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Abstract—Automatic modulation classification receives
significant interest in the context of current and future
wireless communication systems. Deep learning emerged
as a powerful tool for modulation classification, as it allows
for joint discriminative features learning and signal classi-
fication. However, the optimization of deep neural network
architectures for modulation classification is a manual and
time-consuming process that requires profound domain
knowledge and much effort. Most state-of-the-art solutions
focus mainly on classification accuracy, while optimization
of network complexity is neglected. This paper presents
a novel bi-objective memetic algorithm, BO-NSMA, to
search optimal deep neural network architectures for
modulation classification to maximize classification accu-
racy and minimize network complexity. The experiments
show that BO-NSMA, with an initial population of six
individuals and only ten generations, finds a deep neural
network architecture that outperforms all human-crafted
architectures. Furthermore, BO-NSMA discovered the first
low-complexity Convolutional neural network architecture,
which achieves slightly better performance than costly Re-
current neural network architectures, allowing a 2.9-fold

reduction in network complexity with 1.43% performance

Authorized licensed use limited to:

improvement. Compared to counterparts from network
architecture search, BO-NSMA finds the best architecture,
which achieves up to 18.73% accuracy gain and up to an
82-fold reduction in network complexity. The results are

validated using the Wilcoxon signed-rank test.

Index Terms—Modulation Classification, Deep Learn-
ing, Network Architecture Search, Multi-objective Genetic

Algorithm.

A

detection and demodulation, is an integral part

[. INTRODUCTION

UTOMATIC Modulation Classification

(AMC), an intermediate step between signal

of designing an intelligent transceiver for future
wireless communication with critical applications
in Dynamic Spectrum Access (DSA) and resource
allocation. Furthermore, it is a key enabler for
many other spectrum sensing applications such
as signal monitoring, intruder detection, jammer
identification, and numerous regulatory and defense

applications.
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Research in Automatic Modulation Classification
(AMC) has been carried out for more than 40
years, using three main methodological themes:
Likelihood-Based (LB), Feature-Based (FB), and
Deep Learning (DL). LB methods formulate AMC
as a multiple composite hypothesis problem, where
the number of hypotheses is equal to the number
of target modulations [1]. Although optimal in the
Bayesian sense, LB methods require prior knowl-
edge about all signal and channel parameters and
suffer from high computational cost [2]. On the
other hand, FB methods perform classification by
utilizing pre-designed discriminative features at a
lower computational cost than LB methods [3,4].
FB methods’ performance heavily depends on the
discriminative nature and noise robustness of the
extracted features, and it is very challenging to pre-
design the right features [5,6]. In contrast to FB,
DL automatically learns radio features from raw
In-phase/Quadrature (I/Q) data and outperforms FB
methods [7]-[11].

Due to its ability to jointly learn discrimina-
tive features from raw I/Q data and perform sig-
nal classification based on them, DL has been
widely adopted for AMC. Two streams of DL-
based methodology can be distinguished: Recur-
rent Neural Network (RNN) [7] and Convolutional
Neural Network (CNN) [8]-[10]. Due to RNNs’
higher computational cost and memory require-

ments, CNNs have been preferred for classification
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tasks. Deeper CNN architectures have a vanish-
ing gradient problem, making them unsuitable for
complex classification tasks [11] because the net-
work performance degrades with depth. Recently,
inspired by RNN, new CNN based models such as
Residual Neural Network (ResNet) [12] and Ag-
gregated Residual Transformations for Deep Neu-
ral Networks (ResNeXt) [13] have been proposed.
These models outperform State-of-the-Art (SoA)
CNN models, as shown for the ResNet-based AMC
model in [8] and ResNeXt-based AMC model in
[11]. ResNet and ResNeXt are modularized archi-
tectures where the pre-designed blocks are stacked.
Several designs of ResNet blocks [12] and ResNeXt
blocks [13] have been proposed. Despite the great
successes in using Deep Neural Network (DNN)
for AMC, designing efficient and accurate DNN
architectures is usually a manual, time-consuming
process that requires profound domain knowledge.
Moreover, many AMC applications run in real-time
and require fast inference. The lower the DNN
architecture complexity, the faster the inference will
be. The following challenges make this process even

more difficult.

Immense search space: Even for a simple CNN
architecture, the search space is very large, as the
degrees of freedom include the number of layers,
the number of filters per layer, and the filter size.
For example, let us consider a simple ResNet-18

network with 18 layers (of which 16 Convolution
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(Conv) and 2 pooling layers). A typical architecture
optimization task for ResNet-18 would consider
16 layers with 8,16,32,64, or 128 filters and a
filter size of 1 or 3. This creates a large search
space of (5 x 2)'¢ = 10'® possible architectures.
A random search of such space can take days or
weeks. Recently, two heuristic approaches based on
Reinforcement Learning (RL) [14] and Genetic Al-
gorithm (GA) [15]-[17] have been widely adopted
in computer vision to automate the Network Archi-
tecture Search (NAS). While the former uses RL
to guide the search, the latter is a population-based
metaheuristic reflecting natural selection [18]. RL-
based approaches [14] suffer from prohibitively high
computational cost and are not readily applicable to
Multi-Objective Optimization Problems (MOOQOPs)
[19]. Generally, in the literature, two distinct ap-
proaches exist on multi-objective RL: single-policy
and multiple-policy. The single-policy approach
[20] performs conversion of a MOOP into a Single-
Objective Optimization Problem (SOOP) through
the specific scalarization methods, which denote the
preferences of objectives. Specific weights represent
the preference, and they are different in each run.
This approach is redundant in both computation and
model representation. The most used scalarization
method is a linear combination of weighted objec-
tives. In [21] is shown that any system based on
a linear combination of the objectives is incapable

of producing a good approximation of the Pareto
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front for problems that exhibit non-convex regions.
Many real-world MOOP problems have that nature,
and the scalarization method is an inefficient tool
to solve such problems. In contrast, the multiple-
policy approach [22] must find multiple policies to
satisfy trade-offs between objectives. It can be done
simultaneously (in a single run) or iteratively (one
policy per run). Multi-policy RL methods still have
a high computational cost, even in their expanded
and optimized version [22]. As these methods ex-
plicitly maintain multiple policies, they are difficult
to scale up to high-dimensional preference spaces
among the objectives. In contrast, GAs are highly
efficient for MOOPs [18] since they can obtain
a set of solutions in a single run due to their
population-based characteristic. NAS has seldom

been considered for DL-based AMC [23].

Dataset-centric solutions: Most existing human-
crafted AMC DNN architectures were optimized
for a single set of modulations [7,9]. Adding new
modulation formats and/or changing the input fea-
tures are highly likely to deteriorate the DNN per-
formance [11]. Thus, new target classes trigger the
re-optimization of the architecture. To make this re-
optimization tractable, a flexible search space and
encoding scheme for GAs are necessary to make
them robust to input feature changes. Most of the
GAs for NAS neglect this and require a new search
space and encoding scheme when the input feature

space changes. [16] proposed pre-designed blocks,
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which fail on input feature changes as shown later.
[23] proposed a shallow CNN architecture that fails

on complex feature spaces, as shown in [11].

Maximizing classification accuracy while ne-
glecting network complexity: All human-crafted
AMC DNN architectures have focused on maxi-
mizing the classification accuracy while reducing
network complexity has been neglected. However,
such the human-crafted DNN architectures might
not be optimized in terms of the connections and
hyperparameters values. As already mentioned, GA
provides a few techniques to solve MOOP, but GAs
applied for AMC’s NAS are still single-objective
driven [23].

