Let p be a prime ideal of R such that dim R/p = s. If p ¢ A(Z) then g, (Ny/I,N,) =
0.Ifp € A(Z) then for all n > 1, I, Ry, are pRy-primary ideals of R,. Hence for all p € A(Z),
the limit
lim fR:p(Np/I@Np)
m—oo mdm By / dim R
9




exists by (4) and since Ry is analytically unramified. Since A(Z) is a finite set, using [5,
Corollary 4.7.8], we get that the limit

. es(a,N/I,,N) . (d—s)!
dm Tl — Am s D e (N InNyea(R/P)
pESpec R,
dim R/p=s

= > (m ER”(NP/ImNp))eu(R/p)

d—s _ |
peSpec R, meree m /(d S)'
dim R/p=s

= Z eRp(Ip’Np)ea(R/p>

pESpec R,
dim R/p=s and dim Ry=d—s

exists. 0
If 7 is a filtration of mpg-primary ideals, then s(Z) = 0 and
eo(a,Z; N) = er(Z; N)ea(R/mp) = er(Z; N).
We will write es(a,Z) = es(a,Z; R).
4.1. Mixed multiplicities of filtrations. Let R be an analytically unramified local
ring of dimension d and N be a finitely generated R-module. Suppose that Z(1) =

{I(1);},...,Z(r) = {I(r);} are filtrations of mg-primary ideals. It is shown in [13, Theo-
rem 6.6] that the function

ER(N/I(l)mm o I(1)yn, V)

(6) P(n1’7nT):7r}E>HOO md/d'
is a homogeneous polynomial of total degree d with real coefficients for all ny,...,n, € N.

The mixed multiplicities e (Z(1)I%, ... Z(r)l%]; N) of N of type (dy, ..., d,) with respect
to the filtrations Z(1),...,Z(r) are defined from the coefficients of P, generalizing the
definition of mixed multiplicities for mp-primary ideals. Specifically, we write

d!
(7) P(nl,...,n'/‘) = Z WGR(I(l)[dI},,I(T)[dr]7N)niil nf}r
dytotde=d "

We have need of the formulas (6) and (7) in the slightly more general case that Z(1) =
{I(1);},...,Z(r) = {I(r);} are filtrations of R such that for each j, Z(j) is either a filtration
of mp-primary ideals or Z(j) is the trivial filtration I(j), = R for all n € R. In this case,
there exists 0 € N with 0 < o < r such that either ¢ = 0 and Z(j) are filtrations of
mp-primary ideals for all j or ¢ > 0 and there exist 1 < i1 < --- < i, < r such that
Z(j) is a filtration of mp-primary ideals if j € {i1,...,i,} and Z(j) is the trivial filtration
I(j)n=Rforalln e Nif j & {i1,...,is}. Asin (6), we define

(8) P(ni,...,n,) = lim CRIN/T(V)mn, - - L(1)mn, N)

m—00 md/d!

In this case, we have that
P(ny,...,n,) = P(0,...,0,n4,0,...,0,n4,0,...,0,n;,,0,...,0)

which is a homogeneous polynomial of degree d by (6) and (7). In this case, we also define
the mixed multiplicities er(Z(1)I%, ... Z(r)l%]; N) of N of type (di,...,d,) with respect
10



to the filtrations Z(1),...,Z(r) from the coefficients of P, so that P has an expansion

d! d
(9) P(ni,....ny) = Z m@%(z(l)[dﬂw'-7I(T)[dr]§N)”11 g
di+-+dr=d
We have that P(ni,...,n,) is a homogeneous polynomial of degree d in the variables
Niyy ..., N4, . Thus
(10) er(Z()M . Z(r)ld] NY = 0 if some d; > 0 with j & {i1,...,is}.

We will write er(Z(1)l4), ..., Z(r)l4]) = egr(Z(D)I], ..., Z(r)l*]; R).

Theorem 4.3. Suppose that R is an analytically unramifed local ring of dimension d, N is
a finitely generated R-module, a is an mp-primary ideal and that Z(1) = {I(1);},...,Z(r) =
{I(r);} are filtrations of ideals. Suppose that s € N is such that max{s(Z(1)),...,s(Z(r)} <
s<dand ni,...,n, € N. Then forny,...,n, € N,

(11) Hs(ny,...,n;) = W}gnoo (9, N/frg):”‘;(ldi)(r)mnr]v)

1s a homogeneous polynomial of total degree d — s.

Proof. Define A = U A(Z(j)). Then A is a finite set.
j=1
For all (ni,...,n,) € N", consider the filtrations J(ni,...,n,) = {J(n1,...,ny)m =
I(D)mn, -+ - I(r)mn, } of ideals of R. Note that V(J(ni,...,n)m) = V(J(n1,..., 1 )m+1)
for all ny,...,n, € N and m > 1. Let p be a prime ideal of R such that dim R/p = s. If
p ¢ A then for all m > 1, lr,(Ry/J(n1,...,n)mBRp) = 0. If p € A then for all m > 1,
J(n1, .. sne)mBy = I(1)mn, -+ I(7)mn, Ry are either R, or pRy-primary ideals of R,.
Therefore by Proposition 4.2, the limit
. es(a,N/I(1)mny - I(r)mn,. N)
(12) wl mt /@)

= es(J(n1,...,n); N)
= Zp er, (T (n1,...,n7)p, Np)ea(R/P).

where the sum is over p € Spec(R) such that dim R/p = s and dim R, = d — s. By (8),
(9) and (10), we have for each p that

(13)
(d—s)! d dr d
eRp(j(nl?“‘7n’f‘)p’Np) = Z WBRP(I(l)L 1]7"'aI(T)t[J ];Np)nll---nf”
dittdp=d—s L T
is a (possibly zero) homogeneous polynomial of degree d — s in nq,...,n,. Thus the
function (11) is a homogeneous polynomial in nq,...,n, of total degree d — s. O

Definition 4.4. With the assumptions of Theorem 4.3, the mixed multiplicities
es(@, Z(1)1, . 1(r)l ) )
are defined from the expansion

— g)!
(14)  Hy(ng,...,n)= > Hesm,ﬂlﬂd”,...,I<r>“’“];N)n‘fl-'-n?’t
Tl

di+tdp=d—s
Theorem 4.5. Let assumptions be as in Theorem 4 3. Then we have the formula

(15)  es(a, Z(1), .. Z(n)l¥); N) = ZeRp D) (Z(r)p) ) Ny ea( R/ p)

where the sum is over all p € Spec(R) such that dim R/p = s and dim Ry, = d — s.
11



Proof. The theorem follows from equations (12) and (13). O
If Z(1),...,Z(r) are filtrations of mp-primary ideals (or are trivial filtrations) then
eo(a, (1), () N) = ep(Z(1), .. Z(r) ) N)ea(R/mp).

We will write e,(a, Z(1)l4), ... Z(r)ld)) = e (a, Z(1)lN), . Z(r)l4); R).
We have that

es(a, Z) .z — 1) ()=l 2+ )0 ()0 N = ey(a, Z(3), N)
forall 1 <3 <.

5. INEQUALITIES

Suppose that R is a local ring and I C J are mpg-primary ideals. Rees showed in [32]
that if R[J] is integral over R[I] then the multiplicities e;(R) = es(R) are equal and
he proved the converse, that e;(R) = e;(R) implies R[J] is integral over R[I] if R is
formally equidimensional. We show in [13, Theorem 6.9] and [11, Appendix] that the first
statement extends to arbitrary filtrations of mp-primary ideals, in a local ring such that
dim N (R) < dim R. However, the converse does not hold for mpg-primary ideals, even if
R is a regular local ring. A simple example is given in [13]. We extend this theorem to

arbitrary filtrations in the following theorem.

