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Abstract
Parallel-laser photogrammetry is growing in popularity as a way to collect non-invasive body size data from wild mammals. 
Despite its many appeals, this method requires researchers to hand-measure (i) the pixel distance between the parallel laser 
spots (inter-laser distance) to produce a scale within the image, and (ii) the pixel distance between the study subject’s body 
landmarks (inter-landmark distance). This manual effort is time-consuming and introduces human error: a researcher meas-
uring the same image twice will rarely return the same values both times (resulting in within-observer error), as is also the 
case when two researchers measure the same image (resulting in between-observer error). Here, we present two independent 
methods that automate the inter-laser distance measurement of parallel-laser photogrammetry images. One method uses 
machine learning and image processing techniques in Python, and the other uses image processing techniques in ImageJ. 
Both of these methods reduce labor and increase precision without sacrificing accuracy. We first introduce the workflow of 
the two methods. Then, using two parallel-laser datasets of wild mountain gorilla and wild savannah baboon images, we 
validate the precision of these two automated methods relative to manual measurements and to each other. We also estimate 
the reduction of variation in final body size estimates in centimeters when adopting these automated methods, as these 
methods have no human error. Finally, we highlight the strengths of each method, suggest best practices for adopting either 
of them, and propose future directions for the automation of parallel-laser photogrammetry data.

Keywords  Automation · Baboon · Gorilla · Image processing · Machine learning · Parallel-laser photogrammetry

Handling editors: Leszek Karczmarski and Scott Y.S. Chui.

Jack L. Richardson and Emily J. Levy are co-first authors and 
contributed equally.

This article is a contribution to the special issue on “Individual 
Identification and Photographic Techniques in Mammalian 
Ecological and Behavioural Research – Part 1: Methods and 
Concepts” — Editors: Leszek Karczmarski, Stephen C. Y. Chan, 
Daniel I. Rubenstein, Scott Y.S. Chui and Elissa Z. Cameron.

 *	 Shannon C. McFarlin 
	 scmcfarlin@gmail.com

1	 Department of Anthropology, Center for the Advanced Study 
of Human Paleobiology, The George Washington University, 
Science and Engineering Hall, 800 22nd St. NW, Suite 6000, 
Washington, DC 20052, USA

2	 Department of Biology, Duke University, 130 Science Drive, 
Durham, NC 27708, USA

3	 Pratt School of Engineering, Duke University, 305 Teer 
Engineering Building, Durham, NC 27708, USA

4	 Department of Computer Science, The George Washington 
University, Science and Engineering Hall, 800 22nd St. NW, 
Room 4000, Washington, DC 20052, USA

5	 Amazon Web Services, Identity Service, 410 Terry Ave N, 
Seattle, WA 98019, USA

6	 Duke University Libraries, Duke University, 226 Bostock 
Library, Box 104732, Durham, NC 27708, USA

7	 Department of Physics, The George Washington University, 
725 21st St NW, Washington, DC 20052, USA

8	 Applied Materials, 3050 Bowers Avenue, Santa Clara, 
CA 95054, USA

9	 Department of Clinical Psychology and Psychobiology, 
University of Barcelona, Campus Mundet, Pg. de la Vall 
d’Hebron 171, 08035 Barcelona, Spain

10	 Max Planck Institute for Evolutionary Anthropology, 
Deutscher Platz 6, 04013 Leipzig, Germany

11	 Department of Evolutionary Anthropology, Duke University, 
130 Science Drive, Durham, NC 27708, USA

http://orcid.org/0000-0002-8182-9456
http://orcid.org/0000-0001-6724-3451
http://orcid.org/0000-0002-1313-488X
http://orcid.org/0000-0003-3411-1297
http://crossmark.crossref.org/dialog/?doi=10.1007/s42991-021-00174-7&domain=pdf