Besides RL and GA, there are a few alternative
approaches to optimize DNN architectures. In [24],
a human-crafted DNN is pre-selected. Then greedy
criteria-based pruning is applied to reduce the num-
ber of trainable parameters achieved by pruning
unimportant features per layer. The performance of
this method depends mainly on the human-crafted
initial architecture. Knowledge distillation was con-
sidered for NAS in [25], where DNN architec-
ture compression is done by transferring knowledge
from a trained teacher network to a smaller and
faster student model. This method has a significantly
lower computational cost than GA and may arrive
at a sub-optimal solution as it does not explore
the entire search space. Knowledge distillation can

be combined with RL to expedite the convergence

el
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of RL-based NAS, as shown in [26]. For AMC
applications, it is very important to have DNN
architectures with high classification accuracy while
keeping the complexity low. The time consumption
for searching for such architecture is not critical,
allowing us to apply the GA approach, which might

find an architecture close to the global optimum.

This paper proposes a novel AMC algorithm
called BO-NSMA (Bi-objective Network Search
using Memetic Algorithm) to optimize both classi-
fication accuracy and network complexity. Memetic
algorithm refers to an extension of GA with Local
Search (LS) [18]. The main goal of an LS operator is
to push candidate solutions towards more promising
areas of the search space, where a finding of the
optimum solutions is highly likely. Consequently,
a carefully designed LS operator can expedite the
convergence rate of GA, as it is shown in this work.
Optimization of network complexity considers both
the connections and hyper-parameters of variable-
length network architecture. The key contributions

of this paper are summarized below:

o A first study of the use of multi-objective
GA-based NAS for AMC. This paper identi-
fies the key components of the proposed BO-
NSMA, such as Fitness Sharing (FS), Local
Search (LS), and self-adaptivity of mutation
and crossover rates that enable it to find a
diverse population close to the Pareto optimal

front. Note that the Pareto optimal front is a
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set of non-dominated individuals referred to as
Pareto optimal solutions. There is a (possibly
infinite) number of Pareto optimal solutions.
The impact of the search space and encoding
on GA convergence rate and AMC’s perfor-
mance is thoroughly explored.

It is demonstrated that BO-NSMA can find
a diverse population very close to the Pareto
optimal front for a small set of 6 individuals.
Furthermore, it is shown that BO-NSMA out-
performs all human-crafted DNN-based AMC
by yielding up to cc. 2% gain in accuracy
and up to cc. 5-fold reduction in network
complexity.

The new termination criteria are created to
balance the trade-off between search duration

and gained performance efficiently.

The remainder of the paper is organized as
follows. The overview of State-of-the-Art (SoA)
GA methods for NAS are presented in Section II.
The problem statement is introduced in Section III.
Section IV explains the structure of the proposed
GA method for AMC’s NAS. The deep performance
analysis of the proposed method and its comparison
with human-crafted AMC methods is presented in
Section V. The time complexity, limitations and
potential applications of BO-NSMA are discussed
in Section VI. The conclusions are briefly presented

in Section VIIL.
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II. RELATED WORK

A detailed overview of existing work in the field
of NAS research can be found in [27]. As the
selection of the GA approach for NAS is justified
in the previous section, a detailed overview of GA-
based NAS research is given below.

GAs have been successfully used for NAS in
image processing [15,16,28]. By encoding the net-
work architecture as a chromosome or individual,
GA methods strive to optimize the weights of the
DNN architecture and/or the connections and hyper-
parameters of the DNN architecture. The literature
in GA for NAS can be categorized into two main

streams.

A. Collaborative combination

GAs optimize both the connections and hyper-
parameters, and weights of the DNN architecture
by using single or multiple GAs. However, all the
proposed GAs assume a fixed-length network with
simple architectures with one hidden layer, such
as Feed-Forward Neural Network (FFNN) [29,30].
[29] seeks to optimize only weights, while [30]
seeks to optimize number of neurons and their
weights. Complex network architectures increase
individual representations’ complexity and result in
a computationally expensive search for the opti-
mal weights. On the other hand, back-propagation
algorithms have emerged as an efficient method

for weights optimization [31]. Furthermore, intel-
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ligent weight initialization can slightly boost back-
propagation performance, as shown in [15], where
weights initialization values, encoded into individu-
als as the additional hyperparameters, are optimized

over generations.

B. Supportive combination

In this stream of work, GAs are used to optimize
the connections and hyperparameters of the DNN
architecture, while the weights are optimized using
other algorithms such as the back-propagation [31].
FFNN optimization is proposed in [32], CNN op-
timization in [15]-[17,33] and RNN optimization
in [33,34]. Mostly considered hyperparameters are
the number of hidden layers, learning rate, type
of optimizer, number of filters, layers’ positions,
and activation functions. There are a few different
research approaches within this stream. They are
distinguished by whether they focus on network
depth, optimization problem formulation, or the way
of DNN architectures building. First, considering
the network depth, there are two categories: fixed
[17] and variable [15,16,32]-[34] network depth
approaches. While the former might waste compu-
tational power in cases when the network depth is
set to a value higher than optimal, the latter tries to
find the optimal network depth and, thus, provides
more computationally efficient candidate solutions.
Second, considering the optimization problem for-
mulation, there are two categories: single-objective

[15,17,33,34] and bi-objective [16,32] optimization

el
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approaches. While the former minimizes only clas-
sification error or mean squared error, the latter
minimizes both the classification error and network
complexity. The bi-objective optimization problem
is translated into single-objective using the scalar-
ization method in [32] or Pareto Dominance (PD)
approach in [16]. The scalarization method is very
sensitive to the weighting of the objectives. It may
require a large number of iterations to converge
to a small part of the Pareto optimal front. Third,
considering the way of DNN architectures building,
there are two categories: layer stacking [15,17,32]-
[34] and block stacking [16] approaches. The layer
stacking approach is not preferred for complex
classification problems. It requires a deeper network
vulnerable to the vanishing gradient problem where
gradients become vanishingly small, preventing net-
work training [12]. On the other hand, a careful
design of blocks with identity shortcuts makes the
network robust to the vanishing gradient problem.
These identity shortcuts allow gradient information
to pass through the layers, even in deeper networks,
making the training independent of network depth.
Besides adding the identity shortcuts, the design
of blocks highly impacts DNN’s performance. For
instance, in [16], a few pre-designed blocks are
proposed with the same human-designed connection
settings. NAS running on such a limited search

space might not find an optimal DNN architecture.

In the context of modulation classification, GA
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methods have been employed to extract and op-
timize classification features [35]-[38] or to op-
timize the DNN architecture [23]. However, [23]
does not consider the joint optimization of both the
connections and the hyperparameters of the AMC’s
DNN architecture. Moreover, only the simple CNN
network architecture has been considered [23]. This
paper aims to jointly optimize both the connections
and hyperparameters of the AMC’s DNN architec-
ture by a novel memetic algorithm that addresses
the drawbacks mentioned above of GA methods in

image processing.

III. PROBLEM DEFINITION

This section gives a mathematical representation
of NAS for AMC. The input to AMC is explained

as well.

A. Signal model

Before the definition of NAS for AMC, let us
introduce the modulated signal as input to the DNN-
based modulation classifier. Assume that one active
transmitter transmits a signal, s(t), over a dynamic
wireless fading channel with an impulse response,
h.. Assuming one antenna at the receiver, the dis-
torted and noise-corrupted received signal, r(t), is

given as
r(t) = P ITAD (1t — AL) @ ho(t) +o(t), (1)

where At is the timing offset, Af is the frequency

offset, ¢ is the phase offset, and v(t) is Additive

el
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White Gaussian Noise (AWGN) with mean 0 and
variance 202, It is assumed that the receiver is work-
ing at the same center frequency as the transmitter.
The received signal, r(¢), is sampled in the time
domain and N raw I/Q samples are fed to the input
of the AMC classifier as its input features. The
N raw I/Q samples are referred to as an instance,
represented as a matrix with dimensions 2—by— N,
where the first row holds I values and the second
row holds the corresponding Q values. For example,
an instance of size N = 4 for Binary Phase-Shift

Keying (BPSK) modulated signal looks as below

0.027 0.053 0.119 0.144

[1/Qlaws = o)

—0.014 0.003 0.005 0.035
The AMC classifier has a task to correctly select
a modulation format from a pool of known N,,.q

candidate modulations.