Theorem 5.1. Let R be an analytically unramified local ring of dimension d, N be a
finitely generated R-module, a be an mpg-primary ideal and T = {I,}, J = {Jn} be
filtrations of ideals of R with J C Z. Suppose R[Z] is integral over R[J]|. Then

(1) (1) = s(J),

(ii) es(a,Z; N) = es(a, J; N) for all s such that s(Z) = s(J) < s < d.
Proof. We have that V(I1) = V(J1) and s(Z) = s(J) by Lemma 3.9. Thus by Proposition
4.2, e5(Z;N) =es(J; N) =0 for s > s(Z) = s(J) and we have that

es(a,T;N) =Y er,(Ty, Ny)ea(R/p) and e5(a, T; N) = > er, (Jp, Np)ea(R/P)
p p
where the sums are over prime ideals p such that dimR/p = s and dimR, = d — s.
Suppose that s = s(Z). By Lemma 3.1, if dim R/p = s, then either I} R, and Ji R, are
both mpg,-primary ideals or I Ry = J1Ry, = Ry. In the first case, J, C Z, are filtrations
of mp,-primary ideals and in the second case, Z, and J, are both the trivial Ry-filtration.
Let p1,...,p, be the prime ideals in R such that the first case holds. Then

es(a,Z; N) = ZeRpi (Zp:s Ny, Jea(RR/p;) and es(a, T3 N) = ZeRpi (Tpis Np,Jea(R/pi).

i=1 i=1
We have that R[J,,] is integral over R[Z,,] for all 1 < i < r and R, is analytically
unramified for all 7 by [39, Proposition 9.1.4]. Thus eg, (Zy,, Np;) = er,, (Jp;s Ny,) for
1 <4 <r by [13, Theorem 6.9] or [10, Appendix], and so es(a,Z; N) = es(a, J; N). d
Corollary 5.2. Suppose that R is an analytically unramified local ring, a is an mpg-
primary ideal and T = {I,,} is a filtration of R. Let
Jo={f €R| f" € Ly, for somer > 0}.

Then
s:=s(2) = s({I.}) = s({J})
12



and
es(a,Z) = es(a, {In}) = es(a, {Jn}).

Proof. We have that R[Z] C R[Z] C R[Z]| by Lemma 3.6. Thus s = s(Z) = s({I,}) =
s({Jn}) and es(a,Z) = es(a,{I,}) = es(a,{Jn}) by Theorem 5.1. O

The Minkowski inequalities were formulated and proven for mpg-primary ideals in re-
duced equicharacteristic zero local rings by Teissier [40], [41] and proven for mpg-primary
ideals in full generality, for local rings, by Rees and Sharp [35]. The same inequali-
ties hold for filtrations. They were proven for mpg-filtrations in local rings R such that
dim N(R) < dim R in [13, Theorem 6.3]. We prove them for arbitrary filtrations in an
analytically unramified local ring.

Theorem 5.3. (Minkowski Inequalities) Let R be an analytically unramified local ring of
dimension d, N be a finitely generated R-module, a be an mp-primary ideal, T = {I;} and
J ={J;} be filtrations of ideals of R. Let max{s(Z),s(J)} <s<d and k :=d —s.
(i) Let k> 2. For 1 <i<k—1,
es(a,Im,j[k_i];N)Z S e (a I[z—l—l] j[k—i—l],N)es(a I[i—l} j[k—i—l—l],N)
(i3) For 0 <i <k, es(a,Zl], 7*=1: N)e,(a, T+, 7 N) < e,(a,Z; N)es(a, T; N),

(i) For0 < <k, ey(a, 71, 7 N)¥ < (0,7 N)<iey(a, 75 N)i and

() s(ZJ) = max{s(Z),s(J)} and es(a,Ij;N)% <es(a,Z; N)%+es(u, T; N)%, where
1J ={1;J;}.

Proof. Let p € Spec R with dimR/p = s and dim Ry, = d — s. If p € A(Z) then I, R, are
pRy-primary ideals for all n > 1 (respectively if p € A(J) then J,R, are pR,-primary
ideals for all n > 1). If p ¢ A(Z) then I, R, = R, for all n > 1 (respectively if p ¢ A(J)
then J, Ry, = R, for all n > 1).

Let T := (A(Z) U A(J)) N {p € Spec(R) : dim R, = d — s} and |T| = r. Suppose

T ={p1,...,pr}-
(¢) Suppose that i satisfies 1 < ¢ < k — 1. Let p € SpecR with dimR/p = s and
dim Ry, = d — s. We first show that

Ifpe A(Z)\ A(TJ) or p e A(J) \ A(Z), in both cases we have
er, (T, TN =0 forall 1 <i <k —1.
Suppose p € A(Z) N A(J). Then by [13, Theorem 6.3, 1) , 2)], we have
ery T LN < ey @ AT Nyer, (@Y, NG
By (15), we have
(17) eala, 24, TV N) = 3 e, (T T Ny, Jeal R/0)).
j=1

For 1 <5 <r, set
. 7 —f— 1
21(7) = ey, (T, Tt T NG ) Zea(R/p)) % an

22(j) = en, (T, 1, Ty Y Nmea(R/m%.
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Then, by (17) and (16),
(18)  es(a, 7V, 7 N2

= <Z ery, (Zo), Ty s Ny, Jea(R/p5))?

< Zﬂfl x9(J S le )(2552(])2)
j=1
— (ZBR ( Zli+1] Jpj z—ll;ij)ea(R/pj))(ZeRpj(ij 1] j[k i+1] Ny, JealR/P3))
=1 j=1
= es(a, 20 g1 Ne(a, Z07Y, g1 ),

which establishes formula (i) of the statement of the theorem. The inequality between the
second and third lines of (18) is Holder’s inequality, formula (2.8.3) on page 24 of [19],
with k = 2 (so its conjugate k' = % = 2 also).

(i) and (i) : Let e; =: es(a,ZF=, Fl N) for all 0 <4 < k. If eg = 0 or e = 0 then by
part (i), we have e; = 0 for all 0 < ¢ < k and we get the inequalities (i¢) and (4i7). Suppose
eo >0 and e, > 0. If e; =0 for some ¢ € {1,...,k — 1} then using part (i), we get e; =0
for all 0 < 4 < k and hence the inequalities (i7) and (¢i¢) hold. If e; > 0 for all 0 < i < k
then the proof follows from the argument given in [39, Corollary 17.7.3, (1) and (2)].

(iv) Since V(I;) UV (J1) = V(I1J1), we have s(ZJ) = max{s(Z),s(J)}. Let p € Spec R
with dim R/p = s and dim Ry, = d — s. We first show that

(19) e, (TpTpi Np)F < e, (Ty; Np) ¥ + e, (Jo; Np) .

If pe A(Z)\ A(TJ) (respectively p € A(J) \ A(Z)) then

€Ry (ijpa NP)
(respectively er,(ZpJp; Np)

= el
—~
_UN
2
~—

ET
I/\
A
_BN
3
S~—

E I

= €ER, (Jp;Np) < €R, (Ip;Np)

Suppose p € A(Z) N A(J). Then by [13, Theorem 6.3, 4)], we have

ery (LpTyi Np) ¥ < eny (Tys Ny) ¥ + er, (Jpi Ny) ¥
(where 7,7, = {I;J;R,}). By (15), we have
(20) es(@ T N)E = (Y en, (Tp,Toyi N, )eal B/p5))F

J=1

For 1 <5 <r, set

E‘\»—t
==

21(5) = eny, (To,s Ny, e ea(R/p;)E, 22(j) = e, (Tpyi Ny, ) Fe

u(j) = er, (Zp, Joys Ny, ) Feal R/pj)F.
14
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Then u(j) < x1(j) + z2(j) for all j =1,...,r and by (20) and (19),

(@) es(@, ZT:N)E = (D er,, (T, Joys Ny, JealR/p;))

==

= (T uiME < (X @) +:0)H)
i=1 j=1

< (@O + (S (@l)k)
i=1 j=1

= (Z(eRpj (Ipprj)ea(R/pj))% + (Z(eRpj (jpﬁij)eu(R/Pj))%
j=1 j=1

= es(a,Z; N)% +es(a, J; N)%

which establishes formula (iv) of the statement of the theorem. For k£ > 1, the inequality
between the second and third lines of (21) is Minkowski’s inequality, Section 2.12 (28) on
page 32 of [19]. O

Theorem 5.4. Suppose that R is an analytically unramified local ring of dimension d
and that a is an mp-primary ideal. Let Z(1) and Z(2) be two filtrations of ideals on R,
max{s(Z(1)),s(Z(1))} < s and d — s > 1. Suppose there exist a,b € Zq such that

> IW)an =Y I(2)bn-

n>0 n>0

Then the Minkowski equality

1

es(a,I(l)I(Q))d*S = e(()iiS + ef
holds between T(1) and Z(2) where eg = es(a, T(1)14), 7(2)0) and eq_, = es(a, Z(1)[), Z(2)ld=)).

