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ABSTRACT

Programmable packet scheduling enables scheduling algorithms to
be programmed into the data plane without changing the hardware.
Existing proposals either have no hardware implementations for
switch ASICs or require multiple strict-priority queues.

We present Admission-In First-Out (AIFO) queues, a new solu-
tion for programmable packet scheduling that uses only a single
first-in first-out queue. AIFO is motivated by the confluence of
two recent trends: shallow buffers in switches and fast-converging
congestion control in end hosts, that together leads to a simple
observation: the decisive factor in a flow’s completion time (FCT)
in modern datacenter networks is often which packets are enqueued
or dropped, not the ordering they leave the switch. The core idea of
ATFO is to maintain a sliding window to track the ranks of recent
packets and compute the relative rank of an arriving packet in the
window for admission control. Theoretically, we prove that AIFO
provides bounded performance to Push-In First-Out (PIFO). Empir-
ically, we fully implement AIFO and evaluate AIFO with a range
of real workloads, demonstrating AIFO closely approximates PIFO.
Importantly, unlike PIFO, AIFO can run at line rate on existing
hardware and use minimal switch resources—as few as a single
queue.
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1 INTRODUCTION

Packet scheduling is a central research topic in computer network-
ing. Over the past several decades, a great many packet scheduling
algorithms have been designed to provide different properties and
optimize diverse objectives [6, 11, 23, 40, 41]. Unfortunately, most
of these algorithms, despite many novel ideas among them, never
have found their way to impact the real world. This is largely due to
the high cost to design and deploy switch ASICs to implement them,
since packet scheduling algorithms must run in the data plane at
line rate in order to process every single packet.

Programmable packet scheduling is a holy grail for packet sched-
uling as it enables scheduling algorithms to be programmed into a
switch without changing the hardware design. With programmable
packet scheduling, one is able to develop or simply download a
packet scheduling algorithm that best matches the operational goals
of the network. This enables network operators to highly customize
packet scheduling algorithms based on their needs. Particularly,
it simplifies the testing and deployment of new scheduling algo-
rithms, and it enables algorithms that are targeted at small niche
markets and thus cannot justify the high cost of developing new
switch ASICs to be used and deployed.

A Push-In First-Out (PIFO) queue is a popular abstraction for
programmable packet scheduling [3, 47]. PIFO associates a rank
with each packet and maintains a sorted queue to buffer packets.
Newly arrived packets are inserted into the queue based on their
ranks, and packets are dequeued from the head. Different packet
scheduling algorithms can be implemented on top of PIFO by chang-
ing the rank computation function. Prior works have shown that
PIFO can support a wide range of popular scheduling algorithms,
such as Shortest Remaining Processing Time (SRPT) [41] for mini-
mizing flow completion times (FCTs) and Start-Time Fair Queueing
(STFQ) [13] for weighted fairness.

PIFO, while elegant in theory, is challenging to implement in
practice. A recent work [47] proposes a hardware design to support
PIFO at a clock frequency of 1 GHz on shared-memory switches.
The major design complexity lies in supporting a sorted queue at
1 GHz. Yet, there is a gap from the design to a real switch ASIC
implementation, and the design has scalability limitations—it can
only support a few thousand flows. SP-PIFO [3] is an approximation
of PIFO that can run on existing hardware. The basic idea is to map
the possibly large number of ranks into a small set of priorities,
and then simply schedule the small number of queues based on
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their priorities. This solution, however, requires multiple precious
strict-priority queues.

In this paper, we present Admission-In First-Out (AIFO) queues,
a new solution for programmable packet scheduling that uses only
a single first-in first-out (FIFO) queue. FIFO (drop-tail) queues are
one of the simplest queues that can run at line rate and are available
in almost all switches. Thus, AIFO is amenable to be implemented
in high-speed switches with line rate, and we show not only a
concrete design, but also a real implementation of AIFO on ex-
isting hardware (Barefoot Tofino), with minimal requirements on
hardware primitives—a single FIFO queue, as opposed to multiple
strict-priority queues.

ATFO is motivated by the confluence of two recent trends in
datacenter networking: shallow buffers in the switches [5] and
fast-converging congestion control protocols implemented in end
hosts [22]. Together, they significantly reduce the queueing latency
inside the network, which is especially important for datacenter
environments where low latency is critical for real-time online
services with strict Service Level Objectives (SLOs) [5]. Given these
trends, we observe that the decisive factor in modern datacenters
is often which packets are enqueued or dropped by the switch, not
the ordering in which they leave the switch. For example, dropping
packets of an elephant flow when it competes with two mice flows
is more important to the flow completion times of the mice flows
than the ordering that their packets are dequeued, especially when
the queue length is kept small such that only a few packets occupy
it at any moment.

Based on this insight, the major technical challenge we tackle in
this paper is finding the right set of packets to admit into the queue.
Ideally, ATFO should admit the same set of packets as PIFO to closely
approximate it. AIFO addresses this challenge by maintaining a
sliding window to track the ranks of recent packets in the window
and computing the relative rank of an arriving packet in order
to decide whether to admit or proactively drop it even when the
queue may still have room! Unlike traditional active queue manage-
ment (AQM) solutions, ATFO drops packets based on their relative
ranks instead of using threshold comparisons against average queue
length [12, 34, 35] or delay estimations [32]. Theoretically, we prove
that AIFO provides performance close to that of PIFO. We comple-
ment it with a concrete data plane design and implementation to
show how to efficiently realize AIFO on Barefoot Tofino.

ATFO explores an interesting design question: what are the min-
imal hardware requirements for programmable packet scheduling?
AIFO is an extreme point in the design space—it only requires a
single FIFO queue. This is not only theoretically interesting, but
also has important practical implications. Our conversations with
industry collaborators, including a large-scale search engine and a
large-scale e-commerce service, indicate that physical queues are
critical resources, and are reserved to ensure strong physical isola-
tion and differentiation between applications of multiple tenants;
modern datacenters are already short of physical queues available in
switches. Unlike SP-PIFO which requires multiple physical queues
for packet scheduling, AIFO enables operators to continue using
physical queues for strong physical isolation and differentiation
between tenants, and additionally use AIFO to program the packet
scheduling algorithm for intra-tenant traffic (e.g., SRPT to minimize
the flow completion time).
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Rank Computation for Shortest Remaining Processing Time (SRPT)

p.rank= p.remaining_processing_time

Rank Computation for Start-Time Fair Queueing (STFQ)

if p belongs to a new flow:

p.start = virtual_time
else:

p.start = max(virtual_time, finish_time[p.flow_id])
finish_time[p.flow_id] = p.start + p.length/weight[p.flow_id]
p.rank = p.start

Figure 1: Background on programmable packet scheduling
with PIFO.

As an unexpected positive byproduct, AIFO naturally supports
starvation prevention by design, a necessary feature of pFabric [6]
that schedules the packets of the same flow in FIFO to prevent
packet reordering. While PIFO supports a wide variety of schedul-
ing algorithms, it cannot support starvation prevention needed by
pFabric because the latter packets of a flow would be scheduled first
when PIFO is programmed to use SRPT. With the strong demand
on minimizing FCTs for low-latency online services, pFabric is ar-
guably the killer application of programmable packet scheduling, as
pFabric is considered to be one of the best solutions for minimizing
FCTs. AIFO enables us to implement and deploy pFabric on existing
hardware.

