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Intelligent science exhibits: Transforming hands-on 
exhibits into mixed-reality learning experiences
Nesra Yanniera, Kevin Crowleyb, Youngwook Doc, Scott E. Hudsona, 
and Kenneth R. Koedingera

aHuman Computer Interaction, Carnegie Mellon University; bLearning Sciences and Policy, 
University of Pittsburgh; cSchool of Interactive Computing, Georgia Institute of Technology

ABSTRACT
Background: Museum exhibits encourage exploration 
with physical materials typically with minimal signage 
or guidance. Ideally children get interactive support as 
they explore, but it is not always feasible to have 
knowledgeable staff regularly present. Technology- 
based interactive support can provide guidance to 
help learners achieve scientific understanding for how 
and why things work and engineering skills for design
ing and constructing useful artifacts and for solving 
important problems. We have developed an innovative 
AI-based technology, Intelligent Science Exhibits that 
provide interactive guidance to visitors of an inquiry- 
based science exhibit.
Methods: We used this technology to investigate 
alternative views of appropriate levels of guidance in 
exhibits. We contrasted visitor engagement and learn
ing from interaction with an Intelligent Science 
Exhibit to a matched conventional exhibit.
Findings: We found evidence that the Intelligent 
Science Exhibit produces substantially better learn
ing for both scientific and engineering outcomes, 
equivalent levels of self-reported enjoyment, and 
higher levels of engagement as measured by the 
length of time voluntarily spent at the exhibit.
Contribution: These findings show potential for 
transforming hands-on museum exhibits with intelli
gent science exhibits and more generally indicate 
how providing children with feedback on their pre
dictions and scientific explanations enhances their 
learning and engagement.
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Introduction

Much learning happens outside of school. Informal learning settings can 
support out-of-school learning by offering opportunities for children and 
families to learn together in an engaging way. However, learning support in 
such settings is not always adequate. Without scaffolding and support, 
people often miss the point of the learning activity in these settings 
(Hammady & Ma, 2019; Puchner et al., 2001). Current exhibits rely on 
parents, signage and staff/facilitators in the museums and science centers 
to provide support and guidance. Since it’s not always feasible to have 
knowledgeable staff and not all parents have the same knowledge, children 
do not get the same support (Eberbach, 2009). New forms of technology can 
help, but what kinds of support are best in different contexts? There is 
evidence that children explore the evidence space of interactive science 
exhibits more widely and are more likely to construct explanations in the 
context of structured facilitation (Crowley et al., 2001; Fender & Crowley, 
2007; Kim & Crowley, 2010). At the same time, some forms or levels of 
guidance can be counterproductive, particularly when they reduce chances 
for children to engage in their own inquiry (Hmelo-Silver et al., 2007). 
Kolodner el al. emphasize the importance of having learners engage in design 
challenges and construct a personally meaningful physical artifact (Kolodner 
et al., 2003). Some educational effect studies (Alfieri et al., 2011; Kirschner et 
al., 2006; Klahr and Nigam, 2004) also show that open-ended exploration 
activities often lead to learners demonstrating prolonged investigation, but 
also to difficulties with observing and interpreting observations.

Evidence from a meta-analysis of guided inquiry contexts (Furtak et al., 
2012) concludes that a combination of guidance and exploration in inquiry 
learning environments is beneficial. Nevertheless, there are many open 
questions about what combinations of methods work best (cf., Koedinger 
et al., 2013). Within science education, there have been calls for more 
“adequate answers . . . concerning the conditions under which various 
types of scaffolded learning environments are most effective” (Hmelo- 
Silver et al., 2007). More recent research indicates progress (Eysink et al., 
2015; Gormally et al., 2009; De Jong & Lazonder, 2014; Pedaste et al., 2015), 
but many open questions remain about what kinds of scaffolding and 
guidance work best—especially in the STEM context where “there is a lack 
of systematic evaluations and reliable experimental designs” (Alimisis, 2013). 
Further, there continue to be indications of skepticism about the desirability 
of scaffolding, for example, a recent meta-analysis comments that “Adding 
scaffolding has often been disregarded in the context of PBL [Problem-Based 
Learning].” (Kim et al., 2018). This meta-analysis found that the most 
prominent strategy of computer-based scaffolding, question prompts, has 
positive benefits, “but its effect was not as strong as many scholars believed.” 
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We demonstrate, through a controlled random-assignment experiment, the 
effectiveness of scaffolding that not only prompts with questions but also 
gives automated feedback on students’ decisions during scientific inquiry 
with physical phenomenon.

More generally, this project explores innovation both in scaffolding tech
niques and in technology to automate feedback during in-the-world experi
mentation. We evaluate whether techniques for personalized guidance 
enhance science learning outcomes, while we introduce a novel AI technol
ogy, an “Intelligent Science Exhibit,” that provides a means to scale these 
techniques to more children. Intelligent Science Exhibits are a new educa
tional technology genre that supports children in learning science while 
doing science in the physical world. An Intelligent Science Exhibit uses 
intelligent camera sensing to track children’s interactions in physical and 
virtual spaces and provides interactive personalized feedback through the 
help of an engaging character. With this sensing capability, the exhibit adapts 
to the different needs of children, provides personalized support, and helps 
achieve equity goals (e.g., all children get support regardless of who they are 
and whether or not they have a science-literate caregiver with them). This 
type of support is especially important for children who do not have other 
opportunities to deepen their inquiry and understand physical phenomena, 
and in museums where it’s not always feasible to have knowledgeable staff 
around the exhibits.

There has been progress in bringing AI advances into learning environ
ments (e.g., Aleven et al., 2016; Holmes et al., 2019; Sottilare et al., 2018; 
Timms, 2016) and much progress in new AI sensing technologies (e.g., 
Benko et al., 2012; Gupta et al., 2012; Laput & Harrison, 2019; Zhang et al., 
2018) that have potential for supporting learning. Recent developments in 
museum exhibits provide design guidance toward technology support for 
engaging and sustaining visitors’ explorations (Hammady & Ma, 2019; Ma et 
al., 2019; Yoon et al., 2012). While building on this past work, our main 
technical contribution is in creating tangible interfaces that provide inter
active feedback and guidance that adapts to changes in the physical environ
ment by tracking student actions in the physical environment.

To do so, we developed new AI vision technology and Intelligent Science 
Exhibits that allows the system to observe students’ actions—to accurately 
monitor and evaluate predictions, experiments, and explanations and pro
vide an intelligent guided learning experience (Yannier et al., 2016). The 
technology also utilizes effective learning mechanisms of intelligent tutoring 
systems such as contrasting cases (Chase et al., 2010), predict-observe- 
explain (White & Gunstone, 1992), inquiry-based learning (Eysink et al., 
2015; Gormally et al., 2009; Pedaste et al., 2015), guided-discovery (De Jong 
& Lazonder, 2014) and menu-based self-explanation (Aleven & Koedinger, 
2002; Chi et al., 1989). More specifically, the physical set-up of the Intelligent 
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Science Exhibit consists of an earthquake table, physical towers, a display 
screen, a depth camera and a specialized AI technology to track what kids are 
doing as they do experiments in the physical world (e.g., making predictions 
about which of the towers on the table will fall first when the table shakes or 
building structures based on the challenges given by the system) and provide 
feedback accordingly (See, Figure 1).

Using this technology, we explore fundamental learning science questions 
about the active ingredients of active learning (Yannier et al., 2021). Our 
general research question is: Does adding more guidance and scaffolding 
structure to an exhibit enhance visitor learning? We consider two competing 
hypotheses. One hypothesis is that learning will be more effective when 
children explore freely and construct physical materials. The ICAP framework 
(Chi & Wylie, 2014), for example, suggests greater learning from constructive 
learning experiences than from active ones (which may include feedback and 
guidance). A competing hypothesis is that learning is more effective when 
guidance and scaffolding are provided in the context of structured inquiry 
activities. This hypothesis is consistent with meta-analysis of scaffolding in 
science learning environments (Kim et al., 2018) and theories recommending 
active learning (Klahr et al., 2009) or deliberate practice (Ericsson, 2008) with 
purposely designed tasks and explanatory feedback.

A second research question is: Does providing guidance enhance visitor 
engagement? One hypothesis is that guidance (e.g., prompting a visitor to 
explain a prediction or observations) will interrupt their flow and decrease 
their engagement. Bamberger and Tal (2007) found that more “directed 
learning in limited choice activities,” while yielding more scientific discus
sion reduced social interactions and expressions of excitement in compar
ison to free choice exploration. In the authors’ own experience on a prior 
project, game designers suggested that adding self-explanation prompts 
would reduce player enjoyment and thus such prompts were not included 

Figure 1. Children and families interacting with the Intelligent Science Exhibit at 
Carnegie Science Center.
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(Christel et al., 2012). An alternative hypothesis is that helping visitors make 
sense of their world is engaging and thus, guidance will enhance engagement. 
Anderson et al. (2000) found that enhancing student understanding of 
content, for example, by repeating episodes rather than showing them just 
once, increased engagement. UFranse et al. (2021) also found benefits of 
guidance in a museum setting whereby “interventions of museum educators 
positively affected the families’ learning process by reducing the number of 
scientifically incorrect remarks.”

Our prior experimental research has evaluated the importance of physical 
experience. While some (mostly non-experimental) research has suggested 
promise in physical interaction supporting learning (Manches & O’malley, 
2012; Manches & Price, 2011; Marshall, 2007; Olympiou & Zacharia, 2012), 
there is also experimental evidence that found no learning benefit in the 
direct comparison of physical versus virtual in science learning (Klahr et al., 
2007). Some have argued that empirically based studies are needed to under
stand better how tangible interfaces actually work and whether and why they 
might have benefits (Marshall et al., 2007). Thus, it was important to test 
whether children learn much more from our mixed-reality interaction and 
guidance than from that same interaction and guidance around flat-screen 
video of the earthquake table. We demonstrated, in randomized controlled 
studies, that children learn much more from mixed-reality interaction and 
guidance around the physical experience of observing actual blocks falling on 
an earthquake table than from that same interaction and guidance around 
flat-screen video of blocks falling on an earthquake table. In fact, a controlled 
experiment showed five times greater pre to post learning gains from mixed- 
reality compared to a screen-only tablet or computer version (Yannier et al., 
2016, 2015).

The current experiment and our mixed-method approach evaluate the 
importance of the mixed-reality experience and, in particular, whether and 
what types of guidance can produce large learning gains while maintaining 
or even improving visitor engagement. In this paper, we explore benefits of 
STEM learning particularly with respect to improving students’ understand
ing of science concepts of early physics, as assessed through changes in the 
quality of their explanations, students’ competence in applying these con
cepts to make accurate predictions, and students’ ability to transfer these 
science concepts in engineering activities, as assessed by the quality of 
constructed artifacts (stable towers). While we do not pursue an investiga
tion of impact on long-term student agency in science, we do evaluate impact 
on their immediate enjoyment and their choice in extended engagement in 
these activities.

As many traditional museum exhibits, maker spaces and constructivist 
theories suggest (Jeffery-Clay, 1998), might students learn as well as or 
better, without explicit guidance when in the context of more open-ended 
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hands-on construction? Or perhaps better results can be found by selecting 
from and automating some of the many forms of instructional guidance 
and learning support that have been developed, explored, and tested (e.g., 
Clark & Mayer, 2016; Hattie, 2012; Koedinger et al., 2013; Schwartz et al., 
2016)? We find it useful to distinguish between more explicit forms of 
guidance that use verbal instructions, prompts, or feedback from more 
implicit forms of guidance that use the structure and sequence of tasks to 
aid learning. We discuss next how these different forms of guidance are 
implemented in our Intelligent Science Exhibit and contrast them with the 
forms of guidance in a similar existing museum exhibit, which we argue is 
typical of many museum exhibits. These exhibits tend to have explicit 
guidance in the form of a sign and implicit guidance in the materials 
available for playful experimentation but tend not to have interactive 
facilitation from an always-present staff person or from automation. We 
thus call this an “Unfacilitated Exhibit” and use it as our control condition 
in the experiment described below.

