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Abstract. We are concerned with interior and global gradient estimates for

solutions to a class of singular quasilinear elliptic equations with measure data,
whose prototype is given by the p-Laplace equation −∆pu = µ with p ∈ (1, 2).

The cases when p ∈
(
2 − 1

n
, 2

)
and p ∈

(
3n−2
2n−1

, 2 − 1
n

]
were studied in [9]

and [22], respectively. In this paper, we improve the results in [22] and address

the open case when p ∈
(
1, 3n−2

2n−1

]
. Interior and global modulus of continuity

estimates of the gradients of solutions are also established.

1. Introduction

In this paper, we consider the quasilinear elliptic equation with measure data

−div(A(x,∇u)) = µ (1.1)

in a domain Ω ⊂ Rn, where n ≥ 2. Here µ is a locally finite signed Radon measure in
Ω, namely, |µ|(BR(x)∩Ω) <∞ for any ball BR(x) ⊂ Rn. By setting |µ|(Rn\Ω)=0,
we will always assume that µ is defined in the whole space Rn. The vector field
A = (A1, . . . , An) : Ω × Rn → Rn is assumed to satisfy the following growth,
ellipticity, and continuity conditions: there exist constants λ ≥ 1, s ≥ 0, and p > 1
such that

|A(x, ξ)| ≤ λ(s2 + |ξ|2)(p−1)/2, |DξA(x, ξ)| ≤ λ(s2 + |ξ|2)(p−2)/2, (1.2)

⟨DξA(x, ξ)η, η⟩ ≥ λ−1(s2 + |ξ|2)(p−2)/2|η|2, (1.3)

and
|A(x, ξ)−A(x0, ξ)| ≤ λω(|x− x0|)(s2 + |ξ|2)(p−1)/2 (1.4)

hold for every x, x0 ∈ Ω and every (ξ, η) ∈ Rn×Rn\{(0, 0)}, and ω : [0,∞) → [0, 1]
is a concave non-decreasing function satisfying

lim
r→0+

ω(r) = ω(0) = 0

and the Dini condition � 1

0

ω(r)
dr

r
< +∞. (1.5)

A typical model equation is given by the (possibly nondegenerate) p-Laplace
equation with measure data and s ≥ 0:

−div
(
a(x)(|∇u|2 + s2)

p−2
2 ∇u

)
= µ in Ω, (1.6)
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where a(·) is a Dini continuous function in Ω, satisfying

0 < λ−1 ≤ a(x) ≤ λ (1.7)

and

|a(x)− a(x0)| ≤ λω(|x− x0|) (1.8)

for every x, x0 ∈ Ω.
By a (weak) solution to Eq. (1.1), we mean a function u ∈ W 1,p

loc (Ω) such that
the distributional relation�

Ω

⟨A(x,∇u), Dφ⟩ dx =

�
Ω

φ dµ

holds whenever φ ∈ C∞
0 (Ω) has compact support in Ω. We use BR(x) to denote

the open ball of radius R centered at x and we set

BR = BR(0), ΩR(x) = Ω ∩BR(x).

The gradient estimates for the super-quadratic case when p ≥ 2 were well studied
in the literature. See [8, 10, 13, 19]. However, the corresponding results for the
singular case when p ∈ (1, 2) are far from complete.

In this paper, we are concerned with only the singular case when p ∈ (1, 2).
For singular quasi-linear equations, the case when p ∈

(
2− 1

n , 2
)
was considered

in the pioneering work [9], in which the authors proved that under the conditions
(1.2)-(1.5), if u ∈ C1(Ω) solves (1.1), then it holds that

|∇u(x)| ≤ C
[
IR1 (|µ|)(x)

] 1
p−1 + C

 
BR(x)

(|∇u(y)|+ s) dy

for every ball BR(x) ⊂ Ω with R ∈ (0, 1], where C = C(n, p, λ, ω). Here
�
E

stands
for the integral average over a measurable set E and

IR1 (|µ|)(x) =
� R

0

|µ|(Bt(x))

tn−1

dt

t
(1.9)

is the truncated first-order Riesz potential. Later, the case when p ∈
(
3n−2
2n−1 , 2−

1
n

]
was treated in [22], in which the authors obtained a pointwise gradient bound
involving the Wolff potential under stronger assumptions on A and ω. Namely,
under the conditions (1.2)-(1.4) and further assuming that

|DξA(x, ξ)−DξA(x, η)|

≤ λ(s2 + |ξ|2)(p−2)/2(s2 + |η|2)(p−2)/2(s2 + |ξ|2 + |η|2)(2−p−α0)/2|ξ − η|α0
(1.10)

and � 1

0

ωγ(r)
dr

r
< +∞

for some α0 ∈ (0, 2− p) and γ ∈
(

n
2n−1 ,

n(p−1)
n−1

)
⊂ (0, 1), if u ∈ C1(Ω) is a solution

to (1.1), then it holds that

|∇u(x)| ≤ C[PR
γ (|µ|)(x)]

1
γ(p−1) + C

(  
BR(x)

(|∇u(y)|+ s)γ dy
) 1

γ

,

where C = C(n, p, λ, α0, ω, γ) and

PR
γ (|µ|)(x) =

� R

0

( |µ|(Bt(x))

tn−1

)γ dt
t
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is a truncated nonlinear Wolff potential. We recall that in general, the truncated
Wolff potential is defined as

WR
β,p(|µ|)(x) =

� R

0

(
|µ|(Bt(x))

tn−βp

) 1
p−1 dt

t
, β ∈ (0, n/p]. (1.11)

Our first main result is stated as follows.

Theorem 1.1 (Interior pointwise gradient estimate). Let p ∈
(
3n−2
2n−1 , 2

)
and sup-

pose that u ∈ W 1,p
loc (Ω) is a solution to (1.1). Then under the assumptions (1.2)-

(1.5), there exists a constant C = C(n, p, λ, ω) such that the estimate

|∇u(x)| ≤ C
[
IR1 (|µ|)(x)

] 1
p−1 + C

( 
BR(x)

(|∇u(y)|+ s)2−p dy

) 1
2−p

(1.12)

holds for any Lebesgue point x of the vector-valued function ∇u, with BR(x) ⊂ Ω
and R ∈ (0, 1].

Remark 1.2. Our pointwise bound in Theorem 1.1 using Riesz potential IR1 (|µ|)
is an improvement of the bound in [22, Theorem 1.1] which contains the Wolff
potential PR

γ (|µ|), since

IR1 (|µ|) ≤ C P2R
γ (|µ|)

1
γ ∀ γ < 1.

The conditions on ω and A in Theorem 1.1 are also weaker. In particular, (1.10) is
not assumed.

For the more singular case when p ∈
(
1, 3n−2

2n−1

]
, which was open, we obtain the

following Lipschitz estimate.

Theorem 1.3 (Interior Lipschitz estimate). Let p ∈ (1, 2) and suppose that u ∈
W 1,p

loc (Ω) is a solution to (1.1). Then under the assumptions (1.2)-(1.5), there exists
a constant C = C(n, p, λ, ω) such that the estimate

∥∇u∥L∞(BR/2(x)) ≤ C
∥∥IR1 (|µ|)∥∥ 1

p−1

L∞(BR(x)) + CR− n
2−p ∥|∇u|+ s∥L2−p(BR(x)) (1.13)

holds for any BR(x) ⊂ Ω and R ∈ (0, 1].

We also obtain a modulus of continuity estimate of ∇u in Theorem 4.3, which
directly implies the following sufficient condition for the continuity of ∇u.

Theorem 1.4 (Gradient continuity via Riesz potential). Let p ∈ (1, 2) and u ∈
W 1,p

loc (Ω) be a solution to (1.1). Assume that (1.2)-(1.5) are satisfied and the func-
tions

x → IR1 (|µ|)(x) converge locally uniformly to zero in Ω as R → 0. (1.14)

Then ∇u is continuous in Ω.

Recall the Lorentz space Ln,1 is the collection of measurable functions f such
that � ∞

0

|{x : |f(x)| ≥ t}| 1
n dt <∞.

Theorem 1.4 has the following corollary.
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Corollary 1.5 (Gradient continuity via Lorentz spaces). Let p ∈ (1, 2) and u ∈
W 1,p

loc (Ω) be a solution to (1.1). Assume that (1.2)-(1.5) are satisfied and

µ ∈ Ln,1 holds locally in Ω. (1.15)

Then ∇u is continuous in Ω.

We remark that the Lorentz-space result above was proved in [14] for a p-
Laplacian system similar to (1.6) when p ∈ (1,∞).

A further, actually immediate, corollary of Theorem 1.4 concerns measures with
certain density properties.