B. Problem definition of network architecture

search for modulation classification

The Network Architecture Search (NAS) for
AMC can be treated as a bi-objective optimization
problem where classification accuracy should be
maximized, and simultaneously, network complex-
ity in terms of computational cost and memory
requirements should be minimized. As this work
searches for an optimal CNN architecture, network
complexity can be roughly approximated as the total

number of trainable parameters of the model. A
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mathematical representation of considered problem

is given below.

Let Z C R?*Y be the above mentioned feature
space of raw I/Q samples and YV = {1,...,c}
be the label space, where c is the number of
considered modulation classes. Thus, the training
dataset can be defined as D = {(z;,y;)},, where
(zi,y:) € (£ x Y). A classifier is defined as a
function that maps the input feature space to label
space, f : Z — R°. The AMC classifier adopts
the Softmax output layer with cross-entropy loss for
classification. Accordingly, the classification risk,
which captures the discriminative nature of features

learned by DNN, is given as

Re(f) =Ep[L(f(20),y.)] =
- %Zzyij log fj(zi;6), (3)
i=1 j=1

where 6 is set of parameters of the classifier, £
is cross-entropy loss, y;; is the label of instance
z; (represented as j’th element of one-hot encoded
label), and f; denotes the j’th element of the
classifier function f. The lower the classification
risk, the higher classification accuracy p. will be.
Therefore, the joint connections and hyperparame-
ters optimization of the DNN architectures can be

formulated as

minimize F(z)

(Re(f(2)), #9)
subject to z € Z, f(z) € A, #6 > 0,

“4)

where A is the architecture search space and #6

el
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is the number of trainable parameters out of all
classifier parameters 6. Given 4, a goal is to find an
optimal architecture f(z) for the classifier with the
minimal number of trainable parameters ##6, such
that after training those parameters the architecture

can achieve the minimal classification risk, R,.

IV. METHODOLOGY

This section introduces the proposed BO-NSMA
(Bi-objective Network Search Memetic Algorithm),
which flowchart is shown in Fig. 1. BO-NSMA
considers the block-level design and utilizes Pareto
Dominance (PD) with Fitness Sharing (FS) strat-
egy to solve the bi-objective optimization prob-
lem. Simultaneously, in contrast to [16], it allows
blocks with different connection settings, using ex-
panded hyperparameters search space. As this work
considers a complex network architecture, back-
propagation is adopted for the weights optimization
with the default Xavier weights initializer [31]. All
methods mentioned in Section II use the absolute
number of iterations to terminate their GAs. This
termination criterion is inefficient and may lead to
unnecessary computations. Thus, this work employs
the averaged Hausdorff distance to avoid it. Further,
the exploration and exploitation are enhanced by
self-adaptive mutation and crossover rates. In what
follows, the components of the proposed BO-NSMA

are explained.
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9
g 1e e P . Termination
[Inltm’lizatlon, ]—0—[ Selection ]——[ Offsprl‘n g ]——[ Local search ]—v[ Elimination conditions
i=0 generation . BO-NSMA
satisfied?
P
i [ ] N .
| i++ | ° Pi
Figure 1: BO-NSMA Overview
A. Search space and encoding |in
(G
. [Conv1][Conv1][Conv1] In
Inspired by the ResNet [12] and ResNeXt [13] T T T ﬁ?‘
. . [ConVZ][ConVZ][ConVZ] [Conv1][Conv1][Conv1]
architectures, the CNN-based network architecture it [Con“][c“vz][mivz]@ﬂ]
entr’
is designed as a serial fusion of the number of donti
Citerge >— "
blocks followed by a global pooling layer and out ot
(a) (b)

several dense layers. Each block is defined as a
parallel fusion of w branches with d Conv lay-
ers, whose outputs are first concatenated and then
merged with the Identity branch, as shown in Fig. 2.
With the probability of p,,.;, each block is followed
by a pooling layer. Different variants of the merge
function, including Multiply, Add, and Concat are
considered. The Multiply and Add are element-wise
operations, while the Concat is done along the
column axis (axis=1). Traditionally, CNNs capture
the spatial properties of the underlying signal as
classification features. However, these spatial prop-
erties are inherently sensitive to noisy conditions
and may suffer significant performance deterioration
[11]. This work proposes to address this problem by
expanding the search space of the merge function,
which might enable the extraction of new features
that capture cumulants-like signal properties. To en-
force the dimensionality reduction of features space

with network depth, the adding of one Conv layer

el
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Figure 2: Block structure examples, w = 3,d = 2
with (a) Dim. reduction before the Conv and Identity
branches, and followed by a pooling layer; (b) Dim.
reduction in the Identity branch, and without a
pooling layer.

either before the Conv branches and Identity branch
(Fig. 2(a)) or in the Identity branch (Fig. 2(b)) is
employed. The first block in the network has a
width equal to 1, depth equal to 1, and no Identity
branch, while for the other blocks, width and depth
are randomly chosen from the following ranges:
w € [1, Wazl; d € [1, dmaz). As dense layers require
a higher number of trainable parameters, they are
added with a probability of pgense. GA seeks the
optimal number of blocks, the number of dense
layers, and each block’s optimal depth and width.
In addition, GA seeks the optimal hyperparameter
values for each architecture layer. The search space
for hyperparameters is given in Table I. An individ-

ual’s genotype is given as a list of several blocks,
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Table I. Hyperparameters encoded into individuals

10

Table II. BO-NSMA input parameters

Figure 3: Examples of individual’s genotypes.

one global pooling layer, and several or no dense
layers. An individual’s length, L, is equal to the sum
of the number of blocks, the number of dense layers,
and one global pooling layer. Fig. 3 presents several
examples of individual’s genotypes. A phenotype of
an individual is a DNN architecture built upon its

genotype.

B. Population initialization

The search space, given in Table I, might result in
a very complex network architecture. Many human-
crafted DNN architectures have been proposed for
AMC [7,8,11], and can help in the more intelligent
design of the population initialization. Therefore, a
control parameter referred to as the maximum al-

lowed number of trainable parameters, #06,,,., With

Authorized licensed use limited to:

Unit Hyperparameters Search space Name Notation | Default Value
Network No. of blocks [1,10] Population size A 6
No. of dc?(rjlts}i: layers [[10,342}] Offspring size " 6
wi ,
depth 1, 4] Max. no. of blocks Ng 8
Block Merge function {Add, Multiply, Concat} Max. no. of Dense layers Np 4
Dim. reduction {Before, After} Max. block width Wmaz 32
I;O.(l)ling s {11236;)72]\(73 1} 28] Max. block depth dmaz 4
ilters ,8,16,32,64, o ;
Conv Kernel size {1,3,5,7) Probab?l%ty of add%ng a Dens.e layer Pdense 0.4
Activation {relu, selu, tanh, linear} Probability of adding a Pooling layer Ppool 0.5
. Type {Max, Average} Max. allowed no. of trainable parameters H#0max 100,000
Pooling . -
Kernel size {2} Absolute no. of iter. J 10
Gl()ll?al Type {Average, Flatten} No. of initialization trials T 100
in
pD(::lseg Units 32, 250] No. of iter. for convergence check H 374
Activation {relu, selu, tanh, linear} Convergence threshold € 10
No. of epochs Nepochs 10
Probability to flip units in crossover De_flip 0.6
i Block Unit . - . -
Optimal classification accuracy De 0.9
[l Dense Laye_r unit _ Optimal no. of trainable parameters #0 10,000
[ cioba pooling nit Tournament Selection Parameter k 2
P | b1 | b2 | Max. length of individual Lumas 20

a value determined from the human-crafted SoA, is
introduced. Even with limited network complexity,
there are still many architectures to explore. The
process of population initialization is explained in
Algorithm 1. The initialization of an individual con-
sists of adding block units (lines 11 — 17), adding a
global pooling unit (lines 18 —19), and adding dense
layers (lines 20 — 22). If the individual has a higher
number of trainable parameters than #6,,,,, it will
be discarded and initialized again until the generated
candidate satisfies the target number of trainable
parameters or the number of trials, Z, does not reach
maximum value. Although this might prolong the
initialization time, it results in a much lower overall
time cost induced by alternative complex network

architectures.
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Algorithm 1: Population initialization