In the section titled “Use-Driven Iterative Design process of An 
Intelligent Science Exhibit,” we describe the design process we used in 
developing and improving our Intelligent Science Exhibit. We then return 
to the key research questions of whether an Intelligent Science Exhibit can 
yield substantial benefits, for both visitor learning and engagement, in 
comparison to an “Unfacilitated Exhibit” control condition. This control 
condition is meant to test beliefs that guidance is not necessary (c.f., Hovious, 
2015) or may be counter to worthy educator goals such as “awakening the 
spark of curiosity in students and giving them the chance to explore and 
discover for themselves” (Cody, 2010). Providing guidance may reduce 
student opportunities to experience “desirable difficulties” (Bjork et al., 
2013) or risk reduced student enjoyment or persistence in the activity if it 
comes off as “just another procedure to follow” (Schwartz et al., 2016, p. 97). 
Following the implications of this prior work, we strive for a design whereby 
guidance does not eliminate difficulties or provide recipe-style procedures, 
but rather prompts for genuine inquiry whereby students predict and explain 
novel situations they have not previously experienced followed by reactive 
feedback on outcomes of that inquiry.

We describe a random assignment field-based experiment that addresses 
these practical and scientific questions by comparing learning and engage
ment outcomes for visitors experiencing either the Intelligent Science Exhibit 
or the Unfacilitated Exhibit. Results indicate visitors learned substantially 
more from and were more engaged by the Intelligent Science Exhibit. We 
explain these results with support from illustrative case studies of observa
tions of student interactions with the two different kinds of exhibits. We also 
report on exhibit engagement (measured by time spent voluntarily at the 
exhibit) in the natural museum setting.
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The intelligent exhibit: A guided mixed-reality interactive 
experience

Our Intelligent Science Exhibit uses a specialized AI vision technology to 
track physical objects and children’s actions as they experiment and make 
discoveries in the real world, facilitating guided inquiry thinking processes 
through a predict, explain, observe, explain cycle. A gorilla character appears 
on a large display to guide visitors as they make predictions, observations 
and explain results in the physical environment.

To scaffold learning, out design employs particular principles from 
learning science (e.g., Chi et al., 1989; Clark & Mayer, 2016; Gibson & 
Gibson, 1955; White & Gunstone, 1992) and game design (e.g., Falloon, 
2010) including contrasting cases, self-explanation, predict-observe- 
explain, and real-time interactive feedback. The principle of contrasting 
cases originally came from work in perceptual learning (Gibson & 
Gibson, 1955) and suggests use of aligned cases with minimal differences 
to help students notice information that they might otherwise overlook. 
Gick and Paterson have shown that contrasts that differ on a single 
dimension can improve schema induction and transfer (Gick & 
Paterson, 1992). Based on this literature and more recent literature 
(e.g., Rittle-Johnson & Star, 2009; Schwartz et al., 2011), we decided to 
include contrasting cases in our design. Students are shown two towers 
that differ on only one principle (symmetry, wide-base, height or center 
of mass principles) and are asked to make a prediction about which one 
will fall first when the table shakes. Figure 2 shows a height-only 
contrast.

A second scaffolding feature, self-explanation, is supported by a num
ber of studies. For example, students studying examples or textbook text 
learn with greater understanding when they explain the materials to 
themselves (Chi et al., 1989). Others have demonstrated that menu- 
based self-explanation enhances learning and transfer (Aleven & 
Koedinger, 2002). Similarly, in our system, we utilize a self-explanation 
menu to help children explain the reasoning for why a tower falls. The 
menu consists of explanation choices that express the underlying physi
cal principles in child-friendly language such as: “because it is taller,” 
“because it has more weight on top than bottom,” “because it is not 
symmetrical,” “because it has a thinner base.”

We also utilize a predict-observe-explain (POE) cycle in our mixed- 
reality system. The POE method is a teaching-learning strategy proposed 
by White and Gunstone (White & Gunstone, 1992), which includes three 
stages: Prediction, Observation and Explanation. The POE process can 
be an effective teaching strategy to facilitate students’ understanding of 
concepts, with the help of active discussions among students as they 
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explain any discrepancies between predictions and observations 
(Kearney, 2004). In our system, we utilize POE to help children 
understand the physics principles of balance and stability and why 
structures fall.

Our system provides real-time interactive feedback, which is a critical 
component. Immediate feedback and immediate error correction has been 
shown to be more effective than feedback on-demand and student control 
of error correction in intelligent tutoring systems (Corbett & Anderson, 

Figure 2. Screenshots from the “Guided-discovery” mode of the Intelligent Science Exhibit. 
Users are guided to place the given towers on the table, and are given feedback whether they 
placed the right tower or not. The game also gives feedback about their explanations with 
visualizations to help them understand the underlying physics principles.
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2001). There is also research showing that without scaffolding and support, 
people often miss the point of the learning activity (Puchner et al., 2001). 
Also, the phenomenon of “confirmation bias” (Nickerson, 1998) suggests 
that children are likely to see their predictions as confirmed even when they 
are not, so explicit feedback otherwise can reduce this tendency and 
enhance learning.

In addition to learning science principles, we also employed game 
design principles including use of an animated character, a game-like 
scenario, and interactive physical construction and experimentation. 
Our system also includes a character and scenario that helps give 
immediate feedback to users. Avatars and virtual environments have 
been shown to have potential to act as powerful communication med
iums for students to display knowledge and understanding (Falloon, 
2010). Also, there is evidence that animated graphics enhance motiva
tional appeals of instructional activities and embodied conversational 
characters, and virtual peers facilitate conversation in a virtual envir
onment (Cassell, 2000).

Scenario

The features of our Intelligent Science Exhibit are illustrated in Figure 2. 
In the “Guided-discovery” mode, the users are first asked to place the 
towers shown on the screen on the physical earthquake table (See, Figure 
2a). These towers are designed to be contrasting cases with only one 
difference between them so that the kids can focus on isolated principles. 
The Kinect camera and our specialized computer vision detects if towers 
placed on the table match the ones on the screen and gives feedback 
accordingly. If the tower they place on the table matches the tower on 
the screen, a green check appears above the tower on the screen and the 
gorilla character says “Good job! Click to continue” (See, Figure 2b). 
Otherwise, if the tower they place does not match the tower on the 
screen that they were asked to place, the computer vision system detects 
that it was not the correct tower, and a red cross appears on the tower 
on the screen, and they’re asked to place the correct tower (See, 
Figure 2c).

Our computer vision algorithm uses depth information from the depth- 
sensing camera in algorithms for blob detection and physics-based moment of 
inertia calculations (Yannier et al., 2013) to recognize and differentiate objects of 
experimentation, the towers in this case, and to recognize critical experimental 
outcomes, a falling tower in this case. Using the steps described above as an 
example, when students try to place a requested tower on the table, the vision 
algorithm computes a moment of inertia value that serves as a kind of signature 
of the identity of the tower. If this value matches the stored value for the 
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requested tower, the system provides positive feedback as described above (see, 
Figure 2b). If this value does not match, the system provides corrective feedback 
(see, Figure 2c).

Once they click continue, the gorilla character prompts them to make a 
prediction saying, “Which tower do you think will fall first when I shake the 
table?” (See, Figure 2d). They can choose either 1, 2 or same by clicking on 
the buttons or one of the towers on the screen (a virtual projection of the 
towers as a blob is drawn on the screen).

After they make a prediction, the gorilla character says: “You chose the left 
tower. Why do you think so? Discuss and then click SHAKE to see what 
happens.” Here they can discuss their prediction with their partner/friends/ 
family, why they think the tower they chose will fall first. They then click the 
“Shake” button on the touch screen and the physical earthquake table starts 
shaking (the touch screen triggers the relay that is connected to the motor of 
the earthquake table).

After the table starts shaking, when one of the towers falls, the Kinect 
camera and our specialized computer vision algorithm detects the fall and 
stops the earthquake table from shaking. The vision algorithm detects 
whether the left or right tower fell and if it matches with the prediction of 
the user. If the user’s prediction was correct and the right tower fell first, then 
the gorilla character says “Good job! Your hypothesis was correct! Why do 
you think this tower fell first?.” The gorilla on the projector screen is happy 
and starts jumping and dancing to give them positive feedback and reward. 
On the other hand, if the user’s prediction was wrong and the tower that fell 
does not match the tower that was predicted by the user, then the gorilla 
character says “Uh oh! Your prediction was not quite right! Why do you 
think this tower fell first?.” This time, the gorilla on the projector screen 
looks surprised. Users are asked to explain why they think the tower that fell, 
fell first. They are given an explanation menu with four different choices that 
they can choose from: “It is taller,” “It has a thinner base,” “It has more 
weight,” “It is not symmetrical.” These explanations correspond with the 
four different principles of stability and balance that are primary science 
content learning objectives for the exhibit. This explanation menu comes up 
even if their prediction is correct.

When they click on one of the choices in the explanation menu, the gorilla 
character tells them if their explanation was correct or wrong, with a visua
lization laid over the images of the towers on the screen to explain why the 
tower actually fell (See, Figure 2f). For example, if the reason was because it 
had more weight on top than their bottom, and their explanation was not 
correct, he says: “Actually it fell first because it had more weight on top than 
bottom. Good try. Click CONTINUE to play again.” The visualization of the 
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towers shows circles on the parts of the towers that have more weight. Or if it 
fell because it was taller, the ruler visualizations this time highlight the height 
of each tower.

This scenario is repeated for different contrasting cases of towers (Yannier 
et al., 2020).

In addition to the “Guided-discovery” mode, users can try the 
“Exploration” (or “Test My Tower”) mode. In this mode, they can 
build any tower they want using the wooden, Lego or magnetic blocks 
in the bins. The gorilla character says: “Can you make a tower that will 
stay up when the table shakes? Place your tower on the table and click 
SHAKE when you are ready.” (See, Figure 3a) When they have built 
their tower and click the SHAKE button on the touch screen, it triggers 
the motor in the physical earthquake table, and the table starts shaking. 
If their tower falls down, the Kinect camera and our specialized com
puter vision algorithm detects the fall, and the gorilla character gives 
feedback “Uh oh! Your tower fell down! Press CONTINUE to make 
another tower” (Figure 3d). The system also displays how many seconds 
it took for the tower to fall down. If the tower does not fall down in 
5 seconds, the earthquake table stops shaking. Then the gorilla character 

Figure 3. Screenshots of the Exploration mode of the Intelligent Science Exhibit. In this 
mode, the gorilla character asks the users to make a tower that will stay up when the 
table shakes. The AI vision algorithm tracks any tower they build, and gives feedback if 
the tower stayed up or not and for how long.
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starts jumping/dancing (similar to that in the guided-discovery mode) 
and says: “Good job! Your tower stayed up! Press CONTINUE to make 
another tower” (Figure 3c). They are then challenged to make another 
tower (e.g., taller) to test on the earthquake table.

Based on previous research (Yannier et al., 2020, 2021), the Intelligent 
Science Exhibit condition in this experiment combines the Guided-discovery 
and Exploration modes as it led to better learning outcomes than use of 
either mode alone.