Corollary 1.6 (Gradient continuity via density). Let p ∈ (1, 2) and u ∈ W 1,p
loc (Ω)

be a solution to (1.1). Assume that (1.2)-(1.5) are satisfied and µ satisfies

|µ|(Bρ(x)) ≤ Cρn−1h(ρ) (1.16)

for every ball Bρ(x) ⊂⊂ Ω, where C is a positive constant and h : [0,∞) → [0,∞)
is a function satisfying the Dini condition� R

0

h(r)
dr

r
<∞ for some R > 0. (1.17)

Then ∇u is continuous in Ω.

We remark that Theorem 1.4 and Corollaries 1.5 and 1.6 above are indeed the
sub-quadratic –p ∈ (1, 2)– counterparts of [8, Theorem 1, 3, 4]. See also [13,
Theorem 1.5 and Corollaries 1.6 and 1.7]. We refer the reader to [8] for a discussion
of the borderline nature of the assumptions in these results.

Another interesting consequence of Theorem 4.3 is the following gradient Hölder
continuity result.

Corollary 1.7 (Gradient Hölder continuity via Riesz potential). Let p ∈ (1, 2) and

u ∈ W 1,p
loc (Ω) be a solution to (1.1). Then under the assumptions (1.2)-(1.5), there

exists a constant α ∈ (0, 1) depending only on n, p, and λ, such that if ω(r) ≤ Crβ

whenever r > 0 and Iρ1(|µ|)(x) ≤ Cρβ whenever Bρ(x) ⊂⊂ Ω, for some constants

C > 0 and β ∈ (0, α), then u ∈ C1,β
loc (Ω).

Remark 1.8. We should stress that the constant α in Corollary 1.7 is the natural
Hölder exponent of the gradients of solutions to corresponding homogeneous equa-
tions with x-independent nonlinearities (cf. Lemma 2.2). Therefore, our result in
Corollary 1.7 provides the best possible Hölder exponent for the gradient of the
solution. The previous Corollary is an improvement of the gradient Hölder reg-

ularity result by Liebermann [18, Theorem 5.3], who proved u ∈ C1,β1

loc for some

β1 = β1(n, p, λ, β) ∈ (0, 1) assuming that ω(r) ≤ Crβ and |µ|(Bρ(x)) ≤ Cρn−1+β

for some β ∈ (0, 1). It is easily seen that the last condition implies Iρ1(|µ|)(x) ≤ Cρβ

whenever Bρ(x) ⊂⊂ Ω.

We also obtain up-to-boundary gradient estimates for the p-Laplace equations
with measure data in domains with C1,Dini boundaries.

Definition 1.9. Let Ω be a domain in Rn. We say that Ω has C1,Dini boundary if
there exists a constant R0 ∈ (0, 1] and a non-decreasing function ω0 : [0, 1] → [0, 1]
satisfying the Dini condition � 1

0

ω0(r)
dr

r
< +∞,



GRADIENT ESTIMATES FOR p-LAPLACE TYPE EQUATIONS 5

such that the following holds: for any x0 = (x01, x
′
0) ∈ ∂Ω, there exists a C1,Dini

function (i.e., C1 function whose first derivatives are uniformly Dini continuous)
χ : Rn−1 → R and a coordinate system depending on x0 such that

sup
|x′

1−x′
2|≤r

|∇x′χ(x′1)−∇x′χ(x′2)| ≤ ω0(r), ∀r ∈ (0, R0),

and that in the new coordinate system, we have

|∇x′χ(x′0)| = 0, ΩR0
(x0) = {x ∈ BR0

(x0) : x1 > χ(x′)}.

Our global pointwise gradient estimate and Lipschitz estimate are stated as
follows.

Theorem 1.10 (Boundary pointwise gradient estimate). Let p ∈
(
3n−2
2n−1 , 2

)
and

suppose that u ∈W 1,p
0 (Ω) is a solution to (1.6) with Dirichlet boundary data u = 0

on ∂Ω. Assuming that (1.5), (1.7), and (1.8) are satisfied and Ω has a C1,Dini

boundary characterized by R0 and ω0 as in Definition 1.9, then there exists a con-
stant C = C(n, p, λ, ω,R0, ω0) such that estimate

|∇u(x)| ≤ C[IR1 (|µ|)(x)]
1

p−1 + C

( 
ΩR(x)

(|∇u(y)|+ s)2−p dy

) 1
2−p

(1.18)

holds for any Lebesgue point x ∈ Ω of the vector-valued function ∇u and R ∈ (0, 1].
Moreover, if u ∈ C1(Ω̄), the estimate (1.18) holds for any x ∈ Ω̄.

Theorem 1.11 (Boundary Lipschitz estimate). Let p ∈ (1, 2) and suppose that

u ∈ W 1,p
0 (Ω) is a solution to (1.6) with Dirichlet boundary data u = 0 on ∂Ω.

Assuming that (1.5), (1.7), and (1.8) are satisfied and Ω has a C1,Dini boundary
characterized by R0 and ω0 as in Definition 1.9, then there exists a constant C =
C(n, p, λ, ω,R0, ω0) such that the estimate

∥∇u∥L∞(ΩR/2(x)) ≤ C
∥∥IR1 (|µ|)∥∥ 1

p−1

L∞(ΩR(x)) + CR− n
2−p ∥|∇u|+ s∥L2−p(ΩR(x)) (1.19)

holds for any x ∈ Ω̄ and R ∈ (0, 1].

As a corollary, we also obtain the global Lipschitz estimate when Ω is bounded.

Corollary 1.12. Let Ω ⊂ Rn be a bounded domain. Under the assumptions of
Theorem 1.11, there exists a constant C = C(n, p, λ, ω,R0, ω0, diam(Ω)) such that

∥∇u∥L∞(Ω) ≤ C
∥∥I11(|µ|)∥∥ 1

p−1

L∞(Ω) + Cs.

A global modulus of continuity estimate is also established in Theorem 5.10 under
the same conditions, which implies that corresponding up-to-boundary gradient
continuity results as in Theorem 1.4 and Corollaries 1.5-1.7 also hold for the p-
Laplace equations with measure data.

Let us give a brief description of the proofs. We first apply an iteration argu-
ment to get an Lγ0-mean oscillation estimate of the gradients of solutions to the
homogeneous equation with x-independent nonlinearities

−div(A0(∇v)) = 0

in Section 2, where γ0 ∈ (0, 1). Our proofs of the interior gradient estimates are
then based on a comparison estimate between the original solution u of (1.1) and
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the solution to the homogeneous equation −div(A(x,∇w)) = 0 in a ball BR with
the boundary condition u = w on ∂BR. The outcome is the inequality( 

BR

|∇u−∇w|γ0 dx

)1/γ0

≤ C

[
|µ|(BR)

Rn−1

] 1
p−1

+ C
|µ|(BR)

Rn−1

 
BR

(|∇u|+ s)2−p dx,

(1.20)

which holds for some constant γ0 ∈ (0, 1). The details can be found in Lemma
3.2. For the case when p ∈

(
3n−2
2n−1 , 2

)
, we can choose γ0 = 2 − p, which is the

same integral exponent on the right hand side. We then borrow an idea in [6]
by estimating the Lγ0-mean oscillation to adapt the iteration scheme used, for
instance, in [9]. However, for the case when p ∈

(
1, 3n−2

2n−1

]
, we are only able to

prove the comparison estimate (1.20) for some γ0 < 2 − p and that is the reason
why we only obtain Lipschitz estimates instead of pointwise gradient estimates in
this case.

For the gradient estimates up to the boundary, we use the technique of flat-
tening the boundary and generalize the interior oscillation estimates to half balls.
We adapt an idea in [3] to establish the global Lγ0-mean oscillation estimates by a
delicate combination of the interior estimates and the estimates near a flat bound-
ary. To this end, we also apply an odd extension argument to derive an Lγ0-mean
oscillation estimate on half balls for homogeneous equations with x-independent
nonlinearities. This argument only works for equations in diagonalized form, such
as the p-Laplace equation, so the global estimates for general equations remain
open. As a partial result in this direction, we refer the reader to [22] for a weighted
pointwise boundary estimate under the condition that ∂Ω is sufficiently flat in the
sense of Reifenberg. We also refer the reader to [2, 16] for boundary regularity
results for quasi-linear equations with sufficiently regular right-hand side.

The rest of the paper is organized as follows. In the next section, we derive
an Lγ0 -mean oscillation estimate of solutions to the homogeneous equation with
x-independent nonlinearities. In Section 3, we give the proof of Theorem 1.1. Sec-
tion 4 is devoted to the Lipschitz estimate and the interior modulus of continuity
estimate of the gradient of solutions as well as its corollaries. Finally, in Section 5
we consider the corresponding boundary estimates.