Proof. Since Y I(1)an = > I(2)pn, by Lemmas 3.1 and 3.9 we have V(I(1),,) = V(I(2),)
n>0 n>0

for all n > 1 and s(Z(1)) = s(Z(2)).
Let A(Z(1)) = A(Z(2)) = {p1,...,pr}. For all nyj,n2 € N, let

lim es(a, R/T(1) mny I(2)mny)
m—o00 mdfs/(d - S)!

P(nl, n2) =

and for 1 <7 <, let

Pi(n1,n2) = Hi(n1,n2)eq(R/pi)

where
H(TL n ) — lim ERpi(Rpi/I(l)mmRmI@)manm)
2 1,762 _m—>oo mdfs/(d—s)!
For all p;, we have ) I(1)anRp, = > I(2)pnRp,. Therefore by [11, Theorem 8.4] and

n>0 n>0

its proof, which proves this theorem for O-filtrations, for all 1 <4 < r, there exists ¢; € R,
such that for all ni,ne € N, we have

ni no

Hz‘(nl, n2) = Ci(* +

d—s
a b )
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and hence
ny . ng

Pi(ny,n2) = ci(— + 5 )" ea(R/pi).
Using Theorem 4.5, for all ny,no € N, we get
ny N2 N1 M2gog
(22) P(n1,n2) ZP (n1,n2) Z i(— +?) ca(Bt/pi) = c(— + 57)

where ¢ = Y c;eq(R/pi). Therefore
i=1

P(1,1)75 = P(1,0)7= + P(0,1)7
0

The following lemma is well known. We provide a proof for the convenience of the
reader. Our proof is an outline of the proof in [15, Lemma 14, page 8|.

Lemma 5.5. Let R be a d-dimensional local ring and let I; C J; be m-primary ideals for
i=1,...,d. Then

e(1M, . Iy > oML g,

Proof. 1t is enough to prove the statement when I; = Jy,...,I;_1 = Jq_1, and I; C Jg.

If d = 1, then ((R/I}) > ¢(R/J]), so necessarily e(I1) > e(J1). Now let d > 1. We

may assume that R has an infinite residue field. Then for a general element a € I} = Ji,
1 1 1 1 1 1 1 1

e(I{ ],...,Ic[l];R) = e(I£ ],...,Ic[l};R/(a)) and e(Jl[ },...,Ja[l];R) = e(JQ[ },...,JC[I];R/(G)).

We are done by induction on d. O

Definition 5.6. Suppose that T = {I;} is a filtration of ideals on a local ring R. Fix
a € Zy. The a-th truncated filtration Z, = {I,;} of T is defined by

I, ifn<a

Ia’n - Z Ia,iIa,j z'fn > a.
%,j>0
i+j=n

Lemma 5.7. Let R be a d-dimensional local ring, a be an mp-primary ideal, (i) =
{I(i)n} and J(i) = {J(i)n} be filtrations of ideals on R for 1 < i < r with J(i)n, C I(i)n
forall1 <i<r andn > 1. Let N be a finitely generated R-module.

(i) Suppose dim N(R) < d and Z(i), J(i) are filtrations of R by mp-primary ideals.
Then
er(Z(W) A Z(r)d N < ep(T(), L T4 N).
(ii) Suppose R is analytically unramified and max{s(J(1)),...,s(J(r)} < s <d. Then
es(a, Z(V)M 2l Ny < eg(a, (DN 7 ()l N,

Proof. (i) For all a € Z,, consider the a-th truncated filtrations Z,(i) = {I,(i)m} and

Ja(i) = {Ja())m} for all 1 < ¢ < r. Given a € Z,, there exists f, € Zy such that

Io(%) fom = (L1a(3)5,)™ and Jo () fom = (Ja(i)g,)™ for all m > 0 and ¢ = 1,...,7r. Define
16



filtrations of R by mp-primary ideals by Z,(i) = {I,(i),m} and Ju(i) = {Ju(i)f,m} for
all 1 <i <r. Then by [13, Proposition 6.2], [13, Lemma 3.2] and Lemma 5.5,
er(Z() I N) = lim er(Zo(1) ), Ty ()4 N)
a—0o0
1 ~ ~
= Jim —gen(a (", L))

a—00 a

< lim ;eRwa( DI Jam)i Ny

a

= lim ep(T() M . Z.(m) ] N

a—r 00

= er(TM,.. T N),

(77) This follows from Theorem 4.5 and part (i) of this Lemma. O

In [28, Section 1] and [21, Proposition 3.11], a multiplicity e(a, I) is defined for ideals a
and [ in a local ring R such that a + I is mp-primary, by

(23) e(a,1) =Y er,(Iy)ea(R/p),
b

where the sum is over prime ideals p in R which contain I and such that
dimR/p =dim R/I and dim R, = dim R —dim R/I.

We generalize equation (23) to filtrations. Suppose that R is an analytically unramified
local ring of dimension d and Z is a filtration of ideals on R. Let s = s(Z). Suppose a is
an ideal in R such that a + [; is mpg-primary. We define

(24) e(0,7) = > er,(Ty)ea(R/P),
p

where the sum is over all p € Spec(R) such that dim R/p = s and dim R, = d — s.
We have the following formula relating equations (23) and (24):

(25) e(a,T) = Tim % 1m)

m—oo md s

To prove this formula, we observe that for all m,n > 1,
Min(R/I,) N {p € Spec(R) : dim R/p = s and dim R, =d — s}
= Min(R/In) N {p € Spec(R) : dim R/p = s and dim R, = d — s},
so that the limit

. oela ) . er,(ImBy)
lim = Zw%gnoo ———eq(R/p)

m—oo nad—s md—s
Cr,(Ry/InRy)
ZMO ey R )
= ZGRF Z,) Jea(R/p)
b

exists, where the second equality follows from [8, Theorem 6.5] and the sum is over all
p € Spec(R) such that dimR/p = s and dim Ry, = d — s.
17



Let Z be a filtration of ideals on a local ring R. We say z1,...,Z47) is a system of
parameters of Z if x1 + In, ..., z47) + Iy is a system of parameters of R/I, for each n > 1.
Note that if z1,...,x; is a part of system of parameters of Z then {I,, + (z1,...,2¢)} is a
filtration and thus V (I, + (x1,...,2)) = V (I, + (21, ...,2)) for all m,n > 1.

Remark 5.8. Let R be a Regular local ring of dimension d > 1, T be a filtration of ideals
on R which is not an mp-filtration. Then using the prime avoidance lemma, we can choose
elements z; € mg \ m% UMin(R/I1 + (x1,...,3-1)) for all 1 < i < s(T) and ¢ = 0.
Then x1,...,z47) is a system of parameters of T such that z1, ..., xy7) is a part of reqular
system of parameters of R. Define x = x1,...,247). Therefore R/zR is a regular local
ring and hence er/yr(J) is well-defined where J = {Jn = In(R/xR)}.