Use-driven iterative design process of an intelligent science 
exhibit

Early iterations at the children’s museum of Pittsburgh

We engaged in iterations of use-driven design inspired by approaches of 
design-based research (Barab & Squire, 2004; Design-Based Research 
Collective, 2003; Wang & Hannafin, 2005), but with a practical focus on 
enhancing the usability and user engagement of the resulting Intelligent 
Science Exhibit design and not as a primary research output in itself. These 
iterations were done mainly on the Guided-discovery mode of the system. 
Our goals were to gain insights about museum visitors, both children and 
parents, and toward improving the design of the Intelligent Science Exhibit, 
before coming up with the latest design of the exhibit (Figure 1). Key 
usability questions included:

1) Do children find the Intelligent Science Exhibit interesting and intui
tive to use and can they use it independently without researcher 
assistance?

2) Does the Intelligent Science Exhibit engage parents? Do they help their 
children?

3) Is the Intelligent Science Exhibit engaging enough to compete with 
other museum exhibits?

4) Does the guidance we added enhance learning discourage or increase 
engagement?

On-site observation of system use in two iterations

System design and usability observations: Iteration 1

Our first usability investigation took place in a pull-out room of the 
MakeShop of Children’s Museum of Pittsburgh (See, Figure 4). Around 
40–50 people interacted in small groups with the exhibit over two days. 
Typical groups included 1–2 children with 1 parent or responsible adult.
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Consistent with prior observations and surveys in the lab (Yannier et al., 
2020), children appeared quite interested and engaged in the Intelligent 
Science Exhibit. One child played with the game early in the morning before 
anyone else came, then she brought her whole birthday party group to play 
later on. In addition to positive observations, we found opportunities to 
improve the system. Younger children had a hard time using the mouse. 
Therefore, we decided to use a touch-screen tablet as an input device instead 
of the mouse. More substantially, our computer vision algorithm did not 
perform as well in the museum as it had in the lab. We discovered this 
performance degradation was a consequence of the perceived colors of the 
blocks being affected by the lighting conditions in the museum. To address 
this issue, a new vision algorithm was developed that summarizes a tower 
shape into a unique set of “moment of inertia” values (Yannier et al., 2020) 
that does not depend on color.

We also discovered opportunities to improve physical elements of the 
Intelligent Science Exhibit. The prebuilt towers that we had created by 
sticking Lego blocks together were not durable. Children thought that they 
could be taken apart when they saw the Lego blocks (glued together to create 
prebuilt towers) and tried to separate them. Instead, we created prebuilt 

Figure 4. First iteration of play testing at the Children’s Museum of Pittsburgh. Note the early, 
more primitive form of the prototype exhibit, with the projector, mouse control, simple 
shaking table etc (in contrast to Figure 1). The exhibit fostered engagement and interaction 
between the children and with parents. Both children and parents seemed to be quite 
engaged in the exhibit.
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towers made of wood blocks that would be secured tightly to each other and 
painted to create a visual cue. We continued use of individual Lego blocks for 
children to build their own towers in the exploration mode.

Parents were generally quite involved in working with the kids. Some of the 
parents were also curious about how the system worked. For example, one of the 
dads said: “Very cool!” and asked how we had built the system and if he could set 
it up at home. In general, the parent-child interaction seemed quite natural and 
indeed parents prompted their children to follow the on-screen guidance.

System design and usability observations: Iteration 2

Based on input from the first iteration, we redesigned the system and produced 
a new version with a more robust mechanism and more polished physical 
design (See, Figure 5). Specifically, we iterated on our computer vision algo
rithm, so it uses depth information instead of color information that is more 
reliable in different lighting conditions at the museum. We have also made the 
physical design more durable for children based on the findings from Iteration 
1 described above. This new version was playtested in a second design iteration 
that took place in the MakeShop of Children’s Museum of Pittsburgh. The 
MakeShop provided a setting that was more open to the public than the private 
room used in iteration 1. Our Intelligent Science Exhibit was available over two 
days in the weekend, from 10 am until 5 pm. Around 40–50 people interacted 
in small groups with the exhibit over two days. Again, typical groups included 
1–2 children with 1 parent or responsible adult. There were two researchers 
observing and taking notes. In this iteration, we were not only interested in 
child engagement and parent involvement, but also in Usability Questions 3 
and 4: Is the Intelligent Science Exhibit engaging enough to compete with other 
museum exhibits? and does the guidance we added to enhance learning 
discourage or increase engagement?

Figure 5. Children imitated the gorilla character when their prediction was correct and 
the gorilla started dancing on the screen. The parents were also very much engaged 
with the game. At some points they started playing on their own.
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As in Design Iteration 1, both kids and parents were quite engaged by 
the exhibit. Children were particularly engaged by the new animated 
gorilla character. When the gorilla responded by dancing when a child’s 
prediction was correct, many kids celebrated by mimicking the gorilla’s 
dance moves (see, Figure 5a).

We observed that parents and children seemed to discuss and engage in 
productive dialogue, discussing the reasons why towers fall, more in the 
guided-discovery mode. When the game prompted them to explain why they 
think one of the towers fell first, the parents started asking children why they 
think the tower fell and helped them understand the underlying principles. For 
example, one of the moms put the towers side by side, asking her son what the 
difference is between the two, if one has more weight on top than the other. 
Similarly, many other parents got involved and tried to guide the kids to 
understand why and to celebrate success (e.g., giving a high five; Figure 5b). 
The interactive guidance from the system appeared to prompt parents to 
interact with their children by encouraging inquiry toward discovering scien
tific explanations rather than up-front telling. For example, they would repeat 
the questions that the exhibit asked to their children “Which tower do you 
think will fall first?,” “Do you know why?.” Also, the self-explanation options in 
the exhibit seemed to guide them to understand the underlying principles e.g., 
“because it’s not symmetrical,” “because it has a thinner base,” “because it has 
more weight on top than bottom” etc. The parents repeated these explanations 
to the children, especially for younger children.

We also observed that children and families seemed to strategize more while 
building their towers when they did it after the guided discovery activity as 
opposed to doing it as a first activity when they came to the exhibit. If they chose 
to build a tower before interacting with the guided-discovery activity, they 
tended to do more random tweaking not aligned with the underlying principles 
of stability. Children and parents did seem to enjoy building their own towers in 
addition to doing experiments with prebuilt towers which suggested that it may 
be good to combine Guided discovery (making predictions and explanations 
with prebuilt towers) and Explore Construct modes (where they build their own 
towers based on what they learned in the Guided discovery mode). These 
observations informed the research question and hypotheses for the experiment 
below, namely do children learn better from exploration and construction in a 
traditional exhibit or from an Intelligent Science Exhibit with interactive gui
dance? How can we combine both interactive guidance and exploration for 
maximized learning and enjoyment outcomes?

Similar to Design Iteration 1, parents seemed to be very much engaged as 
well as the children. We heard from museum staff this is an important quality 
for museum exhibits—that it should appeal to people of different ages. In 
some cases, the parents even started playing on their own, including one 
father who played the game for over 15 minutes (Figure 5c).
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Learning experiment: Intelligent guidance better enhances 
science and engineering outcomes

As described above, our experiment was motivated by open practical and 
scientific questions. The key practical question is whether concerns 
raised by some museum professionals that adding “intelligent” guidance 
is not necessary are warranted. One key scientific question is whether 
intelligent guidance may suppress “desirable difficulties” (Bjork et al., 
2013) that produce effective constructive learning (Kafai & Resnick, 
1996) experiences. Another is whether intelligent guidance may reduce 
student agency and subsequent engagement (Schwartz et al., 2016). Put 
simply, the experiment tests whether the Intelligent Science Exhibit 
produces better learning and engagement than typical museum exhibits 
that come with little or no automated facilitation.

Methods

Unfacilitated exhibit control condition

We designed the “Unfacilitated Exhibit” control condition to meet two 
important criteria. To enhance ecological validity, it should be as much 
like existing exhibits as possible. To enhance internal validity, it should be 
otherwise similar to the Intelligent Science Exhibit, but without the intelli
gent guidance. Thus, we developed an exhibit to represent current practice at 
museums. This mimics an earthquake exhibit at the science center where we 

Figure 6. a) Earthquake exhibit regularly used at the Science Center. b) Our matched 
Unfacilitated Exhibit Condition consisting of the same earthquake table set up used in 
the Intelligent Exhibit Condition, with the AI turned off to match the standard earth
quake exhibit and the same materials used to minimize the variables.
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conducted our experiment. It also makes use of the same base materials as 
the Intelligent Science Exhibit. The Unfacilitated Exhibit uses the same 
physical materials/blocks/table used in the mixed-reality Intelligent Science 
Exhibit. This approach also controls for exhibit location as there is just one 
exhibit, sometimes with the interactive guidance turned on (Intelligent 
Science Exhibit) and sometimes turned off (Unfacilitated Exhibit).

Figure 6a shows the earthquake exhibit at Carnegie Science Center where the 
study took place. Visitors control the shaking using the “Start” and “Stop” 
buttons. Visitors build towers using the given materials and may shake them 
on the earthquake table to observe if their towers stay up or not. Similarly, our 
Unfacilitated Exhibit Condition (see, Figure 6b) consists of the same earthquake 
table set up we used in the Intelligent Exhibit Condition. On the touch screen, 
there are “Start” and “Stop” buttons. Visitors can use all the same physical 
materials used in the Intelligent Exhibit condition to build towers and test if 
their structures stay up or not by shaking the table. In other words, the 
Unfacilitated Exhibit is the Intelligent Exhibit with the intelligent features turned 
off to match typical exhibits that come with no facilitation. Similar to other 
conventional exhibits at museums, we also had a sign for our Unfacilitated 
Exhibit condition, explaining concepts such as “symmetry, center of mass, height, 
weight.”

We compared this Unfacilitated Exhibit with our Intelligent Science Exhibit 
described above including a combination of “Guided-discovery” and 
“Exploration” modes as found to be effective in a previous experiment 
(Yannier et al., 2020). In this Intelligent Science Exhibit condition, children are 
exposed to “Guided-discovery” activities followed by “Exploration activities” 
where the scaffolding fades, as described in the Scenario section above. The 
Intelligent Science Exhibit did not have any signage and the guidance was 
provided merely through the AI scaffolding.

Participants

Participants were elementary-aged students (first through fifth graders) attend
ing a science summer camp at the science center. This user group is consistent 
with the original design goals and early learner testing with K-5th grade children. 
32 children participated in pairs (16 pairs) at the exhibit floor away from the rest 
of the summer camp activities. The pairs were randomly selected and assigned to 
different conditions. The ages of the kids were balanced for both conditions. The 
median grade level of participants for both the Intelligent and Unfacilitated 
Exhibit participants was second grade. A previous study showed no significant 
difference in learning and enjoyment between kids working in pairs versus solo 
(Yannier et al., 2015). We conducted the study in pairs as previous feedback from 
parents and teachers indicated a preference to have kids interact collaboratively 
in pairs.
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Measures

We used assessments of both scientific and engineering outcomes to 
measure learning. For scientific outcomes, we evaluated whether children 
correctly used the four principles of stability and balance when explain
ing their predictions of given tower contrasts. For engineering outcomes, 
we evaluated the quality of the towers that children built before and 
after learning interactions based on which principles were exhibited or 
violated. We also assessed students’ ability to predict which tower would 
fall first in given pairs of towers.

o measure pre- to posttest changes on the tower building task, we scored 
each student’s towers according to three principles: height, symmetry, and 
center of mass (we did not use the fourth principle, wide base, as all students 
were instructed to use the same base block). For each principle, students were 
given one point if their towers improved from pre- to posttest, −1 for the 
reverse, and 0 for no change. Comparing pre- and post- towers for the height 
principle, a shorter post-tower scores 1, a taller post-tower scores −1, and 
towers of the same height score 0. For example, if a student’s tower was 
shorter on the post-tower compared to the pre-tower, it would get a 1 for 
Height Score (see second image in Figure 7). However, if the post tower is 
taller than the pre-tower, it would get a −1 (see first image in Figure 7). If the 
post tower is the same height as the pre tower, it would get a 0 (see fifth image 
in Figure 7). Likewise, post-towers with more symmetry and a lower center 
of mass score one for each of those principles. Adding the scores for each 
principle yielded the student’s total score (Figure 7). The students’ 

Figure 7. Coding scheme for Tower pre/post tests change.