2. An oscillation estimate

This section is devoted to the proof of the following interior oscillation estimate
for solutions to the homogeneous equation

−div(A0(∇v)) = 0 in Ω, (2.1)

where A0 = A0(ξ) is a vector field independent of x satisfying conditions (1.2) and
(1.3) for some s ≥ 0, λ ≥ 1, and p > 1. In this section, we denote the integral
average over BR(x) by (·)BR(x).

Theorem 2.1. Let v ∈W 1,p
loc (Ω) be a solution to (2.1) and γ0 ∈ (0, 1). Then there

exist constants α ∈ (0, 1) depending on n, p, and λ, and C > 1 depending on n, p,
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λ, and γ0, such that for every BR(x0) ⊂ Ω and ρ ∈ (0, R), we have

inf
q∈Rn

( 
Bρ(x0)

|∇v − q|γ0

)1/γ0

≤C
( ρ
R

)α
inf

q∈Rn

( 
BR(x0)

|∇v − q|γ0

)1/γ0

. (2.2)

To prove the above theorem, we first recall a classical oscillation estimate. Esti-
mates of this type, with different exponents involved, were developed in [4, 9, 17].

Lemma 2.2. Let v ∈W 1,p
loc (Ω) be a solution to (2.1). There exist constants C > 1

and α ∈ (0, 1) depending only on n, p, and λ, such that v ∈ C1,α
loc (Ω) and for every

BR(x0) ⊂ Ω and r ∈ (0, R), we have 
Br(x0)

|∇v − (∇v)Br(x0)|
p dx ≤ C

( r
R

)αp  
BR(x0)

|∇v − (∇v)BR(x0)|
p dx.

The lemma above directly implies the following corollary.

Corollary 2.3. Under the conditions of Lemma 2.2, there exist constants C > 1
and α ∈ (0, 1) depending only on n, p, and λ, such that for every BR(x0) ⊂ Ω, we
have

Rα[∇v]Cα(BR/2(x0)) ≤ C

( 
BR(x0)

|∇v − (∇v)BR(x0)|
p

)1/p

, (2.3)

and for any r ∈ [R/2, R),

[∇v]Cα(Br(x0)) ≤ C
Rn/p+1−α

(R− r)n/p+1

( 
BR(x0)

|∇v − (∇v)BR(x0)|
p

)1/p

. (2.4)

Proof. Without loss of generality, we assume x0 = 0. For any x ∈ BR/2 and
r ≤ R/2, by Lemma 2.2 we have 

Br(x)

|∇v − (∇v)Br(x)|
p ≤ C

( r
R

)αp  
BR/2(x)

|∇v − (∇v)BR/2(x)|
p

≤ C
( r
R

)αp  
BR

|∇v − (∇v)BR
|p.

By Campanato’s characterization of Hölder continuous functions, we obtain (2.3).
Now for any r > R/2 and z ∈ Br, using (2.3) and the triangle inequality, we

have

[∇v]Cα(B(R−r)/2(z)) ≤ C(R− r)−α

( 
BR−r(z)

|∇v − (∇v)BR−r(z)|
p

)1/p

≤ C
Rn/p

(R− r)n/p+α

( 
BR

|∇v − (∇v)BR
|p
)1/p

. (2.5)

Thus for any x, y ∈ Br, let N = min
{
m ∈ Z : m > 2|x−y|

R−r

}
. We can divide the line

segment connecting x and y into N equal segments using x1, ..., xN−1, x0 = x, and
xN = y, such that

|xk − xk+1| =
|x− y|
N

<
R− r

2
.
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Then by the triangle inequality and (2.5), we have

|∇v(x)−∇v(y)| ≤
N−1∑
k=0

|∇v(xk)−∇v(xk+1)|

≤ C

N−1∑
k=0

Rn/p

(R− r)n/p+α

(�
BR

|∇v − (∇v)BR
|p
)1/p ∣∣∣∣x− y

N

∣∣∣∣α
≤ CN1−α Rn/p

(R− r)n/p+α

(�
BR

|∇v − (∇v)BR
|p
)1/p

|x− y|α

≤ C

(
R

R− r

)1−α
Rn/p

(R− r)n/p+α

(�
BR

|∇v − (∇v)BR
|p
)1/p

|x− y|α,

which directly implies (2.4). The corollary is proved. □

Now we are ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. As before, without loss of generality, we assume x0 = 0.

Clearly for any Bρ = Bρ(0) ⊂ Ω, there exists qρ = (q
(1)
ρ , ..., q

(n)
ρ ) ∈ Rn such that( 

Bρ

|∇v − qρ|γ0

)1/γ0

= inf
q∈Rn

( 
Bρ

|∇v − q|γ0

)1/γ0

.

Also, it is easily seen that

q(i)ρ ∈ Range(Div |Bρ). (2.6)

We claim that there exists a constant C depending only on n, p, λ, and γ0, such
that

∥∇v − qρ/2∥L∞(Bρ/2) ≤ C

( 
Bρ

|∇v − qρ|γ0

)1/γ0

(2.7)

holds for any Bρ(x0) ⊂ Ω.
We prove the claim by using Corollary 2.3 and iteration.
For any R/2 < r < R ≤ dist(x0, ∂Ω), using (2.4) and the triangle inequality, we

get

∥∇v − qr∥L∞(Br) ≤ rα[∇v]Cα(Br)

≤ C
Rn/p+1

(R− r)n/p+1

( 
BR

|∇v − (∇v)BR
|p
)1/p

≤ C
Rn/p+1

(R− r)n/p+1

( 
BR

|∇v − qR|p
)1/p

≤ C
Rn/p+1

(R− r)n/p+1
∥∇v − qR∥

p−γ0
p

L∞(BR)

( 
BR

|∇v − qR|γ0

)1/p

≤ ε∥∇v − qR∥L∞(BR) + Cε

(
Rn/p+1

(R− r)n/p+1

) p
γ0
( 

BR

|∇v − qR|γ0

)1/γ0

,

where we used Young’s inequality with exponents p/γ0 and p/(p − γ0) in the last
line.
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Now taking rk = (1− 2−k)ρ, r = rk, and R = rk+1, we have

∥∇v − qrk∥L∞(Brk
)

≤ ε∥∇v − qrk+1
∥L∞(Brk+1

) + Cε2
kβ

( 
Brk+1

|∇v − qrk+1
|γ0

)1/γ0

≤ ε∥∇v − qrk+1
∥L∞(Brk+1

) + Cε2
kβ+n/γ0

( 
Bρ

|∇v − qρ|γ0

)1/γ0

,

where β = (n+ p)/γ0. Taking ε = 3−β , multiplying both sides by εk and summing
in k, we get

∞∑
k=1

εk∥∇v − qrk∥L∞(Brk
) ≤

∞∑
k=1

εk+1∥∇v − qrk+1
∥L∞(Brk+1

)

+ C

( 
Bρ

|∇v − qρ|γ0

)1/γ0

,

where the summations are finite and C = C(n, p, λ, γ0). By subtracting

∞∑
k=2

εk∥∇v − qrk∥L∞(Brk
)

from both sides of the above inequality, we obtain (2.7). The claim is proved.
Now we are ready to prove (2.2). If r ≤ R/4, by (2.3), (2.6), and (2.7) we get( 

Br

|∇v − qr|γ0

)1/γ0

≤ Crα[∇v]Cα(BR
4
)

≤ C
( r
R

)α 
BR

2

|∇v − (∇v)BR
2

|p
1/p

≤ C
( r
R

)α 
BR

2

|∇v − qR
2
|p
1/p

≤ C
( r
R

)α
∥∇v − qR

2
∥L∞(BR

2
) ≤ C

( r
R

)α( 
BR

|∇v − qR|γ0

)1/γ0

.

If r > R/4, we have( 
Br

|∇v − qr|γ0

)1/γ0

≤
( 

Br

|∇v − qR|γ0

)1/γ0

≤ C
( r
R

)α( 
BR

|∇v − qR|γ0

)1/γ0

.

The theorem is proved. □

3. Interior pointwise gradient estimates

In order to prove the interior pointwise gradient estimates, we follow the outline
of arguments given in [22] while replacing their oscillation estimates with our new
oscillation estimate in Section 2. We also borrow an idea in [6] by estimating the
Lγ0 -mean oscillations of solutions, where γ0 ∈ (0, 1).



10 H. DONG AND H. ZHU

Let u ∈ W 1,p
loc (Ω) be a solution to (1.1) and B2r(x0) ⊂⊂ Ω. We consider the

unique solution w ∈ u+W 1,p
0 (B2r(x0)) to the equation{

−div(A(x,∇w)) =0 in B2r(x0),

w =u on ∂B2r(x0).
(3.1)

We first recall an interior reverse Hölder inequality that can be found in [11,
Theorem 6.7].

