GRADIENT ESTIMATES FOR SINGULAR p-LAPLACE TYPE
EQUATIONS WITH MEASURE DATA

HONGJIE DONG AND HANYE ZHU

ABSTRACT. We are concerned with interior and global gradient estimates for
solutions to a class of singular quasilinear elliptic equations with measure data,
whose prototype is given by the p-Laplace equation —Apu = p with p € (1,2).
The cases when p € (2 — %,2) and p € (gz:?,Q - %} were studied in [9]
and [22], respectively. In this paper, we improve the results in [22] and address
the open case when p € (1, g::f] Interior and global modulus of continuity
estimates of the gradients of solutions are also established.

1. INTRODUCTION

In this paper, we consider the quasilinear elliptic equation with measure data
—div(A(z,Vu)) = p (1.1)
in a domain 2 C R™, where n > 2. Here p is a locally finite signed Radon measure in
Q, namely, |p|(Br(z)NQ) < oo for any ball Br(z) C R™. By setting |u|(R™\Q)=0,
we will always assume that p is defined in the whole space R™. The vector field
A= (Ag,...,A,) : Q@ xR® —» R" is assumed to satisfy the following growth,

ellipticity, and continuity conditions: there exist constants A > 1, s >0, and p > 1
such that

|A(z,€)] < A2+ [¢)®D/20 DAz, €)| < M(s* + [¢)P~D/2, (1.2)
(DeA(z, &)n,m) > X% + [€[2) P2/ 2|2, (1.3)

and
|A(z,€) — A0, )| < Aw(lz — @o])(s? + [¢[*) P12 (1.4)

hold for every z,zy € Q and every (£,n) € R” x R"\{(0,0)}, and w : [0, 00) — [0, 1]
is a concave non-decreasing function satisfying

li =w(0)=0
Jim w(r) = w(0)
and the Dini condition .
d
/ w(r) T < . (1.5)
0 '

A typical model equation is given by the (possibly nondegenerate) p-Laplace
equation with measure data and s > 0:

—div (a(m)(|Vu|2 + 52)%;2Vu> =pu inQ, (1.6)
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where a(+) is a Dini continuous function in 2, satisfying
0< At <a(z)< A (1.7)

and
la(z) — a(xo)| < Aw(|z — xo]) (1.8)
for every z,zg € .
By a (weak) solution to Eq. (1.1), we mean a function u € W,.*(Q) such that
the distributional relation

/Q<A(x,Vu),D<p>dm:/Q<pd,u

holds whenever ¢ € C§°(€2) has compact support in . We use Bgr(z) to denote
the open ball of radius R centered at x and we set

BR:BR(O), QR(x):QﬂBR(x).

The gradient estimates for the super-quadratic case when p > 2 were well studied
in the literature. See [8,10,13,19]. However, the corresponding results for the
singular case when p € (1,2) are far from complete.

In this paper, we are concerned with only the singular case when p € (1, 2).

For singular quasi-linear equations, the case when p € ( — %, 2) was considered
in the pioneering work [9], in which the authors proved that under the conditions
(1.2)-(1.5), if u € C*(Q) solves (1.1), then it holds that

V()| < C[IE(u)@)] 7T +C (V) s dy

for every ball Bg(z) C Q with R € (0,1], where C' = C(n, p,\,w). Here f, stands
for the integral average over a measurable set E and

R
(o) = [ P & (19)

is the truncated first-order Riesz potential. Later, the case when p € (gz:? ,2— %]
was treated in [22], in which the authors obtained a pointwise gradient bound
involving the Wolff potential under stronger assumptions on A and w. Namely,

under the conditions (1.2)-(1.4) and further assuming that
[DeA(x, ) — DAz, n)|
SN+ [E2) P22 (% + ) P25 4[]+ ) BP0 2 — g

and

(1.10)

1
/ w(r) dr < 400
O T

for some ag € (0,2 —p) and v € (Znn—17 n;p:ll)) C (0,1), if u € CY(Q) is a solution
o (1.1), then it holds that

V()] < CIPE(ul) (@))% +C( ][

Br(z)

2=

(IVu(y)|+5)7dy) "

where C' = C(n,p, A, ap,w,y) and

" X v
PE(ue) = [ (MZEE)T



GRADIENT ESTIMATES FOR p-LAPLACE TYPE EQUATIONS 3

is a truncated nonlinear Wolff potential. We recall that in general, the truncated
Wolff potential is defined as

R 1
w|(Be(x))\ 7" dt
Wi = [ (PR TL se .
Our first main result is stated as follows.

Theorem 1.1 (Interior pointwise gradient estimate). Let p € (ggj,

pose that u € Wﬁ)cp(ﬂ) is a solution to (1.1). Then under the assumptions (1.2)-
(1.5), there exists a constant C = C(n,p, \,w) such that the estimate

2) and sup-

Vu(z)| < C[If(|u) ()] Ee) <]i (IVu(y)| + s)*7? dy) B (1.12)

r(x)

holds for any Lebesgque point x of the vector-valued function Vu, with Br(x) C Q
and R € (0,1].

Remark 1.2. Our pointwise bound in Theorem 1.1 using Riesz potential I (|u/)
is an improvement of the bound in [22, Theorem 1.1] which contains the Wolff
potential P2 (]u|), since

1
I (lul) < C PR (lul)> Yy <1

The conditions on w and A in Theorem 1.1 are also weaker. In particular, (1.10) is
not assumed.

1 3n—2

, anl], which was open, we obtain the

For the more singular case when p € (
following Lipschitz estimate.

Theorem 1.3 (Interior Lipschitz estimate). Let p € (1,2) and suppose that u €
WEP(Q) is a solution to (1.1). Then under the assumptions (1.2)-(1.5), there exists

loc

a constant C' = C(n,p, \,w) such that the estimate

L _n_
190l 2 (5 ey < CITRRD | T 0y + RT3 11Vl + sll (e (113)
holds for any Br(z) C Q and R € (0,1].

We also obtain a modulus of continuity estimate of Vu in Theorem 4.3, which
directly implies the following sufficient condition for the continuity of Vu.

Theorem 1.4 (Gradient continuity via Riesz potential). Let p € (1,2) and u €

Wl{)f(Q) be a solution to (1.1). Assume that (1.2)-(1.5) are satisfied and the func-
tions

x — IB(|u|)(z) converge locally uniformly to zero in Q as R — 0. (1.14)
Then Vu is continuous in €.

Recall the Lorentz space L™! is the collection of measurable functions f such
that
> 1
| e 5@l 2 81 d < o
0
Theorem 1.4 has the following corollary.
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Corollary 1.5 (Gradient continuity via Lorentz spaces). Let p € (1,2) and u €
WEP(Q) be a solution to (1.1). Assume that (1.2)-(1.5) are satisfied and

loc
w € L™ holds locally in Q. (1.15)
Then Vu is continuous in €.

We remark that the Lorentz-space result above was proved in [14] for a p-
Laplacian system similar to (1.6) when p € (1, 00).

A further, actually immediate, corollary of Theorem 1.4 concerns measures with
certain density properties.

Corollary 1.6 (Gradient continuity via density). Let p € (1,2) and u € Wﬁnp(ﬂ)
be a solution to (1.1). Assume that (1.2)-(1.5) are satisfied and p satisfies

|ul(Bp(x)) < Cp"~h(p) (1.16)
for every ball B,(x) CC Q, where C is a positive constant and h : [0, 00) — [0, 00)
s a function satisfying the Dini condition

r

r dr
/ h(r) — < oo for some R > 0. (1.17)
0

Then Vu is continuous in €.

We remark that Theorem 1.4 and Corollaries 1.5 and 1.6 above are indeed the
sub-quadratic —p € (1,2)— counterparts of [8, Theorem 1, 3, 4]. See also [13,
Theorem 1.5 and Corollaries 1.6 and 1.7]. We refer the reader to [8] for a discussion
of the borderline nature of the assumptions in these results.

Another interesting consequence of Theorem 4.3 is the following gradient Holder
continuity result.

Corollary 1.7 (Gradient Holder continuity via Riesz potential). Let p € (1,2) and
u € Wllof(Q) be a solution to (1.1). Then under the assumptions (1.2)-(1.5), there

exists a constant o € (0,1) depending only on n, p, and X\, such that if w(r) < CrP
whenever r > 0 and I{ (|u|)(x) < Cp® whenever B,(z) CC Q, for some constants

C >0 and B € (0,a), then u € CLP(Q).

loc

Remark 1.8. We should stress that the constant « in Corollary 1.7 is the natural
Holder exponent of the gradients of solutions to corresponding homogeneous equa-
tions with z-independent nonlinearities (cf. Lemma 2.2). Therefore, our result in
Corollary 1.7 provides the best possible Holder exponent for the gradient of the
solution. The previous Corollary is an improvement of the gradient Holder reg-
ularity result by Liebermann [18, Theorem 5.3], who proved u € Cllo’f ! for some
B1 = Bi(n,p, A, B) € (0,1) assuming that w(r) < Cr? and |u|(B,(z)) < Cpn~1+5
for some 3 € (0,1). It is easily seen that the last condition implies 1% (|u|)(z) < Cp”
whenever B,(xz) CC Q.

We also obtain up-to-boundary gradient estimates for the p-Laplace equations
with measure data in domains with C*P™ boundaries.

Definition 1.9. Let Q be a domain in R™. We say that Q has C1'P™ boundary if
there exists a constant Ry € (0, 1] and a non-decreasing function wy : [0, 1] — [0, 1]
satisfying the Dini condition

! dr
wo(r) — < +o0,
0 T
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such that the following holds: for any zg = (z¢1,zf) € 0, there exists a C'1-Dini

function (i.e., C' function whose first derivatives are uniformly Dini continuous)
x : R" ! = R and a coordinate system depending on x such that

sup  [Vax(a)) = Varx(@3)| < wo(r),  Vr € (0, Ro),

|y —a5|<r
and that in the new coordinate system, we have
IVarx(a0)] =0, Qr,(w0) = {x € Br,(x0) : 71 > x(a')}.

Our global pointwise gradient estimate and Lipschitz estimate are stated as
follows.

Theorem 1.10 (Boundary pointwise gradient estimate). Let p € (32:5,2) and
suppose that u € W, *(2) is a solution to (1.6) with Dirichlet boundary data u = 0
on 0. Assuming that (1.5), (1.7), and (1.8) are satisfied and Q0 has a C1-P"i
boundary characterized by Ry and wgy as in Definition 1.9, then there exists a con-

stant C = C(n,p, \,w, Ry, wp) such that estimate

r(z)

Vu(z)| < CIf () @) 7T +C <]é (IVu(y)] +)*7" dy) h (1.18)

holds for any Lebesgue point x € 2 of the vector-valued function Vu and R € (0,1].
Moreover, if u € CY(Q), the estimate (1.18) holds for any = € Q.

Theorem 1.11 (Boundary Lipschitz estimate). Let p € (1,2) and suppose that
u € WyP(Q) is a solution to (1.6) with Dirichlet boundary data uw = 0 on 9.
Assuming that (1.5), (1.7), and (1.8) are satisfied and Q has a CP™ boundary
characterized by Ry and wy as in Definition 1.9, then there exists a constant C =
C(n,p, \,w, Ry, wq) such that the estimate

1

Ry, )| 7T S

IVl L= (@pa()) < CHIl (‘MDHLO‘}(QR(I)) +CR >
holds for any x € Q and R € (0,1].