Input: Input parameters given in Table IT
Output: Initialized population P
Py 0
for i < 1to A do
7+ 0
while True do
ji+1
Individual < Null
Ny <

Uniformly generate an integer between [1, Np]
ng = 0
r < Uniformly generate a number between [0, 1]
if 7 S Pdense then

ng <
Uniformly generate an integer between [0, Np]

N R W N =

10
11

12 _list + ]

blocko < Randomly initialize a block unit with
d =1, w =1, no the Identity branch, and ppoo:

_list + _list U blockg

for j <+ 1 to ny, do

w —

Uniformly generate an integer between [1, Wmaz]

14
15
16

d <
Uniformly generate an integer between [1, dmaq]

17

18 block < Randomly initialize a block unit
with d, w, and ppoor

19 _list < _list U block

gp < Randomly initialize a global pooling unit
_list < _list U gp
for j < 1to ng do
dl < Randomly initialize a dense layer unit
L _list < _listUdl
Individual.units < _list
Individual.accuracy < 0.0
Individual.complezity < count_#6()
if Individual.complexity < #0maz or j ==
then
L Py = Py U Individual

20
21
22
23
24

25
26
27
28

29

30 break

31 return Py

C. Fitness evaluation

The fitness evaluation is performed in three steps:
(1) counting of trainable parameters, (2) training of
the decoded individual through a predefined number
of epochs, Nepochs, and (3) evaluating the trained
models on the validation dataset. The number of

trainable parameters and validation classification
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1
accuracy are the objectives that are utilized during
offspring generation and elimination. Adam opti-
mizer [39] with a learning rate of 0.001 is adopted
in this work. This learning rate is a reasonable
trade-off between slow convergence at lower rates
and inaccurate results at higher rates. Note that
the Adam optimizer provides gradient normaliza-
tion and momentum which make the learning rate
important only for the initial learning before the
learning rate is updated. Our selected learning rate
is based on recommendations from prior work [39],
whereby a learning rate of 0.001 works well for

most problems.

D. Offspring generation

GA reflects the process of natural selection,
where the fittest individuals are selected for mat-
ing to produce offspring for the next generation.
Natural selection in GA 1is performed by selection,
crossover, and mutation operators [18].

1) Selection: The deterministic k-tournament
[18] is employed to select the individuals for mating
without replacement, whereby £k individuals are
evaluated randomly, and the best one is chosen.
The deterministic k-tournament selection does not
require any global knowledge of the population,
nor a quantifiable measure of quality like the other
selection methods like the Roulette wheel method.

Instead, it uses an ordering relation to compare

and rank any two individuals. Further, the selection
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pressure is easy to control by varying the tourna-
ment size k [40]. Since there are two objectives
in considered problem, the well-known concept of
Pareto Dominance (PD) is utilized to determine
which individual is better. One individual is said
to dominate the other if one of the following con-
ditions is satisfied: (1) it has a higher classification
accuracy, and a lower or equal number of trainable
parameters, or (2) it has a higher or equal classi-
fication accuracy, and a lower number of trainable
parameters. For each individual, the individuals by
which it is dominated are counted. The individual
with a lower number of individuals by which it is

dominated is treated as better.

2) Crossover: The crossover operator is analo-
gous to natural reproduction and is usually per-
formed with a rate of 1. However, such a rate may
result in the mating of parents with poor genes,
which leads to poor offspring performance. The
survival selection will highly likely eliminate poor
offspring, resulting in slowing down or completely
halting the GA progress. Thus, it is important
to generate good offspring in order to speed up
the solution search and increase the offspring’s
survival rate. To this end, self-adaptive crossover
rates inspired by Q-learning [41] are developed.
Specifically, a track of whether an individual is good
for mating or not is kept by encoding information
Each individual in

about its crossover rate, pe.

the initialized population F, has a crossover rate
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of 1. The crossover operator takes two parents
as inputs, parent,, parent,, and returns two off-
spring, of fspring,, of fspring,. Before applying
the crossover operation, offspring are pure copies
of the selected parents, i.e., of fspring, inherits all
properties of parent,, while of fspring, inherits
all properties of parent,. After applying crossover
operator, the offspring crossover rates are updated

as below

gffsprmgl = % arentz_'_(]_ ,y)*pcc)ffspringi;i — 1727

®)

where v is the learning rate ranging from 0O to

parent;
cr

I, p * denotes the crossover rate of parent;,
while p2/ /P9 denotes the validation classification
accuracy of the of fspring;. The value of v is
mostly set to 0.3 in practice, as for higher values,
Q-learning becomes unstable [41]. Intuitively, the
higher the reward in maximizing the objective score,
the higher the crossover rate will be. To avoid
duplicates in the population, for offspring generated
without crossover operator (copies of their parents),
the mutation operator with a rate of 1 is applied. As
a crossover operator, the uniform crossover with a
flip probability of p. f;;, = 0.6 is adopted [18] (see

lines 6 — 13 in Algorithm 3). Uniform crossover is

applied to type-aligned units, as shown in Fig. 4.

3) Mutation: As uniform crossover of aligned
units does not impact the length of the offspring,

each offspring inherits the parent’s length. To al-
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FEEl]  [ElalElEl low:
Parent 1 Parent 2
1. Align units by type old
E'“""'? [ Block Unit new __ 1 B me 7TN(0,1) -1
GPJ [ pense Layer Unit Py = (1 + pold exXp ) ’ (6)
mr

Hclobal Pooling Unit

where 7 is the adaptation speed control parameter

(set to 0.22), and N (0, 1) is a normal variable with

2. Flip aligned units by probability p. ¢i;,

Offspring 1 ' Offspring 2

zero mean value and unit variance. The log-normal

) transformation of the mutation rates keeps them
Figure 4: Crossover example

between 0 and 1, and has been shown as an efficient

) o technique for mutation rate self-adaptation [42].
low both offspring length variability and hyperpa-

rameters’ values changes, the following mutation Algorithm 2: Mutation in BO-NSMA

Input: Individual z, Input parameters given in Table II
Output: Mutated individual &

. . . . . 1 7 < Uniformly generate a number between [0, 1]

are introduced. With probability p,,, unit, Which is if » > p®, then

L return x

operators: Add new, Duplicate, Delete, and Reset

w N

inversely proportional to the individual’s length L,

4 20
one uniformly chosen mutation operator will be - &' e
u y u p w 6 for i + 1 to length(z) do
. . . 7 r < Uniformly generate a number between [0, 1]
applied to each unit of the individual. The Add new u  xi]
o 9 if 7 < p and length(Z) < Lmas then
operator adds a new unit with randomly selected hy- 10 m
Uniformly generate a number between [0, 4)
perparameters’ values. The Duplicate operator adds 1 if m == 0 then
12 T+—zUu
a unit with the same structure and hyperparameters’ if length(#) < Lmaz then )
14 b <+ Randomly initialize a new unit, b
. . ith th
settings as the current unit. The Delete operator _With the same ype as u
15 T+ TUD
removes the unit. The Reset operator keeps the unit if m ——= 1 then
17 b + Randomly initialize a new unit, b with
with the same structure but randomly changes its the same type as u
18 | £+ 2UDb
hyperparameters’ settings. The mutation process is if m —— 2 then
o . - o 2 [ 2<2ud
explained in Algorithm 2. Similarly, each individual o
21 if m == 3 then
. . . 22 T+ TUu
has encoded information about the mutation rate p,,, ,, if length(#) < Lmas then
. . 2 | #+iUu
as the crossover rate, which is adapted over gen- B
. C e 1 . 25 else
erations. The initialized population has randomly | &« @Uu

selected mutation rates within a certain range. High 2 if length(2) == 0 then
2 | return

mutation rates introduce more exploration in an ,, ese
3 | return 2

individual’s length. The mutation rates are updated

using log-normal transformation [42], as given be-
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E. Local search