	 J. L. Richardson et al.

1 3

Introduction

Body size measurements of wild animals are frequently used 
to study effects of social, environmental, and anthropogenic 
factors on growth and health (e.g., Altmann and Alberts 
2005; Swenson et al. 2007; Gardner et al. 2011; Berger 
2012; Lourie et al. 2014; Tarugara et al. 2019). One common 
non-invasive method to collect these data is parallel-laser 
photogrammetry. This method involves projecting parallel 
lasers of known physical distance (inter-beam distance) onto 
the study animal, thereby creating a scale when the animal 
is photographed (Fig. 1). Parallel-laser photogrammetry is 
a reliable and efficient method to determine the body size of 
living wild animals, whose measurement would otherwise 
require capture or anesthetization. In contrast to other photo-
grammetry techniques, parallel-laser photogrammetry does 
not require information on the distance between the camera 
and the study subject, a requirement that slows data collec-
tion and can be challenging to obtain and record. Parallel-
laser photogrammetry was first used to measure body sizes 
of killer whales (Orcinus orca, Durban and Parsons 2006) 
and Alpine ibex (Capra ibex, Bergeron 2007). The method 
has since become more widely-used across taxa, particu-
larly among large animals such as whales (Webster et al. 
2010; Durban et al. 2017; Wong and Auger-Méthé 2018), 
cartilaginous fishes (Deakos 2010; Rohner et al. 2011; Jef-
freys et al. 2013), horses (Weisgerber et al. 2015), elephants 
(Wijeyamohan et al. 2012), and primates (Rothman et al. 
2008; Barrickman et al. 2015; Lu et al. 2016; Galbany et al. 
2017; Wright et al. 2019, 2020).

Despite its utility, parallel-laser photogrammetry requires 
substantial manual effort to measure images on the com-
puter. For each collected image, the position of each laser 

spot on the image must be measured to produce an inter-laser 
distance in pixels (Fig. 1). By dividing the inter-beam dis-
tance (i.e. the physical distance between the laser beams) in 
centimeters by the inter-laser distance, a scale is calculated 
for the image in centimeters per pixel. The researcher must 
also locate and measure the distance between the landmarks 
on the body in pixels (inter-landmark distance). The inter-
landmark distance is multiplied by the scale to produce a 
body size estimate in centimeters (Fig. 1). Some research-
ers take each measurement twice, which doubles measure-
ment time (e.g., Lu et al. 2016). To our knowledge, only one 
software package, AragoJ, is designed to reduce the bur-
den of parallel-laser photogrammetry (Aleixo et al. 2020). 
AragoJ streamlines the processing pipeline because it allows 
researchers to calculate the image scale, manually measure 
images, access image metadata, and perform data organizing 
and cleaning within a single software package. However, the 
manual effort of measuring inter-laser distances remains a 
barrier to increasing the throughput of image measurements.

In addition to a more high-throughput workflow, greater 
automation of the measurement process also would increase 
precision of the final estimates of body size produced using 
parallel-laser photogrammetry. While researchers must 
grapple with multiple sources of measurement uncertainty 
in parallel-laser photogrammetry methods (e.g. parallax, 
pixel density, apparatus properties, picture quality, lens 
distortion, improper alignment; see Durban and Parsons 
2006; Bergeron 2007; Galbany et al. 2016), one unavoid-
able source of measurement uncertainty is human error. 
One observer measuring the same image twice will produce 
two different values (resulting in within-observer error), as 
will two observers measuring the same image (resulting in 
between-observer error). Two techniques to automate this 

Fig. 1   Terminology and calculations for estimating body size of study animal using parallel-laser photogrammetry. Note that the image datasets 
used to validate the ImageJ and skimage methods have three laser spots. Created with BioRender.com
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process are image processing and machine learning. Image 
processing methods allow detailed analysis of image charac-
teristics, such as color, brightness, object shape, and object 
size. These analytical tools have become highly accessible 
with the development of user-friendly interfaces such as 
ImageJ (Schneider et al. 2012), but are often more customiz-
able in coding platforms such as the Scikit-image (i.e., skim-
age) Python package (van der Walt et al. 2014). Machine 
learning can also automate laborious image-analysis tasks 
and may identify new patterns not detected by humans (e.g., 
Clapham et al. 2020; Vaid et al. 2020). Given the customiz-
ability and power of image processing and machine learning, 
these technologies are useful tools to apply to parallel-laser 
photogrammetry analyses.

Here we present and compare two different methods 
(skimage and ImageJ) to automate the process of measuring 
the inter-laser distance in a parallel-laser photogrammetry 
image. Below, we describe the two automated methods and 
assess their precision and whether they introduce systematic 
error. We then compare their performance on novel data-
sets, test whether they reduce human error, and discuss their 
applicability to new projects. We show that both methods 
reduce manual effort and return measurements equivalent to 
manual image measurements and to each other, indicating 
high precision without sacrificing accuracy.

Workflow for the skimage and ImageJ 
methods

The skimage approach was developed at The George Wash-
ington University to measure images taken for a longitudinal 
study of mountain gorillas (Gorilla beringei beringei) in 
Bwindi Impenetrable National Park, Uganda (2015–present, 
the Bwindi Gorilla Project, managed by Max Planck Insti-
tute for Evolutionary Anthropology). The ImageJ method 
was created at Duke University to measure images taken 
of savannah baboons (Papio cynocephalus) in Amboseli 
National Park, Kenya during a short-term field study 
(2017–2019).

