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ABSTRACT ARTICLE HISTORY
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or guidance. Ideally children get interactive support as ~ Accepted 11 December 2021
they explore, but it is not always feasible to have

knowledgeable staff regularly present. Technology-

based interactive support can provide guidance to

help learners achieve scientific understanding for how

and why things work and engineering skills for design-

ing and constructing useful artifacts and for solving

important problems. We have developed an innovative

Al-based technology, Intelligent Science Exhibits that

provide interactive guidance to visitors of an inquiry-

based science exhibit.

Methods: We used this technology to investigate

alternative views of appropriate levels of guidance in

exhibits. We contrasted visitor engagement and learn-

ing from interaction with an Intelligent Science

Exhibit to a matched conventional exhibit.

Findings: We found evidence that the Intelligent

Science Exhibit produces substantially better learn-

ing for both scientific and engineering outcomes,

equivalent levels of self-reported enjoyment, and

higher levels of engagement as measured by the

length of time voluntarily spent at the exhibit.

Contribution: These findings show potential for

transforming hands-on museum exhibits with intelli-

gent science exhibits and more generally indicate

how providing children with feedback on their pre-

dictions and scientific explanations enhances their

learning and engagement.
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Introduction

Much learning happens outside of school. Informal learning settings can
support out-of-school learning by offering opportunities for children and
families to learn together in an engaging way. However, learning support in
such settings is not always adequate. Without scaffolding and support,
people often miss the point of the learning activity in these settings
(Hammady & Ma, 2019; Puchner et al., 2001). Current exhibits rely on
parents, signage and staff/facilitators in the museums and science centers
to provide support and guidance. Since it’s not always feasible to have
knowledgeable staff and not all parents have the same knowledge, children
do not get the same support (Eberbach, 2009). New forms of technology can
help, but what kinds of support are best in different contexts? There is
evidence that children explore the evidence space of interactive science
exhibits more widely and are more likely to construct explanations in the
context of structured facilitation (Crowley et al., 2001; Fender & Crowley,
2007; Kim & Crowley, 2010). At the same time, some forms or levels of
guidance can be counterproductive, particularly when they reduce chances
for children to engage in their own inquiry (Hmelo-Silver et al., 2007).
Kolodner el al. emphasize the importance of having learners engage in design
challenges and construct a personally meaningful physical artifact (Kolodner
et al.,, 2003). Some educational effect studies (Alfieri et al., 2011; Kirschner et
al., 2006; Klahr and Nigam, 2004) also show that open-ended exploration
activities often lead to learners demonstrating prolonged investigation, but
also to difficulties with observing and interpreting observations.

Evidence from a meta-analysis of guided inquiry contexts (Furtak et al.,
2012) concludes that a combination of guidance and exploration in inquiry
learning environments is beneficial. Nevertheless, there are many open
questions about what combinations of methods work best (cf., Koedinger
et al., 2013). Within science education, there have been calls for more
“adequate answers ... concerning the conditions under which various
types of scaffolded learning environments are most effective” (Hmelo-
Silver et al., 2007). More recent research indicates progress (Eysink et al.,
2015; Gormally et al., 2009; De Jong & Lazonder, 2014; Pedaste et al., 2015),
but many open questions remain about what kinds of scaffolding and
guidance work best—especially in the STEM context where “there is a lack
of systematic evaluations and reliable experimental designs” (Alimisis, 2013).
Further, there continue to be indications of skepticism about the desirability
of scaffolding, for example, a recent meta-analysis comments that “Adding
scaffolding has often been disregarded in the context of PBL [Problem-Based
Learning].” (Kim et al.,, 2018). This meta-analysis found that the most
prominent strategy of computer-based scaffolding, question prompts, has
positive benefits, “but its effect was not as strong as many scholars believed.”
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We demonstrate, through a controlled random-assignment experiment, the
effectiveness of scaffolding that not only prompts with questions but also
gives automated feedback on students’ decisions during scientific inquiry
with physical phenomenon.

More generally, this project explores innovation both in scaffolding tech-
niques and in technology to automate feedback during in-the-world experi-
mentation. We evaluate whether techniques for personalized guidance
enhance science learning outcomes, while we introduce a novel AI technol-
ogy, an “Intelligent Science Exhibit,” that provides a means to scale these
techniques to more children. Intelligent Science Exhibits are a new educa-
tional technology genre that supports children in learning science while
doing science in the physical world. An Intelligent Science Exhibit uses
intelligent camera sensing to track children’s interactions in physical and
virtual spaces and provides interactive personalized feedback through the
help of an engaging character. With this sensing capability, the exhibit adapts
to the different needs of children, provides personalized support, and helps
achieve equity goals (e.g., all children get support regardless of who they are
and whether or not they have a science-literate caregiver with them). This
type of support is especially important for children who do not have other
opportunities to deepen their inquiry and understand physical phenomena,
and in museums where it’s not always feasible to have knowledgeable staff
around the exhibits.

There has been progress in bringing Al advances into learning environ-
ments (e.g., Aleven et al., 2016; Holmes et al., 2019; Sottilare et al., 2018;
Timms, 2016) and much progress in new Al sensing technologies (e.g.,
Benko et al., 2012; Gupta et al., 2012; Laput & Harrison, 2019; Zhang et al.,
2018) that have potential for supporting learning. Recent developments in
museum exhibits provide design guidance toward technology support for
engaging and sustaining visitors” explorations (Hammady & Ma, 2019; Ma et
al., 2019; Yoon et al,, 2012). While building on this past work, our main
technical contribution is in creating tangible interfaces that provide inter-
active feedback and guidance that adapts to changes in the physical environ-
ment by tracking student actions in the physical environment.

To do so, we developed new Al vision technology and Intelligent Science
Exhibits that allows the system to observe students’ actions—to accurately
monitor and evaluate predictions, experiments, and explanations and pro-
vide an intelligent guided learning experience (Yannier et al., 2016). The
technology also utilizes effective learning mechanisms of intelligent tutoring
systems such as contrasting cases (Chase et al., 2010), predict-observe-
explain (White & Gunstone, 1992), inquiry-based learning (Eysink et al.,
2015; Gormally et al., 2009; Pedaste et al., 2015), guided-discovery (De Jong
& Lazonder, 2014) and menu-based self-explanation (Aleven & Koedinger,
2002; Chi et al., 1989). More specifically, the physical set-up of the Intelligent
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Science Exhibit consists of an earthquake table, physical towers, a display
screen, a depth camera and a specialized Al technology to track what kids are
doing as they do experiments in the physical world (e.g., making predictions
about which of the towers on the table will fall first when the table shakes or
building structures based on the challenges given by the system) and provide
feedback accordingly (See, Figure 1).