[[Vu| + sl L2-r(p@) (1.19)

As a corollary, we also obtain the global Lipschitz estimate when € is bounded.

Corollary 1.12. Let Q C R™ be a bounded domain. Under the assumptions of
Theorem 1.11, there exists a constant C = C(n,p, A, w, Ro,wo, diam(Q)) such that

_1
IVl L0y < C||Li(1uD] <) + Cs-

A global modulus of continuity estimate is also established in Theorem 5.10 under
the same conditions, which implies that corresponding up-to-boundary gradient
continuity results as in Theorem 1.4 and Corollaries 1.5-1.7 also hold for the p-
Laplace equations with measure data.

Let us give a brief description of the proofs. We first apply an iteration argu-
ment to get an L7°-mean oscillation estimate of the gradients of solutions to the
homogeneous equation with z-independent nonlinearities

—div(Ag(Vv)) =0

in Section 2, where 79 € (0,1). Our proofs of the interior gradient estimates are
then based on a comparison estimate between the original solution u of (1.1) and
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the solution to the homogeneous equation —div(A(z, Vw)) = 0 in a ball Bg with
the boundary condition uw = w on dBg. The outcome is the inequality

1/70
(][ |[Vu — Vw|° da:)
Br

l(BR)17 . |ul(Br) ][ -
< -~ 7 LA S 4
<C [ 1 +C 1 BR(|Vu\ +3) dz,

(1.20)

which holds for some constant o € (0,1). The details can be found in Lemma
3.2. For the case when p € (gZ:f,Z), we can choose g = 2 — p, which is the
same integral exponent on the right hand side. We then borrow an idea in [6]
by estimating the L7-mean oscillation to adapt the iteration scheme used, for
instance, in [9]. However, for the case when p € (17 ;’Z:ﬂ, we are only able to
prove the comparison estimate (1.20) for some 79 < 2 — p and that is the reason
why we only obtain Lipschitz estimates instead of pointwise gradient estimates in
this case.

For the gradient estimates up to the boundary, we use the technique of flat-
tening the boundary and generalize the interior oscillation estimates to half balls.
We adapt an idea in [3] to establish the global L7-mean oscillation estimates by a
delicate combination of the interior estimates and the estimates near a flat bound-
ary. To this end, we also apply an odd extension argument to derive an L7°-mean
oscillation estimate on half balls for homogeneous equations with z-independent
nonlinearities. This argument only works for equations in diagonalized form, such
as the p-Laplace equation, so the global estimates for general equations remain
open. As a partial result in this direction, we refer the reader to [22] for a weighted
pointwise boundary estimate under the condition that 92 is sufficiently flat in the
sense of Reifenberg. We also refer the reader to [2,16] for boundary regularity
results for quasi-linear equations with sufficiently regular right-hand side.

The rest of the paper is organized as follows. In the next section, we derive
an L7 -mean oscillation estimate of solutions to the homogeneous equation with
z-independent nonlinearities. In Section 3, we give the proof of Theorem 1.1. Sec-
tion 4 is devoted to the Lipschitz estimate and the interior modulus of continuity
estimate of the gradient of solutions as well as its corollaries. Finally, in Section 5
we consider the corresponding boundary estimates.

2. AN OSCILLATION ESTIMATE

This section is devoted to the proof of the following interior oscillation estimate
for solutions to the homogeneous equation

—div(A4o(Vv)) =0 in Q, (2.1)

where Ay = Ap(§) is a vector field independent of z satisfying conditions (1.2) and
(1.3) for some s > 0, A > 1, and p > 1. In this section, we denote the integral
average over Br(x) by (*)Bu(x)-

Theorem 2.1. Let v € W,5P(Q) be a solution to (2.1) and v € (0,1). Then there
exist constants o € (0,1) depending on n, p, and A, and C > 1 depending on n, p,
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A, and o, such that for every Br(xg) C Q and p € (0, R), we have

1/70 /70
. PN .
inf ][ Vv —q|™ <C|=) inf f Vv —q|™ .(2.2
acR® ( By (z0) | | > <R) qeRr” ( Br(zo) | | 22

To prove the above theorem, we first recall a classical oscillation estimate. Esti-
mates of this type, with different exponents involved, were developed in [4,9,17].

Lemma 2.2. Let v e WLP(Q) be a solution to (2.1). There exist constants C' > 1

loc

and o € (0,1) depending only on n, p, and X\, such that v € C}OCO‘(Q) and for every
Br(zg) C Q and r € (0, R), we have

ap
f o e Tnelde<C(F) 7 Vo= (Vonl o
B, (z0) R Br(zo)

The lemma above directly implies the following corollary.

Corollary 2.3. Under the conditions of Lemma 2.2, there exist constants C > 1
and o € (0,1) depending only on n, p, and X\, such that for every Br(zo) C 2, we
have

1/p
R® [V’U]CQ(BR/Q(ZEO)) < c <]€3 |V’U - (VU)BR(z0)|p> ) (23)

and for any r € [R/2, R),

r(z0)

1/p
Rn/p+1—a
Veloew.eon < O —yarrs (7[3 ( )Wu—(vapr) e
R(Zo

Proof. Without loss of generality, we assume zo = 0. For any x € Bpg/y and
r < R/2, by Lemma 2.2 we have

NG
Voo (VonwP <0 (5)" F Vo (Fom0P
][Br(z) <R) Bp/2(z) Y

<C (%)‘”’ ]iR Vo — (Vo) g, |P.

By Campanato’s characterization of Holder continuous functions, we obtain (2.3).
Now for any » > R/2 and z € B,, using (2.3) and the triangle inequality, we
have

1/p
(Voo Bnor 2z < C(R=1)"" (7{3 Vo — (VU)BR_MIP)

R*T(Z)

Rn/p 1/p
< Cm <]€3 Vo — (VU)BR|p) : (2.5)

Thus for any z,y € B,, let N = min {m €eZ:m> %} We can divide the line
segment connecting x and y into N equal segments using x1, ..., zy—1, 9 = &, and
N =y, such that
T — R -
e —yl RB-1

N 2

|z) — Tpt1] =



8 H. DONG AND H. ZHU

Then by the triangle inequality and (2.5), we have

|Vo(z) y)| < Z IVo(zy) — Vo(zpir)|

N-1

Rn/p 1/p
<O e ([, 170 (ol

L Rn/p 1/p
S ON T R e (/B IVv(Vv)BRIP> |z — yl|*

R \'™® R Y/
_ p — e
s¢ (R - 7‘) (R — ryn/pta (/BR Vo = (Vo) el ) S

which directly implies (2.4). The corollary is proved. O

r—y|*
N

Now we are ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. As before, without loss of generality, we assume zy = 0.
Clearly for any B, = B,(0) C Q, there exists q, = (qgl), ,qé’”) € R™ such that

1/70 /70
Vo—q,[| = inf Vo—q™©| .
(fBPI v —q,| ) f, <][Bp| v—q| )

Also, it is easily seen that
qgi) € Range(D;v |B,). (2.6)

We claim that there exists a constant C' depending only on n, p, A, and g, such
that

Vv —a,llLeB,,., <C <][

holds for any B,(zo) C .
We prove the claim by using Corollary 2.3 and iteration.

For any R/2 < r < R < dist(xo, 99), using (2.4) and the triangle inequality, we
get

P

1/70
Vo - qu) (2.7)

Vv = arllL(B,) < r*[Vv]ces,)

Rn/erl » 1/p
SCW (][;R|V'U(V’U)BR| >

Rn/p+1 1/p
<(C—rr—-—"-—— YVou — P
=Y (R =it (]éR| v~ qg| )

R’ﬂ/p-i‘l P—"0 ., 1/p

- @ _ P _ (0]

SC(Rir)n/erl ||V’U qR”Loo(BR) (fBR|V’U qR| )

Rn/p+1 e 1/70
< elve = anli= @ + C. ((R—r)n/p+1) (]iz |vv_qR|%> ’
R

where we used Young’s inequality with exponents p/vo and p/(p — 7o) in the last
line.
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Now taking rp, = (1 —27%)p, r = r4, and R = 71,1, we have

1/70
|V1} ~ Arig |W)

1/70
|Vv—qp|7°> ’

where 3 = (n + p)/y0. Taking ¢ = 377, multiplying both sides by ¢* and summing
in k, we get

||VU - clrk||L<>o(B,.k)

<elVo —arllees,, )+ C-2HP (][

Th41

<elVo —argull<s,, )+ C.2kB+n/%0 (7[

P

o0 oo
S IVY — @ llim(m,) <30IV~ dny s, )
k=1

k=1
1/’Yo
+0(7[ |Vvqp|7°> ,
B

where the summations are finite and C' = C(n,p, A, 70). By subtracting

P

o0

k
25 Vv —ar, HL“(B%)
k=2

from both sides of the above inequality, we obtain (2.7). The claim is proved.
Now we are ready to prove (2.2). If r < R/4, by (2.3), (2.6), and (2.7) we get

1/v0
(f Vo qmo) < O [Vuleeg )
B, 4

T

1/p 1/p
T T

<o) (f, 1vo- s, ) <o(R) [, 19v-agl

<C (%)a (Vv — Q§||L°°(B%) <C (%)a (]{BR Vo — qpﬂo)l/% |

If r > R/4, we have
1/v0
f |V’U —qRPO)
B

1/70
()<
B, r
1/’Yo
1 “ _ Yo
C(R) (éRWU qu) .

The theorem is proved. O

IN

3. INTERIOR POINTWISE GRADIENT ESTIMATES

In order to prove the interior pointwise gradient estimates, we follow the outline
of arguments given in [22] while replacing their oscillation estimates with our new
oscillation estimate in Section 2. We also borrow an idea in [6] by estimating the
L7 -mean oscillations of solutions, where vy € (0,1).
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Let u € Wéf(Q) be a solution to (1.1) and Ba,(xg) CC 2. We consider the
unique solution w € u + Wol’p(Bgr (x0)) to the equation
—div(A(z,Vw)) =0 in Bay(xo), 31
w=u on 0Ba.(9). (3:-1)
We first recall an interior reverse Holder inequality that can be found in [11,

Theorem 6.7].

Lemma 3.1 ( [22], Lemma 3.1). Let w be a solution to (3.1). There exists a
constant 81 > p depending only on n, p, and \ such that for any t > 0, the estimate

7 7
(][ ([Vw| + 5)% dx) <C (f (|Vw| + s)* dx) (3.2)
B, /2(y) By (y)
holds for all B,(y) C Bay(x¢), where C' = C(n,p, A\, t) > 0.

We also have the following comparison result, which generalizes and refines sim-
ilar results in [9, 20, 21].

Lemma 3.2. Let w be a solution to (3.1) and assume that p € (1,2). Then for
any vo € (0,2 — p] when p € (32:?,2) or vy € (07 (’)7%1)7‘) when p € (1, gzzﬂ, it
holds that

1/70
][ |[Vu — Vw|™ dz
Bz (o)

B = B
<C |/’6‘( 21(330)) —l—ClM'( 2i(x0))][ (|Vu| +S)2_pdl‘,
rn 1 rn 1 Ban (z0)

where C' is a constant depending only on n, p, A, and y.