In summary, we make the following contributions.

e We propose AIFO, a new approach to programmable packet
scheduling that uses only a single queue.

e We design an algorithm based on sliding windows and efficient
relative rank computation to realize AIFO in the switch data plane.
Theoretically, we prove that ATFO provides bounded performance
to PIFO.

e We implement a AIFO prototype on a Barefoot Tofino switch.
We use a combination of simulations and testbed experiments to
evaluate AIFO under a range of real workloads and scheduling
algorithms, demonstrating AIFO closely approximates PIFO.

Open-source. The code of AIFO is open-source and is publicly
available at https://github.com/netx-repo/AIFO.

2 BACKGROUND AND MOTIVATION

In this section, we first provide background information on pro-
grammable packet scheduling, and then use an example to motivate
the key ideas of AIFO.

2.1 Programmable Packet Scheduling

Programmable packet scheduling enables the packet scheduling
algorithm in a switch to be changed without the need to change
the switch ASIC. PIFO [47] is a proposal for programmable packet
scheduling. It contains two components: a PIFO queue and a rank
computation component. Each packet is associated with a rank. The
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2 2 1 5 4 1 _— 2 2 11—
PIFO
(a) Push-In First-Out (PIFO).
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FIFO
(b) First-In First-Out (FIFO).
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Admission Control FIFO
(c) Admission-In First-Out (AIFO).

Figure 2: Motivating example of AIFO.

PIFO queue is a priority queue that sorts packets based on their
ranks. Packets are inserted into the queue based on their ranks, and
are dequeued from the head (i.e., the smallest rank).

Programmability lies in the rank computation component. Pro-
gramming a packet scheduling algorithm in the context of PIFO
refers to programming how a rank for each packet is computed.
One simple example is to program SRPT [41] for minimizing FCTs,
as shown in Figure 1. In this example, the rank of a packet is simply
the remaining processing time of the flow (or simply the remaining
bytes of the flow). Note that SRPT requires end hosts to put the
remaining processing time in an appropriate field in the packet
header [6, 41], which is orthogonal to packet scheduling in the
switch. Given such rank computation, the PIFO queue would sched-
ule the packet with the shortest remaining processing time first,
i.e., realizing SRPT.

A more complicated example is to program STFQ [13] for weighted
fairness, which is also shown in Figure 1. In this example, the rank
of a packet is the virtual start time of the packet in STFQ. The vir-
tual start time is computed as the maximum of the virtual time and
the virtual finish time of the previous packet of the same flow. The
virtual time maintains the virtual start time of the last dequeued
packet across all flows. The virtual finish time of a packet is the
virtual start time of the packet plus the length of the packet divided
by the flow weight. Given such rank computation, the PIFO queue
would schedule the packet with the smallest virtual start time first,
i.e., realizing STFQ.

Beyond these two example, it has been shown that PIFO can
support a wide range of packet scheduling algorithms, such as
Least-Slack Time-First [23], Service-Curve Earliest Deadline First
(SC-EDF) [40], etc.

2.2 Motivating Example

While PIFO is an appealing solution for programmable packet sched-
uling, it is challenging to implement in hardware, especially in
switch ASICs. The rank computation component is relatively easy.
It can be implemented as a packet transaction [46] in the data plane
of existing programmable switches. The major challenge is to im-
plement the PIFO queue. Existing switches do not support a sorted
queue in the data plane. There is a proposal on how to support
a sorted queue in the data plane at 1 GHz [47]. But the proposal
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PIFO
(a) Push-In First-Out (PIFO).
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Admission Control FIFO
(b) Admission-In First-Out (AIFO).

Figure 3: An example that PIFO and AIFO dequeue the same
set of packets ({1, 1, 2, 2}), but the dequeueing orderings are
different ([1, 1, 2, 2] vs. [1, 2, 1, 2]).

only provides a design, not a real implementation, and the design
is not scalable as it can only support a few thousand flows. SP-
PIFO [3] provides an approximation of a PIFO queue using multiple
strict-priority queues. But strict-priority queues are precious hard-
ware resources as commodity switches have a limited number of
strict-priority queues and the operators would like to use them to
ensure strong physical isolation between multiple tenants. In this
paper, we aim to design a solution that has the minimal hardware
requirements for programmable packet scheduling.

Example. To find such a solution, let us get down to the funda-
mentals to analyze the problem. We consider the arrival traffic and
departure traffic of a queue. When the packet arrival rate is no
higher than the link speed (i.e., the upper bound of the departure
rate), the entire traffic is admissible and there is no persistent queue
buildup. It does not matter whether the queue is PIFO, FIFO, or
anything else. The distinction happens when the arrival rate is
higher than the link speed, which can be either due to a microburst
or a longer-term congestion. In this case, some of the packets are
not admissible and the queuing discipline matters.

We examine the examples in Figure 2. The example is simplified
to provide the intuition of our approach. In the example, there is
a burst of six packets arriving at the switch. The queue has four
slots and is empty in the beginning. For the first four packets, PIFO
would enqueue them one by one and the sorted queue becomes
[1, 1, 4, 5]. Then when the fifth packet with rank 2 arrives, PIFO
would insert the packet into the queue and the last packet in the
queue is dropped due to overflow. The queue becomes [1, 1, 2, 4].
Finally, when the sixth packet arrives, the last packet in the queue
is dropped again and the queue is [1, 1, 2 ,2] in the end.

In terms of FIFO, it enqueues the packets one by one. After four
packets, the queue is full, and the fifth and sixth packets cannot
be enqueued. The queue is [1, 4, 5, 1] in the end. PIFO and FIFO
behave very differently.

However, if there is an oracle that knows the precise arrival
pattern of the packets in advance, then the switch can perform
admission control before the packets are enqueued. Specifically for
the example in Figure 2, the admission control can use a threshold
of 3. If the rank of a packet is no bigger than 3, then the packet
can be enqueued; otherwise the packet is dropped. With this, the
second and third packets would be dropped and the queue is [1,
1, 2, 2] in the end. FIFO with such admission control behaves the
same as PIFO in this example.
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3 DESIGN GOAL

Based on the insights from the motivating example, we can trans-
form the packet scheduling problem into an admission control
problem, and PIFO can be approximated by FIFO with admission
control.

We term this approach AIFO. Our goal is to minimize the gap
between the ideal case (i.e., PIFO) and the approximation (i.e., AIFO).
The gap can be measured quantitively with the following metric:
the difference between the packets dequeued by PIFO and those
dequeued by AIFO. Formally, let the set of packets dequeued (up to
time ¢) by PIFO and AIFO to be P(t) and A(t), respectively. Then
we use

[P(t) \ A +]A() \ P(1)]
[P(2)] +|A(D)]

to measure the gap between PIFO and AIFO. Here, |P(t) \ A(2)|
is the cardinality of the set difference between P(t) and A(t), and
|A(t) \ P(¢)] is that between A(t) and P(t). |P(¢)| and |A(¢)| are
the cardinalities of sets P(¢) and A(¢), respectively.