Using this technology, we explore fundamental learning science questions
about the active ingredients of active learning (Yannier et al., 2021). Our
general research question is: Does adding more guidance and scaffolding
structure to an exhibit enhance visitor learning? We consider two competing
hypotheses. One hypothesis is that learning will be more effective when
children explore freely and construct physical materials. The ICAP framework
(Chi & Wylie, 2014), for example, suggests greater learning from constructive
learning experiences than from active ones (which may include feedback and
guidance). A competing hypothesis is that learning is more effective when
guidance and scaffolding are provided in the context of structured inquiry
activities. This hypothesis is consistent with meta-analysis of scaffolding in
science learning environments (Kim et al., 2018) and theories recommending
active learning (Klahr et al., 2009) or deliberate practice (Ericsson, 2008) with
purposely designed tasks and explanatory feedback.

A second research question is: Does providing guidance enhance visitor
engagement? One hypothesis is that guidance (e.g., prompting a visitor to
explain a prediction or observations) will interrupt their flow and decrease
their engagement. Bamberger and Tal (2007) found that more “directed
learning in limited choice activities,” while yielding more scientific discus-
sion reduced social interactions and expressions of excitement in compar-
ison to free choice exploration. In the authors’ own experience on a prior
project, game designers suggested that adding self-explanation prompts
would reduce player enjoyment and thus such prompts were not included

Figure 1. Children and families interacting with the Intelligent Science Exhibit at
Carnegie Science Center.
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(Christel et al., 2012). An alternative hypothesis is that helping visitors make
sense of their world is engaging and thus, guidance will enhance engagement.
Anderson et al. (2000) found that enhancing student understanding of
content, for example, by repeating episodes rather than showing them just
once, increased engagement. UFranse et al. (2021) also found benefits of
guidance in a museum setting whereby “interventions of museum educators
positively affected the families” learning process by reducing the number of
scientifically incorrect remarks.”

Our prior experimental research has evaluated the importance of physical
experience. While some (mostly non-experimental) research has suggested
promise in physical interaction supporting learning (Manches & O’malley,
2012; Manches & Price, 2011; Marshall, 2007; Olympiou & Zacharia, 2012),
there is also experimental evidence that found no learning benefit in the
direct comparison of physical versus virtual in science learning (Klahr et al.,
2007). Some have argued that empirically based studies are needed to under-
stand better how tangible interfaces actually work and whether and why they
might have benefits (Marshall et al., 2007). Thus, it was important to test
whether children learn much more from our mixed-reality interaction and
guidance than from that same interaction and guidance around flat-screen
video of the earthquake table. We demonstrated, in randomized controlled
studies, that children learn much more from mixed-reality interaction and
guidance around the physical experience of observing actual blocks falling on
an earthquake table than from that same interaction and guidance around
flat-screen video of blocks falling on an earthquake table. In fact, a controlled
experiment showed five times greater pre to post learning gains from mixed-
reality compared to a screen-only tablet or computer version (Yannier et al.,
2016, 2015).

The current experiment and our mixed-method approach evaluate the
importance of the mixed-reality experience and, in particular, whether and
what types of guidance can produce large learning gains while maintaining
or even improving visitor engagement. In this paper, we explore benefits of
STEM learning particularly with respect to improving students’ understand-
ing of science concepts of early physics, as assessed through changes in the
quality of their explanations, students’ competence in applying these con-
cepts to make accurate predictions, and students’ ability to transfer these
science concepts in engineering activities, as assessed by the quality of
constructed artifacts (stable towers). While we do not pursue an investiga-
tion of impact on long-term student agency in science, we do evaluate impact
on their immediate enjoyment and their choice in extended engagement in
these activities.

As many traditional museum exhibits, maker spaces and constructivist
theories suggest (Jeffery-Clay, 1998), might students learn as well as or
better, without explicit guidance when in the context of more open-ended
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hands-on construction? Or perhaps better results can be found by selecting
from and automating some of the many forms of instructional guidance
and learning support that have been developed, explored, and tested (e.g.,
Clark & Mayer, 2016; Hattie, 2012; Koedinger et al., 2013; Schwartz et al.,
2016)? We find it useful to distinguish between more explicit forms of
guidance that use verbal instructions, prompts, or feedback from more
implicit forms of guidance that use the structure and sequence of tasks to
aid learning. We discuss next how these different forms of guidance are
implemented in our Intelligent Science Exhibit and contrast them with the
forms of guidance in a similar existing museum exhibit, which we argue is
typical of many museum exhibits. These exhibits tend to have explicit
guidance in the form of a sign and implicit guidance in the materials
available for playful experimentation but tend not to have interactive
facilitation from an always-present staff person or from automation. We
thus call this an “Unfacilitated Exhibit” and use it as our control condition
in the experiment described below.

In the section titled “Use-Driven Iterative Design process of An
Intelligent Science Exhibit,” we describe the design process we used in
developing and improving our Intelligent Science Exhibit. We then return
to the key research questions of whether an Intelligent Science Exhibit can
yield substantial benefits, for both visitor learning and engagement, in
comparison to an “Unfacilitated Exhibit” control condition. This control
condition is meant to test beliefs that guidance is not necessary (c.f., Hovious,
2015) or may be counter to worthy educator goals such as “awakening the
spark of curiosity in students and giving them the chance to explore and
discover for themselves” (Cody, 2010). Providing guidance may reduce
student opportunities to experience “desirable difficulties” (Bjork et al.,
2013) or risk reduced student enjoyment or persistence in the activity if it
comes off as “just another procedure to follow” (Schwartz et al., 2016, p. 97).
Following the implications of this prior work, we strive for a design whereby
guidance does not eliminate difficulties or provide recipe-style procedures,
but rather prompts for genuine inquiry whereby students predict and explain
novel situations they have not previously experienced followed by reactive
feedback on outcomes of that inquiry.

We describe a random assignment field-based experiment that addresses
these practical and scientific questions by comparing learning and engage-
ment outcomes for visitors experiencing either the Intelligent Science Exhibit
or the Unfacilitated Exhibit. Results indicate visitors learned substantially
more from and were more engaged by the Intelligent Science Exhibit. We
explain these results with support from illustrative case studies of observa-
tions of student interactions with the two different kinds of exhibits. We also
report on exhibit engagement (measured by time spent voluntarily at the
exhibit) in the natural museum setting.
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The intelligent exhibit: A guided mixed-reality interactive
experience

Our Intelligent Science Exhibit uses a specialized Al vision technology to
track physical objects and children’s actions as they experiment and make
discoveries in the real world, facilitating guided inquiry thinking processes
through a predict, explain, observe, explain cycle. A gorilla character appears
on a large display to guide visitors as they make predictions, observations
and explain results in the physical environment.

To scaffold learning, out design employs particular principles from
learning science (e.g., Chi et al.,, 1989; Clark & Mayer, 2016; Gibson &
Gibson, 1955; White & Gunstone, 1992) and game design (e.g., Falloon,
2010) including contrasting cases, self-explanation, predict-observe-
explain, and real-time interactive feedback. The principle of contrasting
cases originally came from work in perceptual learning (Gibson &
Gibson, 1955) and suggests use of aligned cases with minimal differences
to help students notice information that they might otherwise overlook.
Gick and Paterson have shown that contrasts that differ on a single
dimension can improve schema induction and transfer (Gick &
Paterson, 1992). Based on this literature and more recent literature
(e.g., Rittle-Johnson & Star, 2009; Schwartz et al., 2011), we decided to
include contrasting cases in our design. Students are shown two towers
that differ on only one principle (symmetry, wide-base, height or center
of mass principles) and are asked to make a prediction about which one
will fall first when the table shakes. Figure 2 shows a height-only
contrast.