Proof. The case when p € (1, 32=2

their proof also works for the case when p € (1
only focus on the case when p € (ng,
Remark 4.1] for example), we may assume that Ba,(z¢) = By and |u|(Bs) = 1. For

k > 0, using

] and s = 0 was proved in [21, Lemma 2.1] and
,22=2] and s > 0. Therefore, we

2) and s > 0. By scaling invariance (see [9,

01 = Top(u — w) := max { min{u — w, 2k}, —Zk}

as a test function in (1.1) and (3.1) and recalling (1.3), we have

. . X V(u—w)|?
/an{lu—w<2k} gl w) S Ok ith g7 w) = (|Vw|| 45 [Vl 4)'|3)2_p. (33)
By the triangle inequality, we have
V(u—w)| = g*(u,w)? (V] + |Vu| + 5) 7"
< 9" (u,w) 2 |V (u = w)| + 2| V| + 5) 7"
< Cg*(u,w)? |V (u—w)| 7" + Cg®(u, w)? (|Vu| + 5) 7"
Using Young’s inequality with exponents % and ﬁ, we obtain
IV (u— w)| < Cg*(u,w)? + Cg*(u,w)? (|Vu| + ) 2" (3.4)
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Now we set
Ey,=Byn{k<|u—w| <2k} and Fy=ByN{|lu—w|>k}.
Using the Sobolev inequality, Holder’s inequality, and (3.4), we obtain

F{z: [u—w| > 2k} N Byl <C(/ (Top (s = w) = Ti(u = w)|77) 7
B2

<C [ |V(u-w)
Ey

(3.5)
1 1 —
<C [ (9w +g*(ww)i(Vul +5)°7")
Ex
p=1 » s 3 o o\ 2
<CENT ([ gww) +c( [ gwww) (| (vul+s27)".
FE Ej Ey
From (3.3) and (3.5), we get
<R R+ 0Q, 7
where Q1 := [||[Vu| + s||2-»(p,). Therefore, by taking the sup in k € (0,00), we
obtain .
le—w|2. < Cllu—w| VP +CQ7T
L2(n—-1) (BQ) L2 ) (Bz)
Since 3” 2 < p < 2, we have
9 _
n S P 7
2(n—1) " 2(p—1)
which implies
1/2 < 1/p=1/2 ="
a2 o S Clu-wl 020Gl
Thus, by Young’s inequality, we obtain
e (3
Let k, I >0 and g = 2(%_1) By the Chebyshev inequality and (3.3), we have
Hz : ¢°(u,w) > 1} N By|
<Hz:|lu—w|>k}NBa|+ |{z:|u—w| <k, ¢°(u,w) >1} N By
1
<Ck~ q||u—w||Lqm(BZ)+ ] 9°(u,w) dzx
Bon{z:|lu—w|<k}
_ Ck
S Ck q||u — wH%quO(BQ) + T
By choosing
T+q
= [t = w5y
we get
17 |{z: ¢°(u,w) > 1} N By| < Cllu— w||}f?oc(32),
Therefore, by taking the sup in ! € (0, 00), we obtain
") 2, e ) S Clle = 0l (3.7
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Let 79 € (0,2 — p]. By (3.4) and Holder’s inequality with exponents 2/p and
2/(2 = p), we get

[ vu-wr<c
B>

= O(/B g'(ww)) +C(/B2 gS(u,w)?)g(/&(WM +s)”°)2% (3.8)

(2—p)
(9 w)¥ + g*(w,w) ¥ (IVu] + )5
B>

<Cllg )2+ Cllg ) Q"
= e By it e,y
In the last inequality, we used the fact that
7o q
RUAp Q. Sy <2-p.
D 1+gq Yo p

Combining (3.6), (3.7), and (3.8), we have
/ IV (u—w)|° <C+ C«Q’lYo@—P),
B>
which implies the desired result. (I
We now let v € w + Wy (B,(x0)) be the unique solution to
—div(A(zo,Vv)) =0 in B,(xg),
v=w on J0B(zg).

(3.9)

By testing (3.1) and (3.9) with v — w, we obtain an estimate for the difference
Vv — Vuw:

][ Vo — Vw|P dz < Cw(r)p][ (|IVw| + s)? dz. (3.10)
By (o)

By (z0)

Detailed proof of this result can be found in [9, Eq. (4.35)]. Thus by (3.2) and
Holder’s inequality, we get

][ Vv — Vw| dz < Cw(r)® ][ (IVw| + s)7 dz. (3.11)
BT(ZEO)

BQT(IO)

For a ball B,(z) CC Q and a function f € W,-7(Q), there exists q. ,(f) € R”
such that

1/70 1/
(7[ Vf— qx,p(f)p()) = inf (7[ IVf— ql”“) :
B, (z) a€R™ \ /B, ()

We denote qz,, = qq,,(u) and

1/’70
$(z,p) = inf f Vu—qro)| .
qER™ By ()

l[dz,p — Vu(z)|™ < |qq,, — Vu(2)]° + |Vu(z) — Vu(x)]™,
by taking the average over z € B,(x) and then taking the 7o-th root, we obtain

lde.p — Vu(@)] < Co(z,p) + c(][

Bp(w)

Since

V(=) — Vu(x) " d2) e
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Therefore, from the definition of ¢ and the fact that 0 < 79 < 1, we obtain that
li g, = Vu(a) (3.12)

holds for any Lebesgue point x € € of the vector-valued function Vu.

Proposition 3.3. Suppose that u € Wllof(Q) is a solution to (1.1). Then for any
e € (0,1) and Ba,(x9) CC Q, we have

6(w0,e7) <C="(o, ) + Ct ('Ml<32<1’0>>) T

rnl

|12 (Bayr (20)) o p

+ Cew(r) ][ (|Vu| 4 5)27P ,
BQT(I())

where a € (0,1) is the constant in Theorem 2.1, 7o is the same constant as in
Lemma 3.2, C, is a constant depending on €, n, p, A\, and o, and C is a constant
depending on n, p, A, and 7y.

Proof. By Theorem 2.1 and the definition of q, ,(-), we have

1

1 1
0 %0
(][ |Vu — on,sr(u)p[)) < (][ |Vu — Qmo,sr(U)PO)
Ber(a:O) BE’V‘(‘TO)

1

1
Y0 Y0
<c ][ Vo= quyr(0)° ] +C ][ IV — Vol
Bsr(TO) Bsr(zo)
Y0 n Y0
< Ce® ][ Vv = gy .r(v)]7° + Ce™ ][ |[Vu — Vol
By (z0) B (z0)
. %
< Ce® ][ Vv — qg,.r(u)] +Ce ][ |[Vu — Vol
B, (z0) B, (zo)

1

o e
< Ceo ][ Vi — quy (@) ) +Ce ][ |vu—vu|%> .
BT(.’E()) BT(.’E())

(3.14)
Moreover, by (3.11) and the fact that |w(r)| < 1, one has
][ YV — Voo < ][ IV — Vo[ +][ IV — Voo
Br(wo) Br(x0) B (x0)

<c IV — V[ + Cuo(r)™ ][ (V] + 5) (3.15)
By (o) Ba,(z0)

<c IV — V[ +Cw(7")7°][ (V| + 5)°.
Bar(z0) Bay(x0)
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Thus from (3.14) and (3.15), we have
1/70
|[Vu — Vw|™
2r(Z0)

1/’Yo
+c€w(r)<][ (|Vu|+s)7°> .
BQT»({EO)

Now we can apply Lemma 3.2 to bound the second term on the right-hand side of
(3.16) to conclude the proof. O

d(zg,er) < Ce@(wg, 1) + C- (]i
(3.16)

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We prove the theorem at a Lebesgue point x = z( of the
vector-valued function Vu, assuming that Bgr(zo) C Q. Since p € (22=2,2), w
choose 79 = 2 — p in Lemma 3.2. Choose ¢ = &(n,p, A\, ) € (0,1/4) sufﬁmently
small so that Ce® < 1/4, where C is the constant in (3.13).

For an integer j > 0, set r; = /R, BI = By, (z0),

Ir{f<w+QMM) L 8= @) W= Qe
B

Applying (3.13) yields

%Hgi@+couww> s OB oy

n—1 n—1 7
T’] TJ

Let jo and m be positive integers to be specified later such that jo < m. Summing

the above inequality over j = jg, jo + 1,..., m, we obtain
+1 =T
m /j, BJ p—
S 6 <o, 03 (' (7))
J=Jjo J=Jo J (317)
+CZ |“|n T P+OZ w(r;)T.
J=Jjo J=Jo
Since

|@j+1 — @i < fajpr = V(@) + [Vu(z) — g™,
by taking the average over x € B, (%) and then taking 7o-th root, we obtain
|dj+1 —qj| < Coj + Chjta.

Then, by iterating, we get

m+1

Am1 — o <C Y 6y,

Jj=jo
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which together with (3.17) implies

mtl (B
|qm+1‘+Z¢J <O¢]o+|q]0|+cz ( n—1 )
7

J=jo J=jo

w|(B7), o
+CZ" Bz 0% w1,

J=jo J=Jjo

(3.18)

By the definition of ¢;,, we have

Pjo < C (][ Vul™ dfﬂ) " <o,
BJo

|90 ™ < [Vu(z) = q;o | + [Vu(z)]™,
by taking the average over x € B, (x0) and taking the ~o-th root, we obtain

Since

1
i
aul <+ C(f, V)" <,
Bio
Therefore, (3.18) implies that

S VMDA
|Qm 1] + Z ¢; <CT;, +C Z ( rﬂ_l )

d=do i=io

+OZ '”' ?‘P+czm:w(rj)Tj

Jj=Jjo J=jo

(3.19)

By (1.5) and the comparison principle for Riemann integrals, there exists jo =
Jo(n,p,e,C,w) > 1 sufficiently large such that

1 n > 1
470 (2e) 0 )< — 2
( €) CJZZJ w(rj) — 10’ (3 0)

where C' is the constant in (3.19).
Note that by the comparison principle for Riemann integrals,

anl o / " B de 1)

Jj=jo p

and since p < 2 we also have

BT ([ B dp\
Z ( n—1 ) SO(/O pn71 p) . (322)

o T
J=Jo

J

To prove (1.12) at « = xg, it is sufficient to show that

Vuleo) < €T, + 0 ( | 07t |ul(By(w0) O
= Uy ; = .

To this end, we consider the following possibilities.
Case 1: If |Vu(zo)| < Tj,, then (3.23) easily follows.