The skimage method is a hybrid method that uses 
machine learning to first identify and isolate pixel areas (or 
‘masks’) that contain primate subjects within photographs, 
and then processes these masks using the scikit-image (here-
after skimage) package in Python (van der Walt et al. 2014) 
to identify green laser spots based on RGB ratios, color 
intensity, size and circularity (Fig. 2). The skimage method 
requires familiarity with coding in Python and high comput-
ing power to implement machine learning (though it can be 
used without machine learning pre-processing; see Appen-
dix: Table A1), but once implemented it runs with minimal 
intervention. The ImageJ method uses the image process-
ing software ImageJ (Schneider et al 2012) to crop photos 

and identify green laser spots based on color and brightness 
(Fig. 3). The ImageJ method is easily implemented without 
specific programming knowledge but requires the researcher 
to manually crop approximately 50% of the images.

Validating methods

Assessing skimage and ImageJ methods’ success rate

The skimage method successfully identified the laser spots 
in 99.0% (100/101) of gorilla images. The skimage method’s 
computing time is approximately 2 min per image (Appen-
dix: Table A2). The ImageJ method successfully identified 
the laser spots in 91.4% (1937/2119) of baboon images. It’s 
computing time is approximately 2–3 s per image, with an 
additional 5 s per image of manual effort if the image is 
manually cropped (Appendix: Table A2). The validation 
datasets used below are comprised of 100 images of each 
species in which the laser spots were successfully identified.

Comparing skimage and ImageJ methods to manual 
image measurements

To assess precision in inter-laser distance measurement, we 
compared measurements generated using each automated 
method to measurements collected manually. For the skim-
age validation we used a dataset of 100 gorilla images; 74 
images were in lateral view and 26 images were in dorsal 
view. The dataset included images of gorillas of both sexes 
(64 male and 36 female) and all age classes (15 infants 
[0–3.5 years], 11 juveniles [3.5–6 years], 12 sub-adults [6–8 
years], 10 blackbacks [males 8–12 yrs], 16 adult females 
[> 8 years] and 35 silverbacks [males > 12 years]). Images 
were taken using a Nikon D800 DSLR camera (36.3 meg-
apixel, 4.88 µ pixel size) with an AF-S Nikkor 85 mm f/1.4G 
lens or a Canon EOS 5D Mark III DSLR (22.3 megapixel, 
6.25 µ pixel size) with a Canon EF 17–35 mm f/2.8L USM 
lens. All manual measurements were collected by the same 
author (JLR). For the ImageJ validation we used a dataset 
of 100 successful baboon images; all images were in lateral 
view. The dataset included images of baboons of both sexes 
(71 females, 29 males) and all age classes (13 infants and 
juveniles [0–2.5 years], 8 subadult males [5–7 years], 10 
adult males [> 7 years], and 69 adult females [> 4 years]). 
Images were taken using an Olympus OM-D EM-5 Mark 
II mirrorless camera (15.9 megapixel, 3.75 µ pixel size) 
with an M. Zuiko 12–100 mm f/4 IS Pro Digital lens. All 
manual measurements were collected by the same observ-
ers (lasers: E. Malone; body landmarks: EJL). All images 
were taken from a distance of approximately 5–15 m from 
the study subjects (gorillas, 7–12 m; baboons 5–15 m) in 
line with other parallel-laser photogrammetry studies (e.g., 
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Fig. 2   Flowchart  of automated steps used to process images using 
the  skimage  method. After running the script, manual adjustments 
can be made to some parameters to improve performance on unsuc-

cessful images. For the annotated script, see Supplement. Any images 
that are not successful after these adjustments must be hand-meas-
ured. Created with Lucidchart
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Rothman et al. 2008; Galbany et al. 2016). These distances 
between camera and subject are within the technical and 
practical range for using parallel-laser photogrammetry.

The laser spot orientations of the gorilla and baboon 
image datasets were different: the gorilla images had three 
laser spots in a triangular orientation (Fig.  2), and the 

Fig. 3   Flowchart of automated and manual steps used to process images using the  ImageJ  method. For the annotated script, see Supple-
ment. Any images that are not successful after reprocessing must be hand-measured. Created with Lucidchart
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baboon images had two or three in a horizontal line (Fig. 3). 
For our analysis of the gorilla images, we only used the 
horizontal inter-beam distance, which was 2 cm (19 images), 
4 cm (76 images), or 4.5 cm (5 images). For baboon images, 
inter-beam distance was 2 cm for images with two laser spots 
(8 images) or 4 cm for images with three laser spots (92 
images; the maximum inter-beam distance). Both methods 
can be adjusted to measure datasets with more or fewer than 
three laser spots, as well as datasets where the laser spots are 
in different orientations (see Supplement).