In [22] and [28, formula (2.1), page 118], the following inequality is given. Suppose that
I is an ideal in a local ring R. Let s = dim R/I. Suppose that = z1,...,x is part of
a system of parameters in R and that the image of z in R/I is a system of parameters.
Then

(26) e(zR,I) < ep/yr(l).

In the following proposition, we generalize this inequality to filtrations.

Proposition 5.9. Let R be an analytically unramified local ring of dimension d > 1, T

be a filtration of ideals on R which is not an mpg-filtration and z1,...,x47) is a system
of parameters of I such that dim(N(R/zR)) < dim R/xR (e.g. R is a Regular local
ring and 1,...,Tyz) 1S a system of parameters of I such that xi,...,xyz) is a part

of regular system of parameters of R) where N(R//Q\R) is the nilradical of R/xR. Let
T =11,...,Ty7). Then for J ={J, = I,(R/zR)},

e(zR,I) < er/er(J).
Proof. Let Z, denote the a-th truncated filtration of Z for all @ > 1 and p be a prime
ideal in R. Then Z,(R/2R) = {I,n(R/zR)} and Z,Ry = {I, Ry} are the a-th truncated
filtrations of Z,(R/xR) and Z,R, respectively for all a > 1. Since for each a > 1, Z,,

Z,(R/zR) and Z,R, are Noetherian filtrations there exists an integer f, > 1 such that

Lomfs = 12 . Tans,(R/zR) = I, (R/zR) and Iy, Ry = I7, R, for all n > 1. Also

note that s(Z) = s({I;;, }). Then summing over prime ideals p with dim R/p = s(Z) and
dim R, = d — s(Z), we have

e(aR,T) =) er,(Ty)ewr(R/p) =) lim ep, (ZoRy)exr(R/p)
" "

, 1

= Jim ——rer, (Lo, Rp)ear(R/p)

p a

, 1
= lm ——5 > er,(La.fu Ro)ezr(R/p)

a p

, 1

= llm 76(£R7Ia,fa)

. 1
< lim ——mve(ly,r, (R/2R))

= lim e(Zy(R/zR)) = e(Z(R/zR))
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where the equalities on the first and last lines are by [13, Proposition 6.2] and the inequality
follows from (26). O

6. DIVISORIAL FILTRATIONS

Let R be a local domain of dimension d with quotient field K. Let v be a discrete
valuation of K with valuation ring O, and maximal ideal m,. Suppose that R C O,.
Then for n € N, define valuation ideals

I(v)y = {f € R|v(f) > n} =mNR.

A divisorial valuation of R ([39, Definition 9.3.1]) is a valuation v of K such that if O,
is the valuation ring of v with maximal ideal m,, then R C V,, and if p = m, N R then
trdeg,,(y)>(v) = ht(p) — 1, where s(p) is the residue field of R}, and s(v) is the residue
field of V.

By [39, Theorem 9.3.2], the valuation ring of every divisorial valuation v is Noetherian,
hence is a discrete valuation.

Lemma 6.1. Suppose that R is an excellent local domain. Then a valuation v of the
quotient field K of R which is nonnegative on R is a divisorial valuation of R if and only
if the valuation ring O, is essentially of finite type over R.

Proof. Since an excellent local domain is analytically unramified, the only if direction
follows from [39, Theorem 9.3.2]. Now we establish the if direction. Since O, is essentially
of finite type over R, there exists a finite type R-algebra S and a prime ideal @ in S
such that S is a sub R-algebra of O, and Sg = O,. Since an excellent local domain is
universally catenary, the dimension equality (c.f. [39, Theorem B.3.2.]) holds. Since a
Noetherian valuation ring is a discrete valuation ring (c.f. [39, Corollary 6.4.5]) it has
dimension 1, so that ht(Q) = 1, from which it follows that v is a divisorial valuation. [

Suppose that s € N. An s-valuation of R is a divisorial valuation of R such that
dim R/p = s where p = m, N R.

A divisorial filtration of R is a filtration Z = {I,,} such that there exist divisorial
valuations v, ..., and aq,...,a, € R such that for all m € N,

I, = I(Vl)[maﬂ n---N I(”T)[mar]-

A divisorial filtration is called integral (rational) if a; € Z>¢ for all i (a; € Q¢ for all 7).
An s-divisorial filtration of R is a filtration Z = {I,,,} such that there exist s-valuations
vi,...,vp and ag, ..., a € R>q such that for all m € N,

(27) Im = I(Vl)[maﬂ n---nN I(Vr)[mar] .

Observe that the trivial filtration Z = {I,, }, defined by I,,, = R for all m, is a degenerate
case of a divisorial filtration and is a degenerate case of an s-divisorial filtration for all s.
The nontrivial 0-divisorial filtrations are the divisorial mp-filtrations of [11].

We will often denote a divisorial filtration Z on a local domain R by Z = Z(D), even
when R is not excellent and there does not exist a representation of Z as defined before
Theorem 6.7.

Even when that a; are required to be positive for all 7, the expression (27) of a divisorial
filtration is far from unique. The following example follows from [12, Theorem 4.1].
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Example 6.2. There exist 0-valuations v1 and v on a normal 3-dimensional local ring

R which is essentially of finite type over an arbitrary algebraically closed field k, such that

if a1,a2,b1,b0 € N and a1 < (ﬁ) asz, then

I(Vl)fmal] N I(VQ)]—mag] = I(Vl)fmbl] N I(VQ)]—mbg'\

for allm € N if and only if b = a2 and by < (ﬁ) as. The filtration has the largest ex-

pression as a real divisorial filtration as {I (1) 5 N 1(2) fmas] } This divisorial
[m(5=275 ) a2]

filtration is not rational.
Lemma 6.3. IfZ(D) is a divisorial filtration, then R[Z(D)] = R[Z(D)] is integrally closed.

The proof of Lemma 6.3 for mp-filtrations in [11, Lemma 5.7] extends immediately to
arbitrary divisorial filtrations.

We will use the following form of the valuative criterion of properness. The proposition
is an immediate consequence of [20, Theorem I1.4.7].

Proposition 6.4. Suppose that R is a Noetherian domain with quotient field K and that
I is a nonzero ideal of R. Let m: X — Spec(R) be the blow up of I. Suppose that O, is
a valuation ring of K such that R C O,. Let p = my, N R. Then there exists a unique
(not necessarily closed) point o of X such that O, dominates S = Ox . We have that S
dominates Ry; that is, m(a) = p € Spec(R).

Lemma 6.5. Let R be an excellent local domain and vy, ..., be s-valuations of R with
associated centers p; = m,, N R on R for all 1 < i < t. Then there exists an ideal K
of R such that the associated primes of R are the p; and if ¢ : X — Spec(R) is the
normalization of the blowup of K, then there exist prime Weil divisors Ey,...,Ey on X
such that Ox g, = O,, for 1 <i <t.

Proof. After reindexing the p; we may suppose that py,...,p, (with r < t) are the distinct
primes in the set {p1,...,p¢}. Then reindex the v; as v; ; for 1 < j < f; so that m,, ;N R =
p; for all 4, j.

It follows from Statement (G) of [34] (or [39, Proposition 10.4.4]) that there exists a
(ps)p;-primary ideal J; ; of Ry, such that if o; ; : X; ; — Spec(Rp,) is the normalization of
the blowup of J; ;, then Oym is a local ring of a prime Weil divisor on X ;. Let J; = Hj Jij
and ¢; : X; — Spec(Rp,) be the normalization of the blow up of J;.