We have A(t) € [0, 1], and a large value of A indicates a large gap
between AIFO and PIFO. When AIFO and PIFO dequeue the same
set of packets (i.e., no gap), A = 0; when AIFO and PIFO dequeue
completely different packets, A = 1. We theoretically prove that the
difference between AIFO and PIFO is negligible when the system
is stationary (§4), and empirically demonstrate that AIFO provides
close performance as PIFO with a range of real workloads (§5).

A(t) =

1

Packet ordering. Another possible metric would be to not only
count the number of different packets that are dequeued, but also
account for the difference in the dequeuing ordering. Figure 3 pro-
vides an example to illustrate this metric. The example is similar to
the one in Figure 2, and the only difference is that the third and the
fourth arrival packets are swapped in Figure 3. With this arrival
sequence of packets, AIFO still admits the same set of packets as
PIFO, which are {1, 1, 2, 2}. However, the orderings that the packets
are dequeued are different. AIFO uses the ordering [1, 2, 1, 2], which
PIFO uses the ordering [1, 1, 2, 2].

We argue that this metric is less important than the first metric,
and sometimes is even undesirable to optimize for. First, there
are two important trends for datacenter networking: (i) the trend
towards shallow buffers for low latency in modern datacenters [5];
and (ii) the trend towards tight control loops at end hosts [22]. The
confluence of these two trends ensures that the switch queues would
not buffer many packets, making the difference on the dequeueing
ordering between PIFO and AIFO minimal. As we are essentially
emulating PIFO with a FIFO queue, we want to keep the buffer
shallow so that the packets can have a short waiting time in the
queue. Empirically, we show in Section 5 that such a difference
would not impact the flow-level metrics like flow completion time
(FCT) much and AIFO behaves almost the same as PIFO.

Second, strictly following PIFO causes packet reorderings, which

is undesirable. SRPT achieves near optimality on minimizing FCTs [41];

it schedules flows based on the remaining flow size, so that small
flows are scheduled before big flows to minimize FCTs. Packet re-
orderings happen when PIFO is programmed to implement SRPT
by using the remaining flow size as the rank (like Figure 1). This
is because for the same flow, a latter packet would have a smaller
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remaining flow size than its previous packet, and thus is scheduled
first by the switch if both packets are enqueued by the switch.

This is a known issue, and pFabric [6] addresses this issue by
adding an extra feature called starvation prevention to SRPT. Star-
vation prevention dequeues the packets of the same flow in the
order they arrive, so that the first packet of a flow would be de-
queued first if the flow is scheduled and the first packet would
not be starved. Between flows, pFabric uses SRPT to select which
flow to schedule first. Given the strong demand on low-latency
for datacenter networks, pFabric is arguably the killer application
of programmable packet scheduling. Yet, it cannot be supported
by PIFO [47]. Unexpectedly, a positive byproduct of AIFO is that
it naturally supports starvation prevention and eliminates packet
reordering by design.

Summary. To summarize, our goal is to design an algorithm that
has the minimal hardware requirements (i.e., a single queue) and
admits the right set of packets to minimize A and maintain shallow
buffers. The algorithm should be able to be implemented in the
data plane of existing hardware and run at line rate. We want to
ensure that the algorithm provides bounded performance to PIFO
with respect to A.

4 AIFO DESIGN

In this section, we first introduce the key ideas of AIFO. Then we
describe the AIFO algorithm, and theoretically prove that AIFO
closely approximates PIFO. Finally, we describe the switch data
plane design to implement AIFO on a programmable switch.

4.1 Key Ideas

ATFO only uses a single FIFO queue, instead of a PIFO queue or
multiple strict-priority FIFO queues. It adds admission control in
front of the FIFO queue to decide whether to admit or drop an ar-
riving packet. Admitted packets are buffered and sent by the queue
in FIFO order, and no extra scheduling is needed. The admission
control is designed to minimize A described in Section 3, in order
to minimize the gap between AIFO and PIFO.

AIFO achieves a close approximation of PIFO with two-dimensional
admission control by simultaneously considering both time and
space dimensions. Its temporal component considers the time dimen-
sion by changing the threshold over time based on the fluctuation
of the arrival rate; its spatial component considers the space dimen-
sion by deciding the threshold based on the ranks of the packets
at each time. These two together ensure AIFO admits a similar set
of packets as PIFO. At a high level, the two components work as
follows.

e Temporal component. The threshold of admission control is
dynamic, instead of fixed. It is updated based on the real-time
discrepancy between arrival rate and departure rate. When the
arrival rate significantly exceeds the departure rate, the threshold
becomes more aggressive. It ensures the rate of admitted packets
roughly matches the departure rate.

e Spatial component. The admission control treats packets differ-
ently based on their ranks, instead of using a naive rank-agnostic
criteria (e.g., randomly dropping 10% packets). It prefers to drop
high-rank packets over low-rank packets, as low-rank packets
are expected to be scheduled first. The threshold is decided based
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Algorithm 1 AIFO

1: function INGREss(pkt)
// Admission Control

2 Update sliding window W with pkt

3 ¢ « Queue.length

4: C < Queue.size

5 if ¢ < k- C || W.quantile(pkt) < ﬁ% then
// Admit packet

6: Queue.enqueue(pkt)

7: else
// Drop packet

8 Drop pkt

9: function EGREss

10: if Queue is not empty then

11: pkt — Queue.deque()

12: Send pkt

on the arrival rate distribution of different ranks. It ensures the
admitted packets have similar ranks as those admitted by PIFO.

We note that the basic idea of dynamic, proportional adaption is
widely used, and in particular for networking, it has been instanti-
ated in various forms in congestion control [4, 22, 30]. For exam-
ples, delay-based congestion control algorithms like TIMELY and
Swift [22, 30] adapt the TCP window size dynamically based on the
end-to-end delay, and ECN-based algorithms like DCTCP [4] adapt
the window size in proportional to the number of packets with the
ECN flag. These instantiations all put the control in the end hosts.
In comparison, AIFO places the dynamic, proportional adaption in
the network, and it serves a different purpose, i.e., programmable
packet scheduling. This context brings stringent requirements to
the algorithm design: the algorithm should not only achieve op-
timality, but also be carefully designed to be implemented at line
rate.

For readers familiar with the packet scheduling literature, AIFO
can be considered as an AQM solution. Traditional AQM solutions
consider a specific objective, and drop packets using threshold
comparisons against average queue length [12, 34, 35] or delay
estimations [32]. In comparison, AIFO is designed to be a general
solution that can be programmed to support different objectives,
and it drops packets with a combination of threshold comparisons
(i.e., the temporal component) and relative packet rank estimations
(i-e., the spatial component).

4.2 Algorithm

We design AIFO based on these key ideas. Algorithm 1 shows the
pseudocode. At the ingress (line 1-8), AIFO uses admission control
(line 2-5) to decide whether to enqueue (line 6) or drop a packet (line
8). The threshold is dynamically determined by queue length (c) and
queue size (C), and we use quantile estimation (W.quantile(pkt))
to estimate the relative rank of current packet. The queue is a FIFO
queue which enqueues the packet to the end of the queue. At the
egress (line 9-12), when the queue is not empty, AIFO dequeues a
packet from the head of the queue, and sends the packet out.
Next, we explain the admission control part in detail. For the
temporal component, it uses the difference between the current

SIGCOMM ’21, August 23-28, 2021, Virtual Event, Netherlands

threshold = —— < =5~ 2_ gno
resno = (1 — k)C = 5 = 0
admit
_—
pkt.quantile = 50% k=1/6, C=6, c=2

(a) Admit packet when current queue length ¢ = 2.
C—-c 6—5

= — = 0,
threshold a—hcC 5 20%
drop
+
pkt.quantile = 50% k=1/6, C=6, c=5

(b) Drop packet when current queue length ¢ = 5.