For each image, we compared either the skimage method 
(in the case of gorilla photos) or the ImageJ method (in the 
case of baboon photos) to the manual method by calculat-
ing the pixel difference and percent difference. The pixel 

difference was calculated by subtracting the automated 
method’s inter-laser distance from the manual method’s 
inter-laser distance. The percent difference was calculated 
by dividing the pixel difference by the manual inter-laser 
distance and multiplying by 100; thus, the percent difference 
represents the pixel difference as a percent of the manually-
measured inter-laser distance. When comparing automated 
methods to each other, pixel difference was calculated by 
subtracting ImageJ from skimage, and percent difference was 
calculated by dividing the pixel difference by the mean of the 
two automated measures. The percent difference controls for 
the fact that images were taken at different resolutions and 
distances, resulting in different centimeter-to-pixel conver-
sions for each image. The pixel difference is not affected by 

Table 1   Percent differences [and pixel differences] among inter-laser distances measured manually vs. the ImageJ method, manually vs. the 
skimage method and via the ImageJ method vs. the skimage method on both study animal datasets; diff = difference

Bolded rows represent comparisons of the manual method with the automated method that was originally created for that species (skimage for 
gorillas, ImageJ for baboons)

Species Comparison Mean % diff [pixel diff] SD of % diff [pixel diff] Range of % diff [pixel diff]

1 Gorilla Skimage vs. manual – 0.004 [0.004] 0.710 [0.913] – 1.58, 4.34 [– 2.88, 3.33]
2 Gorilla ImageJ vs. manual 0.075 [0.193] 1.180 [1.98] – 4.92, 5.56 [– 5.39, 10.6]
3 Gorilla Skimage vs. imageJ 0.089 [0.208] 0.998 [1.67] – 3.33, 5.53 [– 3.77, 10.2]
4 Baboon ImageJ vs. manual 0.008 [– 0.041] 0.903 [0.784] – 3.98, 4.94 [– 3.18, 2.15]
5 Baboon Skimage vs. manual – 0.063 [– 0.064] 0.904 [0.929] – 3.64, 3.28 [– 3.12, 2.08]
6 Baboon ImageJ vs. skimage 0.050 [– 0.006] 0.897 [0.671] – 2.43, 6.36 [– 2.26, 2.72]

Fig. 4   Distribution of percent 
differences (left column) and 
pixel differences (right column) 
when comparing inter-laser 
distances measured manually 
vs. using the skimage method 
(light blue lines), manually 
vs. using the ImageJ method 
(dark blue lines) and using the 
skimage method vs. using the 
ImageJ method (yellow lines) 
for images of baboons (top 
row) and gorillas (bottom row). 
Peaks close to zero indicate 
negligible systematic bias, and 
narrower peaks indicate higher 
precision
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inter-beam distance (in centimeters), whereas for the same 
pixel difference, the percent difference will be higher when 
the inter-beam distance is smaller. The pixel difference and 
the percent difference are both measures of precision, i.e., of 
how close the automated measures of inter-laser distance are 
to the manual measures. We present our results here as the 
mean percent or pixel difference ± standard deviation (SD). 
Means close to zero indicate that the automated methods 
lack systematic bias. In combination with low SDs, means 
close to zero indicate high precision of the automated meth-
ods. Although we cannot directly test accuracy because the 
true inter-laser distance is unknown, convergence between 
methods would suggest high accuracy. For the absolute val-
ues of the means and SDs, see Appendix Table A3.

Both the skimage and ImageJ automated methods pro-
duced inter-laser distances that were highly consistent 
with the manual measures, indicating high precision and 
no evidence of systematic bias. For the skimage method 
applied to the gorilla images, the mean percent difference 
between the automated and manual inter-laser distances 
was − 0.004% ± 0.710% and the mean pixel difference was 
0.004 ± 0.913 pixels (Table 1 row 1; Fig. 4 bottom row, light 
blue lines). For the ImageJ method applied to the baboon 
images, the mean percent difference between the automated 
and manual inter-laser distances was 0.008% ± 0.903%, 
and the mean pixel difference was − 0.041 ± 0.784 pixels 
(Table 1 row 4; Fig. 4 top row, dark blue lines). When using 
the ImageJ method on the baboon images, 44/100 images 
had to be hand-cropped (Fig. 3).

Testing skimage and ImageJ methods with novel 
datasets

To test how adaptable our automated methods were to new 
datasets, we next used the skimage method to measure the 
validation images of baboons and the ImageJ method to 
measure the validation images of gorillas. Both methods 
required alterations to optimize performance on this new 
set of images.