We will now show that Oyi_j is a local ring of X; for all 7. Let Y; ; be the blowup of J; ;
and Y; be the blowup of J;, so that there are natural finite birational projective morphisms
Xij — Yijand X; — Y. Let Jij = (aij1,--.,0ija;,;)- The ideal sheaves J; ;Oy, are
locally principal, since Y; is covered by the open affine sets with the affine coordinate rings
Tier,okp, = Ry, [Ji/ f] where f = a1k, T8, kg, for some ki,...,kg,. The ideal sheaves
Ji jOx, are thus locally principal, since X; is covered by the open affine sets with the
affine coordinate rings Si7k1,~~~7k6i where Si,kl,...,kgi is the normalization of Ti,k17,_.7kﬁi. Thus
we have a birational projective morphism X; — Y; ; for all 7, j (by the universal property
of blowing up, c.f. [20, Proposition I11.7.14]). Since X; is normal, there is a birational
projective morphism X; — X, ; for all 4,j. Now for fixed i, j, by Proposition 6.4, there
exists a unique local ring A of X; such that the valuation ring O,, ; dominates A.

Let B be the local ring of X; ; such that A dominates B. Now B is the unique local
ring of X;; which is dominated by v;; by Proposition 6.4. Since O,, ; is a local ring of
X; ; we have that B = Oym. so that Ol,m. = A is a local ring of X;.
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For each i, there exists a p;-primary ideal K; of R such that (K;),, = J;. Let K =
N;_, K;. The associated primes of K are thus pi,...,p,. Let ¢ : X — Spec(R) be the
normalization of the blowup of K.

For given 1, j, there exists f; € J; such that O,, ; is a local ring of the normalization T; ;
of Ry,[J;/ f;]. Since J; = K,,, we may assume that f; € K, so that Ry,[J;/ f;] = R[K/ fjlp,-
Let U; j be the normalization of R[K/f;], so that U, ; is the affine coordinate ring of an
open subset of X. Now T;; is the integral closure of R[K/f;ly; = Ry,[Ji/fj], so that
(Uij)p; = (Tij)p;» and so O,, ; is a local ring of U j, and hence is a local ring of X. O

Remark 6.6. If R is an excellent local domain and vy,...,v: are divisorial valuations of
R, then a slight modification of the above proof gives the weaker statement that there exists
an ideal K of R such that if ¢ : X — Spec(R) is the normalization of the blowup of K,
then there exist prime Weil divisors Eq, ..., Ey on X such that Ox g, = O,, for 1 <i <t.

As in [11, Chapter 5], Lemma 6.5 allows us to define a representation of an s-divisorial
filtration Z = {I,,} on an excllent local domain R, where

I, = I(Vl)[mal'\ n---N I(Vt)]'mat]'

By Lemma 6.5, we may construct a blow up ¢ : X — Spec(R) satisfying the conclusions
of the lemma for v4q,...,14. Let D be the real Weil divisor D = a1 F1 + -+ - + a;Ey on X.
Define

I(mD) =T(X,0x(—[Y_ ma;E;]
giving a filtration Z(D) = {I(mD)} on R. We have that

I(T)’LD) XOX Zmaz 3 mR:I(”l)[maﬂm"'ml—(Vt)[mat]:Im

so that I(mD) is the s-divisorial filtration Z.

Given a representation Z(mD) of an s-divisorial filtration Z, it is desirable sometimes
to separate the prime components of D which dominate different prime ideals of R, as in
the proof of Lemma 6.5.

Let p1,...,p, be the distinct prime ideals of R which are dominated by a prime com-
ponent of D. Reindex the E; as E; j, where for each ¢, {E; ;} are the prime divisors (from
the set {E;}) which dominate p;. Let a;; € Ry be defined so that D = Z cai B ;.
Define D(i) = 3, a;;E;; for 1 < <r. Then the filtrations Z(D(i)) = {I(mD( ))} are
s-divisorial filtrations on R and I(mD) = I(mD(1))N---NI(mD(r)) for all m > 0.

Theorem 6.7. Suppose that R is an excellent local domain and a is an mg-primary
ideal. Let Z(D) be a real s-divisorial filtration and Z be an arbitrary filtration. Suppose
that Z(D) C Z, so that s(Z) < s = s(Z(D)). Then es(a,Z(D)) = es(a,Z) if and only if
I(mD) = I, for allm > 0.

Proof. Let T = {I,,}. First suppose that I(mD) = I,,, for all m > 0. Then es(a,Z(D)) =
es(a,Z) by definition of es.

Now suppose that eg(a,Z(D)) = es(a,Z). Let ¢ : X — Spec(R) be a representation of
the filtration Z(D). There are prime ideals p1,...,p, in R such that dim R/p; = s for all
i and X is the normalization of the blowup of an ideal K of R such that pq,...,p, are
the associated primes of K. Further, D = Y7, D(i) is an effective Weil divisor on X
such that for all 4, all prime components E of D(i) satisfy mg N R = p;, where mpg is the
maximal ideal of Ox g.
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Since excellent rings are universally catenary, we have by Proposition 4.2 that

Z eRpZ Pz eﬂ(R/p’L)

and since V' (I1) C V(I(D)), we have

,
=3 ey, (T )eal B/,
i=1
Now for all i, we have that eg, (Z(D)y,) > er,, (Zy,) since Z(D)p, C Z,,. Thus es(a,Z(D)) >
es(a,Z) with equality if and only if eg, (Z(D)y,) = er,. (Zy,) for all i.

Suppose that for some i, 7, is a filtration of mp, -primary ideals. By [10, Theorem
1.4] and [11, Corollary 7.5], eg, (Z(D)y,) = er, (Zy;) if and only if Z(D)y, = I,. Also,
if Z,, is the trivial filtration, then since Z(D),, is a filtration of mp, -primary ideals,
we have that eg, (Z(D)y,) > 0 by [11, Proposition 5.3] while er, (Z,,) = 0, so that
er,, (Zp;) < er,,(Z(D)y,). Thus es(a,Z(D)) = es(a,Z) if and only if I(mD)y, = (Im)y, for
all ¢ and m € N. In particular, with our assumption that es(a,Z(D)) = es(a,Z), we have
that

(28) I(mD)y, = (Im)p, for all i and m € N.

Now each I(mD) is an intersection Q1 N --- N @, where each Q); is a p;-primary ideal.
Thus I, = Q1N---NQ,-NJ where J is an ideal of R such that J ¢ p; for any ¢. But then
I, = I(mD) since I(mD) C Ip,. O

Lemma 6.8. Suppose that R is a
an mpg-primary ideal and (1) =
s(Z(1)) = s(Z(2)). Let s = s(Z(1)
0<i<d-—s. Then either

a)ep=0o0res;_s=0ande; =0 for0<i<d—s or

b) e >0 and eq—s > 0.

For all n1,ne € N, let
es(a, R/1(1)mny L(2)mn, )

. s
Ps(nlanQ) :Tr}gnoo md_s/(d_8>! =

)i} and Z(2) = {I(2);} are filtrations such that

dimensional analytically unramified local ring, a is
(1
= s(Z(2)) and let e; = es(a,I(l)[d_s_i],I(Q)[i]) for

d-
{1
)

d—s

Consider the following conditions.
1) 612 =eji_16i41 for1 <i<d—s—1.
2) ejeq—s—i = epeq—s for 0 < i <d—s.

3) el = ed=s7lel sf07"01<i<d—s.

1) es(a, T)T(R)) T = ef* + el %, where T(NT(2) = {I(1);1(2);}.

1

L 1 d S
5) Ps(ni,ng) = <e(‘fsn1 + eg_§n2> for all ny,ny € N,

Then the following hold.

i) Statement 3) holds if and only if statement 4) holds.
it) If a) holds then the statements 1) - 5) hold.
i11) If the e; are nonzero for 0 <i < d — s, then the statements 1) - 5) are equivalent.
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Proof. We have that either a) or b) holds by the Minkowski inequalities for filtrations
(Theorem 5.3).

(i) The analysis of [11, Section 9] is valid for arbitrary filtrations, and shows that
Statement 3) holds if and only if statement 4) holds.

i7) If a) holds, then all of the equalities 1) - 5) hold.

i41) Suppose that all e; are nonzero. We show that all of the equalities 1) - 5) hold.
The proof of [11, Section 9] applies here to show that conditions 1), 3), 4) and 5) are
equivalent.