18 YANNIER ET AL.



explanations were also coded based on their mentioning of the principles 
related to height, symmetry, center of mass and base. For example, if they 
responded to a question about height principle saying “because it is taller,” or 
a question about symmetry principle saying “because it is symmetrical” or 
“because it is the same on both sides” their answer was coded to be correct.

Paper posttests were developed based on the concepts covered in the 
National Research Council’s Framework & Asset Science Curriculum 
(National Research Council, 2012), and targeted the four principles of 
balance: symmetry, wide base, height, and center of mass. Questions 
presented a picture of two towers on a table, and asked students to 
indicate which tower will fall when the table shakes. Prediction items 
asked students to select which tower would fall first, and explanation 
items asked for their reasoning (Figure 8). These questions were phrased 
as “What will happen when the table shakes?” and “Why did this one 
stay up?” Counting prediction and explanation items as individual ques
tions, the tests had 9 questions in total. If the kids had any trouble 
reading or writing, the experimenter helped them read or write.

A previous study showed that the tasks worked for different age 
groups in elementary school and the pre/posttest measures produce a 
good range of outcomes (e.g., not close to ceiling) to distinguish learning 
outcomes for students at these ages (Yannier et al., 2016).

Procedure
Before interacting with the exhibit, children were individually given a tower 
building task, which took approximately 3–5 minutes. They were asked to 
use a given set of blocks (using all the blocks in the set) to build a tower that 
would stay up when the earthquake table shook. Students were told to use a 
specific block as the base of the tower as a challenge for making a small 
base. They did not test their towers before interacting with the exhibit. 
They were told that they would get a chance to test their towers after they 
play the game.

Figure 8. Prediction (left) and explanation (right) items used in the paper pre/posttests.
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The pair of children then completed their assigned condition, either 
the Intelligent Science Exhibit or the Unfacilitated Exhibit. The timing 
was matched for both conditions based on the average time it takes for 
children to go through the tasks in the Intelligent Science Exhibit 
(~15 minutes).

After interacting with the exhibit, students were given the same tower 
building task as before. This building task allowed us to measure any 
changes in their towers after interacting with the game. After building 
the tower, they were given a paper posttest consisting of the prediction 
and explanation items to measure their understanding of scientific 
principles.

Statistical inference methods
We report statistical inferences in two ways. To protect against potential 
deviations from parametric assumptions, we use the non-parametric Mann- 
Whitney test. To provide the comparison value of effect size, we use the 
parametric t-test.1

Results on learning: The intelligent science exhibit improved both 
scientific and engineering outcomes

As summarized in Figure 9, the Intelligent Science Exhibit group had higher 
correctness on the posttests of explanation and prediction and a higher 
improvement score for tower building. The explanation posttest served to 
estimate science learning outcomes (Figure 9a). On the explanation posttest, 

Figure 9. Learning results of a random assignment experiment (N=32). In comparing 
outcomes from the Intelligent Science Exhibit versus those from the Unfacilitated Exhibit, 
children were a) significantly better able to explain scientific principles, b) marginally better 
able to predict scientific outcomes, c) significantly better at engineering stable towers even 
though children did more tower building with the Unfacilitated Exhibit.

1“Parametric test assumptions were met for five of six tests of normality and two of three tests of 
homogeneity of variance. The two exceptions were based on a ceiling effect for the Intelligent Exhibit 
condition on the prediction outcome producing below-threshold normality and a floor effect for the 
Unfacilitated Exhibit on the explanation test producing below-threshold homogeneity of variance.”
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we found a significant main effect of the Intelligent Science Exhibit Condition 
(M = 0.63, SD = 0.32, Mdn = 0.75) over the Unfacilitated Exhibit Condition 
(M = 0.23, SD = 0.21, Mdn = 0.25) by both a Mann-Whitney test (U = 43, p = 
.001) and a t-test (t(31) = 5.95, p < .001) with a large effect size (d = 1.45). 
Thus, the guided inquiry, facilitated by the system’s AI vision and automated 
feedback, improves children’s learning and understanding of scientific prin
ciples. We did not see any significant age or gender effects based on an 
ANCOVA analysis with age and gender as covariates.

The prediction posttest and the tower building improvement score served 
to estimate engineering outcomes. For the prediction tests (Figure 9b), we 
found a marginal effect of the Intelligent Science Exhibit Condition (M = 0.84, 
SD = 0.26, Mdn = 1.00) over the Unfacilitated Exhibit Condition (M = 0.69, 
SD = 0.25, Mdn = 0.75) by both a Mann-Whitney test (U = 80, p = .073) and 
a t-test (t(31) = 1.91, p = .066) with a substantial effect size (d = 0.62). The 
marginal effect on prediction items may be a consequence of extra noise due 
to guessing given there are only two choices (left tower or right tower—see, 
Figure 8). In contrast, the explanation and tower-building questions are 
open-ended.

For the tower building improvement score (see, Figure 9c), we found a 
significant main effect of the Intelligent Science Exhibit Condition (M = 0.875, 
SD = 1.26, Mdn = 1.00) over the Unfacilitated Exhibit Condition (M = −0.50, 
SD = 1.59, Mdn = −1.00) by both a Mann-Whitney test (U = 65, p = .02) and 
a t-test (t(31) = 2.44, p < .05) with a large effect size (d = 0.96). These results 
are particularly compelling given that children actually do more tower 
building with the Unfacilitated Exhibit than they do with Intelligent Science 
Exhibit. In fact, without guidance, there was no improvement in tower 
building from the Unfacilitated Exhibit.

Both the scientific and engineering outcomes were significantly higher for 
the Intelligent Science Exhibit condition than the Unfacilitated Exhibit con
dition. This result suggests that children having the Intelligent Science 
Exhibit support were not only having a better understanding of the physical 
phenomena, but they were also able to apply their knowledge better to an 
engineering, constructive problem-solving task.

Results on enjoyment: Guided discovery in intelligent science 
exhibits is just as fun

One possible concern with intelligent exhibits with guidance is whether 
visitors enjoy them as much as exhibits that allow for unstructured 
exploration. To measure their enjoyment while interacting with the exhi
bit, children were given a survey with 3 questions after interacting with 
the exhibit: “How much did you like the game?,” “Would you like to play 
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it again?,” and “Would you recommend it to your friend?” They answered 
each question on a scale of 5 (Likert scale of 1–5 with 1 being the lowest 
and 5 being the highest).

Our evidence suggests that children enjoyed both conditions. Based on 
the three-question survey described above, we found no statistical difference 
between average enjoyment scores (0.87 vs. 0. 85 out of 1; p = .7).

Exhibit stickiness analysis/study: Does adding intelligence 
produce longer visits?

In addition to evaluating learning and enjoyment outcomes, we also evalu
ated how engaging or “sticky” the Intelligent Science Exhibit is compared to 
the Unfacilitated Exhibit. To do so, we observed how visitors interacted with 
the two exhibit versions during regular museum hours, in contrast to the 
previous experiment described above which was a pull-out study. We made 
one or the other exhibit available at the same location in the Science Center at 
selected times over two weeks to observe how and how much the general 
public would interact with them.

Methods: Exhibit logs

We tracked how much time visitors spent interacting with the Intelligent 
Science Exhibit and compared that to the time they spent with the 
Unfacilitated Exhibit (by turning on and off the intelligent features on the 
same exhibit/location). We looked at similar corresponding time frames (1–2 
hour slots each day) in each condition over two weeks to see how much time 
visitors spent on average.2 Five days of paired time periods were sampled for 
a total of 6.0 hours with the Unfacilitated Exhibit and 7.4 hours with the 
Intelligent Science Exhibit (including 2 corresponding sessions of ~2 hours 
and 3 corresponding sessions of ~1 hour). We report usage in terms of the 
proportion of available time in which the exhibit is occupied and the average 
length of a visit, neither of which is impacted by the difference in total time. 
We used the following method to estimate how long visitors spent at an 
exhibit from the log data. A visit ends at the last logged action before the 
system goes idle (no intervening logged actions) for more than 1 minute or at 
the end of a session (e.g., 3:41, 4:47 in the first example above). A visit starts 
at the first logged action after the end of a previous visit or at the start of a 
session (e.g., 2:45, 3:48 in the first example). A visit length is calculated as the 

2For example, we sampled from the log data interactions on July 4 (a Tuesday) when the Intelligent Science 
Exhibit was available, first, from 2:45 to 3:41 pm and the Unfacilitated Exhibit was available, after, from 
3:48 to 4:47pm and then on July 9 (a Sunday) when the Unfacilitated Exhibit was available, first, from 1:02 
to 1:44 pm and the Intelligent Science Exhibit was available, after, from 1:55 to 2:57 pm, etc.
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difference between the times of the visit start and end. An unoccupied period 
is defined as the time remaining outside of the start and end times of each 
visit.

Results on engagement: The intelligent science exhibit is stickier

The percentage of time that the exhibits were occupied (i.e., visit time 
divided by total time) was 56% for the Intelligent Science Exhibit 
(4.16 hours of 7.44 hours) versus 27% for the Unfacilitated Exhibit 
(1.61 hours of 6.03 hours). In the 4.16 hours that the Intelligent 
Science Exhibit was occupied, there were 40 different visits. This yields 
an average of 6.25 minutes per visit (4.16*60/40). In the 1.61 hours that 
the Unfacilitated Exhibit was occupied, there were 64 different visits. 
This yields an average of 1.51 minutes per visit (1.61*60/64), perhaps not 
enough time to learn much. Note that longer visits necessitate somewhat 
fewer visitors. The difference between the average 6.25 minutes spent on 
the Intelligent Science Exhibit and the average 1.51 minutes spent with 
the Unfacilitated Exhibit is statistically reliable (t(102) = 5.29, p < .001). 
In sum, not only do visitors stay longer with the Intelligent Exhibit, 
more than four times longer, the Intelligent Exhibit twice as likely to be 
in use (56% vs. 27%).

Bolstering these quantitative results on stickiness, we also observed that 
the kids seemed to be more persistent while interacting with the Intelligent 
Exhibit. If their prediction was wrong or if their tower fell over, they would 
try again and again. They seemed to be resilient against failure, as the gorilla 
said “Uh oh, your tower fell down. Please try again to make another tower!.” 
On the other hand, with the Unfacilitated Exhibit, such persistence and 
resilience were not apparent. Most visitors to the Unfacilitated Exhibit 
interacted for a very short time—mostly they built a tower, clicked shake 
to see if it stayed up, and then left. Rarely, we saw a few visitors making a 
second tower after the first one fell.