A second scaffolding feature, self-explanation, is supported by a num-
ber of studies. For example, students studying examples or textbook text
learn with greater understanding when they explain the materials to
themselves (Chi et al., 1989). Others have demonstrated that menu-
based self-explanation enhances learning and transfer (Aleven &
Koedinger, 2002). Similarly, in our system, we utilize a self-explanation
menu to help children explain the reasoning for why a tower falls. The
menu consists of explanation choices that express the underlying physi-
cal principles in child-friendly language such as: “because it is taller,”
“because it has more weight on top than bottom,” “because it is not
symmetrical,” “because it has a thinner base.”

We also utilize a predict-observe-explain (POE) cycle in our mixed-
reality system. The POE method is a teaching-learning strategy proposed
by White and Gunstone (White & Gunstone, 1992), which includes three
stages: Prediction, Observation and Explanation. The POE process can
be an effective teaching strategy to facilitate students’ understanding of
concepts, with the help of active discussions among students as they
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Place these towers on the table.
Good job! Click to continue.

ﬁ :

a) b)

Uh oh! You placed the wrong tower on the
right. Plaru place the :or‘rm tower. Which '&:’r :ﬁ’.’;{.‘r ink willfall ficst

I X
d)

Al>

CONTINUE

Q)

Actually it fell first because it was taller
than the other tower. Good try.
Uh oh! Your prediction was not quite Click CONTINUE to play again.
right. The left tower fell first. Why do
you think this tower fell first

CONTINUE

e) f)

Figure 2. Screenshots from the “Guided-discovery” mode of the Intelligent Science Exhibit.
Users are guided to place the given towers on the table, and are given feedback whether they
placed the right tower or not. The game also gives feedback about their explanations with
visualizations to help them understand the underlying physics principles.

explain any discrepancies between predictions and observations
(Kearney, 2004). In our system, we utilize POE to help children
understand the physics principles of balance and stability and why
structures fall.

Our system provides real-time interactive feedback, which is a critical
component. Immediate feedback and immediate error correction has been
shown to be more effective than feedback on-demand and student control
of error correction in intelligent tutoring systems (Corbett & Anderson,
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2001). There is also research showing that without scaffolding and support,
people often miss the point of the learning activity (Puchner et al., 2001).
Also, the phenomenon of “confirmation bias” (Nickerson, 1998) suggests
that children are likely to see their predictions as confirmed even when they
are not, so explicit feedback otherwise can reduce this tendency and
enhance learning.

In addition to learning science principles, we also employed game
design principles including use of an animated character, a game-like
scenario, and interactive physical construction and experimentation.
Our system also includes a character and scenario that helps give
immediate feedback to users. Avatars and virtual environments have
been shown to have potential to act as powerful communication med-
iums for students to display knowledge and understanding (Falloon,
2010). Also, there is evidence that animated graphics enhance motiva-
tional appeals of instructional activities and embodied conversational
characters, and virtual peers facilitate conversation in a virtual envir-
onment (Cassell, 2000).

Scenario

The features of our Intelligent Science Exhibit are illustrated in Figure 2.
In the “Guided-discovery” mode, the users are first asked to place the
towers shown on the screen on the physical earthquake table (See, Figure
2a). These towers are designed to be contrasting cases with only one
difference between them so that the kids can focus on isolated principles.
The Kinect camera and our specialized computer vision detects if towers
placed on the table match the ones on the screen and gives feedback
accordingly. If the tower they place on the table matches the tower on
the screen, a green check appears above the tower on the screen and the
gorilla character says “Good job! Click to continue” (See, Figure 2b).
Otherwise, if the tower they place does not match the tower on the
screen that they were asked to place, the computer vision system detects
that it was not the correct tower, and a red cross appears on the tower
on the screen, and they’re asked to place the correct tower (See,
Figure 2c).

Our computer vision algorithm uses depth information from the depth-
sensing camera in algorithms for blob detection and physics-based moment of
inertia calculations (Yannier et al., 2013) to recognize and differentiate objects of
experimentation, the towers in this case, and to recognize critical experimental
outcomes, a falling tower in this case. Using the steps described above as an
example, when students try to place a requested tower on the table, the vision
algorithm computes a moment of inertia value that serves as a kind of signature
of the identity of the tower. If this value matches the stored value for the
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requested tower, the system provides positive feedback as described above (see,
Figure 2b). If this value does not match, the system provides corrective feedback
(see, Figure 2c).

Once they click continue, the gorilla character prompts them to make a
prediction saying, “Which tower do you think will fall first when I shake the
table?” (See, Figure 2d). They can choose either 1, 2 or same by clicking on
the buttons or one of the towers on the screen (a virtual projection of the
towers as a blob is drawn on the screen).

After they make a prediction, the gorilla character says: “You chose the left
tower. Why do you think so? Discuss and then click SHAKE to see what
happens.” Here they can discuss their prediction with their partner/friends/
family, why they think the tower they chose will fall first. They then click the
“Shake” button on the touch screen and the physical earthquake table starts
shaking (the touch screen triggers the relay that is connected to the motor of
the earthquake table).

After the table starts shaking, when one of the towers falls, the Kinect
camera and our specialized computer vision algorithm detects the fall and
stops the earthquake table from shaking. The vision algorithm detects
whether the left or right tower fell and if it matches with the prediction of
the user. If the user’s prediction was correct and the right tower fell first, then
the gorilla character says “Good job! Your hypothesis was correct! Why do
you think this tower fell first?.” The gorilla on the projector screen is happy
and starts jumping and dancing to give them positive feedback and reward.
On the other hand, if the user’s prediction was wrong and the tower that fell
does not match the tower that was predicted by the user, then the gorilla
character says “Uh oh! Your prediction was not quite right! Why do you
think this tower fell first?.” This time, the gorilla on the projector screen
looks surprised. Users are asked to explain why they think the tower that fell,
fell first. They are given an explanation menu with four different choices that
they can choose from: “It is taller,” “It has a thinner base,” “It has more
weight,” “It is not symmetrical.” These explanations correspond with the
four different principles of stability and balance that are primary science
content learning objectives for the exhibit. This explanation menu comes up
even if their prediction is correct.

When they click on one of the choices in the explanation menu, the gorilla
character tells them if their explanation was correct or wrong, with a visua-
lization laid over the images of the towers on the screen to explain why the
tower actually fell (See, Figure 2f). For example, if the reason was because it
had more weight on top than their bottom, and their explanation was not
correct, he says: “Actually it fell first because it had more weight on top than
bottom. Good try. Click CONTINUE to play again.” The visualization of the

» o«
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make a tower that will stay up when Can you make a tower that will stay up when
shakes? Place your tower on the the table shakes? Place your w!'u:" the
HAKE when you are ready. table. Click SHAKE when you are ready.

b)

a)
GOOD JOB! Your tower m up!
Press CONTINUE to make a r tower.
Uh oh! Your tower fell down!
Press CONTINUE to make another tow.
& : s

er.
”

CONTINUE

9) d)

Figure 3. Screenshots of the Exploration mode of the Intelligent Science Exhibit. In this
mode, the gorilla character asks the users to make a tower that will stay up when the
table shakes. The Al vision algorithm tracks any tower they build, and gives feedback if
the tower stayed up or not and for how long.

towers shows circles on the parts of the towers that have more weight. Or if it
tell because it was taller, the ruler visualizations this time highlight the height
of each tower.