Lemma 3.1 ( [22], Lemma 3.1). Let w be a solution to (3.1). There exists a
constant θ1 > p depending only on n, p, and λ such that for any t > 0, the estimate( 

Bρ/2(y)

(|∇w|+ s)θ1 dx

) 1
θ1

≤ C

( 
Bρ(y)

(|∇w|+ s)t dx

) 1
t

(3.2)

holds for all Bρ(y) ⊂ B2r(x0), where C = C(n, p, λ, t) > 0.

We also have the following comparison result, which generalizes and refines sim-
ilar results in [9, 20,21].

Lemma 3.2. Let w be a solution to (3.1) and assume that p ∈ (1, 2). Then for

any γ0 ∈ (0, 2 − p] when p ∈
(
3n−2
2n−1 , 2

)
or γ0 ∈

(
0, (p−1)n

n−1

)
when p ∈

(
1, 3n−2

2n−1

]
, it

holds that( 
B2r(x0)

|∇u−∇w|γ0 dx

)1/γ0

≤ C

[
|µ|(B2r(x0))

rn−1

] 1
p−1

+ C
|µ|(B2r(x0))

rn−1

 
B2r(x0)

(|∇u|+ s)2−p dx,

where C is a constant depending only on n, p, λ, and γ0.

Proof. The case when p ∈
(
1, 3n−2

2n−1

]
and s = 0 was proved in [21, Lemma 2.1] and

their proof also works for the case when p ∈
(
1, 3n−2

2n−1

]
and s > 0. Therefore, we

only focus on the case when p ∈
(
3n−2
2n−1 , 2

)
and s ≥ 0. By scaling invariance (see [9,

Remark 4.1] for example), we may assume that B2r(x0) = B2 and |µ|(B2) = 1. For
k > 0, using

φ1 = T2k(u− w) := max
{
min{u− w, 2k},−2k

}
as a test function in (1.1) and (3.1) and recalling (1.3), we have�

B2∩{|u−w|<2k}
gs(u,w) ≤ Ck with gs(u,w) =

|∇(u− w)|2

(|∇w|+ |∇u|+ s)2−p
. (3.3)

By the triangle inequality, we have

|∇(u− w)| = gs(u,w)
1
2 (|∇w|+ |∇u|+ s)

2−p
2

≤ gs(u,w)
1
2 (|∇(u− w)|+ 2|∇u|+ s)

2−p
2

≤ Cgs(u,w)
1
2 |∇(u− w)|

2−p
2 + Cgs(u,w)

1
2 (|∇u|+ s)

2−p
2 .

Using Young’s inequality with exponents 2
p and 2

2−p , we obtain

|∇(u− w)| ≤ Cgs(u,w)
1
p + Cgs(u,w)

1
2 (|∇u|+ s)

2−p
2 . (3.4)
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Now we set

Ek = B2 ∩ {k < |u− w| < 2k} and Fk = B2 ∩ {|u− w| > k}.
Using the Sobolev inequality, Hölder’s inequality, and (3.4), we obtain

k|{x : |u− w| > 2k} ∩B2|
n−1
n ≤ C

(�
B2

|T2k(u− w)− Tk(u− w)|
n

n−1

)n−1
n

≤ C

�
Ek

|∇(u− w)|

≤ C

�
Ek

(
gs(u,w)

1
p + gs(u,w)

1
2 (|∇u|+ s)

2−p
2

)
≤ C|Ek|

p−1
p

(�
Ek

gs(u,w)
) 1

p

+ C
(�

Ek

gs(u,w)
) 1

2
(�

Ek

(|∇u|+ s)2−p
) 1

2

.

(3.5)

From (3.3) and (3.5), we get

k
1
2 |F2k|

n−1
n ≤ Ck−

1
2+

1
p |Fk|

p−1
p + CQ

2−p
2

1 ,

where Q1 := ∥|∇u| + s∥L2−p(B2). Therefore, by taking the sup in k ∈ (0,∞), we
obtain

∥u− w∥1/2
L

n
2(n−1)

,∞
(B2)

≤ C∥u− w∥1/p−1/2

L
2−p

2(p−1)
,∞

(B2)

+ CQ
2−p
2

1 .

Since 3n−2
2n−1 < p < 2, we have

n

2(n− 1)
>

2− p

2(p− 1)
,

which implies

∥u− w∥1/2
L

n
2(n−1)

,∞
(B2)

≤ C∥u− w∥1/p−1/2

L
n

2(n−1)
,∞

(B2)
+ CQ

2−p
2

1 .

Thus, by Young’s inequality, we obtain

∥u− w∥
L

n
2(n−1)

,∞
(B2)

≤ C + CQ
2−p
2

1 . (3.6)

Let k, l > 0 and q = n
2(n−1) . By the Chebyshev inequality and (3.3), we have

|{x : gs(u,w) > l} ∩B2|
≤ |{x : |u− w| > k} ∩B2|+ |{x : |u− w| ≤ k, gs(u,w) > l} ∩B2|

≤ Ck−q∥u− w∥qLq,∞(B2)
+

1

l

�
B2∩{x:|u−w|≤k}

gs(u,w) dx

≤ Ck−q∥u− w∥qLq,∞(B2)
+
Ck

l
.

By choosing

k =
[
l∥u− w∥qLq,∞(B2)

] 1
1+q

,

we get

l
q

1+q |{x : gs(u,w) > l} ∩B2| ≤ C∥u− w∥
q

1+q

Lq,∞(B2)
,

Therefore, by taking the sup in l ∈ (0,∞), we obtain

∥gs(u,w)∥
L

q
1+q

,∞
(B2)

≤ C∥u− w∥Lq,∞(B2). (3.7)
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Let γ0 ∈ (0, 2 − p]. By (3.4) and Hölder’s inequality with exponents 2/p and
2/(2− p), we get�

B2

|∇(u− w)|γ0 ≤ C

�
B2

(
gs(u,w)

γ0
p + gs(u,w)

γ0
2 (|∇u|+ s)

γ0(2−p)
2

)
≤ C

(�
B2

gs(u,w)
γ0
p

)
+ C

(�
B2

gs(u,w)
γ0
p

) p
2
(�

B2

(|∇u|+ s)γ0

) 2−p
2

≤ C∥gs(u,w)∥γ0/p

L
q

1+q
,∞

(B2)
+ C∥gs(u,w)∥γ0/2

L
q

1+q
,∞

(B2)
Q

γ0(2−p)
2

1 .

(3.8)

In the last inequality, we used the fact that

γ0
p
<

q

1 + q
, γ0 ≤ 2− p.

Combining (3.6), (3.7), and (3.8), we have�
B2

|∇(u− w)|γ0 ≤ C + CQ
γ0(2−p)
1 ,

which implies the desired result. □

We now let v ∈ w +W 1,p
0 (Br(x0)) be the unique solution to{

−div(A(x0,∇v)) =0 in Br(x0),

v =w on ∂Br(x0).
(3.9)

By testing (3.1) and (3.9) with v − w, we obtain an estimate for the difference
∇v −∇w:  

Br(x0)

|∇v −∇w|p dx ≤ Cω(r)p
 
Br(x0)

(|∇w|+ s)p dx. (3.10)

Detailed proof of this result can be found in [9, Eq. (4.35)]. Thus by (3.2) and
Hölder’s inequality, we get 

Br(x0)

|∇v −∇w|γ0 dx ≤ Cω(r)γ0

 
B2r(x0)

(|∇w|+ s)γ0 dx. (3.11)

For a ball Bρ(x) ⊂⊂ Ω and a function f ∈ W 1,p
loc (Ω), there exists qx,ρ(f) ∈ Rn

such that( 
Bρ(x)

|∇f − qx,ρ(f)|γ0

)1/γ0

= inf
q∈Rn

( 
Bρ(x)

|∇f − q|γ0

)1/γ0

.

We denote qx,ρ = qx,ρ(u) and

ϕ(x, ρ) = inf
q∈Rn

( 
Bρ(x)

|∇u− q|γ0

)1/γ0

.

Since

|qx,ρ −∇u(x)|γ0 ≤ |qx,ρ −∇u(z)|γ0 + |∇u(z)−∇u(x)|γ0 ,

by taking the average over z ∈ Bρ(x) and then taking the γ0-th root, we obtain

|qx,ρ −∇u(x)| ≤ Cϕ(x, ρ) + C
( 

Bρ(x)

|∇u(z)−∇u(x)|γ0 dz
)1/γ0

.
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Therefore, from the definition of ϕ and the fact that 0 < γ0 < 1, we obtain that

lim
ρ→0

qx,ρ = ∇u(x) (3.12)

holds for any Lebesgue point x ∈ Ω of the vector-valued function ∇u.