Skimage method on baboon images

To adapt the skimage method to work on baboon images, 
we altered the orientation check (Fig. 2). The gorilla images 
have three laser spots oriented in a right-angle triangle and 
the baboon images have two or three laser spots oriented in a 
straight line. After changing the orientation check, the skim-
age method identified the correct number of laser spots in 
98/100 baboon images. The method produced inter-laser dis-
tances highly consistent with manual image measurements 
(mean percent difference = − 0.063% ± 0.904%; mean pixel 
difference = − 0.064 ± 0.929 pixels; Table 1, row 5; Fig. 4 
top row, light blue lines).

ImageJ method on gorilla images

The biggest challenge with this new set of images was that 
the ImageJ method relies on isolating green pixels, and the 
background of most gorilla images is predominantly green. 
A smaller automated crop (Fig. 3, Auto-crop) was able to 
circumvent this issue for only 17/100 images. The most suc-
cess was achieved by hand-cropping all images to include 
only the three laser spots and intermediate space. Without 
any other changes to the ImageJ code, this method retrieved 
the correct number of laser spots for 88/100 images. As with 
the skimage comparison, these measurements were highly 
consistent with manual image inter-laser distances (mean 
percent difference = 0.075% ± 1.18%; mean pixel differ-
ence = 0.193 ± 1.98 pixels; Table 1, row 2; Fig. 4 bottom 
row, dark blue lines).

Skimage vs. ImageJ

Finally, we compared the inter-laser distances produced by 
the two automated methods to each other. The means and 
SDs of these two automated methods compared to each other 
were highly consistent with the means and SDs of each auto-
mated method relative to manual measures (Table 1, rows 
3 & 6). However, the automated vs. automated comparison 
yielded more percent differences and pixel differences close 
to 0 than the automated vs. manual comparisons (Fig. 4, 
yellow lines compared to light and dark blue lines). We 
interpret this to mean that for most images, both automated 
methods are more precise and more accurately identify the 
central point of the laser spot than human observers.

Measuring uncertainty

Uncertainty (i.e., variation) in parallel-laser photogram-
metry measurements is inherent, and automating some 
steps may reduce uncertainty. One source of uncertainty is 
human error: when we measure the inter-laser distance or the 
inter-landmark distance in pixels (Fig. 1) twice on the same 
image, we rarely record the exact same measurement both 
times. Variation in these measurements will affect the body 
size estimate in centimeters. Here, we calculate how much 
the uncertainty in the body size estimate is reduced when 
adopting an automated method. Our calculations reflect 
within-observer human error, but our findings can be extrap-
olated to between-observer human error (see “Discussion”).

The effect of human error on the uncertainty of the body 
size estimate can be quantified using the Propagation of 
Uncertainty Equation. For terms that are multiplied and/or 
divided (see calculation in Fig. 1) the Propagation of Uncer-
tainty Equation is:
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where U is a measure of uncertainty such as standard devia-
tion (de Forest Palmer 1912; Bevington and Robinson 2002). 
This equation informs us that both components—variation 
in the inter-laser distance and variation in the inter-landmark 
distance—equally affect the variation in our body size esti-
mate. If the variation in one of these components is much 
larger than the other, it will be the main source of variation 
in the body size estimate.

To estimate how much variation in our body size esti-
mate is due to within-observer human error, we first calcu-
lated two components of variance from 100 images of adult 
female baboons with inter-laser distances of 4 cm:

1.	 Variance in manual inter-laser distance (inter-laser): 
For each of the 100 images, the inter-laser distance was 
measured, in pixels, two times by the same observer (E. 
Malone). The difference between the two measurements 
was divided by the mean of the two measurements and 
multiplied by 100 to calculate a within-observer percent 
difference.

2.	 Variance in inter-landmark distance (inter-landmark): 
Inter-landmark distance was measured, in pixels, for 
three different body size measures—shoulder-rump 
(n = 67 images), leg (n = 71), and forearm (n = 68)—
these were measured two times for each image by the 
same author (EJL). We did not measure all three body 
size estimates in every image. The difference between 
the two measurements was divided by the mean of the 
two measurements and multiplied by 100 to calculate a 
within-observer percent difference.

Note that this is different from the percent difference cal-
culated above; see “Validating methods”. We then calculated 
the mean, standard deviation, and range of those within-
observer percent differences (Table 2, Fig. 5). Finally, we 
used the standard deviations of those within-observer per-
cent differences in the Equation for Uncertainty Propagation:

Ubody size estimate =

√

U
2
inter-laser

+ U
2
inter-landmark

  
This calculates a standard deviation of the final body size 

estimates of 1.07%, 1.06%, and 1.76% for baboon shoulder-
rump, leg, and forearm lengths, respectively. This means 
that final body size estimates in centimeters will have stand-
ard deviations of 1–2% that are derived solely from within-
observer human error in manually measuring inter-laser 
distances and inter-landmark distances.