Feedback from parents or guardians

To get a sense for why the Intelligent Science Exhibit was more engaging, 
we gave a short informal survey to a small sample of 9 parents or guardians 
who interacted with the Intelligent Science Exhibit. Parents/guardians were 
identified during the day as children were interacting with the exhibit. The 
survey had 7 questions including: “We’re testing a new exhibit. Please let us 
know your thoughts.,” “Would you like to see this as a permanent exhibit? 
Why or why not?,” “How would you compare this exhibit to others in the 
museum?”
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The parent/guardian survey indicated that the interactive character of 
the exhibit was appealing and helped hold the attention of the kids. One 
parent wrote “I especially liked the making predictions part of it, and 
then having to come up with an explanation of the results.” She elabo
rated that “It employs inquiry learning, which is the heart of how kids 
learn. But it is also a play model, so it does not seem like a learning 
activity.” When asked to compare the Intelligent Science Exhibits with 
other exhibits, parents/guardians indicated it is “more interactive with 
the prompts and monitor,” “It’s more directed and instructional than 
most other exhibits” and “Compared to similar exhibits, this one has 
2-way communication. I think it’s better.” Parents/guardians also com
mented on how the guidance was pitched at the right level, for example, 
“For my kids age (5), it is a top exhibit. Minimal reading (which is good 
for older visitors), so it is great to engage early elementary-age kids, and 
still allows them to do science.” Parents/guardians’ comments indicated 
that the guidance provided in the system was a key reason for kids 
staying engaged while they were interacting with the exhibit.

General discussion

We found that adding guided inquiry scaffolding facilitated by having an 
intelligent layer on top of physical experimentation in traditional hands-on 
exhibits helps children formulate better, more scientific theories of the 
physical phenomena they experience. Our results demonstrate children 
receiving interactive guidance and feedback while predicting and explaining 
are better able to learn to apply science in engineering tasks, especially when 
combined with exploration and construction activities. Importantly, free 
exploration and construction on its own, as in many current exhibits in 
museums, led to substantially less learning and, for some measures, none at 
all. Adding the guided-discovery support and intelligent layer that the 
mixed-reality AI system provides, not only fosters better learning of scientific 
principles of stability, but also improves the application of those principles in 
a hands-on, constructive engineering task.

As indicated in the introduction, the Intelligent Science Exhibit utilizes 
learning support strategies based on prior research such as contrasting cases 
(Chase et al., 2010), predict-observe-explain prompting (White & Gunstone, 
1992), menu-based self-explanation prompting (Aleven & Koedinger, 2002; 
Chi et al., 1989), and interactive feedback (Corbett & Anderson, 2001). These 
strategies do not tell the science to students but promote relevant thinking so 
that students construct accurate scientific conceptions on their own. The 
contrasting case towers help children focus on scientifically relevant features 
and the self-explanation prompts get children to attend more closely to these 
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features and to put them into words. Figure 10 shows a contrasting case 
regarding symmetry where the children have predicted the left tower will fall 
first. When the gorilla asks why this tower will fall first, a child answers: 
“because this one [pointing to the left tower as shown] has more weight on 
the side and that one [pointing to the right tower] doesn’t.”

Sometimes these articulations of scientifically relevant features are started 
by one child and picked up by another. For example, faced with a case 
contrasting lower versus higher center of mass, one child explains “There 
is no blocks under it [pointing at the tower with more weight on top],” while 
another girl adds: “Yeah . . . And that will keep it up [pointing to the lower 
supporting part of the tower].” So, the contrasting case towers help focus 
children’s attention on the relevant scientific features that are different 
between the towers causing one to fall more quickly than the other.

Feedback from the system—“Uh oh! Your prediction was not quite right”— 
helps children focus their attention. It highlights an opportunity to learn. The 
prompted self-explanation supports this opportunity to learn, when the gorilla 
follows up “The right tower fell first. Why do you think this tower fell first?” 
The Gorilla provides alternative possible explanations: “Because it’s taller? 
Because it has a thinner base? Because it has more weight on top than bottom? 
Because it is not symmetrical or same on both sides?.” This menu-based self- 
explanation is an interesting variation on the “time for telling” idea (Schwartz 

Figure 10. Child predicts that one of the contrasting case towers has more weight on 
the side so it will fall more quickly compared to the other one.
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& Bransford, 1998). Similar to that approach, children’s incorrect prediction 
puts them in a more receptive mode than when up-front telling is provided. 
But importantly, the Gorilla is not simply telling. Children still need to figure 
out which explanation works in this situation. A child’s self-correction in this 
context is indicative of active sense making: “Because it’s taller? Oh, it has a 
thinner base!.” The gorilla’s feedback on the clicked-on explanation, “Good 
job! It fell first because it had a thinner base than the other tower.,” helps the 
child confirm their insight, as indicated by a “we did it” fist pump.

The sequencing of scientific inquiry before the engineering activity of 
building stable towers seems to afford transfer of learning. Concepts children 
pick up during inquiry are incorporated into their building efforts. For 
example, in “Test My Tower” mode one pair used the principles they had 
learned from the Guided-discovery mode, saying “Let’s use this (pointing at 
the long thin blocks). It has a big base. The bigger the base, the better it’s 
gonna be!”

The overall learning outcome and engagement results suggest that the 
Intelligent Exhibit evoked both playful and thoughtful interactions, whereas 
the Unfacilitated Exhibit evoked play but less thought. When children built 
and tested towers with the Unfacilitated Exhibit, they were not incorporating 
principles of balance or spontaneously designing experiments to understand 
the underlying principles. Instead, they focused on building from intuition, 
testing, and then tweaking, making changes to their towers with no apparent 
systematic plan. As shown in Figure 11, their towers tended not to incorpo
rate underlying principles. In rare cases where they built multiple towers at 
the same time, they did not express comparison goals or explicitly reflect on 
comparative outcomes.

Figure 11. Children’s constructed towers in the Unfacilitated Exhibit tended to not incorpo
rate the underlying scientific principles of balance, being all and thin (left image), asymme
trical (right), and with not more weight near the bottom than the top (both).
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While the Intelligent Science Exhibit provides many forms of guidance 
and scaffolding, it is not over-scaffolding. First, it provides for some fading of 
guidance as students transition from the Guided Discovery mode to the 
minimally guided Test My Tower mode. Second, our post-assessments 
involve no guidance and provide evidence that student learning from the 
Intelligent Science Exhibit transfers to a context without guidance, as stu
dents may experience in the real world or in future science learning activities. 
Furthermore, our Guided Discovery mode is different from direct instruc
tion, in that children are guided through an inquiry task where they are 
discovering the reasons behind physical phenomena with interactive feed
back rather than being given the answers upfront.

These results add value to popular views and theories of learning that are 
apparent in museums, maker spaces and other learning environments, that 
have a strong focus on open-ended hands-on exploratory learning (Jeffery- 
Clay, 1998). That value derives, in part, from articulating and testing more 
precise and operational scientific descriptions of key elements of active and 
constructive learning that can be most reliably replicated (cf., Klahr et al., 
2009). Ideas for what elements constitute effective constructive learning vary 
(e.g., Chi & Wylie, 2014; Kafai & Resnick, 1996; Resnick, 2014). One element 
some authors emphasize is the production of a public or externalized product, 
for example, “producing additional externalized outputs or products beyond 
what was provided” (Chi & Wylie, 2014) and “the learner is consciously 
engaged in constructing a public entity” (Papert, 1980). A consequent predic
tion in our context is that the tower building activities in the Unfacilitated 
Exhibit should provide greater learning benefits than the prediction and selec
tion-based explanations in the Intelligent Science Exhibit. The former produces 
an “additional externalized output” whereas the latter does not. Our findings 
are inconsistent with this prediction.

The Unfacilitated Exhibit was not better on any of our multiple learning 
measures. The Intelligent Science Exhibit condition performed significantly 
better than the Unfacilitated Exhibit in overall principle test results and, 
surprisingly, in transferring to hands-on activities in the Tower-Building 
tests that are directly analogous to the constructive activities in the 
Unfacilitated Exhibit condition. This result is especially interesting, as the 
Unfacilitated Exhibit condition is similar to how many museum exhibits and 
maker spaces are designed. The emphasis on construction and open-ended 
exploration, which is good when combined with well-designed instruction (cf., 
Yannier et al., 2021), can get misinterpreted as a recommendation for con
struction and open-ended exploration with no explicit guidance/instruction.

Our experiment also adds value to a cluster of theoretical notions suggesting 
that one learns what one practices. Related theoretical concepts and recommen
dations include transfer-appropriate processing (Bransford et al., 2000), “match 
the job task” (Clark & Mayer, 2016) or “active learning” such that students 
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become better physicists if they “practice physicist like reasoning” (Deslauriers et 
al., 2011). The straightforward interpretation of these recommendations correctly 
predicts that children interacting with the Intelligent Science Exhibit, practicing 
explanation, should have better outcomes on the explanation measures, com
pared to those in the Unfacilitated Exhibit condition, who do not practice 
explanation. However, a straightforward application incorrectly predicts that 
better outcomes on tower building should result from the Unfacilitated 
Museum Exhibit condition, which practices more tower building whereas the 
Intelligent Science Exhibit condition does not. We find that the scientific thinking 
that is enhanced through guided inquiry practice transfers to the engineering task 
of tower construction better than the thinking elicited by tower construction 
practice. Thus, the theoretical value added by this work is both a caution against 
using task similarity alone in predicting transfer and a recommendation to also 
evaluate the similarity in the underlying thinking that instructional tasks evoke 
and that assessment tasks require. Such evaluation can be done, for example, 
using methods like cognitive task analysis (cf., Koedinger & McLaughlin, 2010; 
Lovett, 1998; Velmahos et al., 2004).

In addition to learning benefits, we also found the Intelligent Science 
Exhibit kept visitors engaged for longer periods of time. Visitors spent four 
times more time at the Intelligent Science Exhibit voluntarily compared to the 
Unfacilitated Exhibit. Qualitatively, we observed more persistence among 
visitors interacting with the Intelligent Science Exhibit, trying again and 
again to get their towers to stay up when the earthquake happened whereas 
in the Unfacilitated Exhibit such persistence and resilience were not apparent. 
This extra time and persistence suggest potential further learning benefits 
when Intelligent Science Exhibits are deployed in a museum. The large 
learning gains we saw in the experimental study where time was controlled 
may be multiplied in a museum setting where visitors stick with the Intelligent 
Science Exhibit much longer than a matched Unfacilitated Exhibit.

Intelligent Science Exhibits automate effective forms of scaffolding and 
guidance, in a way that affords both reliable experimental variation and 
wider dissemination, but without sacrificing the benefits of hands-on physical 
experimentation in the real world. This interactive support is especially impor
tant in museums where it’s not always feasible to have knowledgeable staff 
around the exhibits and where parents/guardians do not always have relevant 
knowledge. We demonstrated how guidance and personalized support pro
vides for better learning outcomes. Because the AI technology in Intelligent 
Science Exhibits automates this support, it can be provided to more children of 
different backgrounds and at a wider scale. While the study in this paper was 
conducted when there was no facilitator or museum staff present, the AI 
technology can also be a model when there are facilitators or parents around, 
exemplifying how they can guide the children for better learning outcomes.

28 YANNIER ET AL.



Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the NSF [1612744,1701107]

References

Aleven, V. A., & Koedinger, K. R. (2002). An effective metacognitive strategy: 
Learning by doing and explaining with a computer-based Cognitive Tutor. 
Cognitive Science, 26(2), 147–179. https://doi.org/10.1207/s15516709cog2602_1 

Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (2016). Instruction 
based on adaptive learning technologies. Handbook of Research on Learning and 
Instruction, 522–560. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1207/ 
s15516709cog2602_1 

Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does 
discovery-based instruction enhance learning? Journal of Educational 
Psychology, 103(1), 1. https://doi.org/10.1037/a0021017 

Alimisis, D. (2013). Educational robotics: Open questions and new challenges. 
Themes in Science and Technology Education, 6(1), 63–71.