Before applying the elimination strategy, Local
Search (LS) is applied to the best and the worst
individuals (offspring + parents). The best indi-
viduals are non-dominated by any other individual
and belong to the Pareto optimal front. In contrast,
the worst individuals have the maximum number
of individuals by which they are dominated. LS
explores the worst individuals’ neighbourhood to
find their fitter neighbours that might have a chance
to survive. LS consists of applying mutation to
the selected individual for two runs. The selected
un-mutated individual is replaced with its mutated
version only if one of the following conditions is
satisfied: (1) the mutated individual has a higher
classification accuracy, and its number of trainable
parameters is not increased more than 5%; (2) the
mutated individual has a lower number of trainable
parameters, and its classification accuracy is not

decreased more than 0.5%.

F. Elimination strategy

Crossover and mutation operators generate /. off-
spring. The A + p strategy is opted for the elimina-
tion strategy [18], where parents and offspring are
merged, and the A\ best individuals are selected for
the next generation. The best individuals selection
is made according to the modified classification
accuracy by using Fitness Sharing (FS) for diversity

promotion. FS is the most successful and widely

el
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used method for diversity promotion. While [16]
uses the crowding method for diversity promotion,
this work opted for FS for the following reasons.
Although FS has a higher computational cost than
crowding, FS tends to encourage searches in unex-
plored regions of the space and favors the formation
of stable subpopulations [43]. In contrast, crowding
has difficulties to preserve the stable subpopulations
in some cases as a result of replacement errors.
The complete overview of methods for diversity
promotion can be found in [44]. The modified
classification accuracy is given as below:

> 1 (

reNg(z)

p/c:pc*|:

where o denotes the threshold of dissimilarity,
d(x,r) is the distance between the individual = and
the individual r, o is a constant parameter that
regulates the shape of the sharing function, and

Ni(z) denotes the o neighbourhood of individual

z in the current population P; given as N!(z)
{r € Pld(z,r) < a}.

The distance d(z, r) is calculated as the Euclidean
distance between individuals’ normalized complex-

ities and classification accuracies as below:

d@,m#(

where #6,,,, is the maximum allowed number of

#0, — #0;

2
#9 ) + (pc,x - pc,r‘)Qa (8)

trainable parameters. As the maximum distance can
reach v/2, o is set to 0.2. The shape parameter « is

set to 2, ensuring high diversity pressure in the o
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neighborhood.

G. Termination strategy

Unlearned termination criteria present one of
the main GA’s drawbacks. An infinite number of
iterations might be required to reach an optimal
global solution in a large search space. As each
iteration of GA 1is very expensive, it is necessary
to have the proper termination criteria, which in-
dicates the point in time when further computa-
tions become unnecessary as they do not gain sub-
stantial performance improvement. The following
termination conditions are adopted (lines 27 — 34
in Algorithm 3): (1) the number of iterations is
greater than or equal to a fixed number, 7, decided
a priori; (2) an acceptable solution is reached -
GA will terminate if the algorithm generates an
individual with classification accuracy higher than a
predefined value p. and trainable parameters lower
than a predefined number, #0; (3) when there has
not been any improvement in the population for
the last H iterations, i.e., differences between the
generations in the last H iterations are less than a
certain convergence threshold, e. Each generation is
represented as a set of Pareto points with size equal
to the population size, A. A Pareto point denotes
an individual, x, represented by an ordered pair
(1 — pea, #0.) of its properties. To measure the
similarity between two Pareto sets, the well-known
averaged Hausdorff distance is utilized, which is a

widely used tool to measure the distance between

el
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different objects in several research fields [45]. The
averaged Hausdorff distance between two Pareto
sets in BO-NSMA, U = {uy,us, ...,uy} C R? and

V = {v1,v,...,u5} C R? is defined as below:
L
Ay (U, V) = max ((5 2; dist(u;, V)P)/P,

A
(X st U)'). O

where dist(u;, V') is the minimal Euclidean distance
from wu; to set V, dist(v;,U) is the minimal Eu-
clidean distance from v; to set U, and p is the control
factor for outliers’ penalty. The higher the value of
p, the more penalized are the outliers. Since A, is

used as the termination condition, p is set to 1.

V. PERFORMANCE EVALUATION

This section explains the experimental setup used
for simulations including the selected baselines,
datasets and implementation details. The obtained

results are presented and analysed.

A. Experimental setup

1) Baselines: This work employs four baselines
from the literature that human experts manually
design: LSTM [7], ResNeXt [11], ResNet [8], and
ID-CNN [8]. Furthermore, this work employs two
of the newest baselines from GA NAS in image
processing: NSGA-Net [16] and EvoCNN [15]. The
former is a bi-objective optimization with adopted
PD for block-level NAS, while the latter is a single-

objective optimization for layer stacking NAS. The
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Algorithm 3: BO-NSMA

Input: Input parameters given in Table II

Output: Population

P, < Initialize population using Algorithm 1

141

while True do

P+ P;_1

for j < 1to /2 do

parentl, parent2 < run k-tournament selection
without replacement

r < Uniformly generate a number between [0, 1]

- 7 T I SR

N

8 crossover_done < False
9 if r < (pﬁ’,‘f”"“ —o—pﬁf’“e"tz)/Q then
10 offspring1, offspring2 < crossover(parentl,
parent2)
11 crossover_done < True
12 else
13 offspringl < parentl
14 L offspring2 <— parent2
15 r <— Uniformly generate a number between [0, 1]
16 if r < poffspringl o
crossover_done == False then

offspringl <— mutation(offspring1)
using Algorithm 2

1L

18 r < Uniformly generate a number between [0, 1]
19 if 7 < poffsrring? o
crossover_done == False then

offspring2 <— mutation(oftspring2)
using Algorithm 2

"

21 update pSffsPringl and poffsPring? py the Eq.
©)

2 update p2ffsPringl and poffsPring2 by the Eq.
(6)

23 Fitness evaluation of of fspringl, of fspring2

24 | P+ P,U{of fspringl,of fspring2}

25 LocalSearch(FP;)

26 Piy1 < Elimination(P;)

27 if 7 == 7 then

28 L stop BO-NSMA!

29 else if 3 Individual, x € P;, p% > p. and #6% < #0

then

30 | stop BO-NSMA!

31 else if Vj € [0, 'H),A(Pifj,PZ;jfl) < ¢ then

2 | stop BO-NSMA!

33 else

34 L it 1+1

35 return P;

NSGA-Net searches for the network architecture
based on a few pre-designed blocks with fixed
hyperparameters. In contrast, the EvoCNN seeks to
optimize each layer’s hyperparameters in the DNN

architecture, including the weights initialization val-

Authorized licensed use limited to:
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ues. As those baselines are applied for the 2D
image processing problem, each 2D layer in the
architectures is replaced with a corresponding 1D
layer while keeping all other hyperparameters the

same.