This scenario is repeated for different contrasting cases of towers (Yannier
et al., 2020).

In addition to the “Guided-discovery” mode, users can try the
“Exploration” (or “Test My Tower”) mode. In this mode, they can
build any tower they want using the wooden, Lego or magnetic blocks
in the bins. The gorilla character says: “Can you make a tower that will
stay up when the table shakes? Place your tower on the table and click
SHAKE when you are ready.” (See, Figure 3a) When they have built
their tower and click the SHAKE button on the touch screen, it triggers
the motor in the physical earthquake table, and the table starts shaking.
If their tower falls down, the Kinect camera and our specialized com-
puter vision algorithm detects the fall, and the gorilla character gives
feedback “Uh oh! Your tower fell down! Press CONTINUE to make
another tower” (Figure 3d). The system also displays how many seconds
it took for the tower to fall down. If the tower does not fall down in
5 seconds, the earthquake table stops shaking. Then the gorilla character
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starts jumping/dancing (similar to that in the guided-discovery mode)
and says: “Good job! Your tower stayed up! Press CONTINUE to make
another tower” (Figure 3c). They are then challenged to make another
tower (e.g., taller) to test on the earthquake table.

Based on previous research (Yannier et al., 2020, 2021), the Intelligent
Science Exhibit condition in this experiment combines the Guided-discovery
and Exploration modes as it led to better learning outcomes than use of
either mode alone.

Use-driven iterative design process of an intelligent science
exhibit

Early iterations at the children’s museum of Pittsburgh

We engaged in iterations of use-driven design inspired by approaches of
design-based research (Barab & Squire, 2004; Design-Based Research
Collective, 2003; Wang & Hannafin, 2005), but with a practical focus on
enhancing the usability and user engagement of the resulting Intelligent
Science Exhibit design and not as a primary research output in itself. These
iterations were done mainly on the Guided-discovery mode of the system.
Our goals were to gain insights about museum visitors, both children and
parents, and toward improving the design of the Intelligent Science Exhibit,
before coming up with the latest design of the exhibit (Figure 1). Key
usability questions included:

1) Do children find the Intelligent Science Exhibit interesting and intui-
tive to use and can they use it independently without researcher
assistance?

2) Does the Intelligent Science Exhibit engage parents? Do they help their
children?

3) Is the Intelligent Science Exhibit engaging enough to compete with
other museum exhibits?

4) Does the guidance we added enhance learning discourage or increase
engagement?

On-site observation of system use in two iterations
System design and usability observations: Iteration 1

Our first usability investigation took place in a pull-out room of the
MakeShop of Children’s Museum of Pittsburgh (See, Figure 4). Around
40-50 people interacted in small groups with the exhibit over two days.
Typical groups included 1-2 children with 1 parent or responsible adult.
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Figure 4. First iteration of play testing at the Children’s Museum of Pittsburgh. Note the early,
more primitive form of the prototype exhibit, with the projector, mouse control, simple
shaking table etc (in contrast to Figure 1). The exhibit fostered engagement and interaction
between the children and with parents. Both children and parents seemed to be quite
engaged in the exhibit.

Consistent with prior observations and surveys in the lab (Yannier et al,,
2020), children appeared quite interested and engaged in the Intelligent
Science Exhibit. One child played with the game early in the morning before
anyone else came, then she brought her whole birthday party group to play
later on. In addition to positive observations, we found opportunities to
improve the system. Younger children had a hard time using the mouse.
Therefore, we decided to use a touch-screen tablet as an input device instead
of the mouse. More substantially, our computer vision algorithm did not
perform as well in the museum as it had in the lab. We discovered this
performance degradation was a consequence of the perceived colors of the
blocks being affected by the lighting conditions in the museum. To address
this issue, a new vision algorithm was developed that summarizes a tower
shape into a unique set of “moment of inertia” values (Yannier et al., 2020)
that does not depend on color.

We also discovered opportunities to improve physical elements of the
Intelligent Science Exhibit. The prebuilt towers that we had created by
sticking Lego blocks together were not durable. Children thought that they
could be taken apart when they saw the Lego blocks (glued together to create
prebuilt towers) and tried to separate them. Instead, we created prebuilt
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Figure 5. Children imitated the gorilla character when their prediction was correct and
the gorilla started dancing on the screen. The parents were also very much engaged
with the game. At some points they started playing on their own.

towers made of wood blocks that would be secured tightly to each other and
painted to create a visual cue. We continued use of individual Lego blocks for
children to build their own towers in the exploration mode.

Parents were generally quite involved in working with the kids. Some of the
parents were also curious about how the system worked. For example, one of the
dads said: “Very cool!” and asked how we had built the system and if he could set
it up at home. In general, the parent-child interaction seemed quite natural and
indeed parents prompted their children to follow the on-screen guidance.

System design and usability observations: Iteration 2

Based on input from the first iteration, we redesigned the system and produced
a new version with a more robust mechanism and more polished physical
design (See, Figure 5). Specifically, we iterated on our computer vision algo-
rithm, so it uses depth information instead of color information that is more
reliable in different lighting conditions at the museum. We have also made the
physical design more durable for children based on the findings from Iteration
1 described above. This new version was playtested in a second design iteration
that took place in the MakeShop of Children’s Museum of Pittsburgh. The
MakeShop provided a setting that was more open to the public than the private
room used in iteration 1. Our Intelligent Science Exhibit was available over two
days in the weekend, from 10 am until 5 pm. Around 40-50 people interacted
in small groups with the exhibit over two days. Again, typical groups included
1-2 children with 1 parent or responsible adult. There were two researchers
observing and taking notes. In this iteration, we were not only interested in
child engagement and parent involvement, but also in Usability Questions 3
and 4: Is the Intelligent Science Exhibit engaging enough to compete with other
museum exhibits? and does the guidance we added to enhance learning
discourage or increase engagement?
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As in Design Iteration 1, both kids and parents were quite engaged by
the exhibit. Children were particularly engaged by the new animated
gorilla character. When the gorilla responded by dancing when a child’s
prediction was correct, many kids celebrated by mimicking the gorilla’s
dance moves (see, Figure 5a).