(3.23)
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Case 2: It T; < |Vu(zo)|, Yjo < j < j1, and |Vu(zo)| < Tj, 41, then since
Yo =2 —p < 1, we have

1/7v0
Vu(zo)| < (f ([Vul + ) da:)
Bi1+1
. 1/70 .
< 9% <][ |vu|%dx> +2%s
B (3.24)

1/7v0
1 n 1
< 2% (2e) 70 <][ [Vu|7° dx) + 2% s
By, (w0)

1 _n 1
<470 (28) 70 (), + |y ]) +270s,

where the last inequality follows from the definitions of ¢;, and q;,. Now applying
(3.19) with m = j3 — 1 and using (3.21) and (3.22), from (3.24) we get

2751 B Til
o som, v ([ HEEY)
0

o=t |u|(B, d
—‘y—C”A |M(pn (1 )) ;) |VU($0)|2 p

m
1
+C' Z w(rj)|Vu(xo)| + 270 s,
J=jo
where C' = 4%(25)7%6', C is the constant in (3.19), and C” is a constant de-
pending on n, p, and A. Hence using (3.20) and Young’s inequality, we find

201 |ul(B, (o)) dp\ T T | 1
[Vu(zo)| < CTj, + C (/ ’W:) + £ Vu(wo)| + Cs.
0

This implies (3.23) as desired.
Case 3: If T; < |Vu(xo)| for any j > jo, then from (3.19), (3.21), and (3.22) we
have for any m > jo,

q’m—i— jo / E d

Pt p
2ri. 1
Jjo— M
+C/ ||n(1 ))p | Vu \21’—1-02 w(r;)|Vu(zo)
J=Jjo
27 —1 P%

27’70 1 1

e / '”' P V) P + Vel

Here we used (3.20) in the last mequahty Letting m — oo and using (3.12), we get

|Vu(zo)| <CTj, + C (/2%1 |u(B(19cg))dp>pi1

p" P
271551 1
+ c/ "" )) V(o) 2P + 5| Vulao)l
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Then using Young’s inequality, we deduce (3.23). The proof is completed. O

4. INTERIOR LIPSCHITZ ESTIMATE AND MODULUS OF CONTINUITY ESTIMATE OF
THE GRADIENT

In this section, we give the proof of the Lipschitz estimate in Theorem 1.3 and
derive an interior modulus of continuity estimate of Vu under the same conditions.
We first adapt the argument in [6] to obtain some decay estimates from Proposition
3.3. Let o € (0,1) be the same constant as in Theorem 2.1, a; € (0,a), R € (0,1]
and Br(zg) C Q. Choose € = e(n, p, A\, 0, @, a1) > 0 sufficiently small such that

Ce*™ ™ <1 and &* <1/4,

where C' is the constant in (3.13).
Proposition 3.3 implies that for any Bs,.(z) CC Bgr(zo),

ota.er) e (e, + ¢ (LB )
By, - (4.1)
* Cw (IVullz (8, +5)° "
+ Cw(r) (IVullL By, () +5) -
Denote B
g.r) = UBAD) ) = gyt (4.2

By iteration, from (4.1) we get

J
d(a,e’r) <e®(w,r) +C Y e Vn(z, 26 'r)

=1

J

a1 (i— j—i 2=

+ C’Zz—: 1D g (2, 267 7) (IVull oo (B (a)) + 5) P
i=1

J
+CY eV r) ([ Vull Lo (Bay (a)) + 5)
=1

for any Ba,.(x) CC Br(zg) with r € (0, R/4). Thus,
o(x,e0r) <e®p(x,r) + Chlx, 267r) + Cg(x, 2¢7r) (IVull oo (Ban(a)) + s)zfp
+ Co(Er) (IVull Lo By () + ) 5 (4.3)

where we defined

h(z,t) := isali (h(z, e "t)[e"t < R/2] + h(z,R/2)[e "t > R/2]),
g(x,t) = Zsa” (9(z,e"t)[e "t < R/2] + g(x, R/2)[e "t > R/2]), (4.4)

w(t) == Zso‘li (w(e™)[e™"'t < R/2] + w(R/2)[e~"t > R/2]).

Here we used the Iverson bracket notation, i.e., [P] = 1 if P is true and [P] = 0
otherwise. We obtain the following lemma from (4.3).
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Lemma 4.1. Let Bo,.(x) CC Bgr(xo) C Q with r < R/4. There exists a constant
C depending only on €, n, p, A\, Yo, and a1, such that for any p € (0,r], we have

(i)
olw,p) < C (2)™ oa,1) + Chiz,20)

- 2— ~
+ Cg(x,2p) (IIVull Lo (Bar (@) +5) © + C@(p) (IVtllzoo By () + 5)
(4.5)

(i)

S tr. ) <0 (%) oty [ M2 g

=0

—p [P g(x,t
+C (IVull by +5)° " / Lt ) gt (4.6)

Po(t
+C (IVull oo (B0 () + ) /O ¥ .

To prove Lemma 4.1, we need the following technical lemma.

Lemma 4.2. Let Br(xo) C 2. Then there exist constants c1 and cz depending on
g, n, p, and o, such that for any fired x € Br(xo) and any f € {@, §(x,-), h(z,)},
it holds that c1 f(t) < f(s) < caf(t), whenever 0 < et < s < t.

Proof. We will only show the proof for g since the other cases are similar. For fixed
r € Bpya(zo), we set

g(z,r) if 0<r<R/2,
Gla,r) = {g(x,R/2) if r>R/2,

and observe that by (4.4),
g(z,r) = Zeo‘liG(x,s_ir).
i=1

Suppose that 0 < et < s < t. It is easy to see from the definitions of g and G
that G(z,s) < ¢! "G(x,t) and therefore §(x,s) < e!="g(x,t). Also the fact that
0 < es < et < s implies that g(z,et) < e'7"g(x,s). On the other hand,

glx,t) =™ Zs”‘l(iﬂ)G(x,E*(”l)st) < e Mg(z,et).
i=1
The lemma is proved. (I

Now we are ready to prove Lemma 4.1.
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Proof of Lemma 4.1. We first prove Assertion (i). For given p € (0,7], let j be an
integer such that e/t < p/r < /. Then by (4.3) with e~7p in place of r, we get

. . ~ B 2—p
o(x, p) <e*Yp(x,e7 p) + Ch(z,2p) + Cg(z,2p) (IIVUIILOC<B @)t S)
+C(p) (IVullz~ 5, +5)

1 ~ - 2—
SO (g) ¢(177 7") + Oh(xa 210) + Og(ll?, 2p) (HVUHLN(B%(w)) + S) ’
+Ca(p) (IVull Lo (Bs,.(2)) +5) -

2e—Jp

Therefore, Assertion (i) holds. Now applying (4.5) with &/p in place of p and
summing in j, we get

o0

i¢($,5jp) <C (g)m Z x, 267 p)
=0

(HVUHLOC(BQT(I +S Z (z,2¢7p)

o0
C (IIVull Lo (Bay (1) +8) D @(e

j=1
Hence, by using Lemma 4.2 and the comparison principle for Riemann integrals,
we can easily get (4.6). The lemma is proved. O

Recall the definition of q , from Section 3. Since we have
|(1:v,€p - qw)p|7° < |Vu(z) - q$’p|'y" + [Vu(z) — q$,€p|%7
by taking the average over z € B.,(x) and then taking the yo-th root, we obtain

|qa:,€p - qw,p| S C(b(l’, Ep) + C¢($, p)
Then, by iterating, we get

J
‘qz,sjp - qz,p| S CZ ¢(x752p)'

i=0
Therefore, by using (3.12), we obtain that

o0
V(@) = aop| <C Y d(z,67p) (4.7)
j=0
holds for any Lebesgue point x €  of the vector-valued function Vu.
Now we are ready to prove the interior Lipschitz estimate.

Proof of Theorem 1.3. We prove the theorem around a given point = xg assuming
that BR(IQ) C Q with R € (O, 1] and

HI?(WDHLw(BR(IO)) < 0. (4.8)

We first derive an a priori estimate for the case when u € C! and then use approx-
imation to prove the general case.
Step 1: The case when u € C*( Br(zo) ).
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Using (4.6) with p = r and (4.7), we obtain that

V(@) = o p| <Colz, p) + C/Op @ dt

t
()

C (IVul| o (B, (2)) + 5)

El\h

C (IVull Lo (Bap () + 8)/0

holds for any Bs,(xz) CC Bgr(zo) with p € (0, R/4].
Note that

sl < CO(2,p) + Cp 0|Vl 0, 00) < Co™" Vel 0, 01
Combining the above two inequalities, we have
V()| <Co™™ |Vl o (s, ) + C / h@.?) g
_ P t
C (IVull L= (B, =) —|—8)2 p/ @dt (4.9)
0

P ot
C (||VU||L°C(sz(w)) —|—s)/0 ¥dt.

Note that & also satisfies the Dini condition (1.5); see [5, Lemma 1]. Thus we can
take pg = po(n,p, A\,w, 1,70, R) € (0, R/4] sufficiently small such that

Po ~,
C/ dt < 3=1=n/70,

where C' is the constant in (4.9). Then for any Bs,(z) CC Bgr(zg) with 0 < p < po,
by (4.9) and Young’s inequality, we have

dt

. P h(x,t
|[Vu(z)| <Cp /’YOHVUHL’YO(BP(Q:)) +C/ ()
0 (4.10)

gzt plj —n
o ([ ) g (Pl ).

For k > 1, we denote pp = (1 — 27¥)R. Since pry1 — pr = 27" 'R, we have
Bo,(x) C By, (w0) for any = € B, (z) and p = 27*"2R. We take k¢ sufficiently
large such that 27502 < p,. Then by (4.10) with p = 27*"2R, we have for any
k > ko that

IVull < (B, (z0) + 5

2k+2 n/%o
B R T P

2 h(w,t g Pt
+C  sup / Mdt—&-C sup / 9z, >dt +s
z€By, (z0) /O 3 ;cEBPk(gcg) 0 t

S 3—7l/70(||vu||Loo /’k 1(10)) + S) + C (
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Multiplying the above inequality by 3~"#/7% and summing the terms with respect
to k = ko, ko + 1,---, we obtain that

S 3TNVl 3, o)+ 9)
k=ko

< Y 3TVl e (s, o)) T 8) + CRTY [Vl Lo (Bao)) + 9)
k=ko+1
1

% h(z,1) f gt N\
+C sup / LA T sup (/ gﬂi’ﬁ) + Cs,
0

xEBR(IB()) 0 3 :EEBR(Q?())

where each summation is finite. By subtracting

oo

> 3|Vl L (5, (n0)) + 5)
k=ko+1

from both sides of the above inequality, we get the following L°°-estimate for Vu:

IV ull L (B0 (o)) + 8 < CR™ [ Vat]| Lo (85 (o)

+C sup / @dt-ﬁ-c sup (/ g(x’ﬁ)dt> + Cs,

x€BR(z0) J0 z€BR(zo) t

We can simplify the terms in (4.11) to get
R( P e
||Vu||L°° BR/2 o) < C”I |M‘ HIP/OO(BR(QJO)) + CR™» H|vu| + SHLQ*P(BR(&CU))'

(4.12)
Indeed, by the definition of § in (4.4), we have

R/2 R/2 —it )
/ Zsaﬂ/ 79(”57;3 Jemit < Ry at
0

+ st /R/2 %/)[ ~it > R/2]dt

The first term above is equal to

> . [e'R/2 x,e7) R/2 g(z,t
St [ AR ij W0 4y < O () ).
i=1 0

The second term is equal to
Zsa”ln g(x, R/2) < Cg(x, R/2) < CTE(|u|)(x).

Therefore,

/R/2 g(i ) it < CTR () (). (4.13)
0
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We can similarly get

oo

R/2 ?l(ﬂi,t) — e 2%} R/2 h(l’,t) (2%} —1
/O M=y /0 R a3 e (e (e R /2)
it = (4.14)

R 1 ) N
= C(/o g(sct’ ! dt) O (I () ()T < ¢ (T () (@) T

Recalling the fact that v9 < 2—p (cf. Lemma 3.2), using (4.13), (4.14), and Holder’s
inequality, from (4.11) we obtain (4.12).