Anderson, D. R., Bryant, J., Wilder, A., Santomero, A., Williams, M., & Crawley, A. 
M. (2000). Researching blue’s clues: Viewing behavior and impact. Media 
Psychology, 2(2), 179–194. https://doi.org/10.1207/S1532785XMEP0202_4 

Bamberger, Y., & Tal, T. (2007). Learning in a personal context: Levels of choice in a 
free choice learning environment in science and natural history museums. Science 
Education, 91(1), 75–95. https://doi.org/10.1002/sce.20174 

Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. 
The Journal of the Learning Sciences, 13(1), 1–14. https://doi.org/10.1207/ 
s15327809jls1301_1 

Benko, H., Jota, R., & Wilson, A. (2012, May). MirageTable: Freehand interaction on a 
projected augmented reality tabletop. In Proceedings of the SIGCHI conference on 
human factors in computing systems (pp. 199–208). https://dl.acm.org/doi/pdf/10. 
1145/2207676.2207704?casa_token=8IKRibF_RzgAAAAA:H-snuBR1vRx9HfLLpR 
QEqMrYA03xFXSkpvLtfFJ-Mw0axb9_YW-iQ_BMX4Pnd1LDiqSfMa8xpfs 

Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, 
techniques, and illusions. Annual Review of Psychology, 64(1), 417–444. https:// 
doi.org/10.1146/annurev-psych-113011-143823 

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn (Vol. 11). 
Washington, DC: National academy press .

Cassell, J. (2000). Embodied conversational agents. MIT press.
Chase, C. C., Shemwell, J. T., & Schwartz, D. L. (2010). Explaining across contrasting 

cases for deep understanding in science: An example using interactive simulations. 
Proceedings of the 2010 International Conference of the Learning Sciences. https:// 
repository.isls.org/bitstream/1/2665/1/153-160.pdf 

JOURNAL OF THE LEARNING SCIENCES 29

https://doi.org/10.1207/s15516709cog2602_1
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1207/s15516709cog2602_1
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1207/s15516709cog2602_1
https://doi.org/10.1037/a0021017
https://doi.org/10.1207/S1532785XMEP0202_4
https://doi.org/10.1002/sce.20174
https://doi.org/10.1207/s15327809jls1301_1
https://doi.org/10.1207/s15327809jls1301_1
https://dl.acm.org/doi/pdf/10.1145/2207676.2207704?casa_token=8IKRibF_RzgAAAAA:H-snuBR1vRx9HfLLpRQEqMrYA03xFXSkpvLtfFJ-Mw0axb9_YW-iQ_BMX4Pnd1LDiqSfMa8xpfs
https://dl.acm.org/doi/pdf/10.1145/2207676.2207704?casa_token=8IKRibF_RzgAAAAA:H-snuBR1vRx9HfLLpRQEqMrYA03xFXSkpvLtfFJ-Mw0axb9_YW-iQ_BMX4Pnd1LDiqSfMa8xpfs
https://dl.acm.org/doi/pdf/10.1145/2207676.2207704?casa_token=8IKRibF_RzgAAAAA:H-snuBR1vRx9HfLLpRQEqMrYA03xFXSkpvLtfFJ-Mw0axb9_YW-iQ_BMX4Pnd1LDiqSfMa8xpfs
https://doi.org/10.1146/annurev-psych-113011-143823
https://doi.org/10.1146/annurev-psych-113011-143823
https://repository.isls.org/bitstream/1/2665/1/153-160.pdf
https://repository.isls.org/bitstream/1/2665/1/153-160.pdf


Chi, M. T., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self- 
explanations: How students study and use examples in learning to solve pro
blems. Cognitive Science ,  13(2),  145–182. https://doi.org/10.1207/ 
s15516709cog1302_1 

Chi, M., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to 
active learning outcomes. Educational Psychologist, 49(4), 219–243. https://doi. 
org/10.1080/00461520.2014.965823 

Christel, M. G., Stevens, S. M., Maher, B. S., Brice, S., Champer, M., Jayapalan, L., and 
Zhang, X. (2012, July). RumbleBlocks: Teaching science concepts to young chil
dren through a unity game. In 2012 17th International Conference on Computer 
Games (CGAMES) (pp. 162–166). IEEE. https://ieeexplore.ieee.org/stamp/stamp. 
j s p ? a r n u m b e r = 6 3 1 4 5 7 0 & c a s a _ t o k e n = 8 U x 9 4 b e E c X A A A A A A :  
eLqLYvj20lOPwzrfUTkhGEIL126PsiB6ALI4tJEZOwcOcEMOY2bK5TH 

Clark, R. C., & Mayer, R. E. (2016). E-learning and the science of instruction: Proven 
guidelines for consumers and designers of multimedia learning. John Wiley & Sons.

Cody, A. (2010). Sharing our visions: What does great education look like to you? 
Education Week.

Corbett, A. T., & Anderson, J. R. (2001, March). Locus of feedback control in 
computer-based tutoring: Impact on learning rate, achievement and attitudes. In 
Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 
245–252). ACM. https://dl.acm.org/doi/pdf/10.1145/365024.365111?casa_token=- 
2 o 6 2 h 5 - R 4 c A A A A A : X q _ D t l N q k s 3 1 i n y 1 o 1 G k o Q S 9 H G M m j z c m  
ZeBCnoE51SSJOsDq6ssnuVSCXC2g7gcOmtXtmOFnIlo 

Crowley, K., Callanan, M. A., Jipson, J. L., Galco, J., Topping, K., & Shrager, J. (2001). 
Shared scientific thinking in everyday parent-child activity. Science Education, 85 
(6), 712–732. https://doi.org/10.1002/sce.1035 

De Jong, T., & Lazonder, A. W. (2014). 15 The guided discovery learning principle in 
multimedia learning. The Cambridge Handbook of Multimedia Learning, 371.

Design-Based Research Collective. (2003). Design-based research: An emerging 
paradigm for educational inquiry. Educational Researcher, 32(1), 5–8. https:// 
doi.org/10.3102/0013189X032001005 

Deslauriers, L., Schelew, E., & Wieman, C. (2011). Improved learning in a 
large-enrollment physics class. Science, 332(603), 862–864. https://doi.org/10. 
1126/science.1201783 

Eberbach, C. (2009). The effect of parents’ conversational style and disciplinary knowl
edge on children’s observation of biological phenomena [Doctoral dissertation]. 
University of Pittsburgh.

Ericsson, K. A. (2008). Deliberate practice and acquisition of expert performance: A 
general overview. Academic Emergency Medicine, 15(11), 988–994. https://doi.org/ 
10.1111/j.1553-2712.2008.00227.x 

Eysink, T. H., Gersen, L., & Gijlers, H. (2015). Inquiry learning for gifted children. 
High Ability Studies, 26(1), 63–74. https://doi.org/10.1080/13598139.2015. 
1038379 

Falloon, G. (2010). Using avatars and virtual environments in learning: What do they 
have to offer? British Journal of Educational Technology, 41(1), 108–122. https:// 
doi.org/10.1111/j.1467-8535.2009.00991.x 

Fender, J. G., & Crowley, K. (2007). How parent explanation changes what 
children learn from everyday scientific thinking. Journal of Applied 
Developmental Psychology, 28(3), 189–210. https://doi.org/10.1016/j.appdev. 
2007.02.007 

30 YANNIER ET AL.

https://doi.org/10.1207/s15516709cog1302_1
https://doi.org/10.1207/s15516709cog1302_1
https://doi.org/10.1080/00461520.2014.965823
https://doi.org/10.1080/00461520.2014.965823
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6314570%26casa_token=8Ux94beEcXAAAAAA:eLqLYvj20lOPwzrfUTkhGEIL126PsiB6ALI4tJEZOwcOcEMOY2bK5TH
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6314570%26casa_token=8Ux94beEcXAAAAAA:eLqLYvj20lOPwzrfUTkhGEIL126PsiB6ALI4tJEZOwcOcEMOY2bK5TH
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6314570%26casa_token=8Ux94beEcXAAAAAA:eLqLYvj20lOPwzrfUTkhGEIL126PsiB6ALI4tJEZOwcOcEMOY2bK5TH
https://dl.acm.org/doi/pdf/10.1145/365024.365111?casa_token=-2o62h5-R4cAAAAA:Xq_DtlNqks31iny1o1GkoQS9HGMmjzcmZeBCnoE51SSJOsDq6ssnuVSCXC2g7gcOmtXtmOFnIlo
https://dl.acm.org/doi/pdf/10.1145/365024.365111?casa_token=-2o62h5-R4cAAAAA:Xq_DtlNqks31iny1o1GkoQS9HGMmjzcmZeBCnoE51SSJOsDq6ssnuVSCXC2g7gcOmtXtmOFnIlo
https://dl.acm.org/doi/pdf/10.1145/365024.365111?casa_token=-2o62h5-R4cAAAAA:Xq_DtlNqks31iny1o1GkoQS9HGMmjzcmZeBCnoE51SSJOsDq6ssnuVSCXC2g7gcOmtXtmOFnIlo
https://doi.org/10.1002/sce.1035
https://doi.org/10.3102/0013189X032001005
https://doi.org/10.3102/0013189X032001005
https://doi.org/10.1126/science.1201783
https://doi.org/10.1126/science.1201783
https://doi.org/10.1111/j.1553-2712.2008.00227.x
https://doi.org/10.1111/j.1553-2712.2008.00227.x
https://doi.org/10.1080/13598139.2015.1038379
https://doi.org/10.1080/13598139.2015.1038379
https://doi.org/10.1111/j.1467-8535.2009.00991.x
https://doi.org/10.1111/j.1467-8535.2009.00991.x
https://doi.org/10.1016/j.appdev.2007.02.007
https://doi.org/10.1016/j.appdev.2007.02.007


Franse, R. K., van Schijndel, T. J., Plankman, T. I., & Raijmakers, M. E. (2021). 
Families’ experiments and conversations at an open-ended exhibit in a science 
museum: Individual characteristics and the influence of minimal guidance strate
gies. Science Education, 105(4), 707–742. https://doi.org/10.1002/sce.21620 

Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and 
quasi-experimental studies of inquiry-based science teaching: A meta-analysis. 
Review of Educational Research, 82(3), 300–329. https://doi.org/10.3102/ 
0034654312457206 

Gibson, J. J., & Gibson, E. J. (1955). Perceptual learning: Differentiation or 
enrichment? Psychological Review, 62(1), 32. https://doi.org/10.1037/h0048826 

Gick, M. L., & Paterson, K. (1992). Do contrasting examples facilitate schema 
acquisition and analogical transfer? Canadian Journal of Psychology/Revue 
Canadienne de Psychologie, 46(4), 539. https://doi.org/10.1037/h0084333 

Gormally, C., Brickman, P., Hallar, B., & Armstrong, N. (2009). Effects of inquiry- 
based learning on students’ science literacy skills and confidence. International 
Journal for the Scholarship of Teaching and Learning, 3(2), n2. https://doi.org/10. 
20429/ijsotl.2009.030216 

Gupta, A., Fox, D., Curless, B., & Cohen, M. (2012, October). DuploTrack: A 
real-time system for authoring and guiding duplo block assembly. In 
Proceedings of the 25th annual ACM symposium on User interface software and 
technology (pp. 389–402). https://dl.acm.org/doi/pdf/10.1145/2380116.2380167? 
casa_token=ofFg-yXTcM4AAAAA:Krhr359TWcOhL0_244RmE4Pv6jRrCU_ 
xgwSgreUE_d7novTrSCNT9p4nyzBMcZHzuztBQnkbyLo 

Hammady, R., & Ma, M. (2019). Designing spatial ui as a solution of the narrow fov 
of microsoft hololens: Prototype of virtual museum guide. In Augmented reality 
and virtual reality (pp. 217–231) Springer. https://pure.solent.ac.uk/ws/files/ 
10722373/Designing_Spatial_UI_as_a_Solution_of_the_Narrow_FOV_of_ 
Microsoft_HoloLens_Prototype_of_Virtual_Museum_Guide_compressed.pdf 

Hattie, J. (2012). Visible learning for teachers: Maximizing impact on learning. 
Routledge.