The automated method generates inter-laser distances 
with no statistical uncertainty because it always returns the 
same inter-laser distance for a particular image. Therefore, 
the automated methods both produce SD2

inter-laser
 = 0. The 

standard deviation in the shoulder-rump, leg, and forearm 
estimates in centimeters are reduced to 0.60%, 0.59%, and 
1.52%, respectively. These values are equal to only the 
component of uncertainty associated with manually meas-
uring inter-landmark distances. Note that the decrease in 
uncertainty is smaller for the forearm measurement than 
the shoulder-rump and leg measurements. This is because 
variance in the inter-landmark distance of the forearm was 
largest (due to it being a smaller measurement and/or hav-
ing more difficult landmarks to pinpoint), so it consumed a 
larger proportion of the uncertainty relative to the shoulder-
rump and leg variances.

In other words, using the automated inter-laser distance 
instead of the manual inter-laser distance approximately 
halves the uncertainty in the baboon shoulder-rump and 
leg estimates that is due to within-observer human error, 
thereby increasing the precision of these body size esti-
mates. Because the automated and manual inter-laser dis-
tance measurements were highly consistent with each other 
(see “Validating methods”), our increases in precision do 
not sacrifice accuracy. Further, in studies in which multi-
ple observers perform manual measurements (e.g., Galbany 
et al. 2016; Lu et al. 2016), an automated method would 
further reduce variation in the body size estimates that is 
due to between-observer human error.

SDbody size estimate =

√

SD2
inter-laser

+ SD2
inter-landmark

Table 2   Sample size, mean, SD and range of within-observer differ-
ences, in pixels, for the two components of within-observer variance 
that were calculated to estimate propagated uncertainty; the manual 

body size variance was measured for three baboon body parts (shoul-
der-rump, leg, forearm)

Component of variance # images Mean within-observer % 
difference

SD of within-observer % 
difference

Range of within-observer % 
difference

Inter-laser 100 – 0.042 0.885 – 4.113, 2.578
Inter-landmark: shoulder-rump 67 0.016 0.595 – 1.345, 2.317
Inter-landmark: leg 71 – 0.022 0.585 – 2.793, 1.418
Inter-landmark: forearm 68 0.137 1.523 – 4.438, 4.238
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Discussion

Summary of results

The manual effort needed to collect and process parallel-
laser photogrammetry images is a barrier to its uptake. 
The two automated methods presented here save time and 
increase precision without compromising the accuracy of the 
measurements. The automated methods allow high-through-
put image calibration, with little to no manual intervention. 
They yield inter-laser distances that are nearly identical to 
manual measurements on two datasets, indicating a lack of 
systematic error and high precision (Table 1, Fig. 4). Meas-
urements from the two automated methods were highly con-
sistent with each other, suggesting they are more accurate in 
their identification of the central point of the laser spot than 
human observers. Automated methods provide a more effi-
cient way to increase accuracy compared to repeated manual 
measures. Finally, the automated methods increase measure-
ment precision because they effectively remove uncertainty 
due to human error introduced while manually measuring 
the inter-laser distance.

Extending uncertainty estimates

Switching to an automated laser measurement reduced 
uncertainty in the final body size measurement due to within-
observer error by approximately 0.5% SD. Within-observer 
error (typically calculated as % coefficient of variation [CV], 

which is comparable in magnitude to our within-observer 
percent difference measure) ranges from 0.5 to 2% in many 
previous studies (Breuer et al. 2007; Galbany et al. 2016; 
Lu et al. 2016; Wright et al. 2019). Additionally, automated 
methods will reduce uncertainty due to between-observer 
error which tends to be larger than within-observer error 
(between-observer error range: 0.5–5%; Breuer et al. 2007; 
Barrickman et al. 2015; Berghänel et al. 2015; Galbany et al. 
2016; Lu et al. 2016; Wright et al. 2019). Switching to an 
automated inter-laser distance measurement will reduce 
uncertainty due to between-observer error to the same pro-
portion as for within-observer error, assuming the ratio of 
the two components of variation—inter-laser distance and 
inter-landmark distance—is similar for within-observer 
error and between-observer error. However, we expect that 
greater level of uncertainty in between-observer error comes 
from the inter-landmark measurement, in which case the 
reduction in uncertainty when using these methods would 
be smaller than for within-observer error. Additionally, using 
an automated inter-laser measurement would help reduce 
uncertainty due to other sources of human error, including 
between-image measurement error of the same animal, and 
differences between direct measurements and parallel-laser 
photogrammetry measurements of an animal (Galbany et al. 
2016). In effect, by decreasing measurement uncertainty due 
to human error, our methods increase the researcher’s ability 
to measure real differences in body size between individuals 
and within individuals over time.