It remains to show that 2) is equivalent to 3). By the inequality iii) of the Minkowski
inequalities for filtrations (Theorem 5.3) we have that
(29) e teq s < (e e ) (ehe_s ") = ef e
for 0 <i < d— s, and equality holds in this equation for all 4 if and only if equality holds
in 2). Taking (d — s)-th roots, we have that equality holds in (29) if and only if equality
holds in 3) for 0 <7 < d —s.

O

Teissier [42] (for Cohen-Macaulay normal two-dimensional complex analytic R), Rees
and Sharp [35] (in dimension 2) and Katz [24] (in complete generality) have shown that if
R is a formally equidimensional local ring and I(1),I(2) are mp-primary ideals then the
Minkowski inequality is an equality, that is,

(30) er(I(DI(2)1 = e(I(1))4 +e(I(2))3,
if and only if there exist positive integers a and b such that

(31) D I()emtr = " 1(2)bmn,

n>0 n>0

If Z(1) and Z(2) are filtrations of an analytically unramified local ring R and condition
31) holds then the Minkowski equality holds between Z(1) and Z(2) by Theorem 5.4, but
the converse statement, that the Minkowski equality implies condition (31) is not true for
filtrations, even for mpg-filtrations in a regular local ring, as is shown in a simple example
in [13].

In [10, Theorem 1.6], it is shown that this characterization holds if Z(1) and Z(2)
are bounded filtrations of mpg-primary ideals in a d-dimensional analytically irreducible or
excellent local domain (s-divisorial filtrations are bounded; bounded filtrations are defined
in the following Section 7). We show here that this characterization holds for s-divisorial
filtrations.

Theorem 6.9. Suppose that R is a d-dimensional excellent local domain and that a is an
mpg-primary ideal. Let Z(D1) and Z(Ds2) be two nontrivial integral s-divisorial filtrations.
Then the Minkowski equality

1 1

ea(a. I(DNI(D2)) T = e " + e,
holds between (D7) and Z(Ds3) if and only if there exist a,b € Z~q such that I(amD;) =
I(bmDy) for all m € N.

Proof. Let ¢ : X — Spec(R) be a representation of the filtrations Z(D;) and Z(Ds);

that is, there are prime ideals pi,...,p; in R such that dim R/p; = s for all ¢ and X is

the normalization of the blowup of an ideal K of R such that py,...,p; are the associated

primes of K. Further, Dy = 3"i_, D1(i) and Dy = >_'_, Do(i) are effective Weil divisors on
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X such that for all 7 and for j = 1,2, all prime components E of D;(i) satisfy mgNR = p;,
where mp is the maximal ideal of Oy g. Let Z(D;(i)) = {I(mD;(i))} be the associated
divisorial s-filtrations on R.
- (0. B/ (s Dy) (s D)
T €s a,R I mn1D1 I anDQ
Pn1,np) = lim ma—/(d — s)!

and for 1 <7 <t let
65(0, R/I(mn1D1 (z)](mnng(z)))

Pi(ni,n2) = lim

m=—00 ma=s/(d — s)!
Write
d—s
TLl,nQ:Z d—g— |]Cllsjj2
= 7)!
and
d—s
(d—S)! d—s— g
P.(nan) : (d— S _]>'J' (Z)Jnl 2
7=0
We have that
(32) P(n1,n2) ZP ni,n2)

by Theorem 4.5 applied to P(n1,ng) and the P;(ng2,n2).
First assume that the Minkowski equality holds. By our assumptions, the conclusions
of Lemma 6.8 hold for Z(D(1)) and Z(D(2)). There exists i such that D; (i) # 0. We have

(33) ery, (Z(D1 (D), (Do (i) = er,, (T(D1(3))y,)

by [13, Proposition 6.5].

Let S be the normalization of R, which is dominated by X, and let q1,...,q, be the
prime ideals of S which lie over p;, so that each Sy, is analytically irreducible. Then by
Equation (18), Lemma 5.2 and Proposition 5.3 of [11], we have that

(34) eRy, (Z(D1(1))p;) > 0.

Now

(35) eli)o = es(a, Z(D1 (i), Z(Da(0))) = er,, (Z(D1(0))yi ", Z(Da()y) Jes(a, B/ o)
by Theorem 4.5. Thus e(i)g > 0 by (34) and so

ey = Ze(i)o > 0.

Similarly there exists i’ such that Dy(i") # 0. Then using a similar argument to the above,
we have e(i’)4_s > 0 and hence e;_s > 0. Nowe] S—eg 5= j Gfor 0<j<d—sbyi
of Lemma 6.8, since the Minkowski equality holds. Since eg > O and eg4_s > 0, we have
that e; > 0 for all j.

Since the Minkowski equality holds between Z(D1) and Z(D3), and e; > 0 for all j, we
have by iii) of Lemma 6.8 that the equalities 1) of Lemma 6.8 hold so there exists £ € Ry
such that
(36) 5:671:...: €d—s

€0 €d—s—1
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By (32) we have that e; = S"i_, e(i); for all j. By the inequalities e(i ) < e(i)j—1e(i)j+1
for 1 <j<d-—s—1 (Theorem 5.3) and (36) we have that

1

1 1 .
0 < 22:1( ()71 — €e(i);_1)* = 2y (e(i)j1 — 26e(i) 7, (i ) 1+ Ee(i)j-1)
< Dlima(e()jmn — 256( i); +§2€(l)a—1)
= ejy1 — 28e; + £ €j—1
= 5261,71 — 25263;1 + 526]‘71 =0.
Thus
1 1
(37) e(i)7,y = Ee(i)7_; and e(i)] = e(i)j-1e(i)j+1
for all 2 and 1 < j < d — s — 1 respectively. Thus for a particular ¢, either
(38) e(i); = 0 for all j
or
(39) e(i); > 0 for all j.
Suppose that (38) holds for a particular i. Then e(i)p = e(i)4—s = 0 which implies that
(40) er,, (Z(D1(i))p;) = er,, (Z(D2(1))p;) =0

and so Z(Dq(i))p, is the trivial filtration since we have a contradiction to (40) by (33)
and (34) if Z(Dy(i))p, is not trivial. Replacing D1(i) with D>(7) in this argument we
obtain that Z(D3())p, is also the trivial filtration. In particular, I (Dl('))Rp = Ry, and
I(D2())Rp, = Ry,, a contradiction, since p; must be an associated prime of at least one
of I(D1(7)) or I(D2(7)). Thus (38) cannot hold, and so (39) holds for all i.

Let us now consider a particular . Then by (37) and Lemma 6.8, the Minkowski
equalities of Lemma 6.8 hold between Z(D(7)1) and Z(D(i)2). Thus there exists \; € Ry
such that

for all j. Thus for 1 < j<d—s—1,

o e(i)jr _ e e(i); 1o
¢ e(i)j—1  e(i); e(i)j- N

so that \; = &£ and so

We have that
eli); = ex(a, Z(D1(0)! 7 Z(Da(i))) = g, (Z(D1)5; " Z(D2)y) Jea(a. B/ i)
by Theorem 4.5. Thus for each i, the eg, (I(Dl)LCf_S_j],I(Dg),[,Ji]) satisfy the Minkowski
equalities 1) - 3) of Lemma 6.8 with
hy, (Z(D2)y) T
eny, (Z(D1)y, )7

Thus ¢ € Q by [11, Theorem 12.1] and the proof of this theorem.
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Write § = ¢ with a,b € Z~g. We have that I(maD1(i)y,) = I(mbDs(i),,) for all i
and m € N by [11, Theorem 12.1]. Since the only associated prime of I(maD;(i)) and
I(mbDy(3)) is p;, we have that I(maD;(i)) = I(mbD4(i)) for all i and m € N. Thus

I(maDy) = I(maDy(1))N---NI(maDy(t)) = I(mbD2(1)) N ---NI(mbDy(t)) = I(mbD3)

for all m € N.
The converse follows from Theorem 5.4 since R[Z(D;)] = R[Z(D;)] for j =1, 2.
U

The following corollary is proven for mp-valuations (divisorial valuations which domi-
nate mp) in [11, Corollary 12.2].