We observed that parents and children seemed to discuss and engage in
productive dialogue, discussing the reasons why towers fall, more in the
guided-discovery mode. When the game prompted them to explain why they
think one of the towers fell first, the parents started asking children why they
think the tower fell and helped them understand the underlying principles. For
example, one of the moms put the towers side by side, asking her son what the
difference is between the two, if one has more weight on top than the other.
Similarly, many other parents got involved and tried to guide the kids to
understand why and to celebrate success (e.g., giving a high five; Figure 5b).
The interactive guidance from the system appeared to prompt parents to
interact with their children by encouraging inquiry toward discovering scien-
tific explanations rather than up-front telling. For example, they would repeat
the questions that the exhibit asked to their children “Which tower do you
think will fall first?,” “Do you know why?.” Also, the self-explanation options in
the exhibit seemed to guide them to understand the underlying principles e.g.,
“because it’s not symmetrical,” “because it has a thinner base,” “because it has
more weight on top than bottom” etc. The parents repeated these explanations
to the children, especially for younger children.

We also observed that children and families seemed to strategize more while
building their towers when they did it after the guided discovery activity as
opposed to doing it as a first activity when they came to the exhibit. If they chose
to build a tower before interacting with the guided-discovery activity, they
tended to do more random tweaking not aligned with the underlying principles
of stability. Children and parents did seem to enjoy building their own towers in
addition to doing experiments with prebuilt towers which suggested that it may
be good to combine Guided discovery (making predictions and explanations
with prebuilt towers) and Explore Construct modes (where they build their own
towers based on what they learned in the Guided discovery mode). These
observations informed the research question and hypotheses for the experiment
below, namely do children learn better from exploration and construction in a
traditional exhibit or from an Intelligent Science Exhibit with interactive gui-
dance? How can we combine both interactive guidance and exploration for
maximized learning and enjoyment outcomes?

Similar to Design Iteration 1, parents seemed to be very much engaged as
well as the children. We heard from museum staff this is an important quality
for museum exhibits—that it should appeal to people of different ages. In
some cases, the parents even started playing on their own, including one
father who played the game for over 15 minutes (Figure 5c¢).
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Learning experiment: Intelligent guidance better enhances
science and engineering outcomes

As described above, our experiment was motivated by open practical and
scientific questions. The key practical question is whether concerns
raised by some museum professionals that adding “intelligent” guidance
is not necessary are warranted. One key scientific question is whether
intelligent guidance may suppress “desirable difficulties” (Bjork et al.,
2013) that produce effective constructive learning (Kafai & Resnick,
1996) experiences. Another is whether intelligent guidance may reduce
student agency and subsequent engagement (Schwartz et al., 2016). Put
simply, the experiment tests whether the Intelligent Science Exhibit
produces better learning and engagement than typical museum exhibits
that come with little or no automated facilitation.

Methods
Unfacilitated exhibit control condition

We designed the “Unfacilitated Exhibit” control condition to meet two
important criteria. To enhance ecological validity, it should be as much
like existing exhibits as possible. To enhance internal validity, it should be
otherwise similar to the Intelligent Science Exhibit, but without the intelli-
gent guidance. Thus, we developed an exhibit to represent current practice at
museums. This mimics an earthquake exhibit at the science center where we

a) b)

Figure 6. a) Earthquake exhibit regularly used at the Science Center. b) Our matched
Unfacilitated Exhibit Condition consisting of the same earthquake table set up used in
the Intelligent Exhibit Condition, with the Al turned off to match the standard earth-
quake exhibit and the same materials used to minimize the variables.
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conducted our experiment. It also makes use of the same base materials as
the Intelligent Science Exhibit. The Unfacilitated Exhibit uses the same
physical materials/blocks/table used in the mixed-reality Intelligent Science
Exhibit. This approach also controls for exhibit location as there is just one
exhibit, sometimes with the interactive guidance turned on (Intelligent
Science Exhibit) and sometimes turned off (Unfacilitated Exhibit).

Figure 6a shows the earthquake exhibit at Carnegie Science Center where the
study took place. Visitors control the shaking using the “Start” and “Stop”
buttons. Visitors build towers using the given materials and may shake them
on the earthquake table to observe if their towers stay up or not. Similarly, our
Unfacilitated Exhibit Condition (see, Figure 6b) consists of the same earthquake
table set up we used in the Intelligent Exhibit Condition. On the touch screen,
there are “Start” and “Stop” buttons. Visitors can use all the same physical
materials used in the Intelligent Exhibit condition to build towers and test if
their structures stay up or not by shaking the table. In other words, the
Unfacilitated Exhibit is the Intelligent Exhibit with the intelligent features turned
off to match typical exhibits that come with no facilitation. Similar to other
conventional exhibits at museums, we also had a sign for our Unfacilitated
Exhibit condition, explaining concepts such as “symmetry, center of mass, height,
weight.”

We compared this Unfacilitated Exhibit with our Intelligent Science Exhibit
described above including a combination of “Guided-discovery” and
“Exploration” modes as found to be effective in a previous experiment
(Yannier et al., 2020). In this Intelligent Science Exhibit condition, children are
exposed to “Guided-discovery” activities followed by “Exploration activities”
where the scaffolding fades, as described in the Scenario section above. The
Intelligent Science Exhibit did not have any signage and the guidance was
provided merely through the Al scaffolding.

Participants

Participants were elementary-aged students (first through fifth graders) attend-
ing a science summer camp at the science center. This user group is consistent
with the original design goals and early learner testing with K-5th grade children.
32 children participated in pairs (16 pairs) at the exhibit floor away from the rest
of the summer camp activities. The pairs were randomly selected and assigned to
different conditions. The ages of the kids were balanced for both conditions. The
median grade level of participants for both the Intelligent and Unfacilitated
Exhibit participants was second grade. A previous study showed no significant
difference in learning and enjoyment between kids working in pairs versus solo
(Yannier et al., 2015). We conducted the study in pairs as previous feedback from
parents and teachers indicated a preference to have kids interact collaboratively
in pairs.
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Measures

We used assessments of both scientific and engineering outcomes to
measure learning. For scientific outcomes, we evaluated whether children
correctly used the four principles of stability and balance when explain-
ing their predictions of given tower contrasts. For engineering outcomes,
we evaluated the quality of the towers that children built before and
after learning interactions based on which principles were exhibited or
violated. We also assessed students’ ability to predict which tower would
fall first in given pairs of towers.

0 measure pre- to posttest changes on the tower building task, we scored
each student’s towers according to three principles: height, symmetry, and
center of mass (we did not use the fourth principle, wide base, as all students
were instructed to use the same base block). For each principle, students were
given one point if their towers improved from pre- to posttest, -1 for the
reverse, and 0 for no change. Comparing pre- and post- towers for the height
principle, a shorter post-tower scores 1, a taller post-tower scores —1, and
towers of the same height score 0. For example, if a student’s tower was
shorter on the post-tower compared to the pre-tower, it would get a 1 for
Height Score (see second image in Figure 7). However, if the post tower is
taller than the pre-tower, it would get a —1 (see first image in Figure 7). If the
post tower is the same height as the pre tower, it would get a 0 (see fifth image
in Figure 7). Likewise, post-towers with more symmetry and a lower center
of mass score one for each of those principles. Adding the scores for each
principle yielded the student’s total score (Figure 7). The students’
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Figure 7. Coding scheme for Tower pre/post tests change.
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Figure 8. Prediction (left) and explanation (right) items used in the paper pre/posttests.

explanations were also coded based on their mentioning of the principles
related to height, symmetry, center of mass and base. For example, if they
responded to a question about height principle saying “because it is taller,” or
a question about symmetry principle saying “because it is symmetrical” or
“because it is the same on both sides” their answer was coded to be correct.