Step 2: The general case.

We take r; € (0, R), r2 = (R+71)/2, and a sequence of standard mollifiers {¢y}
such that for any positive integer k,

or € C5°(B1/k(0)), ¢xr >0, and ][ or = 1.
By ,1(0)

Then we mollify ¢ and A by setting

Mk(x) = (/J' * (pk)($)v Ak(.’ﬁ,f) = (A(ag) * @k)(w)v T e BTz(ZO)'

We note that Ay is well defined and satisfies the growth, ellipticity and continuity
assumptions (1.2)-(1.4) in By, (x¢) for kK > 1/(R — rg). By the corollary after [12,
Theorem 1], (4.8) implies o € W~1#' (B, (x0)), where p’ = p/(p—1), and therefore

(e — N”W*LP’(BW (o)) 0. (4.15)

Next we let uy, € u+ Wy (B, (1)) be the unique solution to

—div(Ag(x, Vug)) =ur  in By, (x0), (4.16)
ugp =u on 0By, (xg). '
Choosing ug — u as a test function in (4.16), we obtain
/ (A(z, Vuyg), Vug)dx
Fra (o) (4.17)

= / (A(z, Vuyg), Vu) dx + / (ug — ) dpag.
By, (20)

By, (z0)
Using the fundamental theorem of calculus, (1.2), (1.3), and Young’s inequality
with exponents p and p/(p — 1), we have

/ (A(z, Vug), Vuy) dx
B'rz(xo)
1
= / (/ (DeA(z, tVug)Vug, Vug) dt + <A(m,0),Vuk>> dz
BT2(I0) 0
1 -
> / (/ A% 4 [V [2t?) 2 [V |2 dt — /\5p71|Vuk|) dx
BTQ(I(]) 0
>t (s* + \Vuk|2)%|Vuk\2dx - / AsP~H Vg | d

By, (z0) By, (wo)

> ¢(\, p) / |Vug|P dz — C"()\7p)/ sP dz.
Br2 (zo) B

o (%0)
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On the other hand, using (1.2) and Young’s inequality, we obtain

/ (A(z, Vuyg), Vu) dz + / (ug — u) dpg
By, (20)

By (20)

p—1
< )\/B ( )(52 + | Vaug[?) = |Vu| dz + |jug, — UHWOLP(BTQ(wo))||’uk||W—1’p/(BT2 (20))
ro (Z0

1
<qe0n) [ (Valtsrdercop) [ VP
4 B, (zo) B

o (210)

1 ,
+ 3 PIVur =Vl s, gy + C" D) Ikl 1 (5, 0y

Therefore, (4.17) implies that

19081 5. oy < CITl+ 50505y + Cllise (4.18)

/
P
W= (By, (20))’

where C is a constant not depending on k.
Now we recall a well-known inequality

2 V(&) = V)P
T e-aP
where ¢ = ¢(n,p) > 1 is a positive constant and the mapping V' (-) is defined as
V() = (P +5)"T ¢ gern
Combining (1.3) and (4.19) yields
¢y V(&) = V(&P < (A(x, &) — Az, &), & — &),

for some positive constant ¢y = co(n,p, A). We note that the above inequality also
holds for Ag. Then choosing (uy — u)lBT2(m0) as a test function in (1.1) and (4.16),
we have

00_1/ V(Vuy) — V(Vu)|? da
BTQ(mO)

(4 |6+ ) <e(s? +lal + e, (419)

< / (Ag(z, Vuy) — Ag(z, Vu), Vu, — Vu) dx
By, (z0)

= / (A(z, Vu) — A (z, Vu), Vug, — Vu) dzx —|—/ (up —u) d(pr — 1)
By, (z0)

Br2 (350)

<A V) = A Vu)ll o0 (B, (20)) * lur = ullwre s, (20
+llue = ullwer s, @y 16 = tllw-10 (5, @0))-

From the definition of Ay, by using the Minkowski inequality and (1.4), we obtain
p—1
IAC, V) = Ar(e, Vi)l s (5, () < )\w(l/k)(/ (s + [Vuf?)f o) T

B7-2 (ZL’(])
which together with (4.15) and (4.18), yields

/ [V (Vug) — V(Vu)|* dz — 0.
By, (z0)

By (4.19), we have

(2—p)

Vur, — Vaul? < e|V(Vug) — V(Vu) P (|Vug]? + [Vuf? + 52) 7
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and therefore using Holder’s inequality with exponents 2/p and 2/(2—p), we obtain
that

/ |Vu — Vul|P do
By, (z0)

< 0(/3,.2<;m) [V (Vi) =V (Vu)? d”) : (/B (

ro (T0)

2—p

(IVug|® + |Vul* + 32)g dm) T,
which implies that

Vur — Vu  strongly in LP(B,,(xo)).

Thus there exists a subsequence {k;} such that Vuy, — Vu almost everywhere in
BT2 (x())

Since Ay and pi are smooth in x, by the classical regularity theory (see, for
instance, [1], [23]), we know that uz € CL%(By,(z0)). Therefore the Lipschitz
estimate (4.12) from Step 1 holds for uy in B, j2(z0). Namely,

Vgl oo (B, @y < CII (k)| 1 5 + Cri7 ([[Vug] + sl 22-»(B,, (20))-

rq (%0))

Note that by direct computation, for any ¢ > 0, it follows that

pnBi(@) = [ (Bl 9)euv)dy.
Therefore, for sufficiently large k, by the Fubini-Tonelli theorem we have
HI?(\WDHLw(BTl(%)) = ||I7£1(|/”L‘)|}L°°(BT2(10))’

Thus by taking k = k; " co and then 7 * R, we obtain the Lipschitz estimate
(1.13) around x = xo. O

In the rest of the section, we derive an interior modulus of continuity estimate
of Vu under the conditions of Theorem 1.3. Recall that we fixed an £ € (0,1/4)
sufficiently small such that

Ce® ™™ <1 and " <1/4,

where C' is the constant in (3.13), @ € (0,1) is the same constant as in Theorem
2.1 and a3 € (0,a). We also took a ball Br(zg) C Q with R € (0,1]. Similar to
(4.4), we define

Zgau (e7')[e™"t < R/2) + w(R/2)[e™"t > R/2)),

(1) (@ Ze“”(f (k@) < B2+ L) (@) > B/2),
W 1))

- Zgw (WS, (1D @) "p < R/2)+ W2 (uD)(@)""p > R/2]).
(4.20)
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Here we also used the Iverson bracket notation, i.e., [P] = 1 if P is true and [P] =0
otherwise, and Iy and Wy, are the Riesz and Wolff potentials defined in (1.9)
and (1.11), respectively. We note that since 1/(p — 1) > 1, we have

W () () < @ (|l ()7, (4.21)

so that W*, (|u[)(z) and I¢(|u|)(z) are bounded and converge to zero as p — 0

1/p.p
as long as If*(|u|)(x) is finite.

Our interior modulus of continuity estimate is stated as follows.

Theorem 4.3. Assume the conditions of Theorem 1.3 and oy € (0, ), where o
is the constant in Theorem 2.1. Then there exist a constant C' = C(n,p, \, a1,w),
such that for any R € (0,1], Br(zo) C Q, =,y € Bra(xo) being Lebesgue points of
the vector-valued function Vu, it holds that

[Vu(z) — Vu(y)|
Py, [P e) A
= CM[ (E) +/0 Tt dt} +C HW/I)/P’P("MD||L°°(BR/4(9C0)) (4.22)
+ COMP YT e 5,0

where p = |x — y|, @, V~V1/M,, and Iy are defined in (4.20), and
n =
M := R™77 |||Vl + 5] 20 (B4 (o)) + [T (D] 7 55 (20

Note that due to (4.21), the term |‘Wf/p’p(|u|)HLOO(BRM(%)) in (4.22) can be

replaced with the sup norm of a summation of the truncated Riesz potentials similar
to (4.20).

Proof of Theorem 4.3. For any x,y € Br/4(xo) being Lebesgue points of Vu, by
the triangle inequality, we have

[Vu(z) = Vu(y)[™

< V(@) = dayp|™ + [dayp — Ayl + [Vuly) — ay,p|"

<2 sup [Vu(yo) = dyepl™ + [Vu(z) = dup|” + [Vu(z) — qy,p™.
YoE€BR/4(0)

We set p = |z — y|, take the average over z € B(x, p) N B(y, p), and then take the
~Yo-th root to get

|Vu(z) = Vu(y)| <C  sup  |[Vu(yo) — dyo,pl + Cé(x, p) + Coly, p)
YoEBR/4(w0)

<C  swp > Gy, e’p)+C sup  b(yo,p)
YoE€BR/4(x0) =0 YoE€EBR/4(x0)

<C  sup Y d(yo.elp). (4.23)
YoEBR/a(xo) =0

Here we used (4.7) in the second inequality.
If p < R/8, by using (4.23), (4.6) with R/8 in place of r, and the fact that

Br/a(yo) C Brja(wo) Vyo € Brya(zo),
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we obtain

[Vu(z) = Vu(y)|

P\ s h 907
<C <E) ||Vu||Loo(BR/2(m0)) +C sup /0

YoE€BR/a(x0)

2—p P g yo, (424)
+C (IVul~(mtan + ) |
UOGBR/4 (z0) 40O

P o)
+C(||VU||L°°(BR/2(IO>)+S)/o Sf o

Clearly, (4.24) still holds when p > R/8.

We can simplify the terms in (4.24) as follows. For any yo € Bpr/s(zo) and
p € (0,R/2), by the definition of g in (4.4), we have

/ yOa Z (Xlz/ 1/075 t —1t<R/2]
0

ai 9(yo, R/2) . _;
+Zs /Oot/)[e t> R/2)dt
1=1

Recalling the definition of I from (4.20), the first term above is equal to

it et / —1
Zgw(/ yo,f) dtle™'p < R/2] +/0 h M dtle™"p > R/Z])

The second term is equal to
> e p > R/2]In(2e " p/R)g(yo, R/2).
i=1

Let K be the positive integer such that e~ %p > R/2 and e~(¥~Yp < R/2. Then
we have

igaﬂ[g—ip > R/2]In(2e"p/R) = i ™' In(2e""p/R)

i=1

_ Eole Z 8041(1 (ln p/R) -+ (7, — K) ln(é‘il))

< (%’)al i e(=K) G - K +1)In(e™}) < O(%)al.

i=K
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Therefore,

/op 960:1) 4y < (1uf) (o) + o/ R)™ oo, B/2)

(4.25)
<7 (1)) (o) + Cp/R)* L (|a]) (0)-
We can similarly get the following estimate
? h(yo, 1) - (e dt.
7 < @12 - Ly <L 2
/O sy (e /0 nyo,t) T le'p < R/2
(4.26)

R/2 o
+/O h(yo, t) ?[E_ip > R/2]> +C (%) h(yo, R/2)

< Wf/p,p(|ﬂ|)(yo) +C(p/R)™ (If(|u|)(y0))1/(p71)'

Using (1.13), (4.25), and (4.26), from (4.24) we obtain (4.22). The theorem is
proved. O