Figure 4: Examples of admission control in AIFO.

queue length (denoted by c) and the target queue size (denoted by C)
to capture the discrepancy between arrival rate and departure rate.
The threshold of admission control is more aggressive when the
current queue length approaches the target queue size, i.e., when
% is small. We allocate a headroom to tolerate small bursts with
a parameter k. When the queue length is within the headroom
(i.e., ¢ < k - C), all packets are admitted. Accordingly, the differ-
ence between the queue length and the queue size is also scaled
by ﬁ to account for the headroom. We separate ¢ < k - C and
W.quantile(pkt) < ﬁ % into two conditions at line 5 for clarity.
Mathematically, the first condition ¢ < k- C is redundant. This is be-
cause when ¢ < k - C, then ﬁ% > 1 > W.quantile(pkt) where
W.quantile(pkt) estimates the quantile of pkt, and the packet is
always admitted.

It is important to note that C is not necessarily the physical size
of the FIFO queue. The physical size of a queue in a commodity
switch varies in a large range from tens of packets to hundreds or
even thousands of packets, depending on the switch ASIC. Despite
this capability, production networks tend to use shallow buffers
and limit the queue size in deployment for low latency. As such,
C can be configured to a smaller number than the physical queue
size, and thus we term it as the target (not physical) queue size in
the algorithm description.

For the spatial component, AIFO maintains a sliding window of
recently received packets and uses the quantile of the rank of the
arrival packet (W.quantile(pkt)) as the criteria. When the quantile
is no bigger than ﬁ % the packet is admitted; otherwise, the
packet is dropped. The intuition is that after accounting for the
headroom with ﬁ ﬁ% captures the amount of remaining
queue space, in terms of the percentage of the target queue length.
Only a subset of the following packets that can fit the remaining
queue space can be admitted. We find a rank r* of which the quantile
is equal to the percentage representation of the remaining queue
space. We only admit the packets with ranks no bigger than r* to
ensure that the admitted subset of packets are the low-rank packets
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that should be admitted and can just fit the remaining queue space.

We maintain a sliding window to estimate the quantile of an arrival

packet based on the past packets.

The benefit of the two-dimensional approach is that the inaccu-
racy of one component can be compensated by the other component.
If the quantile estimation of the sliding window (the spatial com-
ponent) is a bit off, i.e., admitting extra packets, then the queue
length ¢ would increase, making the quantile threshold ﬁ %
(the temporal component) more strict. And this corrects the spatial
component to use a smaller rank threshold.

We provide two examples to illustrate different cases in the
admission control. The examples are shown in Figure 4. The target
queue length C is 6 and the headroom parameter k is 1/6 (i.e., a
headroom of 6x1/6 = 1 packet). Suppose the quantile of the arriving
packet’s rank is 50%.

e Case 1: admit packet below quantile threshold. When the
current queue length c is 2, the quantile threshold is ﬁ % =
80%. This means a packet can be admitted if the quantile of the
packet’s rank is no bigger than 80%. Since the quantile of the
arriving packet’s rank is 50%, which is smaller than 80%, the
packet is admitted.

e Case 2: drop packet above quantile threshold. When the
current queue length c is 5, the quantile threshold is ﬁ % =
20%. This means a packet can be admitted if the quantile of the
packet’s rank is no bigger than 20%. Since the quantile of the
arriving packet’s rank is 50%, which is bigger than 20%, the packet

is dropped.

4.3 Theoretical Guarantee

We provide the theoretical guarantees for AIFO as follows. The
proofs of the theorems are in Appendix.

Packet departure rate and queue length. We consider n packet
ranks, denoted by r1 < rz < -+ < rp (smaller rank value means
higher priority). Let A; be the arrival rate of packets with rank i.
Let y > 0 be the queue draining rate. We can prove properties for
the departure rate of each rank and the queue length.

THEOREM 1. Assume 37, A; > y. Let n* := min;{A; + --- +
Ai = y}. When the algorithm reaches the stationary state, it has the
following properties on the packets departure rates:
(1) AIFO and PIFO has the same departure rate for each rank:
e forranki < n*, its departure rate is A;;
e for rank i = n*, its averaged departure rate isy — 3., <, Ai;
o for rank i > n*, its departure rate is zero.
(2) FIFO does not perform as the same as PIFO:
e forranki € {1,...,n}, its departure rate is "A_IAIY
When the algorithm reaches the stationary state, it has lt?ze following
properties on the queue length:
(1) The queue length for PIFO and FIFO is C.
(2) The queue length for AIFO is

« (1-Z0-0)Cif Ziew 2 > 1

e orbounded between (1 - %(1 - k)) Cand(l - "7*(1 - k)) C,

ifXj<n Aj =V

This theorem means that at the stationary state, the departure
rate of each packet rank with AIFO is the same as that with PIFO.

Zhuolong Yu, et al.
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write queue length read queue length

—> Traffic
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read queue length;
admission control

write queue length

Figure 5: Worker packets carry queue length information
from egress pipe to ingress pipe via recirculation. Normal
packets read queue lengths and make admission control de-
cisions at ingress pipe. Normal packets also write queue
lengths at egress pipe.

The behavior of FIFO is very different from those of AIFO and PIFO.
As FIFO does not do any scheduling, the departure rate of a rank
is proportional to the arrival rate of the rank. The theorem also
shows that with admission control, the queue length with AIFO is
slightly smaller than that of PIFO.

Admitted packet set. Consider a time interval from 0 to T and n
packet ranks. Let a;(t) be the departure rate of rank i with AIFO,
and p; (t) be the departure rate of rank i with PIFO. We can prove
properties for the difference between the departure packets with
ATFO and those with PIFO.

THEOREM 2. Adopt the assumption in Theorem 1. Suppose the
systems are initialized at time 0, and after time ty both PIFO and
AIFO reach and stay at their stationary states. Then for the gap
measure defined in Eq. (1), we have

lim A(T) =0.
Tgnoo ()

Theorem 1 already provides a strong guarantee on the departure
rate of each rank. This theorem goes further to show the gap on
the difference of the dequeued packets. It proves that A defined in
Section 3 is close to 0, meaning that AIFO and PIFO dequeue the
same set of packets.

4.4 Data Plane Design and Implementation

We describe the data plane design to implement AIFO on a pro-
grammable switch. We emphasize that the algorithm of AIFO itself
is independent of the hardware architecture, and can be imple-
mented on programmable switch ASICs, FPGAs or network proces-
sors. The purpose here is to provide a concrete data plane design
and implementation to demonstrate the viability of AIFO. We im-
plement AIFO with 827 lines of code in P4. The implementation
can run on Barefoot Tofino at line rate. We describe the major
challenges and our solutions in our design and implementation.