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achieve
ment in problem-based and inquiry learning: A response to Kirschner, Sweller, 
and. Educational Psychologist, 42(2), 99–107. https://doi.org/10.1080/ 
00461520701263368 

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises 
and implications for teaching and learning. Center for Curriculum Redesign.

Hovious, A. (2015), The recipe for successful makerspace design. https://designerlibrar 
ian.wordpress.com/2015/10/19/the-recipe-for-successful-makerspace-design/ 

Jeffery-Clay, K. R. (1998). Constructivism in museums: How museums create mean
ingful learning environments. Journal of Museum Education, 23(1), 3–7. https:// 
doi.org/10.1080/10598650.1998.11510362 

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, 
and learning in a digital world. Routledge.

Kearney, M. (2004). Classroom use of multimedia-supported predict–observe– 
explain tasks in a social constructivist learning environment. Research in Science 
Education, 34(4), 427–453. https://doi.org/10.1007/s11165-004-8795-y 

Kim, N. J., Belland, B. R., & Walker, A. E. (2018). Effectiveness of computer-based 
scaffolding in the context of problem-based learning for STEM education: 
Bayesian meta-analysis. Educational Psychology Review, 30(2), 397–429. https:// 
doi.org/10.1007/s10648-017-9419-1 

JOURNAL OF THE LEARNING SCIENCES 31

https://doi.org/10.1002/sce.21620
https://doi.org/10.3102/0034654312457206
https://doi.org/10.3102/0034654312457206
https://doi.org/10.1037/h0048826
https://doi.org/10.1037/h0084333
https://doi.org/10.20429/ijsotl.2009.030216
https://doi.org/10.20429/ijsotl.2009.030216
https://dl.acm.org/doi/pdf/10.1145/2380116.2380167?casa_token=ofFg-yXTcM4AAAAA:Krhr359TWcOhL0_244RmE4Pv6jRrCU_xgwSgreUE_d7novTrSCNT9p4nyzBMcZHzuztBQnkbyLo
https://dl.acm.org/doi/pdf/10.1145/2380116.2380167?casa_token=ofFg-yXTcM4AAAAA:Krhr359TWcOhL0_244RmE4Pv6jRrCU_xgwSgreUE_d7novTrSCNT9p4nyzBMcZHzuztBQnkbyLo
https://dl.acm.org/doi/pdf/10.1145/2380116.2380167?casa_token=ofFg-yXTcM4AAAAA:Krhr359TWcOhL0_244RmE4Pv6jRrCU_xgwSgreUE_d7novTrSCNT9p4nyzBMcZHzuztBQnkbyLo
https://pure.solent.ac.uk/ws/files/10722373/Designing_Spatial_UI_as_a_Solution_of_the_Narrow_FOV_of_Microsoft_HoloLens_Prototype_of_Virtual_Museum_Guide_compressed.pdf
https://pure.solent.ac.uk/ws/files/10722373/Designing_Spatial_UI_as_a_Solution_of_the_Narrow_FOV_of_Microsoft_HoloLens_Prototype_of_Virtual_Museum_Guide_compressed.pdf
https://pure.solent.ac.uk/ws/files/10722373/Designing_Spatial_UI_as_a_Solution_of_the_Narrow_FOV_of_Microsoft_HoloLens_Prototype_of_Virtual_Museum_Guide_compressed.pdf
https://doi.org/10.1080/00461520701263368
https://doi.org/10.1080/00461520701263368
https://designerlibrarian.wordpress.com/2015/10/19/the-recipe-for-successful-makerspace-design/
https://designerlibrarian.wordpress.com/2015/10/19/the-recipe-for-successful-makerspace-design/
https://doi.org/10.1080/10598650.1998.11510362
https://doi.org/10.1080/10598650.1998.11510362
https://doi.org/10.1007/s11165-004-8795-y
https://doi.org/10.1007/s10648-017-9419-1
https://doi.org/10.1007/s10648-017-9419-1


Kim, K. Y., & Crowley, K. (2010). Negotiating the goal of museum inquiry: How families 
engineer and experiment. In Instructional explanations in the disciplines (pp. 51–65) 
Springer. http://www.upclose.pitt.edu/articles/kim%20and%20crowley.pdf 

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Richard e. Clark,“Why minimal 
guidance during instruction does not work: An analysis of the failure of con
structivist, discovery, problem-based, experiential and inquiry-based teaching.” 
Educational Psychologist, 41(2), 2. https://doi.org/10.1207/s15326985ep4102_1 

Klahr, D., Ambady, N., Eccles, J., Gomez, L., Klahr, D., Linn, M., Miller, K., & Mix, K. 
(2009). “To every thing there is a season, and a time to every purpose under the 
heavens”: What about direct instruction? The American Psychologist, 64(6), 
538–550. https://doi.org/10.1037/a0014813 

Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science 
instruction: Effects of direct instruction and discovery learning. Journal of 
Phsicological Science, 2(1). https://journals.sagepub.com/doi/pdf/10.1111/j.0956- 
7976.2004.00737.x?casa_token=Q8z9V1N15W4AAAAA%3A-ZQ5esW6xXNwA_ 
F u E g f V m D g g l h p t k K h C 4 N s U 6 y e t Q n B K 2 U T E 8 S J 7 M d W m h z f _  
OW9sAt0OOwsXY5k& 

Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative 
effectiveness of physical versus virtual materials in an engineering design project 
by middle school children. Journal of Research in Science Teaching, 44(1), 183–203. 
https://doi.org/10.1002/tea.20152 

Koedinger, K. R., Booth, J. L., & Klahr, D. (2013). Instructional complexity and the 
science to constrain it. Science, 342(6161), 935–937. https://doi.org/10.1126/ 
science.1238056 

Koedinger, K., & McLaughlin, E. (2010). Seeing language learning inside the math: 
Cognitive analysis yields transfer. In Proceedings of the Annual Meeting of the 
Cognitive Science Society (Vol. 32 No.32). https://escholarship.org/content/ 
qt2n8407gq/qt2n8407gq.pdf 

Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., 
Puntambekar, S., & Ryan, M. (2003). Problem-based learning meets case-based 
reasoning in the middle-school science classroom: Putting learning by design (tm) 
into practice. The Journal of the Learning Sciences, 12(4), 495–547. https://doi.org/ 
10.1207/S15327809JLS1204_2 

Laput, G., & Harrison, C. (2019, May). SurfaceSight: A New Spin on Touch, User, 
and Object Sensing for IoT Experiences. In Proceedings of the 2019 CHI Conference 
on Human Factors in Computing Systems (pp. 1–12). https://dl.acm.org/doi/pdf/ 
10.1145/3290605.3300559?casa_token=Fixn5xqgbG4AAAAA:PkAWl- 
j r H k b 9 W V I j S 2 3 R q Q Q e N X p D 7 G f W B s V K 3 D m i S K y T a _ Z W 1 V X v g -  
rEFAnzmABv6aMvo5pzkvM 

Lovett, M. C. (1998). Cognitive task analysis in service of intelligent tutoring system 
design: A case study in statistics. In International Conference on Intelligent Tutoring 
Systems (pp. 234–243). Springer, Berlin, Heidelberg.

Ma, J., Shahar, E., Eliceiri, K., Mehta, G., & Yu, K. (2019, June). Shedding light: 
Integrating bioimaging technologies into the design of an interactive museum 
exhibit. In Proceedings of the 2019 on Designing Interactive Systems Conference (pp. 
837–848). https://dl.acm.org/doi/pdf/10.1145/3322276.3322299 

Manches, A., & O’malley, C. (2012). Tangibles for learning: A representational 
analysis of physical manipulation. Personal and Ubiquitous Computing, 16(4), 
405–419. https://doi.org/10.1007/s00779-011-0406-0 

32 YANNIER ET AL.

http://www.upclose.pitt.edu/articles/kim%20and%20crowley.pdf
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1037/a0014813
https://journals.sagepub.com/doi/pdf/10.1111/j.0956-7976.2004.00737.x?casa_token=Q8z9V1N15W4AAAAA%3A-ZQ5esW6xXNwA_FuEgfVmDgglhptkKhC4NsU6yetQnBK2UTE8SJ7MdWmhzf_OW9sAt0OOwsXY5k%26
https://journals.sagepub.com/doi/pdf/10.1111/j.0956-7976.2004.00737.x?casa_token=Q8z9V1N15W4AAAAA%3A-ZQ5esW6xXNwA_FuEgfVmDgglhptkKhC4NsU6yetQnBK2UTE8SJ7MdWmhzf_OW9sAt0OOwsXY5k%26
https://journals.sagepub.com/doi/pdf/10.1111/j.0956-7976.2004.00737.x?casa_token=Q8z9V1N15W4AAAAA%3A-ZQ5esW6xXNwA_FuEgfVmDgglhptkKhC4NsU6yetQnBK2UTE8SJ7MdWmhzf_OW9sAt0OOwsXY5k%26
https://journals.sagepub.com/doi/pdf/10.1111/j.0956-7976.2004.00737.x?casa_token=Q8z9V1N15W4AAAAA%3A-ZQ5esW6xXNwA_FuEgfVmDgglhptkKhC4NsU6yetQnBK2UTE8SJ7MdWmhzf_OW9sAt0OOwsXY5k%26
https://doi.org/10.1002/tea.20152
https://doi.org/10.1126/science.1238056
https://doi.org/10.1126/science.1238056
https://escholarship.org/content/qt2n8407gq/qt2n8407gq.pdf
https://escholarship.org/content/qt2n8407gq/qt2n8407gq.pdf
https://doi.org/10.1207/S15327809JLS1204_2
https://doi.org/10.1207/S15327809JLS1204_2
https://dl.acm.org/doi/pdf/10.1145/3290605.3300559?casa_token=Fixn5xqgbG4AAAAA:PkAWl-jrHkb9WVIjS23RqQQeNXpD7GfWBsVK3DmiSKyTa_ZW1VXvg-rEFAnzmABv6aMvo5pzkvM
https://dl.acm.org/doi/pdf/10.1145/3290605.3300559?casa_token=Fixn5xqgbG4AAAAA:PkAWl-jrHkb9WVIjS23RqQQeNXpD7GfWBsVK3DmiSKyTa_ZW1VXvg-rEFAnzmABv6aMvo5pzkvM
https://dl.acm.org/doi/pdf/10.1145/3290605.3300559?casa_token=Fixn5xqgbG4AAAAA:PkAWl-jrHkb9WVIjS23RqQQeNXpD7GfWBsVK3DmiSKyTa_ZW1VXvg-rEFAnzmABv6aMvo5pzkvM
https://dl.acm.org/doi/pdf/10.1145/3290605.3300559?casa_token=Fixn5xqgbG4AAAAA:PkAWl-jrHkb9WVIjS23RqQQeNXpD7GfWBsVK3DmiSKyTa_ZW1VXvg-rEFAnzmABv6aMvo5pzkvM
https://dl.acm.org/doi/pdf/10.1145/3322276.3322299
https://doi.org/10.1007/s00779-011-0406-0


Manches, A., & Price, S. (2011, June). Designing learning representations around 
physical manipulation: Hands and objects. In Proceedings of the 10th International 
Conference on Interaction Design and Children (pp. 81–89). https://dl.acm.org/doi/ 
pdf/10.1145/1999030.1999040?casa_token=CVcCyKUTab8AAAAA: 
s 2 e C 8 i q I y v 1 N 1 3 4 2 L N M Q H c 1 K f I E r B V W f b o t e f w p S l G Y S r B v w u _  
eusraFgUQivsTt2wC_8TRyIGw 

Marshall, P. (2007, February). Do tangible interfaces enhance learning? In 
Proceedings of the 1st international conference on Tangible and embedded interac
tion (pp. 163–170).