Proof of Theorem 1.4. Since the set of Lebesgue points of Vu is dense in €, it
suffices to show the right-hand side of (4.22) converges to zero when p — 0. In fact,
we have

S .
(i PR SN (| A () PP C ey
=1

R —i
HIL 2 (Dl (5 a0 > R/2)

which must converge to 0 by using (1.14) and the dominated convergence theorem.
We can similarly prove the convergence of other terms in (4.22). O

Proof of Corollary 1.5. By [8, Lemma 3] with p = 2 and k = 1, the assumption
(1.15) implies (1.14). Therefore Corollary 1.5 follows from Theorem 1.4. O

Proof of Corollary 1.6. This is an immediate corollary of Theorem 1.4 since the
assumption (1.14) is verified by (1.16) and (1.17). O

Proof of Corollary 1.7. We choose a; € (3, ) in Theorem 4.3. Then Corollary 1.7
follows by a direct computation using (4.22). O

5. GLOBAL GRADIENT ESTIMATES FOR THE p-LAPLACIAN EQUATIONS

This section is devoted to the proof of the global pointwise gradient estimate in
Theorem 1.10, the Lipschitz estimate in Theorem 1.11, Corollary 1.12; as well as
the derivation of a global modulus of continuity estimate of Vu stated in Theorem
5.10 for the following (possibly nondegenerate) p-Laplace equation with Dirichlet
boundary condition:

—div (a(x)(|Vu|2 + 52);72;2Vu> =p in 9,
u=0 on 09,

(5.1)

where a(-) satisfies (1.5), (1.7), and (1.8), and Q has a C1:Pin! boundary character-
ized by Ry and wqg as in Definition 1.9.
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First, we derive a gradient estimate around any point zy € 9Q2. Without loss of
generality, we assume that xg = 0 € 9. Then we can choose a local coordinate
around z¢p = 0 and a function y as in Definition 1.9 such that x(0’) = 0. Let

I(y) = (1 +x),y) and A(x) =T"'(z) = (z1 — x(2'),2").

Note that the determinants of the Jacobian of I'(-) and A(-) are equal to 1. Since
Q has C1LPint boundary, from the proof of [3, Lemma 2.2], there exists Ry =
Ry (wo, Ro) € (0, Rg) such that

[Veox(@)] <1/2 if |2'| < Ry, (5.2)
Q2 CT(BF) C Q. Vre(0,R/2]. (5.3)

Therefore, there exist constants c;(n) and cz(n) depending only on n, such that for
any z € Q and 0 < r < Ry,

cr(n)r™ <|Qp(x)] < ea(n)r™. (5.4)

Now we use the technique of flattening the boundary. We denote uq(y) =
w(T'(y)), a1(y) = a(T'(y)), and p1(A) = p(T'(A)) for any Borel set A C R™. Then
w1 satisfies

Ri/2>
up =0 on Bg, ;, NORY.
(5.5)

{divy (a:()(1DA Dyl +57)7 (DAY DA Dy ) = - in B

We set
Ai(y,€) = ar(y)(|DA €% + s%) "% (DA)T DA €.

By direct computations with (5.2) in hand, A; satisfies the following conditions
with w; = w + wp and some constant Ay = A1(n, p, \):

A1 (y, O < M (s + [E2)PD2 [DeAr(y, €)] < Mi(s® + €)%, (5.6)
(DeAi(y, E)n.m) > A1 (s* + €12 P=2/2)p2, (5.7)

|A41(.€) = A1 (0. §)| < Mawn(fy — vol) (s + %) P~/ (5.8)
for every y,yo € B§1/2 and every (£,m) € R™ x R"\{(0,0)}.

Suppose that 4r < R;. We now consider the unique solution w € wuy +W01 P(B5)
to the equation

(5.9)

—divy (41 (y, Vyw)) =0 in By,
w=u; on dB;.

We first derive a boundary version of the reverse Holder’s inequality.

Lemma 5.1. Let w be a solution to (5.9). There exists a constant 61 > p depending
only on n, p, and A, such that for any t > 0, the estimate

1/61 1/t
<][ (IVyw| + )% dac) <C (f (IVyw| + s)tdx> (5.10)
B/, (y0) B} (vo)

holds for all B (yo) C B3, where C = C(n,p,\,t) > 0.
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Proof. For simplicity, we still denote V = V,, through this proof. First we prove
a Caccioppoli type inequality in half balls. Suppose that yo € Ba,. N OR’} and
Bo,(yo) CC Bar. Let ¢ be a nonnegative smooth function satisfying ¢ = 1 in
B,(yo), |[V¢] <2p7!, and ¢ = 0 outside Bs,(yo). Using (Pw as a test function in
(5.9), we get the following

0=/ (Al(y7Vw),§pr>dy+p/ (A1 (y, Vw), P~ oV ¢) dy :=T+11. (5.11)
B, B,

2r 2r

Using the fundamental theorem of calculus, (5.6), (5.7), and Young’s inequality
with exponents p and p/(p — 1), we have

1
I:/ CP(/ (D¢ A (y, tVw)Vw, Vw) dt+A1(y,0)Vw)dy
By, 0
1 2
2/ gp(/ /\1_1(32+|Vw|2t2)p%|Vw|2dt—/\15p’1|Vw|)dy
By, 0

>cwp) [ Ol dy-Coug) [ sy,
B;—’V‘ B;—T'
On the other hand, using (5.6) and Young’s inequality, we have

1) < pA, / (5% 4+ |Vwl?) "2 (7w V(| dy
B3, (y0)

IN

1 P
s [ TPty ¢ On) [ wveray
B27‘

BF,(y0)

IN

1
pel) [ Fup)dy ¢ Onp) [ Ve dy,
BQ'I‘

BF,(y0)

Therefore, (5.11) implies the following Caccioppoli type inequality

/ |[Vw|P dx < Cp™sP + C’pfp/ |wl|? de. (5.12)
B (y0) B, (y0)

Since w = u = 0 on By, N IR}, by the Sobolev-Poincaré inequality,

1/p 1/q
</ |w|de> <CpitiE (/ |Vw|qu> (5.13)
B, (vo) B3, (y0)

for any ¢ such that max {1, n"—fp} < g < p. Thus by combining (5.12) and (5.13),

1/p 1/q
][ (IVw| + )P dz <C ][ (IVw| + )4 dx .
B (yo) B3, (y0)

Similarly, the following interior version of estimate

1/p 1/q
(7[ (IVw| + s)P d:c) <C <][ (IVw| + s)4 dz)
BP(?JO) BQP(?JO)

holds for all Ba,(yo) CC Bi.. Therefore, by a standard covering argument and
Gehring’s lemma, we get (5.10). O

we have
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We also have a boundary comparison result analogous to Lemma 3.2 by following
almost the same proof.

Lemma 5.2. Let w be a solution to (5.9) and assume that p € (1,2). Then for
any Yo € (0,2 — p] when p € (32:?2) and vy € (0, %) when p € (1, gz:ﬂ, it
holds that

/70
(7[ |Vyur — Vyw|™ dx)
B;—T'

B+ ﬁ B+
S C |:|/j/1|( 27“):| +C|M1|( 27‘) ][ (|vyu1| +8)2_p d.’E,
B,

Tnfl Tnfl
where C' is a constant depending only on n, p, A, and q.

We now let v € w + Wy ?(B;F) be the unique solution to

—div,(A1(0,V,v)) =0 in B,
{ vy (A41(0, Vyv)) (5.14)

v=w ondB; .

We also have an estimate for the difference Vv—Vw analogous to (3.10) by following
almost the same proof as that of [9, Eq. (4.35)]:

][+ |Vyv — Vywl?P de < Cwo(r)p][ (IVyw| + s)P dx.
B}

B

Thus by (5.10) and Holder’s inequality, we get

][ |Vyv — Vyw|" de < Cuwy(r)” 7[ (IVyw| + 5)™ dx.
B By,

Next we prove an oscillation estimate for v.

Lemma 5.3. Let v be a solution to (5.14). There exists constant C > 1 depending
only on n, p, A, and g, such that for any half ball B;" C BE C Bf, we have

1/v0
(;Ielufk (]{3; [ Dy, v — 0™ + |Dy/v7°>

1/70
PN .
< — — Q|0 ,ulo
C(R)é%<ﬁ%u%v 0" + | Dy ) 7

where a € (0,1) is the same constant as in Theorem 2.1.

(5.15)

Proof. Let v be an odd extension of v in B,., namely,
o(y) if y1 >0,
—v(—y1,y) if y <O.

Then since
p—2
A1(0,6) = a1 (0)(I€* + 5%) = ¢,
v € WIP(B,) is a solution to the equation

—mw(mmvaﬁ+§ﬁ¥vw):o in B,.
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Thus we can apply Theorem 2.1 to ¥ to get

/70 P\ 1/70
inf V,0— g <C—)‘f][V*— o)
Jnf, (fgl o ) <c () it (f, wo—ar)

31

Since v is an odd function in y;, by the triangle inequality, there exists 6, € R such

that

P

By the triangle inequality again, it is easily seen that

Then (5.15) is a direct consequence of the three inequalities above.

/70 1/70
][ |Dy, v — 0,7 + |Dyrv|™ < C inf ][ |V,7 —q|™ .
B+ qEeR™ B,

1/70 1/
qiennafn (]iR Vyo — q|’Yo) = Ceirel]g <]i; | Dy, v — 0™ + |Dy’v|%> ‘

O

Lemma 5.4. Suppose that u; € Wl’p(B;gl) is a solution to (5.5). Then for any
e € (0,1) and r € (0, Ry /4], we have

1/70
i (f, 1w o D)

1/70
< “ inf D — |7 D, 7o
< (Ce ;GR <][j—| 1 Ul ‘ +‘ yu1| )

1

B+ ﬁ 2=p
+Ce <w> + Cewi(r) (][+ (|Vyuil +8)2p>

2r
B+
+ Cs |.ul|75712r) ][ (‘vyu” + 8)27p’
" Bj,

(5.16)

where a and 7y are the same constants as in Proposition 3.3, C. is a constant
depending on €, n, p, A, and 7o, and C is a constant depending on n, p, X, and Y.

Proof. By using Lemmas 5.1, 5.2, and 5.3, the proof is almost identical to that of
Proposition 3.3, so we omit it.