Paper posttests were developed based on the concepts covered in the
National Research Council’s Framework & Asset Science Curriculum
(National Research Council, 2012), and targeted the four principles of
balance: symmetry, wide base, height, and center of mass. Questions
presented a picture of two towers on a table, and asked students to
indicate which tower will fall when the table shakes. Prediction items
asked students to select which tower would fall first, and explanation
items asked for their reasoning (Figure 8). These questions were phrased
as “What will happen when the table shakes?” and “Why did this one
stay up?” Counting prediction and explanation items as individual ques-
tions, the tests had 9 questions in total. If the kids had any trouble
reading or writing, the experimenter helped them read or write.

A previous study showed that the tasks worked for different age
groups in elementary school and the pre/posttest measures produce a
good range of outcomes (e.g., not close to ceiling) to distinguish learning
outcomes for students at these ages (Yannier et al., 2016).

Procedure

Before interacting with the exhibit, children were individually given a tower
building task, which took approximately 3-5 minutes. They were asked to
use a given set of blocks (using all the blocks in the set) to build a tower that
would stay up when the earthquake table shook. Students were told to use a
specific block as the base of the tower as a challenge for making a small
base. They did not test their towers before interacting with the exhibit.
They were told that they would get a chance to test their towers after they
play the game.
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Figure 9. Learning results of a random assignment experiment (N=32). In comparing
outcomes from the Intelligent Science Exhibit versus those from the Unfacilitated Exhibit,
children were a) significantly better able to explain scientific principles, b) marginally better
able to predict scientific outcomes, ¢) significantly better at engineering stable towers even
though children did more tower building with the Unfacilitated Exhibit.

The pair of children then completed their assigned condition, either
the Intelligent Science Exhibit or the Unfacilitated Exhibit. The timing
was matched for both conditions based on the average time it takes for
children to go through the tasks in the Intelligent Science Exhibit
(~15 minutes).

After interacting with the exhibit, students were given the same tower
building task as before. This building task allowed us to measure any
changes in their towers after interacting with the game. After building
the tower, they were given a paper posttest consisting of the prediction
and explanation items to measure their understanding of scientific
principles.

Statistical inference methods

We report statistical inferences in two ways. To protect against potential
deviations from parametric assumptions, we use the non-parametric Mann-
Whitney test. To provide the comparison value of effect size, we use the
parametric t-test.'

Results on learning: The intelligent science exhibit improved both
scientific and engineering outcomes

As summarized in Figure 9, the Intelligent Science Exhibit group had higher
correctness on the posttests of explanation and prediction and a higher
improvement score for tower building. The explanation posttest served to
estimate science learning outcomes (Figure 9a). On the explanation posttest,

“Parametric test assumptions were met for five of six tests of normality and two of three tests of
homogeneity of variance. The two exceptions were based on a ceiling effect for the Intelligent Exhibit
condition on the prediction outcome producing below-threshold normality and a floor effect for the
Unfacilitated Exhibit on the explanation test producing below-threshold homogeneity of variance.”
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we found a significant main effect of the Intelligent Science Exhibit Condition
(M =0.63, SD = 0.32, Mdn = 0.75) over the Unfacilitated Exhibit Condition
(M =0.23,SD =0.21, Mdn = 0.25) by both a Mann-Whitney test (U =43, p =
.001) and a t-test (t(31) = 5.95, p < .001) with a large effect size (d = 1.45).
Thus, the guided inquiry, facilitated by the system’s Al vision and automated
feedback, improves children’s learning and understanding of scientific prin-
ciples. We did not see any significant age or gender effects based on an
ANCOVA analysis with age and gender as covariates.

The prediction posttest and the tower building improvement score served
to estimate engineering outcomes. For the prediction tests (Figure 9b), we
found a marginal effect of the Intelligent Science Exhibit Condition (M = 0.84,
SD = 0.26, Mdn = 1.00) over the Unfacilitated Exhibit Condition (M = 0.69,
SD = 0.25, Mdn = 0.75) by both a Mann-Whitney test (U = 80, p =.073) and
a t-test (t(31) = 1.91, p = .066) with a substantial effect size (d = 0.62). The
marginal effect on prediction items may be a consequence of extra noise due
to guessing given there are only two choices (left tower or right tower—see,
Figure 8). In contrast, the explanation and tower-building questions are
open-ended.

For the tower building improvement score (see, Figure 9¢), we found a
significant main effect of the Intelligent Science Exhibit Condition (M = 0.875,
SD = 1.26, Mdn = 1.00) over the Unfacilitated Exhibit Condition (M = —0.50,
SD =1.59, Mdn = -1.00) by both a Mann-Whitney test (U = 65, p =.02) and
a t-test (t(31) = 2.44, p < .05) with a large effect size (d = 0.96). These results
are particularly compelling given that children actually do more tower
building with the Unfacilitated Exhibit than they do with Intelligent Science
Exhibit. In fact, without guidance, there was no improvement in tower
building from the Unfacilitated Exhibit.

Both the scientific and engineering outcomes were significantly higher for
the Intelligent Science Exhibit condition than the Unfacilitated Exhibit con-
dition. This result suggests that children having the Intelligent Science
Exhibit support were not only having a better understanding of the physical
phenomena, but they were also able to apply their knowledge better to an
engineering, constructive problem-solving task.

Results on enjoyment: Guided discovery in intelligent science
exhibits is just as fun

One possible concern with intelligent exhibits with guidance is whether
visitors enjoy them as much as exhibits that allow for unstructured
exploration. To measure their enjoyment while interacting with the exhi-
bit, children were given a survey with 3 questions after interacting with
the exhibit: “How much did you like the game?,” “Would you like to play
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it again?,” and “Would you recommend it to your friend?” They answered
each question on a scale of 5 (Likert scale of 1-5 with 1 being the lowest
and 5 being the highest).

Our evidence suggests that children enjoyed both conditions. Based on
the three-question survey described above, we found no statistical difference
between average enjoyment scores (0.87 vs. 0. 85 out of 1; p = .7).

Exhibit stickiness analysis/study: Does adding intelligence
produce longer visits?

In addition to evaluating learning and enjoyment outcomes, we also evalu-
ated how engaging or “sticky” the Intelligent Science Exhibit is compared to
the Unfacilitated Exhibit. To do so, we observed how visitors interacted with
the two exhibit versions during regular museum hours, in contrast to the
previous experiment described above which was a pull-out study. We made
one or the other exhibit available at the same location in the Science Center at
selected times over two weeks to observe how and how much the general
public would interact with them.