Proposition 3.3. Suppose that u ∈ W 1,p
loc (Ω) is a solution to (1.1). Then for any

ε ∈ (0, 1) and B2r(x0) ⊂⊂ Ω, we have

ϕ(x0, εr) ≤Cεαϕ(x0, r) + Cε

(
|µ|(B2r(x0))

rn−1

) 1
p−1

+ Cε
|µ|(B2r(x0))

rn−1

 
B2r(x0)

(|∇u|+ s)2−p

+ Cεω(r)

( 
B2r(x0)

(|∇u|+ s)2−p

) 1
2−p

,

(3.13)

where α ∈ (0, 1) is the constant in Theorem 2.1, γ0 is the same constant as in
Lemma 3.2, Cε is a constant depending on ε, n, p, λ, and γ0, and C is a constant
depending on n, p, λ, and γ0.

Proof. By Theorem 2.1 and the definition of qx,ρ(·), we have

( 
Bεr(x0)

|∇u− qx0,εr(u)|γ0

) 1
γ0

≤

( 
Bεr(x0)

|∇u− qx0,εr(v)|γ0

) 1
γ0

≤ C

( 
Bεr(x0)

|∇v − qx0,εr(v)|γ0

) 1
γ0

+ C

( 
Bεr(x0)

|∇u−∇v|γ0

) 1
γ0

≤ Cεα

( 
Br(x0)

|∇v − qx0,r(v)|γ0

) 1
γ0

+ Cε−
n
γ0

( 
Br(x0)

|∇u−∇v|γ0

) 1
γ0

≤ Cεα

( 
Br(x0)

|∇v − qx0,r(u)|γ0

) 1
γ0

+ Cε−
n
γ0

( 
Br(x0)

|∇u−∇v|γ0

) 1
γ0

≤ Cεα

( 
Br(x0)

|∇u− qx0,r(u)|γ0

) 1
γ0

+ Cε−
n
γ0

( 
Br(x0)

|∇u−∇v|γ0

) 1
γ0

.

(3.14)
Moreover, by (3.11) and the fact that |ω(r)| ≤ 1, one has

 
Br(x0)

|∇u−∇v|γ0 ≤
 
Br(x0)

|∇u−∇w|γ0 +

 
Br(x0)

|∇w −∇v|γ0

≤ C

 
B2r(x0)

|∇u−∇w|γ0 + Cω(r)γ0

 
B2r(x0)

(|∇w|+ s)γ0

≤ C

 
B2r(x0)

|∇u−∇w|γ0 + Cω(r)γ0

 
B2r(x0)

(|∇u|+ s)γ0 .

(3.15)
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Thus from (3.14) and (3.15), we have

ϕ(x0, εr) ≤ Cεαϕ(x0, r) + Cε

( 
B2r(x0)

|∇u−∇w|γ0

)1/γ0

+ Cεω(r)

( 
B2r(x0)

(|∇u|+ s)γ0

)1/γ0

.

(3.16)

Now we can apply Lemma 3.2 to bound the second term on the right-hand side of
(3.16) to conclude the proof. □

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We prove the theorem at a Lebesgue point x = x0 of the
vector-valued function ∇u, assuming that BR(x0) ⊂ Ω. Since p ∈

(
3n−2
2n−1 , 2

)
, we

choose γ0 = 2 − p in Lemma 3.2. Choose ε = ε(n, p, λ, α) ∈ (0, 1/4) sufficiently
small so that Cεα ≤ 1/4, where C is the constant in (3.13).

For an integer j ≥ 0, set rj = εjR, Bj = B2rj (x0),

Tj =

( 
Bj

(|∇u|+ s)2−p dx

) 1
2−p

, ϕj = ϕ(x0, rj), qj = qx0,rj .

Applying (3.13) yields

ϕj+1 ≤ 1

4
ϕj + C

(
|µ|(Bj)

rn−1
j

) 1
p−1

+ C
|µ|(Bj)

rn−1
j

T 2−p
j + Cω(rj)Tj .

Let j0 and m be positive integers to be specified later such that j0 ≤ m. Summing
the above inequality over j = j0, j0 + 1, . . . ,m, we obtain

m+1∑
j=j0

ϕj ≤ Cϕj0 + C

m∑
j=j0

(
|µ|(Bj)

rn−1
j

) 1
p−1

+ C

m∑
j=j0

|µ|(Bj)

rn−1
j

T 2−p
j + C

m∑
j=j0

ω(rj)Tj .

(3.17)

Since

|qj+1 − qj |γ0 ≤ |qj+1 −∇u(x)|γ0 + |∇u(x)− qj |γ0 ,

by taking the average over x ∈ Brj+1(x0) and then taking γ0-th root, we obtain

|qj+1 − qj | ≤ Cϕj + Cϕj+1.

Then, by iterating, we get

|qm+1 − qj0 | ≤ C

m+1∑
j=j0

ϕj ,
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which together with (3.17) implies

|qm+1|+
m+1∑
j=j0

ϕj ≤Cϕj0 + |qj0 |+ C

m∑
j=j0

(
|µ|(Bj)

rn−1
j

) 1
p−1

+ C

m∑
j=j0

|µ|(Bj)

rn−1
j

T 2−p
j + C

m∑
j=j0

ω(rj)Tj .

(3.18)

By the definition of ϕj0 , we have

ϕj0 ≤ C

( 
Bj0

|∇u|γ0 dx

) 1
γ0

≤ CTj0 .

Since

|qj0 |γ0 ≤ |∇u(x)− qj0 |γ0 + |∇u(x)|γ0 ,

by taking the average over x ∈ Brj0
(x0) and taking the γ0-th root, we obtain

|qj0 | ≤ Cϕj0 + C

( 
Bj0

|∇u|γ0 dx

) 1
γ0

≤ CTj0 .

Therefore, (3.18) implies that

|qm+1|+
m+1∑
j=j0

ϕj ≤CTj0 + C

m∑
j=j0

(
|µ|(Bj)

rn−1
j

) 1
p−1

+ C

m∑
j=j0

|µ|(Bj)

rn−1
j

T 2−p
j + C

m∑
j=j0

ω(rj)Tj .

(3.19)

By (1.5) and the comparison principle for Riemann integrals, there exists j0 =
j0(n, p, ε, C, ω) > 1 sufficiently large such that

4
1
γ0 (2ε)−

n
γ0 C

∞∑
j=j0

ω(rj) ≤
1

10
, (3.20)

where C is the constant in (3.19).
Note that by the comparison principle for Riemann integrals,

m∑
j=j0

|µ|(Bj)

rn−1
j

≤ C

� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ
(3.21)

and since p < 2 we also have

m∑
j=j0

(
|µ|(Bj)

rn−1
j

) 1
p−1

≤ C

(� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ

) 1
p−1

. (3.22)

To prove (1.12) at x = x0, it is sufficient to show that

|∇u(x0)| ≤ CTj0 + C

(� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ

) 1
p−1

. (3.23)

To this end, we consider the following possibilities.
Case 1: If |∇u(x0)| ≤ Tj0 , then (3.23) easily follows.
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Case 2: If Tj < |∇u(x0)|, ∀j0 ≤ j ≤ j1, and |∇u(x0)| ≤ Tj1+1, then since
γ0 = 2− p < 1, we have

|∇u(x0)| ≤
( 

Bj1+1

(|∇u|+ s)γ0 dx

)1/γ0

≤ 2
1
γ0

( 
Bj1+1

|∇u|γ0 dx

)1/γ0

+ 2
1
γ0 s

≤ 2
1
γ0 (2ε)−

n
γ0

( 
Brj1

(x0)

|∇u|γ0 dx

)1/γ0

+ 2
1
γ0 s

≤ 4
1
γ0 (2ε)−

n
γ0 (ϕj1 + |qj1 |) + 2

1
γ0 s,

(3.24)

where the last inequality follows from the definitions of ϕj1 and qj1 . Now applying
(3.19) with m = j1 − 1 and using (3.21) and (3.22), from (3.24) we get

|∇u(x0)| ≤C ′Tj0 + C ′′
(� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ

) 1
p−1

+ C ′′
� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ
· |∇u(x0)|2−p

+ C ′
m∑

j=j0

ω(rj)|∇u(x0)|+ 2
1
γ0 s,

where C ′ = 4
1
γ0 (2ε)−

n
γ0 C, C is the constant in (3.19), and C ′′ is a constant de-

pending on n, p, and λ. Hence using (3.20) and Young’s inequality, we find

|∇u(x0)| ≤ CTj0 + C

(� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ

) 1
p−1

+
1

5
|∇u(x0)|+ Cs.