We now define

1/7v0
P(z,r) = inf f |Dyu — 6]7° + |Dyrul? .
Qr(x)

0ER

O
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Let € € (0,1) and r € (0, Ry /4]. By using change of variables, (5.3), (5.4), and the
triangle inequality, we have

/70
érelﬂfli (]iir |Dy,u1 — 6] + |Dy’“170>

1/70
= inf ][ |Diu — 0|7 + |Diu Dy x + Dyru|™
ek \ Jr(B)

1/70 /70
> C'inf f \Dlu—9|7° +|Dz1u|7° -’ ][ |D1u Dz’X|’YO
0eR 967./2 Q57~/2

1/70
> (0, er/2) — Clion (7/2) (7[ |vu|%> ,
Qer /o

(5.17)
where C' and C’ are positive constants depending only on n and 7o. Similarly,

1/70
inf D — 0|7 + |D,ruqp|™
int (£, 1Dy =00 + D)
1/70
= inf ][ |D1u—9|7° + |D1U Dx/X+Dx/U|’YO
0cR F(Bj)

1/v0 1/70
S C” mf (][ |D1u - 9|’YO + |D$I’U,|’YO) + CN (][ |D1’U, D$/X|’Yo)
0ER Qo Qo

1/70
< C"P(0,2r) + C"wy(2r) (f |Vu|7°) ,
Q

2r

(5.18)
where C” is a positive constant depending only on n and vg. Therefore, by using

(5.17), (5.18), (5.2), and (5.4), (5.16) implies that

¥(0,er/2) < Ce"(0,2r) + Ce (lul(ﬂ)) h

rnfl

s (f (Vu|+s>2p)”+c€’ﬁ'fff‘i” (vl

4r

By replacing /4 and 2r with ¢ and r respectively, we obtain

Corollary 5.5. Suppose that u € Wy(Q) is a solution to (5.1) and xo € Q.
Then for e € (0,1/4), r < R1/2, and a, C, Ce as above, we have

laa.r) < Cevita, 1) + €, (L))

Tnl
1

+ Cewr (1) <]é ( )(|Vu| +S)2_p> 7% + CEM

r

][ (|Vu| 4 5)27P.
Qo (x0)
(5.19)
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As in Section 3, we define

1/70
¢(x,p) = inf ][ Vu — q|™
(,p) = Inf Qp(m)l |

and choose qg , € R" such that

1/v0 1/v0
][ [Vu —qg |7 = inf ][ [Vu — q|™ . (5.20)
Q- (z) ack™ \ Ja, (z)

We remark that (3.12) still holds for any Lebesgue point z € § of the vector-valued
function Vu from the same argument as in Section 3. Moreover, if we assume
u € C1(Q), then (3.12) actually holds for any x € (.

5.1. Global pointwise gradient estimates. To prove the pointwise gradient
estimate for p € (gz f,Z), we choose 79 = 2 —p and € = e(n,p, A\, a) € (0,1/4)
sufficiently small such that Ce® < 1/4 for both constants C' in (3.13) and (5.19).
Fix T € O and R < R1/2 For j > 0, set T = €jR, Qj = 927-]. (.730),

o= (1,

Applying (5.19) yields

(|Vu| 4 5)27P dm) . ¢ =o(xo,15), and Y; = (xo,7;)).

1

Pjt1 < iwj +C ("Lﬁ(g])) 7 +C|M|(Q )T-27P+C’w1('rj)Tj.

n—1 n— J
J Ty

Let jo and m be positive integers such that jo < m. Summing the above inequality
over j € {jo,jo+1,...,m} and noting that ¢; < ; < CT}, we obtain that

m—+1 m—+1 ‘M|( %1
d i< W <0, +CZ ( = )

J=Jjo J=Jjo J=Jjo (5'21)
m
+C’Z|u‘nl 2p—|—C’Zw1TJ
J=jo J=jo
for any xg € 002 and R < Ry/2.
On the other hand, according to (3.17),
1
m—+1 m p—1
w|(€25)
Z¢J<O¢JO+OZ<' I )
J=Jo J=Jo 7‘ (5 22)
m |ILL ( m ’
+C ;) TP+ C T
2 Tt IO ) ulr
j=jo J=jo

holds for any zo € Q and R > 0 such that r;, = ¢/ R < dist(zg, Q) /2.

‘We now define
_1

Q; = Qgrj (.IQ), Zj = <f( (|VU| =+ 8)271) dx) .

Then we can obtain the following lemma.
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Lemma 5.6. Suppose that u € Wy*(Q) is a solution to (5.1), zo € Q, and R <
R,/6. Then we have

m—+1 | / plfl
1| (£25)
Z¢7<CZ70+CZ ( riT 1]
J

.7 .70 .7 ]0 (5.23)
m (Q/ ) m—+1
Z 7“ 1] Zj_p—i—CZwl(rj)Zj,
Jj=j Jj=Jo

where C' is a constant depending only onmn, p, A\, and 7o-

Proof. First when zy € 01, since ; C Q}, we have T; < CZ;. Thus (5.21)
directly implies (5.23). It remains to prove the lemma for zy € Q. Since (5.22)
holds when r;, < dist(zo,992)/2, we only need to show that (5.23) holds when
rj, > dist(zo, 0Q)/2. Now assume r;, > dist(zo,082)/2 and r;, 41 < dist(zg, 0Q)/2.
By (5.22), we have

il @)\
Z ¢j <C¢J1+1+O Z ( 'un >
J

J=j1+1 J=j1+l (5.24)

IMI( T2 -

+C Z st ”+C_Z w(r))T;
j=ji+1 J J=j1+1
y (5.4), we also have

1/70

¢j1+1 < ][ \Vu = Qzg,r;, |'YO < Cgbjl. (525)
Qrj 41 (o)

Now for any j € {jo,jo+1,...,71}, rj > dist(zo, 9Q)/2. Choose yo € 99 such that
d := dist(zg, Q) = |yo — x0| so that €, (z9) C Q3,,(yo) and Qe (yo) C sy, (70).
Thus by using (5.21) at yo € 99, we have

J1 J1
D6, <C D blyo,3r))

J=Jjo J=Jjo
_1
p—1
ﬂy+cz(M%ﬂm>
e - (5.26)
|ul( Qﬁrj Y0)) z_p X
+Cz Y: +C’Zw1(3rj)Yj
J=Jjo J J=Jo
m& o w@ yy O
<Czj, +CZ - CZ —LZEP O wi(r)Z;,
J=Jjo J=Jjo J=Jjo
where

=
Y; = <][ (|Vu| +5)?77 dm) .
Qe6r; (Yo)

Recall that w; = w + wy. Combining (5.24), (5.25), and (5.26), we obtain (5.23).
The lemma is proved. [
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Proof of Theorem 1.10. With (5.23) in place of (3.17), we can easily get the global
pointwise gradient estimate (1.18) using the same ideas as in the proof of Theorem
1.1. O

5.2. Global Lipschitz estimates and modulus of continuity estimates of
the gradient. Let 20 € Q and 0 < R < Ry. For any fixed a; € (0,q), let
as = (g + @)/2, and choose € = e(n,p, A\, Y0, @, 1) € (0,1/4) sufficiently small
such that e*2 < 1/4 and Ce®~*2 < 1 for both constants C in (3.13) and (5.19).
Next we define

g1(z,7) = L (o 1: ?R/Q(wo)) hi(x,7) = ga(,7)7 7,

wi(r) ==wi(r)[r < R/2]+ w1 (R/2)[r > R/2],

and

o0
= Ze“”gl(z,s ‘), Gi(x,t) Zeo‘”gl z,e7't),
i=1
oo
= stm (z,e7%), hi(z,t) = Zewhl(x,e—w,
Zgocgz * —zt (;/) ZEQ” * —zt

Indeed, we have

Eymzm St < R/2) + wi(R/2)[e7 > R/2]) =i (t),
Gi(z,t) < Ze‘“’ (9(z,e7")[e™"t < R/2] + g(wo, R/2)[e™"t > R/2]),  (5.27)

hi(x,t) < is‘“i (h(z, e "t)[e"t < R/2] + h(zo, R/2)[e™"t > R/2]),

where the functions g and h are defined in (4.2).
Using the same iteration technique as in Lemma 4.1, we can obtain from (5.19)
that

P a2 ~
via,p) <O (2) vla,r) + Chala, 20)
+C1(2,2p) (| Vull oo (0 (2) + 8
+ Ca1(p) (IVull L (s, (2)) + 5)
holds for any = € 952, Ba,(x) C Br/a(2o), and 0 < p < 7.
Similarly, from (4.1) and the fact that w < wq, we have
a2 ~
ow,p) < C(2) 7 6(a.1) + Chi(a,2p)

A 27
+ Cin(z,2p) (IVull Lo (s, () + 5)
+ C1(p) (IIVull Lo (0, (2)) + 5)

for any By, (x) CC Q, Ba,(x) C Brja(wg), and 0 < p <.
By combining (5.28) and (5.29), we will show the following estimates.

)2 (5.28)

(5.29)
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Lemma 5.7. Let © € Q and Bs,(z) C Bpjs(wo). There exists a constant C
depending only on €, n, p, A, Y, and a1 such that, for any 0 < p < r < Ry, we
have

(i)
é(w,p) <C (2) 17| Vull o o, ) + Cha(x, p)
o 2—
+ Cin (2, p) (I Vul 1 (o) +5) 7 (5.30)
+ C1(p) ([[Vull Lo (@) + 5) »
(i)

S j o2 P hy(,t
Z o(x,e?p) <C (3) r_”/'YOHVuHLm(Q,.(x)) =+ C’/ M dt
j=0 r 0 t
2-p 7 g1(x,t
+ C ([[Vull Lo (023, (2)) + 5) p/ y dt (5.31)
0

P (t)
+C (IVull o @ ayy + s)/0 s
To prove Lemma 5.7, we also need the following technical lemma.
Lemma 5.8. Let 2,y € Q and p € (1,2). Then for g1, hi, 91, b, §1, b, @1, 6
defined as above, we have the following:

(i) There exist constants Cy,Cq > 0 depending on €, n, p, a and oy such that
for any fived x € Q, and any f € {gi(x, "), hi(z, ), &1, g1 (2, ), ha (@, ), @1 },
we have

Cif(t) < f(s) < Cof(t), whenever 0<et<s<t.

(ii) There exists a constant C > 0 depending on e, n, p, a and oy such that for
any 0 < er < p < r with Q,(z) C Q-(y), and any F € {g1,h1, 1,1}, we
have

F(z,p) < CF(y,r).

(iii) For any 0 < p < r, there exists a constant C > 0 depending on €, n, p, «
and oy such that the following hold

Proof. We will only show the proof for g since the other cases are similar. Noting
that
gl(l',S) S El_ngl(xvt)7 gl(xagt) S El_ngl(xas)

whenever et < s <t and g1 (x,t) < e~ 2§, (x,et), assertion (¢) follows. Assertion
(i1) follows similarly by observing the fact that Q.-:,(z) C Q.-+, (y) whenever i > 0
since Q,(z) C Q-(y). It remains to prove assertion (ii¢). Since 0 < p < r, there
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exists an integer j > 0 such that e=7p < r < e~ !p. Therefore, by part (i),
a2 . .
(8)" () < Ce™ g1 (2,27 p)

r

<C i i az(H‘])gl —i—jp)

7=0 i=
=C Z ke®*F g1 (z,e7Fp) < Cin(x, p),

where we used the fact that ke®2F < Ce®* in the last inequality, since a; < ap. O
Now we are ready to prove Lemma 5.7.

Proof of Lemma 5.7. Without loss of generality, we may assume x = 0. Note that
if r/16 < p < r, then (5.30) follows from the definition of ¢. Hence we only need
to consider the case when 0 < p < r/16. We consider the following three cases:

r/4 < dist(0,00), dist(0,00) < 4p, 4p < dist(0,090) < r/4.
Case 1: r/4 < dist(0,00). Set r1 = r/16. Since By, C Q, from (5.29) we have

5(0,9) < C (p) 6(0, 1) + Cha (0,20)

2—p
+C41(0,2p) <||VU||L°°(92T1) + S) + Cén(p) (IIVUHLN(Q%) + 5) :
Thus we can easily get (5.30) from Lemma 5.8 and the fact that
$(0,71) < Cr="/||Vu| 0 (,)-

Case 2: dist(0,09) < 4p. Choose yo € 9 such that dist(0,09) = |yo|. Then
Biop(yo) C Biap C B, and from (5.28), we have

=C (g)% ¥ (yo,7/2) + Cha(yo, 10p)

~ 2— ~
+ C91(y0,10p) (I Vull L (0, o)) +5)" © + Co1(5p) (IVull L (@, (o)) +5) -

Thus from the fact that Q,(yo) C Qar, Q,/2(y0) C Qr, and Q1o (yo) C Q14p, We get
(5.30) by using Lemma 5.8.