Queue length estimation for the temporal component. The
main challenge for the temporal component is to maintain the dy-
namic threshold ﬁ % based on the queue length. The queue
length information is managed by a module called traffic manager
which sits between the ingress pipe and the egress pipe. The dif-
ficulty is that for commodity switches including Barefoot Tofino,
the queue length information can only be obtained when a packet

goes through the traffic manager, and thus can only be read at the
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Figure 6: Compute quantile with a sliding window.

egress pipe. However, AIFO requires the queue length to compute
the threshold at the ingress pipe in order to make admission control
decisions.

To address this challenge, we design a recirculation-based solu-
tion to bring the queue length information from the egress pipe
to the ingress pipe. Specifically, we use a register array to store
the queue length for each egress port at the egress pipe, denoted
by gq_len_egress. Packets can write the queue length value into
q_len_egress after passing through the traffic manager. At the
same time, we have a copy of the register array at the ingress
pipe, denoted by q_len_ingress. We use a set of worker packets to
read the queue lengths from g_len_egress at the egress pipe. The
worker packets are recirculated to enter the ingress pipe again
when they leave the egress pipe, and they update the queue lengths
in g_len_ingress using the values they read.

As the worker packets make the queue lengths ready in the
ingress pipe, a normal arriving packet can then access the queue
length information in the ingress pipe. After the routing decision
is made for the packet (i.e., the egress port is known), it can read
the queue length of its egress port from q_len_ingress. Then the
threshold ﬁ % can be calculated with the queue length to decide
whether to admit or drop the packet. If the packet is admitted, it
also writes the current queue length to the egress pipe. Figure 5
illustrates how the solution works.

Since the worker packets keep being recirculated all the time,
they only go through a designated recirculation port, and thus
would not contribute to the queue lengths of the egress ports. As-
suming it takes 200 ns for a worker packet to go through the pipeline
and be recirculated, for a port with 10Mpps rate, it would only cause
a bias of 2 packets, which is negligible. Also note that for switches
that support reading queue length directly in the ingress pipe (e.g.,
Barefoot Tofino 2), recirculation is not needed.

Quantile estimation for the spatial component. The spatial
component estimates the quantile of the rank of each arriving
packet. We use a set of stages to implement a sliding window to
store recent packets and estimate quantiles. Programmable switches
normally support accessing several registers per stage, e.g., m = 4
registers per stage. In order to support a sliding window with n
slots, we need n/m stages. We use m registers per stage over n/m
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stages, and use n registers in total. The index of each register is
from 0 to n — 1, and it indicates the position of the packet in the
sliding window. The value of register i stores the rank of the packet
at position i in the sliding window. Figure 6 shows an example with
n = 16 and m = 4. We use 4 stages and use 4 registers per stage,
with a total of 16 registers. Each register stores the rank for a packet
in a sliding window of 16 recent packets.

We use an index tagger module to track the sliding window. The
index tagger module keeps a circular counter from 0 to n — 1. It
assigns its counter the index of an arriving packet (pkt.index), and
then increments its counter by one. The counter is reset to 0 when
it reaches n. The packet index indicates which register stores the
rank of the oldest packet in the sliding window, and thus should be
updated with the rank of the arriving packet. In Figure 6, pkt.index
is 4, and thus the value of the first register at stage 2 (i.e., the register
with i = 4) is updated with the rank of the arriving packet. The
index pkt.index will be set as 5 for the next packet and point to the
second register at stage 2 (following the dotted arrow).

At the same time, when a packet goes through each stage, the
switch also compares the rank of the packet with the value in each
register with an ALU. Each ALU outputs a result indicating whether
the packet rank is smaller than the register value: if the packet rank
is smaller, output = 1; otherwise, output = 0. By summing up the
outputs of all ALUs together, we get the relative ranking of the
arriving packet in the sliding window: g = 3; output;. The quantile
of the arriving packet can be computed by dividing g by the length
of the window: W.quantile(pkt) = q/n.

In Figure 6, the rank of the arriving packet is 5. The rank is
smaller than the values of 6 registers, which are marked with red
in the figure. As the size of the sliding window n is 16, the quantile
is 6/16 = 37.5%.

While our evaluation results show that a small sliding window
size (e.g., 20) is sufficient for many common scenarios, a large slid-
ing window is sometimes needed for certain workloads. However,
commodity switches normally provide only a few stages and a small
amount of memory. To efficiently use precious switch resources,
we use a sampling method to virtually scale up the sliding window
size by adding a sampler aside with the index tagger. For exam-
ple, instead of using a window with the size of 1000, we can use a
smaller window with the size of 20, and set the sampling rate as
0.02.

As both the queue length (c) and the quantile (%) are available,
we canlmake the admission control decision based on ’El;le kcondition

% <1z % This condition can be transformed to CT_) ‘q+c <
C-(1-k)

C. Since C, k, and n are constants, ——-q can be easily calculated
in one stage with a math unit available in programmable switches.

5 EVALUATION

In this section, we provide experimental results to demonstrate the
performance of AIFO. We first evaluate AIFO using simulations
to show that AIFO can achieve high performance in a large-scale
datacenter environment. In the simulations, we benchmark AIFO
with state-of-the-art solutions to demonstrate its end-to-end perfor-
mance. Besides, we also evaluate the effect of different parameters,
and the admitted packet set of AIFO. At last, we evaluate our pro-
totype for AIFO on a Barefoot Tofino switch in a hardware testbed.
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Figure 9: The effect of window length and sampling rate.

5.1 Packet-Level Simulations

We use packet-level simulations to evaluate AIFO in a large-scale
datacenter environment. We use a similar setting as recent works
on packet scheduling [3, 6]: a leaf-spine topology which contains 9
leaf switches, 4 spine switches and 144 servers, and the bandwidth
of the access and leaf-spine links is set at 10Gbps and 40Gbps,
respectively. The simulations are conducted with Netbench [1], a
packet-level simulator.

We evaluate two use cases of programmable packet schedul-
ing: minimizing FCT and providing fairness. (i) We use AIFO to
implement pFabric, and compare it with TCP, DCTCP as well as
state-of-the-art approaches PIFO [47], SP-PIFO [3], and PIEO [45]

under a realistic traffic workload: web search workload [6]. We also
conduct a sensitivity analysis to evaluate and analyze the effect of
different parameters (i.e., queue length, scaling parameter k, win-
dow length and sampling rate) on AIFO and the admitted packet
set of AIFO. (ii) We implement Start-Time Fair Queueing (STFQ)
on top of AIFO and compare it with other state-of-the-art solutions.
For AIFO, we set the target queue length as 20, k = 0.1, window
length as 20, and sampling rate as % by default.

Minimizing FCT with AIFO. We first show the performance of
ATFO when implementing SRPT for pFabric [6] to minimize FCT
under the web search workload. The traffic starts according to a
Poisson distribution. For comparison, we also implement SRPT
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Figure 11: The effect of queue length on 10G/40G network.

with SP-PIFO and PIFO, and compare them with TCP and DCTCP.
In addition, we consider PIEO, which is a more scalable design
for programmable packet scheduling compared with PIFO. We use
pFabric as the transport layer for AIFO, PIFO and SP-PIFO at the
hosts. Figure 7 shows the average FCT for small flows (Figure 7(a)),
the 99th percentile FCT for small flows (Figure 7(b)), and the average
FCT for large flows (Figure 7(c)). AIFO, PIFO, PIEO, and SP-PIFO
can achieve much lower FCT compared with TCP and DCTCP,
especially when the load is high. Among all these approaches, PIFO
and PIEO achieve the best performance as it enforces strict priority
with a PIFO queue. The performance of SP-PIFO is close to PIFO.
While PIFO requires a PIFO queue which is hard to implement
and SP-PIFO requires multiple FIFO queues (eight queues in the
simulations), AIFO achieves a good performance that is close to
PIFO and SP-PIFO with a single FIFO queue. Besides, AIFO can deal
with different sizes of traffic well as the admission control threshold
can adapt the current workload traffic dynamically. Figure 7 shows
that as the traffic load grows, the FCT for AIFO does not go up as
TCP or DCTCP does, and the gap between AIFO and PIFO/SP-PIFO
gets smaller.