Fig. 5   Distributions of within-observer percent differences for the 
two components of variation (manual measures of inter-laser distance 
and inter-landmark distance) that we calculated to estimate uncer-
tainty propagation from human error in baboon images. Removing 
variation in inter-laser distance using the automated methods approxi-
mately halves the variation in the body size estimate that is due to 

within-observer human error (see “Measuring uncertainty”). Because 
the automated method produces very similar measurements to the 
manual method (see “Validating methods”), substituting the auto-
mated for the manual method increases precision without sacrificing 
accuracy
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Choosing the best method for your research

Although the two automated methods produce similar 
results, they take different approaches. Depending on data-
set size, field environment, and coding ability, one of these 
methods will be more suitable than the other. We discuss 
the main advantages and disadvantages of each method to 
highlight conditions under which they may be most suitable.

The ImageJ method is user friendly and easy to imple-
ment without specific coding knowledge. Therefore, it 
is ideal for smaller or shorter-term datasets, especially 
those for which the time costs of setting up and refin-
ing the skimage method may outweigh the time saved 
processing the images. In addition, the ImageJ method 
parameters (e.g., crop size, laser color) can be tested and 
adjusted easily within the ImageJ user interface and then 
copied into the underlying code; in contrast, the skim-
age method requires changes to the code to adapt the 
parameters. Finally, the ImageJ method works equally 
well with different numbers of laser spots, or lasers spots 
in different orientations; the orientation check of the 
skimage methods relies on three laser spots and would 
need to be adapted for devices with fewer laser spots, or 
devices in which the laser spots are not in a right triangle 
or straight line.

On the other hand, the skimage method has a very high 
success rate without manual intervention; the ImageJ 
method, requires hand-cropping of approximately half 
(for baboon images) or nearly all (for gorilla images) of 
the images before processing successfully. Second, the 
skimage method was more successful at identifying the 
laser spots on a novel dataset; the skimage method iden-
tified the laser spots for 98/100 of the baboon images, 
while the ImageJ method only identified the laser spots 
for 88/100 gorilla images, even after hand-cropping. 
Third, the skimage method is highly customizable and 
able to accommodate a wide variety of image processing 
tasks. While ImageJ has many image processing func-
tions, its user interface makes it more difficult to access 
some of the less-used functions. Ultimately, the skimage 
method is ideal for larger or longer-term datasets and 
images with green backgrounds—situations in which the 
benefit of a more customized and hands-off method out-
weighs the costs of set-up time and time to gain specific 
technical knowledge.

Machine learning represents a highly versatile and 
promising future direction for parallel-laser photo-
grammetry. For example, processing machine learning 
masked images with the ImageJ method increased the 
success rate of the ImageJ method before hand-cropping 
by 43% (increase from 74/200 to 96/200; measurements 
not shown). Another advantage to machine learning 

is that the algorithm can be coded to focus on aspects 
that are difficult to describe with image processing. For 
example, a researcher could train a machine learning 
algorithm to identify the pattern of reptile scales or a 
complex plumage pattern, allowing the researcher to reli-
ably detect their study subject in images. In addition, we 
see promise in using machine learning to automate the 
inter-landmark distance measurements. Several studies 
have already published machine learning networks that 
track body landmarks across frames of videos, suggest-
ing that this goal may soon be within reach (Mathis et al. 
2018; Martınez 2019; Sanakoyeu et al. 2020). The next 
step in this process will be to adapt this technology to 
identify landmarks on singular images. This could then 
be integrated with our automated methods for measuring 
the inter-laser distance to fully automate the photogram-
metry measurement process.

Best practices

We recommend several best practices for researchers 
implementing either of these methods in their study 
system. First, precision of the inter-laser distance will 
always be improved when the physical distance between 
the laser beams (inter-beam distance) is larger. In our 
dataset, the percent difference between manual and auto-
mated image measurements tended to be higher when the 
inter-beam distance was smaller (Appendix: Table A4). 
Second, when testing and optimizing either automated 
method, we recommend using a set of approximately 100 
trial images, all taken with the same image resolution. 
Third, when setting up an automated method with this 
set of trial images, we recommend using percent dif-
ference instead of or in addition to raw pixel difference 
to assess how well the method works. This is because 
the trial images will be taken from different distances, 
and one pixel will convert to a different physical size 
depending on that distance. And finally, each new use 
of either of these methods will require validation. We 
recommend testing the automated method against manu-
ally-measured images in a similar fashion to the analyses 
presented here.