Case 3: 4p < dist(0,00) < r/4. Set r1 = dist(0,09Q)/4 > p. Using (5.29), we
obtain

5(0,9) < C (”) 6(0, 1) + Cha (0,29)

p
+C41(0,2p) <||VU||L°°(92T1) + S) + Cén(p) (IIVUHLN(Q%) + 5) :

On the other hand, choose yy € 99 such that dist(0,99) = |yo|. Therefore, B,, C
Bsr, (Y0), Br(yo) C Ba, and from (5.28) we have

¢(05 Tl) S C’l/)(y07 57"1)
< ¢ ()" blwo,/2) + Chalyo, 10r)

~ 2— N
+ C1(yo, 10r1) (IVull L@, oy +5)" © + C@r(5r1) (I[Vull Lo (@, (yo)) + 5) -
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Noting that Qr(yo) C 927«’ Qr/Q(QO) C Qr, and QlOrl (yo) C 914“, we get (530) by
combining the last two estimates and applying Lemma 5.8.

Finally, replacing p with ¢/p and summing in j, we get (5.31) by using Lemma
5.8 and the comparison principle of Riemann integrals. The lemma is proved. [

Remark 5.9. We emphasize that Lemma 5.7 has a local nature. Indeed, it can
be seen from the proof that we only need Dirichlet boundary condition v = 0 on
IV N Bpja(wo) and CHPM regularity of 92N B 2(xo) for these estimates to hold.
Therefore, our Lipschitz estimates and modulus of continuity estimates, which will
be deduced from Lemma 5.7, also have a local nature.

Recall the definition of q,, from (5.20) and keep (5.4) in mind. By following
almost the same proof of (4.7), we obtain that for any Lebesgue point 2 € Q of the
vector-valued function Vu and p € (0, Ry],

V() = dp | <CY dlw,e7p), (5.32)

=0

where C is a constant depending only on n and ~g.

Proof of Theorem 1.11. We will prove a boundary Lipschitz estimate

[Vul + 5| L2-r (g (20))
(5.33)

R __n_
IVull e (916 (20)) < ClIIF(I1al) HLOO(QR(a:O)) +COR 7

for any zp € 02 and R < R;, assuming that

T D e (3 2y < (5.34)

Then (1.19) follows by a standard covering argument using (1.13) and (5.33). The
proof of (5.33) is similar to that of Theorem 1.3 so we will only focus on the
differences.

Step 1: The case when u € C*(Qg/2(20)).

With (5.31) in place of (4.6), using the same iteration technique as in the proof
of Theorem 1.3, we get the following estimate:

IVl Lo (@ a (o)) + 5 < CR™™Vul| 210 (272 (0))

1

hi(z.t t Pr
+C  sup / 1(;” ) dt 4 C sup </ (=, )dt> 1 Cs.
0

2E€QR 2 (w0) JO 2E€QR 2 (w0) 3
(5.35)
Using (5.27) and direct computations, we have

R/2 g1($ t) \M|(BR/2(950))
/O T dt < C(Jul) (@) + C ==,

RI2 (a1 21 o IBrpa(ao) 7T

/ 1(t Lar < C (I (Juh (=) +C (Rn/—l) :

0

Therefore, from (5.35) and the fact that y9 < 2 — p (cf. Lemma 5.2), we obtain
||VU/||L00(QR/4 (z0)) < CHIR |u| HLQQ (Qr(z0)) + CR7ﬁ|||VU| + S||L2*:U(QR(mO)).

(5.36)
Step 2: The general case.
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We use an approximation argument with the aid of the regularized distance
introduced by Lieberman [15]. Here we refer to a modified version in [7]. Let
d(-) be the regularized distance defined in [7, Lemma 5.1] (¢(-) in that paper) and
OF = {r € Q:d(z) > 1/k}. Then from [7, Lemma 5.1], we know that Q* has a
smooth boundary and the CP™_properties of 9§ are the same as those of 9
up to some constant independent of k. We take a sequence of standard mollifiers
{¢k} and mollify p and a by setting

pe(z) = (nxp)(@), zeQ df(2) = (axgp)(z), z€Q"
We know that € W1 (Qg(z0)) and therefore

ek = llw 107 (@ (20)) = O

Recalling the fact that we have a C1:Pii coordinate in Qg(7o) since R < Ry, we can
take a sequence of cut-off functions ¢, € C*°(R") satisfying ¢, = 1 in Q*/*NBg(z0),
G = 0 in (Q\Q*/2) N Br(xo), and ||V{k|/1~ < 16k.

Next we let ug € uly + Wol’p(Qk N Br(zp)) be the unique solution to

—div (" (2)(|Vug|? + 52 BV ) = . in QF N Bg(xo),
(@) (1Tl + 57 T ) =pur r(%0) 557
up =uCy on (¥ N Br(zo)).

Since up = uly = 0 on Bgr(wg) N 0NF, we can always assume up € uCyp +
WyP (Qr(z0)) by taking the zero extension of uy, in (Q2\Q*) N Bg(zo). Since u = 0
on Br(zp) N 09, by Hardy’s inequality, we have

||uv<kHLp(QR($O)) < 16H/€u||Lp((Q\Qk/4)ﬂBR(wo))

< cllu(x)/d(:c)IILP((Q\QM)OBR(ZU)) < CHVUHLP( @@ nBaen) O

as k — oco. Therefore, we know that

lu — uCkllwrr(@p(zo)) — 0 (5.38)

Thus by choosing uy, —u(y as a test function in (5.37), following the proof of (4.18),
and using (5.38), we can show that ||Vuy| e (zy)) is uniformly bounded in k.
Also, choosing (ux — uCk)lay(zo) @ a test function in (5.1) and (5.37), similarly we
obtain

/ V(Vug) — V(Vu)|?dz — 0 ask — oo,
Qr(zo)

which again implies
Vu, — Vu  strongly in LP(2r(xo)).

By the classical boundary regularity theory (see, for instance, [16]), we have uy €
C' (2% N Bpja(w0)). Note that for sufficiently large k, there exists z, € Br(zg) N
o0k, such that |z, — zo| < R/16. Thus Bg/i6(z0) C Brys(zx), Brja(zr) C
Bra(xo) and Bgjs(xr) C B3g/a(xo). Therefore, using (5.36) in Step 1 and Remark
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5.9, we get
IVl (mmBR/m(m) S IVl (x5 )
< ||t () ||7* +CR™77||Vug| + 3|

Lo (QFNBpya(an)) L2 (QFNBg s (an) )

< C|Tf*( mk\)H” !

+ CR 77 |||Vug| + s
L (Q2*NBsga(0)) Vs |

L2-r(Q¥NBsp)a(0))

By extracting a subsequence and taking the limit as k — oo, we obtain (5.33). O

Proof of Corollary 1.12. By testing (5.1) with u, following the proof of (4.18), we
obtain

IVullLr o) < Cllulliy?

Wlp )—i—Cs,

where p’ = p/(p — 1). From [12, Theorem 1], we also have

p—1
Il ey < C( [ Whoadal) ™ < CITaD oy

Therefore, Corollary 1.12 follows by combining (1.19), Holder’s inequality, and the
last two inequalities. ([

Now we turn to global modulus of continuity estimates of the gradient. Recall
that we fixed an e € (0,1/4) sufficiently small such that

Ce*™ 2 <1 and e <1/4

for both constants C' in (3.13) and (5.19), where « € (0, 1) is the same constant as
in Theorem 2.1, a; € (0,), and ay = (a3 + «)/2. We also took R € (0, R;] and
defined

= Zg‘”i (wi(e"t)[e™"t < R/2] + wi(R/2)[e™"t > R/2]),

() (@ Zew(f (k@) < B2+ L) (@) > B/2),
W 1))

= ZE“” (W3, (D@0 < B/2)+ W2 () @)~"p > B/2])

(5.39)
where we used the Iverson bracket notation, i.e., [P] = 1 if P is true and [P] = 0
otherwise, and Iy and Wy, ,, are the Riesz and Wolff potentials defined in (1.9)
and (1.11), respectively.
Our global modulus of continuity estimate of the gradient is stated as follows.

Theorem 5.10. Assume the conditions of Theorem 1.11 and ay € (0,«), where
« 18 the constant in Theorem 2.1. Then there exist constants Ry = Ri(Ro,wp) €

(0, Ry) and C = C(n,p, A\, a1,w, Ry, wp), such that for any xo € Q, R € (0, Ry],
and z,y € Qg/4(wo) being Lebesgue points of the vector-valued function Vu, it holds
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that
[Vu(z) — Vu(y)]

p @1 P ( )
= CMl{(E) +/0 t dt] + CIWE (D e 0 sy (5.40)

+ MR (D L~ (00

where p = |z —y|, w1 = w + wp, @1, Wl/pp, and 1, are deﬁned in (5.39), and

Proof. For any x,y € Qp/4(z0) being Lebesgue points of Vu and p > 0,
[Vu(z) — Vu(y)[™
S IVu(r) = qup|™ + [Vuly) — ay2o|™ + Qe — qy,20"
< Vu(@) = Q| + [Vu(y) — ay2,["° + [Vu(z) = ae,p[" + [Vu(z) — qy,2,™.
We set p = |z — y|, take the average over z € Q,(x), and then take the ~y-th root
to get
[Vu(z) = Vu(y)|
< CVu(x) = aap[" + C [Vu(y) — ay.20[" + Cé(x, p) + Co(y, 2p)

<CY dx,elp)+C > by, 267p) + Cd(x, p) + Ch(y, 2p)

Jj=0 Jj=0
<C sup Zd) Yo, 267 p)
Y0€Qr/a(0) ;o

where we used the fact that Q,(z) C Q2,(y) in the first inequality and (5.32) in the
second inequality.
If p < R/16, by using (5.31) with R/8 in place of r and the fact that
Qr/a(yo) C Qrya(ro0) VYo € Qrya(z0),

we obtain
Vu(z) — Vu(y)]

P p 1 yUa
< C<R) ||VUHL00(QR/2(IO +C  sup /
Yo€EQR/a(z0) /O

2- P 4( (5.41)
+C<”vu”L‘x’(QR/2(lo))+S) sup /0

YoE€EQR/4(T0)

fan®) dt

+C (IVul~ o + ) [

Clearly, (5.41) still holds when p > R/16. Using (5.27) and similar calculations as
in the proof of Theorem 4.3, for any yo € Qr/4(z0) and p € (0, R/2), we have

[ 2D it < iy + 0 (5) " R, (.42)

|u|<BR/2<xo>>)p“ .

/Op fvn(?io,t) dt < Wf/pp(WD(yO) +C (%)al ( 1 (5.43)
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Using (1.19), (5.42), and (5.43), (5.41) implies (5.40). The theorem is proved. O
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