The effect of parameter k. The headroom parameter k controls
how aggressively AIFO drops high-rank packets. We set k among
0.1 ~ 0.9 and compare the results with FIFO and PIFO. Figure 8
shows the results. AIFO with smaller k always delivers better per-
formance than larger k for small flows, and it also delivers better
performance for large flows when the traffic load is big (e.g., 0.7, 0.8).
The reason is that with a small k, AIFO drops packets aggresively
and keeps the buffer shallow so that the admitted packets get low
latency. When k is small, ATFO delivers a close performance com-
pared with PIFO. As we increase k, AIFO admits more packets and
it becomes closer to FIFO. When the traffic load grows, the queue
buffer accumulates quickly, and it leads to a large delay. While
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Figure 12: Packet distribution logged at the receiver. Three
senders send one flow each to a receiver at the same
time. The size of the three flows are 100MB (large), 50MB
(medium) and 10MB (small), respectively. The link between
the switch and the receiver is the bottleneck.
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Figure 13: The first 300 packets of the small flow logged
at the receiver. The setting is the same as Figure 12: Three
senders send one flow each to a receiver at the same
time. The size of the three flows are 100MB (large), 50MB
(medium) and 10MB (small), respectively.

dropping packets aggressively harms large flows especially when
the traffic load is not big and the network capacity is underutilized,
we show that the harm is slight compared with the benefit it brings
to small flows. When k = 0.1, the average and 99th percentile FCT
for small flows is about 9% lower than that of k = 0.9, and the FCT
for large flows is only slightly higher than the lowest.
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Figure 14: Simulation results of web search workload with fair queueing.

The effect of window length and sampling rate. We also eval-
uate how the sliding window length affects the performance of
AIFO and how well a small sliding window approximates a large
sliding window with sampling for AIFO. As shown in Figure 9,
when the window length is 20, the performance is better than that
when the window length is 1000 for small flows, but worse for large
flows. It is because that a large window records packets for a longer
time, and the possibility for packets from large flows (high-rank
packets) to be admitted is more stable. As a result, there are more
high-rank packets admitted into the queue in the long run, which
makes the FCT for small flows higher and FCT for large flows lower.
It is interesting to see in Figure 9(b) that the 99th percentile FCT
is decreasing as the traffic load grows when win_len = 1000. The
reason is that when the window is large and the traffic load is low,
the quantile is less accurate. The flows that experience deep buffer
and inaccurate quantile estimation would have larger FCTs, and
these flows would normally contribute to the 99th FCT.

By comparing lines <win_len=20, sample_rate=0.02>, <win_len
=100, sample_rate=0.1> and <win_len=1000, sample_rate=1>, we
can see that ATFO does not require a very precise quantile and a
small window can approximate a large window with sampling. This
is important to the practicability of AIFO as a window with 20 slots
can be implemented in programmable switches with tiny resource
consumption.

The effect of queue length. To evaluate the impact of queue
length on the performance of AIFO, we use different queue lengths
and run simulations on both a 1G/4G network (access link: 1Gbps,
leaf-spine link: 4Gbps) and a 10G/40G network. As shown in Fig-
ure 10 and Figure 11, ATIFO is more sensitive to the change of queue
length when the bandwidth is low or when the traffic load is high.
Figure 11 shows that FCT achieved by AIFO when g _len = 20
is close to q_len = 100 on the 10G/40G network. However, FCT
achieved by AIFO when q_len = 20 is much smaller than q_len =
100 in Figure 10 on the 1G/4G network. This is because it takes a
while for a long queue to drain when the bandwidth is low, which
leads to a considerable queueing delay. A relatively small queue
benefits the FCT.

Admitted packet sets. Recall that we indicate in Theorem 2 that
the sets of packets dequeued by AIFO and PIFO are similar. This
experiment examines the gap between AIFO and PIFO in terms of

the difference between the packets dequeued by AIFO and those
dequeued by PIFO. Here we use four servers and the servers are
connected with a Top-of-Rack switch. The bandwidth of the links
between the servers and the switch are set as 1Gbps. We let three
servers serve as senders, and the other server serves as a receiver.
Each sender sends one flow to the receiver at the same time, and the
sizes of the flows are 100MB (large), 50MB(medium), and 10MB(small),
respectively. The servers run pFabric as the transport and the flows
are tagged with the remaining flow size as their rank. The switch
is programmed to support SRPT with AIFO, PIFO or SP-PIFO.

We log the ranks of the first 60000 packets received by the re-
ceiver, and plot the log in Figure 12. The x-axis is the arriving order
of the packets, and the y-axis is the rank of the packets. As shown
in Figure 12, when the network is running FIFO without admission
control and packet scheduling, the three flows share the bandwidth
and the small flow (blue) finishes late. For the other three solutions
(AIFO, PIFO, SP-PIFO), the small flow finishes at about the same
time, and it finishes much earlier than it does with FIFO. Besides,
it is shown that AIFO is closer to PIFO than SP-PIFO in terms of
the admitted packets set: there are larger overlaps on the arriving
order (x-axis) between the small flow (blue) and the medium flow
(green), as well as between the medium flow and the large flow
(red) in Figure 12(c), than those in Figure 12(d) and Figure 12(b).

Packet reordering. Besides the admitted set, another interesting
metric is the dequeued order of the packets. PIFO always dequeues
the packet with the lowest rank in the queue, which may cause
out-of-order and harm the end-to-end performance. However, as
ATFO only enforces admission control on a FIFO queue, it does not
cause out-of-order.

We run the same setting as in Figure 12 and we only log the first
300 packets of the small flow in order to show the packet out-of-
order clearly. As shown in Figure 13(a) and Figure 13(d), when we
enable AIFO, the packet order of one flow is the same as that with
FIFO and there is no packet out-of-order. It is because that AIFO
only uses a FIFO queue and does not do packet scheduling inside
the queue. However, both PIFO and SP-PIFO get some out-of-order
packets, as shown in Figure 13(b) and Figure 13(c). The reason is that
PIFO and SP-PIFO always dequeue the packet with the lowest rank,
while the packets with higher rank will be left in the queue and be
scheduled later. With pFabric, the rank is based on the remaining
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Figure 15: Testbed experiments for UDP. Four flows start one by one every five seconds. Flows have different ranks: R(Flow 1)
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Figure 16: Testbed experiments for TCP. Four flows start one by one every five seconds. Flows have different ranks: R(Flow 1)

> R(Flow 2) > R(Flow 3) > R(Flow 4).

flow size, so a later packet has a lower rank compared with an
earlier packet. As a result, these two methods lead to a number of
out-of-order packets. As SP-PIFO approximates PIFO with a set of
FIFO queues, it causes fewer out-of-orders compared with PIFO.