2) Datasets: Two modulation sets are used:

(1) a Baseline set, containing N,,,q 11
low-order modulation formats: BPSK, QPSK, 8-
PSK, 16/64-QAM, PAM4, GFSK, CPFSK, BFM,
DSB-AM and SSB-AM; and (2) an Extended
set, containing the simple ones and 9 addi-
tional modulations: OQPSK, 32/128/256-QAM,
16/32/64/128/256-APSK  (N,oa = 20). The 1/Q
samples are generated at increasing Signal-Noise
Ratio (SNR) (-6 dB to 18 dB). The performance of
DNN models for different channel models (AWGN,
Rayleigh, Rician) follows the same performance
trends as long as there is enough labeled data
at disposal, as shown in [11]. In this work, the
emphasis is on the performance evaluation of BO-
NSMA, where channel modeling does not play an
important role. Thus, the channel is modeled as
simple AWGN. For each combination of SNR and
modulation type, 1000 instances are generated with
a size of N = 128 and N = 1024 for the baseline
set and the extended set, respectively. A seed is
used to generate random mutually exclusive instance
indices, which are then used to split the data into

three subsets: training, validation, and testing at a

ratio of 80:10:10, respectively.
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3) Implementation details: BO-NSMA is im-
plemented in Python [46]. Each evaluated AMC
method is implemented using TensorFlow [47].
The fitness evaluation training is performed over
Nepochs 10 epochs and a batch size of 256.
The models are trained and evaluated on a GPU
server with eight Nvidia RTX 2080Ti cards. The
default values of BO-NSMA input parameters (see
Table II) are kept constant over all experiments.
The population size is set to a low value, A\ = 6,
as each individual’s evaluation is computationally
heavy. The k parameter for deterministic tournament
selection 1s set to 2, which gives a high chance that
each individual is selected for crossover operator.

All presented classification accuracies are averaged

over the whole SNR range of [—6, 18] dB.

B. Results

1) Performance evaluation of BO-NSMA: Be-
sides GA’s performance over generations common
to any GA, there are two qualitative metrics to
be considered to assess how good a certain multi-
objective GA is for a given problem: (1) popula-
tion accuracy, that is to determine how similar the
population is to the Pareto optimal front, and (2)
population diversity, that is to evaluate how well
distributed individuals are in the population. Note
that the Pareto optimal front denotes the set of
non-dominated individuals. Keeping that in mind,
below is justified why BO-NSMA is designed as

described in Section IV by using the baseline set
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of modulations. As an evaluation with the extended
dataset follows the same performance trends as
with the baseline dataset, the conclusions given
below remain valid for the extended dataset. BO-
NSMA denotes the proposed GA with applied
FS, LS, high mutation rate, p,,, € [0.5,1], and
self-adaptive crossover rates. To evaluate their im-
pacts on the mentioned qualitative metrics over
generations, seven experiments are run: (1) BO-
NSMA, (2) BO-NSMA with low mutation rate
Pmr € [0.05,0.2], (3) BO-NSMA without FS in
elimination and keep the A individuals with the
highest classification accuracy, (4) BO-NSMA with
low mutation rate p,,, € [0.05,0.2] and without
FS in elimination and keep the A individuals with
the highest classification accuracy, (5) BO-NSMA
without LS, (6) BO-NSMA with low mutation rate
Pmr € [0.05,0.2] and without LS, (7) BO-NSMA

with constant crossover rates equal to 1.

Fig. 5 presents the performance of BO-NSMA
over generations showing average classification ac-
curacy for the entire population (top left), an average
number of trainable parameters for the entire pop-
ulation (top right), and the maximum classification
accuracy of the best individual in the population
(bottom). Note that the classification accuracy val-
ues are averaged over the whole SNR range of
[—6,18] dB. Fig. 6 (right) presents Pareto front
approximation for the 10th generation. The Pareto

optimal front is illustrated with the solid line in
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Fig. 6 (right), and the best-performing method
should follow closely it. Fig. 6 (left) shows the
Pareto set difference between two population gener-
ations which is important for GA convergence rate

monitoring.

a) BO-NSMA performance over generations:
As BO-NSMA without FS focuses only on max-
imizing the classification accuracy, it achieves the
best average and maximum accuracy at the tenth
generation (see Fig. 5 (top left and bottom)). High
mutation rates introduce a high level of search
exploration, with an unpredictable impact on the
GA performance. LS in combination with high
mutation rates always improves accuracy, for BO-
NSMA with and without FS. However, BO-NSMA
without LS operates better for low mutation rates.
Consequently, more search exploration increases the
average number of trainable parameters. Each BO-
NSMA with low mutation rates converges to almost
the same number of trainable parameters, around
60k. In contrast, BO-NSMA cases with high muta-
tion rates result in around 80k trainable parameters
(see Fig. 5 (top right)). Further, Fig. 5 proves that LS
expedites the convergence rate of GA. BO-NSMA
with constant crossover rate, p., = 1 likely mates
the poor parents, leading to worse performance. It
has a 5% lower average accuracy and 2% lower
maximum accuracy at the tenth generation than BO-

NSMA with self-adaptive crossover rate.
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b) Population accuracy and diversity: Fig. 6
shows that BO-NSMA with FS provides a diverse
population for both mutation rates. On the other
hand, BO-NSMA without FS and with high muta-
tion rates converges to one optimal Pareto point after
the sixth generation, while BO-NSMA without FS
and with low mutation rates slowly converges, and
at the tenth generation two optimal Pareto points
can still be noticed. BO-NSMA with high mutation
rates finds six diverse individuals and two optimal
Pareto points, while BO-NSMA with low mutation
rates finds five diverse individuals and three optimal
Pareto points (Fig. 6 (right)). The individuals found
by BO-NSMA with high mutation rates are closer
to the Pareto optimal front compared to BO-NSMA
with low mutation rates. Thus, it can be stated that
BO-NSMA with high mutation rates found the best
population in terms of both population accuracy and

diversity.

To sum up, BO-NSMA without FS achieves the
best average and maximum accuracy but at the cost
of diversity loss. In contrast, BO-NSMA with FS
slowly converges to the optimal Pareto points, but
it provides a diverse population. High mutation rates
enable a more accurate population, closer to the

Pareto optimal front.

2) Impact of the search space and encoding
on performance: The solutions found by any GA
heavily depend on the given search space and in-

dividuals’ representation. In order to assess how
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Figure 5: BO-NSMA components and their impact on: average accuracy (top left); average number of
trainable parameters (top right); maximum accuracy (bottom) over generations.
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Figure 6: The averaged Hausdorff distance of two subsequent generations (left). Pareto front approximation
for Generation 10 (right).

good is the proposed search space, its benefits are line set of modulations. EvoCNN stacks the Conv,
explored versus well-known ResNet blocks [12] and pooling and dense layers (the maximum number of
simple networks with layer stacking, while keeping layers is set to 15).

all components of BO-NSMA (FS, LS, offspring

) ) Fig. 7 shows that BO-NSMA with the proposed

generation) the same. ResNet blocks by design have
. block design has 4% higher average classification

d =3, w =1, and Add as merge function [12].
i . accuracy and 4% higher maximum achieved classi-

Thus, to demonstrate the impact of encoding, five
) ) fication accuracy after the sixth generation than BO-

experiments are run: (1) BO-NSMA with the pro-
. i i NSMA with layer stacking and the ResNet block

posed encoding, (2) BO-NSMA with layer stacking,

) ) stacking. Furthermore, BO-NSMA with ResNet
(3) BO-NSMA with ResNet block stacking, (4)

) ) ) block stacking finds the population with the lowest
NSGA-Net [16] with their pre-designed blocks, and

i average number of trainable parameters. NSGA-Net
(5) EvoCNN [15]. Each experiment uses the base-

achieves very poor AMC performance where each

2332-7731 (c) 2021 IEEE. Personal@20R pirittRersonad bh m:lﬂ@xﬁﬁtrpbmmequﬁashﬁﬁﬁ/ issienrgipetittpsidmsvstdaderdgpiiiiications/rights/imdex. himil fivrmooed ifdomatioion.
Authorized licensed use limited to: SITY AT AL SUNY Downloaded on April 10,2022 at 19:59:13 UTC from [EEE Xplore. Restrictions apply.