Marshall, P., Rogers, Y., & Hornecker, E. (2007). Are tangible interfaces really any 
better than other kinds of interfaces? In: CHI’07 workshop on Tangible User 
Interfaces in Context & Theory, 28 Apr 2007, San Jose, California, USA. http:// 
oro.open.ac.uk/19535/1/TUIworkshop-Marshall.pdf 

National Research Council. (2012). A framework for K-12 science education: 
Practices, crosscutting concepts, and core ideas. National Academies Press.

Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many 
guises. Review of General Psychology, 2(2), 175–220. https://doi.org/10.1037/ 
1089-2680.2.2.175 

Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: 
An effort to improve students’ conceptual understanding through science laboratory 
experimentation. Science Education, 96(1), 21–47. https://doi.org/10.1002/sce.20463 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A., Kamp, E. T., 

Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based 
learning: Definitions and the inquiry cycle. Educational Research Review, 14, 
47–61. https://www.sciencedirect.com/science/article/pii/S1747938X15000068 

Puchner, L., Rapoport, R., & Gaskins, S. (2001). Learning in children’s museums: Is it 
really happening? Curator: The Museum Journal, 44(3), 237–259. https://doi.org/ 
10.1111/j.2151-6952.2001.tb01164.x 

Resnick, M. (2014). Give P’s a chance: Projects, peers, passion, play. Constructionism 
and creativity: Proceedings of the Third International Constructionism Conference. 
Austrian Computer Society, Vienna.

Rittle-Johnson, B., & Star, J. R. (2009). Compared with what? The effects of different 
comparisons on conceptual knowledge and procedural flexibility for equation solving. 
Journal of Educational Psychology, 101(3), 529. https://doi.org/10.1037/a0014224 

Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and 
Instruction, 16(4), 475–5223. https://doi.org/10.1207/s1532690xci1604_4 

Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus 
inventing with contrasting cases: The effects of telling first on learning and transfer. 
Journal of Educational Psychology, 103(4), 759. https://doi.org/10.1037/a0025140 

Schwartz, D. L., Tsang, J. M., & Blair, K. P. (2016). The ABCs of how we learn: 26 
scientifically proven approaches, how they work, and when to use them. WW 
Norton & Company.

Sottilare, R. A., Baker, R. S., Graesser, A. C., & Lester, J. C. (2018). Special issue on the 
Generalized Intelligent Framework for Tutoring (GIFT): Creating a stable and flexible 
platform for innovations in AIED research. International Journal of Artificial 
Intelligence in Education, 28(2), 139–151. https://doi.org/10.1007/s40593-017-0149-9 

Timms, M. J. (2016). Letting artificial intelligence in education out of the box: 
Educational cobots and smart classrooms. International Journal of Artificial 
Intelligence in Education, 26(2), 701–712. https://doi.org/10.1007/s40593-016-0095-y 

JOURNAL OF THE LEARNING SCIENCES 33

https://dl.acm.org/doi/pdf/10.1145/1999030.1999040?casa_token=CVcCyKUTab8AAAAA:s2eC8iqIyv1N1342LNMQHc1KfIErBVWfbotefwpSlGYSrBvwu_eusraFgUQivsTt2wC_8TRyIGw
https://dl.acm.org/doi/pdf/10.1145/1999030.1999040?casa_token=CVcCyKUTab8AAAAA:s2eC8iqIyv1N1342LNMQHc1KfIErBVWfbotefwpSlGYSrBvwu_eusraFgUQivsTt2wC_8TRyIGw
https://dl.acm.org/doi/pdf/10.1145/1999030.1999040?casa_token=CVcCyKUTab8AAAAA:s2eC8iqIyv1N1342LNMQHc1KfIErBVWfbotefwpSlGYSrBvwu_eusraFgUQivsTt2wC_8TRyIGw
https://dl.acm.org/doi/pdf/10.1145/1999030.1999040?casa_token=CVcCyKUTab8AAAAA:s2eC8iqIyv1N1342LNMQHc1KfIErBVWfbotefwpSlGYSrBvwu_eusraFgUQivsTt2wC_8TRyIGw
http://oro.open.ac.uk/19535/1/TUIworkshop-Marshall.pdf
http://oro.open.ac.uk/19535/1/TUIworkshop-Marshall.pdf
https://doi.org/10.1037/1089-2680.2.2.175
https://doi.org/10.1037/1089-2680.2.2.175
https://doi.org/10.1002/sce.20463
https://www.sciencedirect.com/science/article/pii/S1747938X15000068
https://doi.org/10.1111/j.2151-6952.2001.tb01164.x
https://doi.org/10.1111/j.2151-6952.2001.tb01164.x
https://doi.org/10.1037/a0014224
https://doi.org/10.1207/s1532690xci1604_4
https://doi.org/10.1037/a0025140
https://doi.org/10.1007/s40593-017-0149-9
https://doi.org/10.1007/s40593-016-0095-y


Velmahos, G. C., Toutouzas, K. G., Sillin, L. F., Chan, L., Clark, R. E., Theodorou, D., 
& Maupin, F. (2004). Cognitive task analysis for teaching technical skills in an 
inanimate surgical skills laboratory. The American Journal of Surgery, 18(1), 
114–119. https://doi.org/10.1016/j.amjsurg.2002.12.005 

Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced 
learning environments. Educational Technology Research and Development, 53(4), 
5–23. https://doi.org/10.1007/BF02504682 

White, R., & Gunstone, R. (1992). Prediction-observation-explanation. Probing 
Understanding, 4, 44-64.

Yannier, N. (2016). Bridging physical and virtual learning: A mixed-reality system for 
early science [Doctoral dissertation]. Carnegie Mellon University.

Yannier, N., Hudson, S. E., & Koedinger, K. R. (2020). Active learning is about more 
than hands-on: A mixed-reality AI system to support STEM education. 
International Journal of Artificial Intelligence in Education, 30(1), 74-96. https:// 
par.nsf.gov/servlets/purl/10151045 

Yannier, N., Hudson, S. E., Koedinger, K. R., Hirsh-Pasek, K., Golinkoff, R. M., 
Munakata, Y., Doebel, S., Schwartz, D. L., Deslauriers, L., McCarty, L., Callaghan, 
K., Theobald, E. J., Freeman, S., Cooper, K. M., & Brownell, S. E. (2021). Active 
learning: “Hands-on” meets “minds-on.” Science, 374(6563), 26–30. https://doi. 
org/10.1126/science.abj9957 

Yannier, N., Hudson, S. E., Wiese, E. S., & Koedinger, K. R. (2016). Adding physical 
objects to an interactive game improves learning and enjoyment: Evidence from 
EarthShake. ACM Transactions on Computer-Human Interaction (TOCHI), 23(4), 
26. https://doi.org/10.1145/2934668 

Yannier, N., Koedinger, K. R., & Hudson, S. E. (2013, July). Tangible collaborative 
learning with a mixed-reality game: Earthshake. In International Conference on 
Artificial Intelligence in Education (pp. 131–140). Springer, Berlin, Heidelberg.

Yannier, N., Koedinger, K. R., & Hudson, S. E. (2015). Learning from mixed-reality 
games: Is shaking a tablet as effective as physical observation? In Proceedings of the 
33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 
1045–1054). ACM. Seoul, Korea https://dl.acm.org/doi/pdf/10.1145/2702123. 
2702397 

Yoon, S. A., Elinich, K., Wang, J., Steinmeier, C., & Tucker, S. (2012). Using 
augmented reality and knowledge-building scaffolds to improve learning in a 
science museum. International Journal of Computer-Supported Collaborative 
Learning, 7(4), 519–541. https://doi.org/10.1007/s11412-012-9156-x 

Zhang, Y., Yang, C., Hudson, S. E., Harrison, C., & Sample, A. (2018, April). Wall++ 
Room-scale interactive and context-aware sensing. In Proceedings of the 2018 CHI 
Conference on Human Factors in Computing Systems (pp. 1–15). https://dl.acm. 
org/doi/pdf/10.1145/3173574.3173847?casa_token=jET4NfwY01oAAAAA: 
g6ya7YSDDYGc2ZC4jrHj30V4GBzSBIZAmw-pGZ3PBt9n9yk0Ykoz2MTxRe_ 
iPH_m7D3y2wQgz00

34 YANNIER ET AL.

https://doi.org/10.1016/j.amjsurg.2002.12.005
https://doi.org/10.1007/BF02504682
https://par.nsf.gov/servlets/purl/10151045
https://par.nsf.gov/servlets/purl/10151045
https://doi.org/10.1126/science.abj9957
https://doi.org/10.1126/science.abj9957
https://doi.org/10.1145/2934668
https://dl.acm.org/doi/pdf/10.1145/2702123.2702397
https://dl.acm.org/doi/pdf/10.1145/2702123.2702397
https://doi.org/10.1007/s11412-012-9156-x
https://dl.acm.org/doi/pdf/10.1145/3173574.3173847?casa_token=jET4NfwY01oAAAAA:g6ya7YSDDYGc2ZC4jrHj30V4GBzSBIZAmw-pGZ3PBt9n9yk0Ykoz2MTxRe_iPH_m7D3y2wQgz00
https://dl.acm.org/doi/pdf/10.1145/3173574.3173847?casa_token=jET4NfwY01oAAAAA:g6ya7YSDDYGc2ZC4jrHj30V4GBzSBIZAmw-pGZ3PBt9n9yk0Ykoz2MTxRe_iPH_m7D3y2wQgz00
https://dl.acm.org/doi/pdf/10.1145/3173574.3173847?casa_token=jET4NfwY01oAAAAA:g6ya7YSDDYGc2ZC4jrHj30V4GBzSBIZAmw-pGZ3PBt9n9yk0Ykoz2MTxRe_iPH_m7D3y2wQgz00
https://dl.acm.org/doi/pdf/10.1145/3173574.3173847?casa_token=jET4NfwY01oAAAAA:g6ya7YSDDYGc2ZC4jrHj30V4GBzSBIZAmw-pGZ3PBt9n9yk0Ykoz2MTxRe_iPH_m7D3y2wQgz00

	Abstract
	Introduction
	The intelligent exhibit: A guided mixed-reality interactive experience
	Scenario

	Use-driven iterative design process of an intelligent science exhibit
	Early iterations at the children’s museum of Pittsburgh

	On-site observation of system use in two iterations
	System design and usability observations: Iteration 1
	System design and usability observations: Iteration 2

	Learning experiment: Intelligent guidance better enhances science and engineering outcomes
	Methods
	Unfacilitated exhibit control condition
	Participants
	Measures
	Procedure
	Statistical inference methods


	Results on learning: The intelligent science exhibit improved both scientific and engineering outcomes
	Results on enjoyment: Guided discovery in intelligent science exhibits is just as fun
	Exhibit stickiness analysis/study: Does adding intelligence produce longer visits?
	Methods: Exhibit logs
	Results on engagement: The intelligent science exhibit is stickier
	Feedback from parents or guardians

	General discussion
	Disclosure statement
	Funding
	References