This implies (3.23) as desired.
Case 3: If Tj < |∇u(x0)| for any j ≥ j0, then from (3.19), (3.21), and (3.22) we

have for any m > j0,

|qm+1| ≤CTj0 + C

(� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ

) 1
p−1

+ C

� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ
· |∇u(x0)|2−p + C

m∑
j=j0

ω(rj)|∇u(x0)|

≤CTj0 + C

(� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ

) 1
p−1

+ C

� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ
· |∇u(x0)|2−p +

1

10
|∇u(x0)|.

Here we used (3.20) in the last inequality. Letting m→ ∞ and using (3.12), we get

|∇u(x0)| ≤CTj0 + C

(� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ

) 1
p−1

+ C

� 2rj0−1

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ
· |∇u(x0)|2−p +

1

10
|∇u(x0)|.
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Then using Young’s inequality, we deduce (3.23). The proof is completed. □

4. Interior Lipschitz estimate and modulus of continuity estimate of
the gradient

In this section, we give the proof of the Lipschitz estimate in Theorem 1.3 and
derive an interior modulus of continuity estimate of ∇u under the same conditions.
We first adapt the argument in [6] to obtain some decay estimates from Proposition
3.3. Let α ∈ (0, 1) be the same constant as in Theorem 2.1, α1 ∈ (0, α), R ∈ (0, 1]
and BR(x0) ⊂ Ω. Choose ε = ε(n, p, λ, γ0, α, α1) > 0 sufficiently small such that

Cεα−α1 < 1 and εα1 < 1/4,

where C is the constant in (3.13).
Proposition 3.3 implies that for any B2r(x) ⊂⊂ BR(x0),

ϕ(x, εr) ≤εα1ϕ(x, r) + C

(
|µ|(B2r(x))

rn−1

) 1
p−1

+ C
|µ|(B2r(x))

rn−1

(
∥∇u∥L∞(B2r(x)) + s

)2−p

+ Cω(r)
(
∥∇u∥L∞(B2r(x)) + s

)
.

(4.1)

Denote

g(x, r) =
|µ|(Br(x))

rn−1
, h(x, r) = g(x, r)

1
p−1 . (4.2)

By iteration, from (4.1) we get

ϕ(x, εjr) ≤εα1jϕ(x, r) + C

j∑
i=1

εα1(i−1)h(x, 2εj−ir)

+ C

j∑
i=1

εα1(i−1)g(x, 2εj−ir)
(
∥∇u∥L∞(B2r(x)) + s

)2−p

+ C

j∑
i=1

εα1(i−1)ω(εj−ir)
(
∥∇u∥L∞(B2r(x)) + s

)
for any B2r(x) ⊂⊂ BR(x0) with r ∈ (0, R/4). Thus,

ϕ(x, εjr) ≤εα1jϕ(x, r) + Ch̃(x, 2εjr) + Cg̃(x, 2εjr)
(
∥∇u∥L∞(B2r(x)) + s

)2−p

+ Cω̃(εjr)
(
∥∇u∥L∞(B2r(x)) + s

)
, (4.3)

where we defined

h̃(x, t) :=

∞∑
i=1

εα1i
(
h(x, ε−it)[ε−it ≤ R/2] + h(x,R/2)[ε−it > R/2]

)
,

g̃(x, t) :=

∞∑
i=1

εα1i
(
g(x, ε−it)[ε−it ≤ R/2] + g(x,R/2)[ε−it > R/2]

)
,

ω̃(t) :=

∞∑
i=1

εα1i
(
ω(ε−it)[ε−it ≤ R/2] + ω(R/2)[ε−it > R/2]

)
.

(4.4)

Here we used the Iverson bracket notation, i.e., [P ] = 1 if P is true and [P ] = 0
otherwise. We obtain the following lemma from (4.3).
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Lemma 4.1. Let B2r(x) ⊂⊂ BR(x0) ⊂ Ω with r ≤ R/4. There exists a constant
C depending only on ε, n, p, λ, γ0, and α1, such that for any ρ ∈ (0, r], we have

(i)

ϕ(x, ρ) ≤ C
(ρ
r

)α1

ϕ(x, r) + Ch̃(x, 2ρ)

+ Cg̃(x, 2ρ)
(
∥∇u∥L∞(B2r(x)) + s

)2−p
+ Cω̃(ρ)

(
∥∇u∥L∞(B2r(x)) + s

)
,

(4.5)
(ii)

∞∑
j=0

ϕ(x, εjρ) ≤C
(ρ
r

)α1

ϕ(x, r) + C

� ρ

0

h̃(x, t)

t
dt

+ C
(
∥∇u∥L∞(B2r(x)) + s

)2−p
� ρ

0

g̃(x, t)

t
dt

+ C
(
∥∇u∥L∞(B2r(x)) + s

) � ρ

0

ω̃(t)

t
dt.

(4.6)

To prove Lemma 4.1, we need the following technical lemma.

Lemma 4.2. Let BR(x0) ⊂ Ω. Then there exist constants c1 and c2 depending on

ε, n, p, and α1, such that for any fixed x ∈ BR(x0) and any f ∈ {ω̃, g̃(x, ·), h̃(x, ·)},
it holds that c1f(t) ≤ f(s) ≤ c2f(t), whenever 0 < εt ≤ s ≤ t.

Proof. We will only show the proof for g since the other cases are similar. For fixed
x ∈ BR/4(x0), we set

G(x, r) =

{
g(x, r) if 0 < r ≤ R/2,

g(x,R/2) if r > R/2,

and observe that by (4.4),

g̃(x, r) =

∞∑
i=1

εα1iG(x, ε−ir).

Suppose that 0 < εt ≤ s ≤ t. It is easy to see from the definitions of g and G
that G(x, s) ≤ ε1−nG(x, t) and therefore g̃(x, s) ≤ ε1−ng̃(x, t). Also the fact that
0 < εs ≤ εt ≤ s implies that g̃(x, εt) ≤ ε1−ng̃(x, s). On the other hand,

g̃(x, t) = ε−α1

∞∑
i=1

εα1(i+1)G(x, ε−(i+1)εt) ≤ ε−α1 g̃(x, εt).

The lemma is proved. □

Now we are ready to prove Lemma 4.1.
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Proof of Lemma 4.1. We first prove Assertion (i). For given ρ ∈ (0, r], let j be an
integer such that εj+1 < ρ/r ≤ εj . Then by (4.3) with ε−jρ in place of r, we get

ϕ(x, ρ) ≤εα1jϕ(x, ε−jρ) + Ch̃(x, 2ρ) + Cg̃(x, 2ρ)
(
∥∇u∥L∞(B2ε−jρ(x))

+ s
)2−p

+ Cω̃(ρ)
(
∥∇u∥L∞(B2ε−jρ(x))

+ s
)

≤C
(ρ
r

)α1

ϕ(x, r) + Ch̃(x, 2ρ) + Cg̃(x, 2ρ)
(
∥∇u∥L∞(B2r(x)) + s

)2−p

+ Cω̃(ρ)
(
∥∇u∥L∞(B2r(x)) + s

)
.

Therefore, Assertion (i) holds. Now applying (4.5) with εjρ in place of ρ and
summing in j, we get

∞∑
j=0

ϕ(x, εjρ) ≤C
(ρ
r

)α1

ϕ(x, r) + C

∞∑
j=1

h̃(x, 2εjρ)

+ C
(
∥∇u∥L∞(B2r(x)) + s

)2−p
∞∑
j=1

g̃(x, 2εjρ)

+ C
(
∥∇u∥L∞(B2r(x)) + s

) ∞∑
j=1

ω̃(εjρ).

Hence, by using Lemma 4.2 and the comparison principle for Riemann integrals,
we can easily get (4.6). The lemma is proved. □

Recall the definition of qx,ρ from Section 3. Since we have

|qx,ερ − qx,ρ|γ0 ≤ |∇u(z)− qx,ρ|γ0 + |∇u(z)− qx,ερ|γ0 ,

by taking the average over z ∈ Bερ(x) and then taking the γ0-th root, we obtain

|qx,ερ − qx,ρ| ≤ Cϕ(x, ερ) + Cϕ(x, ρ).

Then, by iterating, we get

|qx,εjρ − qx,ρ| ≤ C

j∑
i=0

ϕ(x, εiρ).

Therefore, by using (3.12), we obtain that

|∇u(x)− qx,ρ| ≤ C

∞∑
j=0

ϕ(x, εjρ) (4.7)

holds for any Lebesgue point x ∈ Ω of the vector-valued function ∇u.
Now we are ready to prove the interior Lipschitz estimate.