is article has been acce far publication in IEEE Transactions gn Cognitive Communicatjons and Networking. This is.the author's versi hich ha: en fully edited
This article has been accepted for pu-gﬂcagon Tk future lsste gft?gis joﬁrna‘f%utqlas not%een uﬁy cdlted: (c,;ongtent ma gk])ange prior %6 Hnal publication, ¢ kation information: 3OI 101 109?&%?&021.3 37519,

ctions on

2332-7731 (c) 2021 IEEE. Personal@20R pHEmitRersonat

content may Chﬁ%%%fnor to f'“i{Sg“rﬂ't'?@é'&%&ﬁ%‘ﬁ?@&&%@“ﬂﬁ’ﬂieﬁ’%rL?hy° /TCCN.2021.3137519

found architecture is overfitting. Although NSGA-
Net employs PD, its proposed architecture search
space with pre-designed blocks and the fixed hy-
perparameters values prevents GA from optimiz-
ing such architectures according to the considered
problem. In contrast, EVOCNN gives a much higher
number of degrees of freedom for hyperparameters
values, resulting in complex network architectures
compared to NSGA-Net and BO-NSMA. Moreover,
EvoCNN for population size A = 6 prematurely
converges after the second generation to one non-
optimal Pareto point. The high number of degrees
of freedom for hyperparameters values and un-
controlled population initialization require a higher
population size to avoid premature convergence.
Thus, EvoCNN is run for A = 30. Fig. 7 shows
that EvVoCNN with a higher population size will
take a longer time to converge, whereas a higher
population size will increase its chance to find at

least one Pareto optimal point.

3) Comparison with baselines: Finally, the per-
formance of the best individual found by BO-
NSMA is compared with selected baselines for
both sets of modulations. All models are trained
for 80 epochs and evaluated on the testing dataset.
Table III presents classification accuracy averaged
over all SNRs for the baseline and extended datasets
mentioned in Section V-A2, respectively, whereas
Fig. 8 presents accuracy across SNRs for the base-

line dataset.
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LSTM [7] is the best-performing SoA architec-
ture for AMC evaluated on the baseline dataset,
which achieves an average accuracy of 86% with
over 200k trainable parameters. BO-NSMA finds
the first genetically-optimized architecture, which
achieves slightly higher average accuracy (an im-
provement of 1.43%) while reducing the number
of trainable parameters to 69k (a 2.90-fold re-
duction in the number of trainable parameters).
LSTM with default training parameters given in
[7] fails to converge for the extended dataset. Next
in terms of achieved performance are ResNet and
ResNeXt architectures. For the baseline dataset,
BO-NSMA achieves 2.02% and 1.88% accuracy
gain over ResNet and ResNeXt, respectively, while
keeping the number of trainable parameters over
three times lower compared to ResNet. For the
extended dataset, BO-NSMA achieves 3.49% and
2.80% accuracy gain over ResNet and ResNeXt,
respectively, while keeping the number of trainable
parameters over 4.1z lower compared to ResNet.
While exploring BO-NSMA’s performance across
SNR (Fig. 8) for the baseline dataset, note that it
gets 3% higher classification accuracy at mid-SNR,
which illustrates its robustness to noise compared
to other baselines. BO-NSMA can also successfully
optimize CNN with layer stacking, achieving the ar-
chitecture with 1.7% and 2.6% higher classification
accuracy at 1.7z and 1.9z lower number of train-

able parameters compared to 1D-CNN [8] for the
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Figure 7: The search space and encoding impact on: average accuracy (top left) and average number of

trainable parameters (top right) over generations.

Table III. BO-NSMA top-1 accuracy and corre-
sponding #6 vs baselines

Baseline dataset Extended dataset
Model
Acc(%) | #0 Acc. (%) | #0

LSTM [7] 86.17 200,075 46.49 201,236
ResNet [8] 85.58 255,115 79.71 313,620
ResNeXt [11] 85.72 85,051 80.40 86,212
1D-CNN [8] 82.01 100,811 79.54 142,932
BO-NSMA 87.60 68,851 83.20 76,372
EvoCNN [15] 80.30 450,157 64.47 6,261,901
BO-NSMA 83.73 83,115 82.12 72,708

(layers)

BO-NSMA
(ResNet blocks) 85.07 58,591 82.09 45,284

100 [
S
> 90|
g
3 i —+—LSTM —o— ResNet
< g8 —6— ResNeXt —8— ID-CNN
/ EvoCNN —e— BO-NSMA

2 4 6 8§ 10 12 14 16
SNR (dB)

0

Figure 8: Classification accuracy across SNR (base-
line dataset).

baseline dataset and extended dataset, respectively.
Similarly, BO-NSMA finds a better architecture
with ResNet blocks which has 0.5% lower and 2.4%

higher classification accuracy at 4.0z and 6.9x lower

bh
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number of trainable parameters than ResNet for the
baseline dataset and extended dataset, respectively.
BO-NSMA with layer stacking achieves to find a
solution within 10 generations and population size
of 6 that has 3.43% and 18.2% accuracy gain at
5.41x and 78.7x lower number of trainable param-
eters than its counterpart EVOCNN for the baseline
dataset and extended dataset, respectively.

4) Statistical significance testing: Table III
shows the BO-NSMA and EvoCNN performance
of the best-found individual through multiple
runs. However, GAs have a stochastic and non-
deterministic nature; and thus, running one GA
twice on the same optimization problem usually
produces different results. A statistical test should
then be applied to establish whether there is enough
empirical evidence to claim a difference between
the two algorithms. BO-NSMA is compared with
its GA’s counterparts: EVOCNN and NSGA-Net. As
NSGA-Net has limited search space, it is unsuitable
for AMC, and it is not compared with BO-NSMA.

BO-NSMA is compared with EvoCNN for both
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datsets. The Wilcoxon signed-rank test [48], with
significance level o = 0.05, was used to quantify
the significance of the comparison. The Wilcoxon
signed-rank test is a non-parametric statistic test
used for comparing two paired sets of observations
whose difference comes from a zero median dis-
tribution. In [49], it is shown that parametric tests
are unsuitable for statistical analysis of evolutionary
algorithms for continuous optimization problems,
while non-parametric tests such as the Wilcoxon
signed-rank test are good tools for such analysis.
A null hypothesis H is defined as “there is no
difference between BO-NSMA and EvoCNN”. In
this paper, the classification accuracy of the best-

found individual was used for the comparison.

The statistical analysis of best-found individuals
for BO-NSMA and EvoCNN is given in Table IV.
For the baseline dataset, the classification accuracy
of the best individuals found by BO-NSMA lies
between 85.2% and 87.6%, while the best indi-
viduals found by EvoCNN have the classification
accuracy within the wider range of [67.6,80.3]%.
The mean value of the classification accuracy of
the best individuals found by BO-NSMA is 9.8%
lower for the baseline dataset and 24.5% for the
extended dataset. The mean value of the number of
trainable parameters of the best individuals found by
BO-NSMA is 8.9z lower for the baseline dataset
and 117.23z lower for the extended dataset. The

statistical analysis given in Table IV clearly indi-
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cates that BO-NSMA outperforms EvoCNN in both
classification accuracy and network complexity for
both datasets.

The Wilcoxon signed-rank test is run to check if
those results are significant. The Wilcoxon signed-
rank test is also done for the human-crafted base-
lines. The human-crafted baselines are determinis-
tic, so the results shown in Table III can be used as
constant over multiple runs. The obtained p-value
for each BO-NSMA counterpart is lower than the
significance level (o = 0.05) (see Table V). Thus,
with a high level of confidence, it can be stated that
BO-NSMA outperforms EvoCNN and the human-
crafted baselines. Furthermore, the results are sta-

tistically significant.

VI. DISCUSSION AND RESEARCH DIRECTIONS

In this section, the findings from the experimen-
tal results are utilized to discuss BO-NSMA time
complexity and limitations, which could provide
valuable insights on the applications of the proposed
BO-NSMA method. In the end, the potential future

research directions are outlined.