Fair queueing with AIFO. Programmable packet schedulers like
PIFO can be used to implement different kinds of packet scheduling
algorithms by changing the rank computation function. Besides
implementing SRPT to minimize FCTs, here we show how AIFO
performs when we implement Start-Time Fair Queueing (STFQ) [13]
on top of it for fair queueing. We also implement STFQ on top of
PIFO, SP-PIFO and PIEO to compare them with AIFO. Besides,
we include TCP, DCTCP, and the state-of-the-art fair queueing
solution AFQ for comparison. We run the web search workload
and show the average FCT for small flows (Figure 14(a)), the 99th
percentile FCT for small flows (Figure 14(b)), and the breakdown of
FCT for different flow sizes (Figure 14(c)). AIFO achieves a similar
performance compared to the state-of-the-art approaches AFQ, SP-
PIFO, PIFO and PIEO for both average FCT and tail FCT, and is
significantly better than TCP and DCTCP. The FCT of AIFO for
small flows is only 9.7% higher than AFQ and 3.6% higher than
SP-PIFO, despite AIFO using only a single queue.

5.2 Testbed Experiments

We evaluate AIFO in the testbed. The testbed experiments are con-
ducted in a hardware testbed with a 6.5Tbps Barefoot Tofino switch

and five servers. Each server is configured with an 8-core CPU
(Intel Xeon E5-2620 @ 2.1GHz) and a 40G NIC (Intel XL710). We
run Ubuntu 16.04.6LTS with Linux kernel version 4.10.0-28-generic
on the servers.

Both UDP traffic and TCP traffic are covered to examine the
traffic differentiation with ranks. We use four servers as senders
which send one flow each to a receiver. The four flows start one
by one every five seconds. The link between the switch and the
receiver is the bandwidth bottleneck. We manually tag different
ranks for different flows, and the flow that starts later has a lower
rank (i.e., higher priority): R(Flow 1) > R(Flow 2) > R(Flow 3) >
R(Flow 4). For comparison, we also run FIFO and SP-PIFO in the
same setting. For SP-PIFO, we enable 8 queues with strict priority
in the traffic manager.

UDP. We first evaluate AIFO when the four flows are UDP flows.
The four flows are all sending at 40Gbps (using DPDK [2]). Fig-
ure 15(a) shows that when the switch is running FIFO, the four
flows converge to the same rate since they have the same sending
rate and has the same possibility to be dropped. When AIFO is
enabled (Figure 15(c)), as Flow 2 has a lower rank than Flow 1,
packets from Flow 2 have a higher chance to get into the queue
when the queue builds up. Consequently, Flow 2 gets all the band-
width and the throughput to Flow 1 drops to zero when Flow 2
comes. Similarly, when Flow 3 comes, Flow 3 gets the bandwidth
between 10 seconds and 15 seconds, and when Flow 4 comes, Flow
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Resource Type AIFO SP-PIFO
Match Crossbars 10.94% 8.27%
Gateway 22.92% 17.71%
Hash Bits 3.91% 2.66%
SRAM 6.98% 15.31%
TCAM 0% 0.35%
Stateful ALUs 39.6% 16.67%
Logical Table IDs 25% 18.75%

Table 1: Resource consumption of AIFO and SP-PIFO proto-
types on Intel Barefoot Tofino. Each number indicates the
percentage of resources consumed for the corresponding

type.

4 occupies most of the bandwidth. The result is almost identical
to SP-PIFO (Figure 15(b)) as the flow with the lowest rank always
occupies most of the bandwidth.

TCP. We also evaluate AIFO when there are four TCP flows. We
use TCP Cubic as the congestion control algorithm on the servers.
Figure 16 shows the results. In the beginning, Flow 1 reaches around
34Gbps as it occupies the entire link. As Flow 2, Flow 3, and Flow 4
start one by one, when the switch is running FIFO, the four flows
converge to a similar rate as TCP congestion control provides fair
bandwidth allocation. However, when AIFO is enabled, lower-rank
flows get higher throughput: Flow 4 gets the highest throughput at
about 30Gbps, while Flow 1 gets the lowest throughput at 200Mbps—
1Gbps. SP-PIFO also delivers a similar result. Note that, compared
with the results of UDP flows in Figure 15, AIFO acts less aggres-
sively in the TCP scenario: the high-rank TCP flows can still get
about 3Gbps-5Gbps throughput, while the throughput of the high-
rank UDP flows in Figure 15(c) is close to 0. This is because in the
UDP scenario, the four flows are sending at a fixed rate. This makes
it easy for AIFO to enter a stationary state and AIFO would accept
most of the low-rank packets. However, for the TCP scenario, as the
flow rate is dynamic because of congestion control, the admission
threshold of AIFO changes dynamically and the high-rank packets
can have some chance to get into the queue.

Resource consumption. AIFO uses only one queue and achieves
similar performance as SP-PIFO with eight queues. Table 1 lists the
consumption of other switch resources. It shows that AIFO has a
higher demand on Match Crossbars, Gateway, Hash Bits, ALUs and
Logical TableIDs, while SP-PIFO has a higher demand on SRAM
and TCAM.

6 RELATED WORK

Programmable networking. The emergence of programmable
networking has triggered many novel applications in network data
plane [14, 16, 18-20, 24-26, 28, 31, 36, 39, 49-51]. Among them,
programmable packet scheduling [29, 47] is an attracting direction.

Zhuolong Yu, et al.

Programmable packet scheduling in the data plane as opposed to
traditional fixed-function packet scheduling [11, 21, 27, 44, 44, 48]
is a relatively new concept. After PIFO [47] and UPS [29], several
solutions for enabling programmable scheduling have proposed a
combination of new abstractions, new algorithms, and new queue
structures [38, 42, 43, 45]. However, many of these rely on new
hardware designs. SP-PIFO [3] recently shows that efficient pro-
grammable packet scheduling can be approximated by using exist-
ing devices with as few as eight queues. In this paper, we show that
AIFO can closely approximate PIFO with just one queue.

Priority-based scheduling. Priority-based scheduling is a classic
scheduling discipline [41] that is often used in the networking
context to minimize the average completion time of flows [6, 7, 15,
17] and coflows [8, 9] in both clairvoyant (size is known a priori)
and non-clairvoyant (unknown size) scenarios. In the latter case,
most of the solutions boil down classic solutions such as Multi-level
Feedback Queues (MLFQ) [10] and its continuous approximations
[33, 37]. Programmable packet scheduling uses the notion of ranks,
which is similar to priorities, but more general in the sense that the
definition of ranks can be programmed based on the requirements
of users. This general notion has been shown to be able to support a
wide variety of different packet scheduling algorithms for different
objectives [47].

Active queue management (AQM). Working in conjunction with
packet scheduling algorithms, AQM performs admission control by
probabilistically dropping packets to prevent congestion. AQM is
simple and implemented widely in most switches (e.g., RED [12]).
There are many variations: e.g., to improve fairness [34, 35] and
to provide bounded worst-case packet queuing delay [32] to name
a few. Unlike traditional AQM proposals, AIFO proactively drops
packets based on their relative ranks instead of randomly dropping
them.