Conclusion

Interest in using parallel laser photogrammetry to meas-
ure the body size of wild animals has increased dramati-
cally in the past decade. The method offers great poten-
tial for expanding our understanding of growth and body 
size differences within and between wild animal species 
and populations; this understanding, in turn, will inform 
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conservation practices as well as evolutionary and eco-
logical theory. However, parallel laser photogrammetry 
is highly labor-intensive and researchers face challenges 
associated with the accuracy and precision of body size 
measurements. To achieve its full potential, parallel laser 
photogrammetry must be refined in efficiency, preci-
sion, and accuracy. The two methods presented here are 
a significant step forward in increasing efficiency and 
precision to provide high-throughput calibration that is 
accurate and precise, and we encourage future research-
ers to apply these methods to their study systems.

Appendix

Skimage method without machine learning

As noted in ‘Schematics and Workflow for the skimage 
and ImageJ Methods’, the skimage method can also be per-
formed without the pre-processing step of machine learning 
to mask the gorilla.

Here we compare the results of the skimage method with 
machine learning (as presented in the manuscript, Table A1: 
row 1) to the skimage method using only image process-
ing steps on the full image, not using the machine learn-
ing masks, ‘skimage without machine learning’ (Table A1: 
row 2). This was performed on the original dataset of 100 
gorilla images. The image processing takes longer without 
the machine learning pre-processing step (Table A2). The 
skimage without machine learning method returned meas-
urements for 100% of images; however, in one image the 
laser spots were mis-identified (not included in Table A1). 
Using skimage with and without machine learning produces 
very similar results on the gorilla dataset (Table A2). Thus, 
using the skimage method without machine learning may be 
more suitable for researchers without access to the process-
ing power needed to run the machine learning step, or who 
are unfamiliar with machine-learning algorithms. However, 
the image processing code was developed for use with pho-
tos of dark animals against green backgrounds. Thus, for 
researchers who are using images that are distinctly differ-
ent in color or animal species, implementing the machine 

learning step on their photographs will almost certainly yield 
better-quality masking than image processing approaches 
based on color alone.

Table A3 compares the three methods as in Table 1, but it 
reports the absolute differences instead of the percent differ-
ences. Table A4 compares the three methods as in Table 1, 
but it provides percent differences as a function of inter-
beam distance.

Table A1   Percent differences 
[pixel differences] among 
inter-laser distances measured 
manually vs. the skimage 
method with machine learning 
and manually vs. the skimage 
without machine learning 
method on the gorilla dataset; 
diff = difference

Method Successful 
images

Mean % diff
[pixel diff]

SD % diff
[pixel diff]

Range of % diff
[pixel diff]

1 skimage with 
machine 
learning

100 – 0.004
[0.004]

0.710
[0.913]

– 1.58, 4.34
[– 2.88, 3.33]

2 skimage with-
out machine 
learning

99 0.011
[0.037]

0.679
[0.904]

– 1.60, 3.73
[– 2.84, 3.57]

Table A2   Computing time (minutes) required for skimage, skim-
age without machine learning, and ImageJ methods to process 100 
images. For ImageJ images that need to be hand-cropped, this takes 
approximately 5 additional seconds per image of manual effort. Note 
the gorilla images have a longer processing time because they have 
more pixels per image

Dataset skimage with 
machine learning 
(minutes)

skimage without 
machine learning 
(minutes)

ImageJ 
(min-
utes)

Baboon images 107 71 3.25
Gorilla images 204 190 5.25

Table A3   Absolute percent differences [and absolute pixel differ-
ences] among inter-laser distances measured manually vs. the ImageJ 
method, manually vs. the skimage method and via the ImageJ method 
vs. the skimage method on both study animal datasets; diff = differ-
ence

Species Comparison Mean 
|% diff|
[|pixel diff|]

SD of 
|% diff|
[|pixel diff|]

Gorilla Skimage vs. manual 0.483
[0.668]

0.518
[0.619]

Gorilla ImageJ vs. manual 0.693
[1.07]

0.954
[1.68]

Gorilla Skimage vs. ImageJ 0.538
[0.817]

0.843
[1.47]

Baboon ImageJ vs. manual 0.515
[0.560]

0.740
[0.547]

Baboon Skimage vs. manual 0.595
[0.694]

0.681
[0.617]

Baboon ImageJ vs. skimage 0.414
[0.424]

0.796
[0.518]
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