Corollary 6.10. Suppose that R is an excellent local domain and v1 and vy are divisorial
valuations of the quotient field of R such that the valuation rings O,, and O,, both contain
R. Suppose that s = dim R/(m,, N R) = dim R/(m,, N R) and Minkowski’s equality holds
between the filtrations Z(v1) = {I(v1)m} and Z(v2) = {I(v2)m}. Then vy = vs.

Proof. We have by Theorem 6.9 that I(1v1)a, = I(v2)p, for all n and some positive integers
a and b which we can take to be relatively prime.

Suppose that 0 # f € I(v1),. Then f* € I(v1)an = I(v2)pn so that ava(f) > bn. If
f% € I(v)ppy1 then fob ¢ I(v2)psn+1) = (V1) abnt1) S0 that vi(f) > n. Thus

(41) vi(f) =n if and only if v,(f) = Sn.

Further, (41) holds for every nonzero f € QF(R) since f is a quotient of nonzero elements
of R.

Now the maps v; : QF(R) \ {0} — Z and 1v» : QF(R) \ {0} — Z are surjective, so there
exists 0 # f € QF(R) such that v1(f) = 1 and there exists 0 # ¢g € QF(R) such that
v2(g) = 1 which implies that a = b = 1 since a, b are relatively prime. Thus v; = vs.

O

7. BOUNDED FILTRATIONS

Definition 7.1. Suppose that R is a local domain. A filtration T = {I,} on R is said to
be a bounded filtration if there exists an integral divisorial filtration Z(D) on R such that

R[] = RIZ(D)).

A filtration T = {I,} on R is said to be a bounded s-filtration if there exists an integral
s-divisorial filtration Z(D) on R such that

R[I] = R[Z(D)].
A filtration T = {I,} on R is said to be a real bounded s-filtration if there exists a real
s-divisorial filtration Z(D) on R such that
R[I] = RIZ(D)].

Lemma 7.2. Suppose that R is an excellent local domain and T = {I™} is the filtration
of powers of a fixed ideal I. Then T is bounded.

The proof of Lemma 7.2 for mp-filtrations in [11, Lemma 5.9] extends immediately to
arbitrary divisorial filtrations.
26



Proposition 7.3. Suppose that R is a local ring with dim N(R) < d, a is an mg-primary
ideal and
Z(),..., Z(r),Z'(1),..., T (r)

are s-filtrations such that R(Z'(i)) = R(Z(i)) for 1 <i <r. Then we have equality of all
mized multiplicities

(42) es(a, Z(V)M) . T(r)]) = e(a, T/(1) ), .. T/ (r) O]y,

The proof is as the proof for mp-filtrations, given in [11, Proposition 5.10]. The refer-
ences to [13, Theorem 6.9] and [10, Appendix] in the proof in [11] must be replaced with
a reference to Theorem 5.1 of this paper.

Theorem 7.4. Suppose that R is an excellent local domain, a is an mpg-primary ideal,
Z(1) is a real bounded s-filtration and Z(2) is an arbitrary filtration such that Z(1) C Z(2),
so that s(Z(2)) < s=s(Z(1)). Thenes(a,Z(1)) = es(a,Z(2)) if and only if there is equality

of integral closures
S It =) I(2)mt™

m>0 m>0

in RJt].

Proof. First suppose that there is equality of integral closures
S It =Y I(2)mt
m>0 m>0

in R[t]. Then es(a,Z(1)) = es(a,Z(2)) by Theorem 5.1.

Now suppose that es(a,Z(1)) = es(a,Z(2)). Let Z(D;) be the real divisorial s-filtration
such that R[Z(1)] = R[Z(D1)]. Let J be the filtration on R such that R[J]| = R[Z(2)].
Then

RIZ(Dy)] € R[Z(2)] = R[J]
so that Z(D;) C J. We have that e5(Z(1)) = es(Z(D1)) and es(Z(2)) = es(J) by Theorem
5.1. Thus es(Z(D1)) = es(J) and so R[I(Dl)} R[J] by Theorem 6.7.
Thus the conclusion of the theorem holds for Z(1) and Z(2). O

Example 7.5. Theorem 7.4 does not extend to arbitrary bounded filtrations, or to arbitrary
divisorial filtrations.

There exist bounded filtrations Z(1) C Z(2) with s(Z(1)) = s(Z(2)) and es(mg,Z(1)) =
es(mr,Z(2)) but R[Z(1)] # R[Z(2)]. Let k be an algebraically closed field and let R =
k[x,y, 2](2,,2), @ local ring of the polynomial ring over k in three variables. Let p be

a height two prime ideal in R such that the symbolic algebra @,>op™ is not a finitely
generated R-algebra. Some examples where this algebra is not ﬁnite?ly generated are given
n [36] and [17]. The p-adic filtration Z(1) = {p”} is bounded by Lemma 7.2 and the
filtration of symbolic powers of p, Z(2) = {p(™}, is a divisorial filtration. We have that
s(Z(1)) = s(Z(2)) = 1 and since p" R, = p™ R, for all n, we have by Proposition 4.2 that

e1(mr,Z(1)) = er,(Z(1)p)emy(R/p) = er,(Z(2)p)ems (R/p) = e1(mr, I(2)).

But we cannot have that R[Z(2)] is integral over R[Z(1)] since its integral closure R[Z(1)]
is a finitely generated R-algebra, and R[Z(2)] = >_, - p(Mt" is not. The reason for this

example is because of the existence of embedded primes in the filtration Z(1).
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We now modify the example to show that Theorem 7.4 does not extend to divisorial
filtrations. Let Z(3) be the filtration Z(3) = {p”}. Let X be the normalization of the
blowup of p. Then pOx is invertible on X and p”? = I'(X, p"Ox) N R for all n, so that
Z(3) is a divisorial filtration on R. Since R[Z(3)] = R[Z(1)] by Remark 3.7, we have
that e;(mpg,Z(3)) = e1(mpr,Z(1)) by Theorem 5.1. Thus e;(mg,Z(3)) = ei1(mgr,Z(2)).
Now R[Z(3)] C R|Z(2)] since R[Z(2)] is integrally closed in R[t] by Lemma 6.3. Thus
Z(3) CZ(2).

Theorem 7.6. Suppose that R is a d-dimensional excellent local domain, a is an mp-
primary ideal and Z(1) and Z(2) are two nontrivial bounded s-filtrations. Then the follow-
g are equivalent.

1) The Minkowski inequality

1 1

es(a, T(1)Z(2)) T = es(a, Z(1)) 7 + es(a, Z(2)) 7

holds.

2) There exist positive integers a,b such that there is equality of integral closures

> I(Want™ = I(2)pnt"

n>0 n>0

in R[t].

Proof. Let Z(D1) and Z(D3) be integral divisorial s-filtrations such that R(Z(1)) = R(Z(D1))

and R(Z(2)) = R(Z(Dz)). By Proposition 7.3, we have equality of functions

lim es(a, R/I(1)mny I(2)mny) lim es(a, R/I(mnyD1)I(mnayDs2))
m—00 md=s/(d — s)!  m—oo md=s/(d — s)!

for all nj,ne € N. Since 1) and 2) are equivalent for the integral s-divisorial filtrations
Z(D;) and Z(D2) by Theorem 6.9, they are also equivalent for the bounded s-filtrations
Z(1) and Z(2). O

Example 7.7. Theorem 7.6 does not extend to arbitrary bounded filtrations or to arbitrary
divisorial filtrations.