7 CONCLUSION

We present AIFO, a new approach for programmable packet sched-
uling that only uses a single FIFO queue. AIFO computes a rank
quantile for a coming packet and decides whether to admit the
packet into the queue based on the rank quantile and the current
queue length. We build a prototype for AIFO on programmable
switches. Our simulations and testbed experiments show that AIFO
delivers high performance and closely approximates PIFO. Besides,
we also theoretically prove that AIFO provides bounded perfor-
mance to PIFO. We believe AIFO is a promising solution for re-
alizing programmable packet scheduling with minimal hardware
resource consumption—as few as a single FIFO queue.
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A

PROOF OF THEOREM 1

Proor. We ignore the constraint ¢ < KC as it is covered by

constraint W.quantile(pkt) < ﬁ % because 1—¢

1 C—c
= > 1 when

¢ < KC.

For FIFO, every packets are treated equally based on first arrival
first admission principle, thus their incoming rate is proportional
to their sending rate. Let us assume the incoming rates of each

type of packet to be kA, kAg, .

.., kA,. On the other hand, at the

stationary state, the total incoming rate of the queue equals to its
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total outcoming rate y, i.e.,, kAy + kAz +- - - + kA, = y, which implies

k= "LA-' Thus for packet i, its incoming and outcoming rate is
j=1""J
A;
kA = s
! Z)’:l Aj

For PIFO, note that the packets are admitted according to its
priority, i.e., high priority packets are always admitted ahead of
low priority packets. Recall that 37, A; > y, i.e., the total sending
rate is greater than the allowed outcoming rate. Thus when the
system reaches its stationary state, there exists a threshold n* :=
min;{A; +---+A; >y}, such that for i < n,, packet i will always
be admitted, i.e., its incoming and outcoming rate is A;; for i = n,,
packet i will be admitted partly to fill the remaining outcoming
ability apart the portion taken by packets 1,2,...,n, — 1, i.e,, its
incoming and outcoming rate is y—3’;,,_ A«;fori > n., packet i can
no longer be admitted since the system is already stationary and its
priority is below the admitted ones, thus the incoming/outcoming
rate is zero.

For AIFO, given a queue length c, the algorithm decides an ad-
mission priority threshold

1 C-c
1-k C
where packets i > n(c) cannot be admitted, and packets i < n(c)

will be admitted. Note that n(c) is decreasing with respect to c.
Consider the following two queue length thresholds:

n(c) =

- n,

% *
o= (1— n +l(1—k))C, ¢ = (1—”—(1—k))c.
n n
Clearly 0 < ¢~ < ¢* < C,and n(c™) = n*+1, n(c*) = n*. Therefore,

e if ¢ < ¢7, all packets i < n* + 1 will be admitted. By the
choice of n* we have ¥ j<,+41 4j > v, i.e, the total incoming
rate is strictly greater than the total outcoming rate, thus the
queue length increases;

o ifc > ¢*, all packetsi > n* cannot be admitted. By the choice
of n* we have ¥ j<p«_1 Aj <, ie, the total incoming rate
is strictly less than the total outcoming rate, thus the queue
length decreases;

o if c™ < ¢ < ¢* all packets i < n* will be admitted, and all
packets i > n* will not be admitted. Note that 3 ;<p« 4 > y.
We discuss two cases:

- if Xlj<pr 45 = v, then the system reaches its stationary
state at the first time when the queue length satisfies ¢~ <
c<ch

= if Xlj<p+ Aj > v, then the queue length keeps increases
until it becomes larger than ¢*, and falls into the previous
category hence the length decreases then. In sum the sys-
tem reaches its stationary state with queue length being
¢*. Moreover, due to the negative feedback principle, in
the stationary state, the incoming rate/outcoming rate of
packet n* would be y — 3+ 4;.

In sum, at the stationary state, we have the following: for the pack-
ets i < ny, the incoming/outcoming rate is A;; for packet n., the
incoming/outcoming rate is y — };<,, A;; for the packets i > n.,
the incoming/outcoming rate is 0. Moreover, we can also compute
the queue length at the stationary state: if 3’ j<,,« Aj =y, the queue
length at the stationary state satisfies ¢~ < ¢ < ¢*;if Xl j<pe 4 > ¥,
the queue length at the stationary state is ¢ = ¢*; O
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Remark 1. As an extension to the above setting, we can consider a
setting with T time interval, where within each time interval ¢, the
packets are sent with constant sending rate A;(¢),...,A,(t), but
across different time interval, the sending rate of each packet can
vary, ie, 4;(t) # Ai(t’) for t # t’. Suppose each time interval is
sufficiently long such that the system can reach its stationary state,
then we can apply the above theorem within each time interval to
characterize the behavior of the algorithms at the stationary state.

Remark 2. We briefly discuss the behavior of each algorithms in
their stationary state.

For PIFO, the queue is filled with packets n. + 1, but they cannot
be popped. For packet i < n,, once it is received, it gets output.
For packet i = n + 1, it can be admitted but cannot be output. For
packet i > n, + 1, it cannot be admitted.

For AIFO, the queue is filled with packets i < n.. The AIFO
outputs packets in the queue in a random sequence (since their
arrival time is random). The AIFO admits packets according to the
rule specified before: packets i < n, will be admitted, and packets
i > ns cannot be admitted.

For FIFO, the queue is filled with all kinds of packets, and the
number of each type of packets are proportional to their sending
rate. And the packets are admitted and output at random.

Remark 3. So long as we assume the system stays in its stationary
state for sufficiently long time, its behavior would be nearly decided
by that in the stationary state.

B PROOF OF THEOREM 2

Let tp be the maximum of the time for the AIFO and PIFO reaching
its stationary state. Suppose the sending rate of a packet is at most
M. Recall that from tj to T, a;(t) = p;(t) as shown in the theorem.
Then we have the following estimation:

S L piode = [ L e

) . (/:Zo pi(t)dt + /tzo a,-(t)dt)

(i) = aondtl +1 [L, (pie) - as(0)dt])
" (/tio pi(t)dt + /tZo a,-(t)dt)

S (i (0) = ai(8))dt]

?:1 (/tZ()Pi(t)dt +/t:0 ai(t)dt)
nM - ty
i1 (/tio pi(t)dt + ftfo ai(t)dt)
< nM - ty
=1 (/;0 pi(t)dt + /;0 ai(t)dt)

A(T)

Note that for both the systems, at the stationary state (t > ty),
the total incoming/outcoming rate is constant y, i.e, X1, pi(t) =
2 ai(t) = y. Then we have

n T T
Z ( pi(t)dt +/ ai(t)dt) = 2¢(T - ty),
t:

i=1 \Yi=lo =l
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which implies

A(T) < nM -ty
n T T
i=1 (fmo pi(t)dt + f[:to ai(t)dt)
nM -ty
~2y(T-1t)’

Note that (1) the nominator is a constant that is independent of T;
and (2) the denominator keeps cumulating with constant non-zero
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rate at its stationary state. Therefore for any small tolerance € > 0,
let the running time T be

nMt
T>t)+ 0,
2ye

we have

A(T) < e.
To sum up, if the system run for sufficiently long time, the difference
between PIFO and AIFO tends to be negligible.
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