Methods: Exhibit logs

We tracked how much time visitors spent interacting with the Intelligent
Science Exhibit and compared that to the time they spent with the
Unfacilitated Exhibit (by turning on and off the intelligent features on the
same exhibit/location). We looked at similar corresponding time frames (1-2
hour slots each day) in each condition over two weeks to see how much time
visitors spent on average.” Five days of paired time periods were sampled for
a total of 6.0 hours with the Unfacilitated Exhibit and 7.4 hours with the
Intelligent Science Exhibit (including 2 corresponding sessions of ~2 hours
and 3 corresponding sessions of ~1 hour). We report usage in terms of the
proportion of available time in which the exhibit is occupied and the average
length of a visit, neither of which is impacted by the difference in total time.
We used the following method to estimate how long visitors spent at an
exhibit from the log data. A visit ends at the last logged action before the
system goes idle (no intervening logged actions) for more than 1 minute or at
the end of a session (e.g., 3:41, 4:47 in the first example above). A visit starts
at the first logged action after the end of a previous visit or at the start of a
session (e.g., 2:45, 3:48 in the first example). A visit length is calculated as the

2For example, we sampled from the log data interactions on July 4 (a Tuesday) when the Intelligent Science
Exhibit was available, first, from 2:45 to 3:41 pm and the Unfacilitated Exhibit was available, after, from
3:48 to 4:47pm and then on July 9 (a Sunday) when the Unfacilitated Exhibit was available, first, from 1:02
to 1:44 pm and the Intelligent Science Exhibit was available, after, from 1:55 to 2:57 pm, etc.
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difference between the times of the visit start and end. An unoccupied period
is defined as the time remaining outside of the start and end times of each
visit.

Results on engagement: The intelligent science exhibit is stickier

The percentage of time that the exhibits were occupied (i.e., visit time
divided by total time) was 56% for the Intelligent Science Exhibit
(4.16 hours of 7.44 hours) versus 27% for the Unfacilitated Exhibit
(1.61 hours of 6.03 hours). In the 4.16 hours that the Intelligent
Science Exhibit was occupied, there were 40 different visits. This yields
an average of 6.25 minutes per visit (4.16¥60/40). In the 1.61 hours that
the Unfacilitated Exhibit was occupied, there were 64 different visits.
This yields an average of 1.51 minutes per visit (1.61*60/64), perhaps not
enough time to learn much. Note that longer visits necessitate somewhat
fewer visitors. The difference between the average 6.25 minutes spent on
the Intelligent Science Exhibit and the average 1.51 minutes spent with
the Unfacilitated Exhibit is statistically reliable (t(102) = 5.29, p < .001).
In sum, not only do visitors stay longer with the Intelligent Exhibit,
more than four times longer, the Intelligent Exhibit twice as likely to be
in use (56% vs. 27%).

Bolstering these quantitative results on stickiness, we also observed that
the kids seemed to be more persistent while interacting with the Intelligent
Exhibit. If their prediction was wrong or if their tower fell over, they would
try again and again. They seemed to be resilient against failure, as the gorilla
said “Uh oh, your tower fell down. Please try again to make another tower!.”
On the other hand, with the Unfacilitated Exhibit, such persistence and
resilience were not apparent. Most visitors to the Unfacilitated Exhibit
interacted for a very short time—mostly they built a tower, clicked shake
to see if it stayed up, and then left. Rarely, we saw a few visitors making a
second tower after the first one fell.

Feedback from parents or guardians

To get a sense for why the Intelligent Science Exhibit was more engaging,
we gave a short informal survey to a small sample of 9 parents or guardians
who interacted with the Intelligent Science Exhibit. Parents/guardians were
identified during the day as children were interacting with the exhibit. The
survey had 7 questions including: “We’re testing a new exhibit. Please let us
know your thoughts.,” “Would you like to see this as a permanent exhibit?
Why or why not?,” “How would you compare this exhibit to others in the
museum?”
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The parent/guardian survey indicated that the interactive character of
the exhibit was appealing and helped hold the attention of the kids. One
parent wrote “I especially liked the making predictions part of it, and
then having to come up with an explanation of the results.” She elabo-
rated that “It employs inquiry learning, which is the heart of how kids
learn. But it is also a play model, so it does not seem like a learning
activity.” When asked to compare the Intelligent Science Exhibits with
other exhibits, parents/guardians indicated it is “more interactive with
the prompts and monitor,” “It’s more directed and instructional than
most other exhibits” and “Compared to similar exhibits, this one has
2-way communication. I think it’s better.” Parents/guardians also com-
mented on how the guidance was pitched at the right level, for example,
“For my kids age (5), it is a top exhibit. Minimal reading (which is good
for older visitors), so it is great to engage early elementary-age kids, and
still allows them to do science.” Parents/guardians’ comments indicated
that the guidance provided in the system was a key reason for kids
staying engaged while they were interacting with the exhibit.

General discussion

We found that adding guided inquiry scaffolding facilitated by having an
intelligent layer on top of physical experimentation in traditional hands-on
exhibits helps children formulate better, more scientific theories of the
physical phenomena they experience. Our results demonstrate children
receiving interactive guidance and feedback while predicting and explaining
are better able to learn to apply science in engineering tasks, especially when
combined with exploration and construction activities. Importantly, free
exploration and construction on its own, as in many current exhibits in
museums, led to substantially less learning and, for some measures, none at
all. Adding the guided-discovery support and intelligent layer that the
mixed-reality Al system provides, not only fosters better learning of scientific
principles of stability, but also improves the application of those principles in
a hands-on, constructive engineering task.

As indicated in the introduction, the Intelligent Science Exhibit utilizes
learning support strategies based on prior research such as contrasting cases
(Chase et al., 2010), predict-observe-explain prompting (White & Gunstone,
1992), menu-based self-explanation prompting (Aleven & Koedinger, 2002;
Chi et al., 1989), and interactive feedback (Corbett & Anderson, 2001). These
strategies do not tell the science to students but promote relevant thinking so
that students construct accurate scientific conceptions on their own. The
contrasting case towers help children focus on scientifically relevant features
and the self-explanation prompts get children to attend more closely to these
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Figure 10. Child predicts that one of the contrasting case towers has more weight on
the side so it will fall more quickly compared to the other one.

features and to put them into words. Figure 10 shows a contrasting case
regarding symmetry where the children have predicted the left tower will fall
first. When the gorilla asks why this tower will fall first, a child answers:
“because this one [pointing to the left tower as shown] has more weight on
the side and that one [pointing to the right tower] doesn’t.”

Sometimes these articulations of scientifically relevant features are started
by one child and picked up by another. For example, faced with a case
contrasting lower versus higher center of mass, one child explains “There
is no blocks under it [pointing at the tower with more weight on top],” while
another girl adds: “Yeah ... And that will keep it up [pointing to the lower
supporting part of the tower].” So, the contrasting case towers help focus
children’s attention on the relevant scientific features that are different
between the towers causing one to fall more quickly than the other.