A. BO-NSMA time complexity

Given the steps in Algorithm 3, the time complex-
ity of each component of BO-NSMA is as follows.
1) Population initialization: Let T'(z) and F(z)
be the time to compute the number of train-

able parameters and the time to evaluate the

classification accuracy of an individual z.
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Table IV. BO-NSMA and EvoCNN statistical comparison

Metric Baseline dataset Extended dataset
BO-NSMA | EvoCNN BO-NSMA [ EvoCNN

Max. Acc. (%) 87.6 80.3 83.7 64.5

Min Acc. (%) 85.2 67.6 80.2 453

Mean. Acc. (%) 86.5 76.7 82.2 57.7

Max #0 99,643 1,679,792 98,020 50,803,314

Min #6 21,803 193,874 51,252 814,226

Mean #0 68,405 611,113 81,179 9,517,301

Mean Search Time | 5.65 0.57 322 1.85

(h)

Table V. The p-values obtained by the Wilcoxon
signed-rank test

Model . p-value
Baseline dataset ‘ Extended dataset
LSTM [7] 0.004 0.005
ResNet [8] 2.47-107¢ 0.005
ResNeXt [11] 3.69-10°¢ 0.0068
ID-CNN [8] 1.64-107° 0.005
EvoCNN [15] 1.73-107° 0.005

2)
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The minimum time complexity of population
initialization is given as O(Ax (E(x)+T'(z))),
while maximum time complexity is given as
O\ x E(x) +Z x A x T(x)), where Z is
the maximum number of trials allowed in the
initialization step. As F(z) >> T'(x), it is the
dominant term; thus, the time complexity for
the initialization step is O(\ x E(x)).

Selection: the selection step is done through
binary tournament and PD. Two iterating
loops through the entire population are re-
quired to count the number of dominant indi-
viduals for each individual in the population.

Thus, the time complexity of the selection step

is O(\?).
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3)

4)

5)
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Offspring generation: Let C'(xy, x2) and M ()
be the time to perform crossover of two indi-
viduals, x1, x2, and the time to perform mu-
tation of an individual x. The time complex-
ity of the offspring generation step is given
as Z)\/Q [(pgﬁl 1

S [pfi. x M(z;)]. By focusing only on

+ p¥2i) /2 x 0(1‘21_17@1‘)} +

the dominant terms, the time complexity for
the offspring generation step is O(\).

Local search: Local search is applied to both
parents and offspring. The time complexity

[pls X 2E<x1)]

where p;? denotes the probability that an indi-

of the LS is given as >

vidual z; satisfies the conditions for LS. LS is
applied to the best and worst individuals, and
it will likely be done for the whole population.
Thus, the time complexity of the LS step in
the worst case is O(2 x (A + p)) = O(4N).

Elimination: The elimination step adopts FS.
Let D(x1,x2) be the time to calculate the
distance between two individuals, x;, x5 by

Eq. 8. The time required to calculate distances

for the entire population A + x4 has the time
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complexity of O((A + u)? x D(x1,z2)). The
selection of A individuals for the next genera-

tion by using Eq. 7 has a time complexity of

O+ p)).

By summing up all five steps, focusing on the
dominant terms and removing any constants, the
overall BO-NSMA time complexity, over J gen-
erations, is given as O(J (61 + 7A%)) =~ O(JN\?).
EvoCNN has a time complexity of O(J)), while
NSGA-Net has a time complexity of O(j Alog /\)
[50]. The average time complexity in hours for
BO-NSMA and EvoCNN running for the baseline
dataset is 5.65h and 0.57h, respectively. Whereas,
the average time complexity in hours for BO-NSMA
and EvoCNN running for the extended dataset is
32.2h and 1.85h, respectively (see Table 1V). The
extended dataset requires a longer time to obtain

fitness of the population.

Next it is evaluated whether EvoCNN can find
a better individual within the same time window
as BO-NSMA. Thus, one more experiment is run
where EvVoCNN has 6h to search for the best in-
dividual for the baseline dataset. The A is set to
36 and J is set to 20 for that experiment. In 6h,
EvoCNN finds the best individual with classifica-
tion accuracy of 81.89% and number of trainable
parameters of 133,307. EvoCNN slightly improves
the classification accuracy and reduces the network
complexity by 4.5z of its best-found individual for

a longer search period. To sum up, for the same
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time complexity, BO-NSMA outperforms EvoCNN
in terms of both classification accuracy and network
complexity. BO-NSMA’s best-found individual has
a 4.6% higher classification accuracy and 50% lower

network complexity.

B. BO-NSMA limitations and applications

Based on the analysis given above, the follow-
ing limitations of BO-NSMA with insights into its
potential applications are identified.

1) High time complexity: It is shown that BO-
NSMA finds a DNN architecture that outperforms
each human-crafted DNN architecture within 5.65h
and 32.2h for the baseline dataset and extended
dataset, respectively. Manual searching for an op-
timal DNN architecture can take days or months.
EvoCNN cannot find a better individual even within
the same search time window as BO-NSMA. For
offline searches where the computational resources
are not critical, BO-NSMA is an efficient tool for
NAS. No one GA will be an optimal choice for NAS
running on the edge devices with low computational
power.

2) Control parameters settings: Although BO-
NSMA features self-adaptive crossover and muta-
tion rates, a few control parameters are set manually.
The control parameters for FS are set based on prior
knowledge of the target optimal solutions (classi-
fication accuracy close to 100% and the number

of trainable parameters lower than the maximum
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allowed number of trainable parameters). The maxi-
mum number of trainable parameters is set based on
expert knowledge of the task of interest. The best-
known human-crafted DNN architectures for AMC
are explored, and their trainable parameter count
is utilized as a range for BO-NSMA. The control
parameters for FS might not be optimal if BO-
NSMA is applied to non-classification tasks. The
maximum allowed number of trainable parameters
would require some prior knowledge about a consid-
ered task. Thus, to be applied to non-classification
tasks, those control parameter values have to be

revisited.

C. Future research directions

In this paper, the performance evaluation of BO-
NSMA is done only for AMC. It would be in-
teresting to explore BO-NSMA performance for
other classification tasks such as image classification
in computer vision. BO-NSMA’s sensitivity to the
manual control parameters for other tasks should
be evaluated. Future research could also consider
learning those parameters automatically as it is
already done for crossover and mutation rates. LS
and FS are computationally costly. Having smart
policies to turn them on/off over generations would
lead to a significant decrease in the time complexity
of BO-NSMA. Those policies should achieve a
good trade-off of time complexity and convergence.

Although the number of trainable parameters is a
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valuable metric of network complexity for CNN-
based architectures, future research would benefit
from a more refined metric for network complexity,

such as inference time.

VII. CONCLUSIONS

Although DNNs have achieved remarkable results
for AMC, the manual optimization of their archi-
tectures is challenging due to the immense search
space. In addition, a given optimized architecture
often does not properly transfer when input fea-
tures change, triggering repetitive and tedious opti-
mization. Automated Network Architecture Search
(NAS) using Genetic Algorithm (GA)s has received
considerable attention in computer vision. However,
a smooth transfer of those methods to time-series
problems such as modulation recognition results in
suboptimal performances, as it is shown for NSGA-
Net. Thus, this paper proposes BO-NSMA, a novel
bi-objective memetic algorithm for joint architecture
and network complexity optimization for DNN-
based modulation recognition applications. The Lo-
cal Search (LS) is added to GA to accelerate the
convergence rate and to enhance performance. Fol-
lowing extensive experimentation, it is shown that
BO-NSMA finds a diverse population very close to
the Pareto optimal front defined by performance and
complexity. The architecture found by BO-NSMA
outperforms all human-crafted DNNs. Moreover, it
is demonstrated that BO-NSMA does not have a

premature convergence problem for low population
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size, as is the case with its counterpart EvoCNN. REFERENCES
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