Proof of Theorem 1.3. We prove the theorem around a given point x = x0 assuming
that BR(x0) ⊂ Ω with R ∈ (0, 1] and∥∥IR1 (|µ|)∥∥L∞(BR(x0))

<∞. (4.8)

We first derive an a priori estimate for the case when u ∈ C1 and then use approx-
imation to prove the general case.

Step 1: The case when u ∈ C1
(
BR(x0)

)
.
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Using (4.6) with ρ = r and (4.7), we obtain that

|∇u(x)− qx,ρ| ≤Cϕ(x, ρ) + C

� ρ

0

h̃(x, t)

t
dt

+ C
(
∥∇u∥L∞(B2ρ(x)) + s

)2−p
� ρ

0

g̃(x, t)

t
dt

+ C
(
∥∇u∥L∞(B2ρ(x)) + s

) � ρ

0

ω̃(t)

t
dt

holds for any B2ρ(x) ⊂⊂ BR(x0) with ρ ∈ (0, R/4].
Note that

|qx,ρ| ≤ Cϕ(x, ρ) + Cρ−n/γ0∥∇u∥Lγ0 (Bρ(x)) ≤ Cρ−n/γ0∥∇u∥Lγ0 (Bρ(x)).

Combining the above two inequalities, we have

|∇u(x)| ≤Cρ−n/γ0∥∇u∥Lγ0 (Bρ(x)) + C

� ρ

0

h̃(x, t)

t
dt

+ C
(
∥∇u∥L∞(B2ρ(x)) + s

)2−p
� ρ

0

g̃(x, t)

t
dt

+ C
(
∥∇u∥L∞(B2ρ(x)) + s

)� ρ

0

ω̃(t)

t
dt.

(4.9)

Note that ω̃ also satisfies the Dini condition (1.5); see [5, Lemma 1]. Thus we can
take ρ0 = ρ0(n, p, λ, ω, α1, γ0, R) ∈ (0, R/4] sufficiently small such that

C

� ρ0

0

ω̃(t)

t
dt ≤ 3−1−n/γ0 ,

where C is the constant in (4.9). Then for any B2ρ(x) ⊂⊂ BR(x0) with 0 < ρ ≤ ρ0,
by (4.9) and Young’s inequality, we have

|∇u(x)| ≤Cρ−n/γ0∥∇u∥Lγ0 (Bρ(x)) + C

� ρ

0

h̃(x, t)

t
dt

+ C

(� ρ

0

g̃(x, t)

t
dt

) 1
p−1

+ 3−n/γ0
(
∥∇u∥L∞(B2ρ(x)) + s

)
.

(4.10)

For k ≥ 1, we denote ρk = (1 − 2−k)R. Since ρk+1 − ρk = 2−k−1R, we have
B2ρ(x) ⊂ Bρk+1

(x0) for any x ∈ Bρk
(x0) and ρ = 2−k−2R. We take k0 sufficiently

large such that 2−k0−2 ≤ ρ0. Then by (4.10) with ρ = 2−k−2R, we have for any
k ≥ k0 that

∥∇u∥L∞(Bρk
(x0)) + s

≤ 3−n/γ0(∥∇u∥L∞(Bρk+1
(x0)) + s) + C

(
2k+2

R

)n/γ0

∥∇u∥Lγ0 (Bρk+1
(x0))

+ C sup
x∈Bρk

(x0)

� R
2

0

h̃(x, t)

t
dt+ C sup

x∈Bρk
(x0)

(� R
2

0

g̃(x, t)

t
dt

) 1
p−1

+ s
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Multiplying the above inequality by 3−nk/γ0 , and summing the terms with respect
to k = k0, k0 + 1, · · · , we obtain that

∞∑
k=k0

3−nk/γ0(∥∇u∥L∞(Bρk
(x0)) + s)

≤
∞∑

k=k0+1

3−nk/γ0(∥∇u∥L∞(Bρk
(x0)) + s) + CR−n/γ0(∥∇u∥Lγ0 (BR(x0)) + s)

+ C sup
x∈BR(x0)

� R
2

0

h̃(x, t)

t
dt+ C sup

x∈BR(x0)

(� R
2

0

g̃(x, t)

t
dt

) 1
p−1

+ Cs,

where each summation is finite. By subtracting

∞∑
k=k0+1

3−nk/γ0(∥∇u∥L∞(Bρk
(x0)) + s)

from both sides of the above inequality, we get the following L∞-estimate for ∇u:

∥∇u∥L∞(BR/2(x0)) + s ≤ CR−n/γ0∥∇u∥Lγ0 (BR(x0))

+ C sup
x∈BR(x0)

� R
2

0

h̃(x, t)

t
dt+ C sup

x∈BR(x0)

(� R
2

0

g̃(x, t)

t
dt

) 1
p−1

+ Cs,
(4.11)

We can simplify the terms in (4.11) to get

∥∇u∥L∞(BR/2(x0)) ≤ C
∥∥IR1 (|µ|)∥∥ 1

p−1

L∞(BR(x0))
+ CR− n

2−p ∥|∇u|+ s∥L2−p(BR(x0)).

(4.12)
Indeed, by the definition of g̃ in (4.4), we have

� R/2

0

g̃(x, t)

t
dt =

∞∑
i=1

εα1i

� R/2

0

g(x, ε−it)

t
[ε−it ≤ R/2] dt

+

∞∑
i=1

εα1i

� R/2

0

g(x,R/2)

t
[ε−it > R/2] dt.

The first term above is equal to

∞∑
i=1

εα1i

� εiR/2

0

g(x, ε−it)

t
dt =

∞∑
i=1

εα1i

� R/2

0

g(x, t)

t
dt ≤ CIR1 (|µ|)(x).

The second term is equal to

∞∑
i=1

εα1i ln(ε−i)g(x,R/2) ≤ Cg(x,R/2) ≤ CIR1 (|µ|)(x).

Therefore, � R/2

0

g̃(x, t)

t
dt ≤ CIR1 (|µ|)(x). (4.13)
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We can similarly get
� R/2

0

h̃(x, t)

t
dt =

∞∑
i=1

εα1i

� R/2

0

h(x, t)

t
dt+

∞∑
i=1

εα1i ln(ε−i)h(x,R/2)

≤ C
(� R

0

g(x, t)

t
dt
) 1

p−1

+ C
(
IR1 (|µ|)(x)

) 1
p−1 ≤ C

(
IR1 (|µ|)(x)

) 1
p−1 .

(4.14)

Recalling the fact that γ0 ≤ 2−p (cf. Lemma 3.2), using (4.13), (4.14), and Hölder’s
inequality, from (4.11) we obtain (4.12).

Step 2: The general case.
We take r1 ∈ (0, R), r2 = (R+ r1)/2, and a sequence of standard mollifiers {φk}

such that for any positive integer k,

φk ∈ C∞
0 (B1/k(0)), φk ≥ 0, and

 
B1/k(0)

φk = 1.

Then we mollify µ and A by setting

µk(x) = (µ ∗ φk)(x), Ak(x, ξ) = (A(·, ξ) ∗ φk)(x), x ∈ Br2(x0).

We note that Ak is well defined and satisfies the growth, ellipticity and continuity
assumptions (1.2)-(1.4) in Br2(x0) for k > 1/(R − r2). By the corollary after [12,

Theorem 1], (4.8) implies µ ∈W−1,p′
(Br2(x0)), where p

′ = p/(p−1), and therefore

∥µk − µ∥W−1,p′ (Br2
(x0))

→ 0. (4.15)

Next we let uk ∈ u+W 1,p
0 (Br2(x0)) be the unique solution to{

−div(Ak(x,∇uk)) =µk in Br2(x0),

uk =u on ∂Br2(x0).
(4.16)

Choosing uk − u as a test function in (4.16), we obtain

�
Br2

(x0)

⟨A(x,∇uk),∇uk⟩dx

=

�
Br2

(x0)

⟨A(x,∇uk),∇u⟩ dx+

�
Br2

(x0)

(uk − u) dµk.