Feedback from the system—“Uh oh! Your prediction was not quite right”—
helps children focus their attention. It highlights an opportunity to learn. The
prompted self-explanation supports this opportunity to learn, when the gorilla
follows up “The right tower fell first. Why do you think this tower fell first?”
The Gorilla provides alternative possible explanations: “Because it’s taller?
Because it has a thinner base? Because it has more weight on top than bottom?
Because it is not symmetrical or same on both sides?.” This menu-based self-
explanation is an interesting variation on the “time for telling” idea (Schwartz
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& Bransford, 1998). Similar to that approach, children’s incorrect prediction
puts them in a more receptive mode than when up-front telling is provided.
But importantly, the Gorilla is not simply telling. Children still need to figure
out which explanation works in this situation. A child’s self-correction in this
context is indicative of active sense making: “Because it’s taller? Oh, it has a
thinner base!.” The gorilla’s feedback on the clicked-on explanation, “Good
job! It fell first because it had a thinner base than the other tower.,” helps the
child confirm their insight, as indicated by a “we did it” fist pump.

The sequencing of scientific inquiry before the engineering activity of
building stable towers seems to afford transfer of learning. Concepts children
pick up during inquiry are incorporated into their building efforts. For
example, in “Test My Tower” mode one pair used the principles they had
learned from the Guided-discovery mode, saying “Let’s use this (pointing at
the long thin blocks). It has a big base. The bigger the base, the better it’s
gonna be!”

The overall learning outcome and engagement results suggest that the
Intelligent Exhibit evoked both playful and thoughtful interactions, whereas
the Unfacilitated Exhibit evoked play but less thought. When children built
and tested towers with the Unfacilitated Exhibit, they were not incorporating
principles of balance or spontaneously designing experiments to understand
the underlying principles. Instead, they focused on building from intuition,
testing, and then tweaking, making changes to their towers with no apparent
systematic plan. As shown in Figure 11, their towers tended not to incorpo-
rate underlying principles. In rare cases where they built multiple towers at
the same time, they did not express comparison goals or explicitly reflect on
comparative outcomes.

Figure 11. Children’s constructed towers in the Unfacilitated Exhibit tended to not incorpo-
rate the underlying scientific principles of balance, being all and thin (left image), asymme-
trical (right), and with not more weight near the bottom than the top (both).
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While the Intelligent Science Exhibit provides many forms of guidance
and scaffolding, it is not over-scaffolding. First, it provides for some fading of
guidance as students transition from the Guided Discovery mode to the
minimally guided Test My Tower mode. Second, our post-assessments
involve no guidance and provide evidence that student learning from the
Intelligent Science Exhibit transfers to a context without guidance, as stu-
dents may experience in the real world or in future science learning activities.
Furthermore, our Guided Discovery mode is different from direct instruc-
tion, in that children are guided through an inquiry task where they are
discovering the reasons behind physical phenomena with interactive feed-
back rather than being given the answers upfront.

These results add value to popular views and theories of learning that are
apparent in museums, maker spaces and other learning environments, that
have a strong focus on open-ended hands-on exploratory learning (Jeffery-
Clay, 1998). That value derives, in part, from articulating and testing more
precise and operational scientific descriptions of key elements of active and
constructive learning that can be most reliably replicated (cf., Klahr et al.,
2009). Ideas for what elements constitute effective constructive learning vary
(e.g., Chi & Wylie, 2014; Kafai & Resnick, 1996; Resnick, 2014). One element
some authors emphasize is the production of a public or externalized product,
for example, “producing additional externalized outputs or products beyond
what was provided” (Chi & Wylie, 2014) and “the learner is consciously
engaged in constructing a public entity” (Papert, 1980). A consequent predic-
tion in our context is that the tower building activities in the Unfacilitated
Exhibit should provide greater learning benefits than the prediction and selec-
tion-based explanations in the Intelligent Science Exhibit. The former produces
an “additional externalized output” whereas the latter does not. Our findings
are inconsistent with this prediction.

The Unfacilitated Exhibit was not better on any of our multiple learning
measures. The Intelligent Science Exhibit condition performed significantly
better than the Unfacilitated Exhibit in overall principle test results and,
surprisingly, in transferring to hands-on activities in the Tower-Building
tests that are directly analogous to the constructive activities in the
Unfacilitated Exhibit condition. This result is especially interesting, as the
Unfacilitated Exhibit condition is similar to how many museum exhibits and
maker spaces are designed. The emphasis on construction and open-ended
exploration, which is good when combined with well-designed instruction (cf.,
Yannier et al,, 2021), can get misinterpreted as a recommendation for con-
struction and open-ended exploration with no explicit guidance/instruction.

Our experiment also adds value to a cluster of theoretical notions suggesting
that one learns what one practices. Related theoretical concepts and recommen-
dations include transfer-appropriate processing (Bransford et al., 2000), “match
the job task” (Clark & Mayer, 2016) or “active learning” such that students
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become better physicists if they “practice physicist like reasoning” (Deslauriers et
al., 2011). The straightforward interpretation of these recommendations correctly
predicts that children interacting with the Intelligent Science Exhibit, practicing
explanation, should have better outcomes on the explanation measures, com-
pared to those in the Unfacilitated Exhibit condition, who do not practice
explanation. However, a straightforward application incorrectly predicts that
better outcomes on tower building should result from the Unfacilitated
Museum Exhibit condition, which practices more tower building whereas the
Intelligent Science Exhibit condition does not. We find that the scientific thinking
that is enhanced through guided inquiry practice transfers to the engineering task
of tower construction better than the thinking elicited by tower construction
practice. Thus, the theoretical value added by this work is both a caution against
using task similarity alone in predicting transfer and a recommendation to also
evaluate the similarity in the underlying thinking that instructional tasks evoke
and that assessment tasks require. Such evaluation can be done, for example,
using methods like cognitive task analysis (cf., Koedinger & McLaughlin, 2010;
Lovett, 1998; Velmahos et al., 2004).

In addition to learning benefits, we also found the Intelligent Science
Exhibit kept visitors engaged for longer periods of time. Visitors spent four
times more time at the Intelligent Science Exhibit voluntarily compared to the
Unfacilitated Exhibit. Qualitatively, we observed more persistence among
visitors interacting with the Intelligent Science Exhibit, trying again and
again to get their towers to stay up when the earthquake happened whereas
in the Unfacilitated Exhibit such persistence and resilience were not apparent.
This extra time and persistence suggest potential further learning benefits
when Intelligent Science Exhibits are deployed in a museum. The large
learning gains we saw in the experimental study where time was controlled
may be multiplied in a museum setting where visitors stick with the Intelligent
Science Exhibit much longer than a matched Unfacilitated Exhibit.

Intelligent Science Exhibits automate effective forms of scaffolding and
guidance, in a way that affords both reliable experimental variation and
wider dissemination, but without sacrificing the benefits of hands-on physical
experimentation in the real world. This interactive support is especially impor-
tant in museums where it’s not always feasible to have knowledgeable staff
around the exhibits and where parents/guardians do not always have relevant
knowledge. We demonstrated how guidance and personalized support pro-
vides for better learning outcomes. Because the AI technology in Intelligent
Science Exhibits automates this support, it can be provided to more children of
different backgrounds and at a wider scale. While the study in this paper was
conducted when there was no facilitator or museum staft present, the Al
technology can also be a model when there are facilitators or parents around,
exemplifying how they can guide the children for better learning outcomes.
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