The example constructed in Example 7.5 gives an example. We have that d = dim R =

3,s=dimR/p=1,d—s=dimR, =2 and p"R, = p{™ R, for all n, so that Z(1), = Z(2),
are O-divisorial filtrations on R,. Thus

60 (me ) I(l)PI(2)P) dim Rp = 60 (me ) I(l)P) dim RP + 60 (me ) I(Q)P) dim Rp

by Theorem 7.6. Since

es(mp, Z(1)) = eo(mp,, I(L)p)emy (R/P), es(mp,Z(2)) = eolmp,, Z(2)p)enn(R/p) and
s (mp, Z()Z(2)) = eo(mp, Z()pZ(2)p)emp (R/p)

we have that the Minkowski equality
ea(mp, T)Z(2)) 75 = es(mp, T(1) 75 + es(mp, T(2)) 75

holds between Z(1) and Z(2), but as shown in Example 7.5, there do not exist a,b € Z~q
such that p@ = p(®) for all n € N.
Similarly, we have that Z(3) C Z(2) are divisorial filtrations which satisfy the Minkowski

equality, but there do not exist a,b € Z=q such that p@ = p®™ for all n € N.
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8. EQUIMULTIPLE IDEALS AND BOUNDED s-FILTRATIONS

The analytic spread of an ideal I in a local ring R is defined to be
((I) = dim R[It]/mgR[It].
We have inequalities
ht(I) < /¢(I) < dim R,
proven for instance in [39, Corollary 8.3.9]. An ideal I for which the equality ht(I) = ¢(I)
holds is called equimultiple.

Boger generalized Rees’s theorem to equimultiple ideals in a formally equidimensional
local ring.

Theorem 8.1. ([3], also [39, Corollary 11.3.2]) Suppose that R is a formally equidimen-
sional local ring and I C J are two ideals such that (1) = hi(I) (I is equimultiple). Then
J C I if and only er,(Ip) = er,(Jp) for every prime P minimal over I.

Let I be an ideal in an excellent local domain R and R[I]| = ,,~, I be the Rees algebra
of R, m: X = Proj(R[I]) — Spec(R) be the blowup of I. Let B be the normalization of
R[] in its quotient field, which is a finitely generated graded R-algebra. Let Y = Proj(B),
the “normalized blowup” of I. Let a : Y — Spec(R) be the natural composition map
Y — X 5 Spec(R).

Let p € Spec(R) and »#(p) := (R/p)p. Then (by definition)

7 (p) = X Xgpec(r) SPec((p)) = Proj(R[I] @r »(p))
and
a1 (p) =Y Xgpec(r) SPec(>(p)) = Proj(B ©r »(p)).
Since Y — X is finite, we have (by [5, Theorems A.6 and A.7]) that if p € Spec(R),
then
dim 7~ (p) = dim o~ (p).
We also have that “upper semicontinuity of fiber dimension” holds; that is, if p C p’ are
prime ideals in R, then
dim 71 (p) < dim 7 1(p))
by [18, (IV.13.1.5)].
Write IOy = Oy (—a1Ey — - -+ — a,E,), where E1, ..., E, are prime Weil divisors on Y.
Then IOy is an ample Cartier divisor on Y. Let v, ..., 1, be the corresponding valuations
on the quotient field of R. We have that for all n > 0,

I"=TY, I"Oy)NR=1Iv1)an N - NI(V)am

is a primary decomposition of I™.

Now we have that for p € Spec(R), dima~!(p) < dim R,—1 and dima~!(p) = dim R, —
1 if and only if some v; dominates p. Further, if p does not contain I, then dim a~!(p) = 0,
and if p is a minimal prime of I, then dima~!(p) = dim R, — 1.

Proposition 8.2. Suppose that I is an ideal of an excellent local domain R and I is
equimultiple. Let s = dim R — ht(I). Then there exist divisorial valuations vi, ..., v, such
that the center of v; on R has dimension s for all i, and a1,...,a, € Z~g such that

1" = I(v)an N NI (V) apn

for all n € N.
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Proof. By our assumption, dim a~!(mpg) = ht(I) — 1. Suppose that p € Spec(R). If p is
dominated by some v;, then I C p and

ht(I) — 1 < dim R, — 1 =dima ! (p) < dima ™~ (mg) = ht(I) - 1,
so that ht(p) = ht(I). O

Corollary 8.3. Suppose that R is an excellent local domain and I is an equimultiple
ideal on R. Then the I-adic filtration T = {I"} is a bounded s-filtration, where s =
dim R — ht(I).

A much more difficult to prove form of Proposition 8.2 is true in a locally formally
equidimensional Noetherian ring A. If I is an equimultiple ideals in A, then for all n > 0,
every associated prime of I™ has height ¢ = ¢(I). This statement follows from [31, Theorem
2.12]. By [39, Lemmas 8.42 and B.47], we may assume that R has an infinite residue field.
By [39, Proposition 8.3.7], I then has a reduction J generated by ¢ elements. By [31,
Theorem 2.12] or [39, Corollary 5.4.2], every associated prime of J» = I" has height /.

Example 8.4. There exists a height one prime ideal P in a normal, excellent 3 dimen-
sional local ring R and d > 0 such that the P-adic filtration {P"},en of R is a bounded
2-filtration but 2 = £(P) > ht(P) =1, so that P is not equimultiple.

Proof. Let k be a field and k[z,y, z, w| be a polynomial ring over k. Let
R = (k?[I, Y,z w]/(xy - Zw))(m,y,z,w)'

Let 7,7, Zz,w be the respective classes of z,y, z,w in R. Let P = (Z,%), which is a height
1 prime ideal in R.

The blowup 7 : X = Proj(®,>0P") — Spec(R) of P is such that X is nonsingular, and
7~ (mpg) = P}. This simple and well known calculation is outlined in Exercise 6.16 on
page 125 of [7]. Thus ¢(P) = dim7~!(mpg) +1 =2, and so 1 = ht(P) < ¢(P) = 2 and so
P is not equimultiple.

Let E = Spec(Ox/POx), an integral surface on X, so that Ox g is a valuation ring,
with associated valuation vg. Now P"Ox = Ox(—nFE) for all n, and

Pr =1, (P"Ox) = 1.(Ox(—nE)) = P = I(vg),
for all n € N. Thus {P"} is a bounded 2-filtration. O

We conclude from Corollary 8.3 and Example 8.4, that in an excellent local domain of
dimension d, the set of [-adic filtrations of equimultiple height r ideals is a strict subset
of the set of bounded (d — r)-filtrations.

The following theorem is a generalization in excellent local domains of Boger’s theorem
from equimultiple ideals to the larger class of s-filtrations. Theorem 8.5 is a consequence
of Theorem 7.4.

Theorem 8.5. Suppose that R is an excellent local domain, a is an mpg-primary ideal,
Z(1) is a real bounded s-filtration and Z(2) is an arbitrary filtration with (1) C Z(2).
Then er,(Z(1)y) = er,(Z(2)p) for all p € Min(R/I(1)1) if and only if there is equality of
integral closures

(43) S It =) I(2)mt™

m>0 m>0

in RJt].
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Proof. By Proposition 4.2, we have that

(44)

es(@Z(1)) = D er,(Z(1)p)ea(R/p).

peEMin(R/I(1)1)

Since I(1); C I(2)1, we have that V(I(2)1) € V(I(1)1). Thus s(Z(2)) < s(Z(1)) = s.
Since V' (I(1)1) is equidimensional of dimension s, we have by Proposition 4.2 that

(45)

es(0,Z(2)) = Y er,(ZT(2)p)ealR/p).

pEMin(R/I(1)1)

Now Z(1) C Z(2) implies

(46)

er,(Z(1)p) = er, (Z(2)y)

for all p € Min(R/I(1)1). By equations (44), (45) and (46), we have that es(a,Z(1)) =
es(a,Z(2)) if and only if er,(Z(1),) = er,(Z(2)) for all p € Min(R/I(1)1). The theorem
now follows from Theorem 7.4, which shows that es(a,Z(1)) = es(a,Z(2)) if and only if

the equality of integral closures of (43) holds. O
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