(4.17)

Using the fundamental theorem of calculus, (1.2), (1.3), and Young’s inequality
with exponents p and p/(p− 1), we have�

Br2 (x0)

⟨A(x,∇uk),∇uk⟩ dx

=

�
Br2

(x0)

(� 1

0

⟨DξA(x, t∇uk)∇uk,∇uk⟩ dt+ ⟨A(x, 0),∇uk⟩
)
dx

≥
�
Br2

(x0)

(� 1

0

λ−1(s2 + |∇uk|2t2)
p−2
2 |∇uk|2 dt− λsp−1|∇uk|

)
dx

≥ λ−1

�
Br2

(x0)

(s2 + |∇uk|2)
p−2
2 |∇uk|2 dx−

�
Br2

(x0)

λsp−1|∇uk| dx

≥ c(λ, p)

�
Br2

(x0)

|∇uk|p dx− C ′(λ, p)

�
Br2

(x0)

sp dx.
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On the other hand, using (1.2) and Young’s inequality, we obtain�
Br2

(x0)

⟨A(x,∇uk),∇u⟩ dx+

�
Br2

(x0)

(uk − u) dµk

≤ λ

�
Br2 (x0)

(s2 + |∇uk|2)
p−1
2 |∇u| dx+ ∥uk − u∥W 1,p

0 (Br2
(x0))

∥µk∥W−1,p′ (Br2 (x0))

≤ 1

4
c(λ, p)

�
Br2

(x0)

(|∇uk|+ s)p dx+ C ′′(λ, p)

�
Br2

(x0)

|∇u|p dx

+
1

8
c(λ, p)∥∇uk −∇u∥pLp(Br2 (x0))

+ C ′′(λ, p) ∥µk∥p
′

W−1,p′ (Br2
(x0))

.

Therefore, (4.17) implies that

∥∇uk∥pLp(Br2
(x0))

≤ C∥|∇u|+ s∥pLp(Br2
(x0))

+ C∥µk∥p
′

W−1,p′ (Br2
(x0))

, (4.18)

where C is a constant not depending on k.
Now we recall a well-known inequality

c−1
(
s2 + |ξ1|2 + |ξ2|2)

p−2
2 ≤ |V (ξ2)− V (ξ1)|2

|ξ2 − ξ1|2
≤ c
(
s2 + |ξ1|2 + |ξ2|2)

p−2
2 , (4.19)

where c = c(n, p) > 1 is a positive constant and the mapping V (·) is defined as

V (ξ) = (|ξ|2 + s2)
p−2
4 ξ, ξ ∈ Rn.

Combining (1.3) and (4.19) yields

c−1
0 |V (ξ2)− V (ξ1)|2 ≤ ⟨A(x, ξ2)−A(x, ξ1), ξ2 − ξ1⟩,

for some positive constant c0 = c0(n, p, λ). We note that the above inequality also
holds for Ak. Then choosing (uk −u)1Br2

(x0) as a test function in (1.1) and (4.16),
we have

c−1
0

�
Br2 (x0)

|V (∇uk)− V (∇u)|2 dx

≤
�
Br2

(x0)

⟨Ak(x,∇uk)−Ak(x,∇u),∇uk −∇u⟩ dx

=

�
Br2

(x0)

⟨A(x,∇u)−Ak(x,∇u),∇uk −∇u⟩ dx+

�
Br2

(x0)

(uk − u) d(µk − µ)

≤ ∥A(·,∇u)−Ak(·,∇u)∥Lp/(p−1)(Br2
(x0)) · ∥uk − u∥W 1,p

0 (Br2
(x0))

+ ∥uk − u∥W 1,p
0 (Br2

(x0))
· ∥µk − µ∥W−1,p′ (Br2

(x0))
.

From the definition of Ak, by using the Minkowski inequality and (1.4), we obtain

∥A(·,∇u)−Ak(·,∇u)∥Lp/(p−1)(Br2 (x0)) ≤ λω(1/k)
(�

Br2 (x0)

(s2 + |∇u|2)
p
2 dx

) p−1
p

,

which together with (4.15) and (4.18), yields�
Br2

(x0)

|V (∇uk)− V (∇u)|2 dx→ 0.

By (4.19), we have

|∇uk −∇u|p ≤ c|V (∇uk)− V (∇u)|p
(
|∇uk|2 + |∇u|2 + s2

) p(2−p)
4
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and therefore using Hölder’s inequality with exponents 2/p and 2/(2−p), we obtain
that�

Br2 (x0)

|∇uk −∇u|p dx

≤ c
(�

Br2 (x0)

|V (∇uk)− V (∇u)|2 dx
) p

2
( �

Br2 (x0)

(
|∇uk|2 + |∇u|2 + s2

) p
2 dx

) 2−p
2

,

which implies that

∇uk → ∇u strongly in Lp(Br2(x0)).

Thus there exists a subsequence {kj} such that ∇ukj → ∇u almost everywhere in
Br2(x0).

Since Ak and µk are smooth in x, by the classical regularity theory (see, for

instance, [1], [23]), we know that uk ∈ C1,α
loc (Br2(x0)). Therefore the Lipschitz

estimate (4.12) from Step 1 holds for uk in Br1/2(x0). Namely,

∥∇uk∥L∞(Br1/2(x0)) ≤ C
∥∥Ir11 (|µk|)

∥∥ 1
p−1

L∞(Br1 (x0))
+ Cr

n
2−p

1 ∥|∇uk|+ s∥L2−p(Br1 (x0)).

Note that by direct computation, for any t > 0, it follows that

µk(Bt(x)) =

�
Rn

µ(Bt(x− y))φk(y)dy.

Therefore, for sufficiently large k, by the Fubini–Tonelli theorem we have∥∥Ir11 (|µk|)
∥∥
L∞(Br1

(x0))
≤
∥∥Ir11 (|µ|)

∥∥
L∞(Br2

(x0))
.

Thus by taking k = kj ↗ ∞ and then r1 ↗ R, we obtain the Lipschitz estimate
(1.13) around x = x0. □

In the rest of the section, we derive an interior modulus of continuity estimate
of ∇u under the conditions of Theorem 1.3. Recall that we fixed an ε ∈ (0, 1/4)
sufficiently small such that

Cεα−α1 < 1 and εα1 < 1/4,

where C is the constant in (3.13), α ∈ (0, 1) is the same constant as in Theorem
2.1 and α1 ∈ (0, α). We also took a ball BR(x0) ⊂ Ω with R ∈ (0, 1]. Similar to
(4.4), we define

ω̃(t) =

∞∑
i=1

εα1i
(
ω(ε−it)[ε−it ≤ R/2] + ω(R/2)[ε−it > R/2]

)
,

Ĩρ1(|µ|)(x) =
∞∑
i=1

εα1i
(
Iε

−iρ
1 (|µ|)(x)[ε−iρ ≤ R/2] + I

R/2
1 (|µ|)(x)[ε−iρ > R/2]

)
,

W̃ρ
1/p,p(|µ|)(x)

=

∞∑
i=1

εα1i
(
Wε−iρ

1/p,p(|µ|)(x)[ε
−iρ ≤ R/2] +W

R/2
1/p,p(|µ|)(x)[ε

−iρ > R/2]
)
.

(4.20)
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Here we also used the Iverson bracket notation, i.e., [P ] = 1 if P is true and [P ] = 0
otherwise, and I1 and W1/p,p are the Riesz and Wolff potentials defined in (1.9)
and (1.11), respectively. We note that since 1/(p− 1) > 1, we have

Wρ
1/p,p(|µ|)(x) ≤ C

(
I2ρ1 (|µ|)(x)

) 1
p−1 , (4.21)

so that W̃ρ
1/p,p(|µ|)(x) and Ĩρ1(|µ|)(x) are bounded and converge to zero as ρ → 0

as long as IR1 (|µ|)(x) is finite.
Our interior modulus of continuity estimate is stated as follows.

Theorem 4.3. Assume the conditions of Theorem 1.3 and α1 ∈ (0, α), where α
is the constant in Theorem 2.1. Then there exist a constant C = C(n, p, λ, α1, ω),
such that for any R ∈ (0, 1], BR(x0) ⊂ Ω, x, y ∈ BR/4(x0) being Lebesgue points of
the vector-valued function ∇u, it holds that

|∇u(x)−∇u(y)|

≤ CM
[ ( ρ

R

)α1

+

� ρ

0

ω̃(t)

t
dt
]
+ C

∥∥W̃ρ
1/p,p(|µ|)

∥∥
L∞(BR/4(x0))

+ CM2−p
∥∥Ĩρ1(|µ|)∥∥L∞(BR/4(x0))

(4.22)

where ρ = |x− y|, ω̃, W̃1/p,p, and Ĩ1 are defined in (4.20), and

M := R− n
2−p ∥|∇u|+ s∥L2−p(BR(x0)) +

∥∥IR1 (|µ|)∥∥ 1
p−1

L∞(BR(x0))
.

Note that due to (4.21), the term
∥∥W̃ρ

1/p,p(|µ|)
∥∥
L∞(BR/4(x0))

in (4.22) can be

replaced with the sup norm of a summation of the truncated Riesz potentials similar
to (4.20).

Proof of Theorem 4.3. For any x, y ∈ BR/4(x0) being Lebesgue points of ∇u, by
the triangle inequality, we have

|∇u(x)−∇u(y)|γ0

≤ |∇u(x)− qx,ρ|γ0 + |qx,ρ − qy,ρ|γ0 + |∇u(y)− qy,ρ|γ0

≤ 2 sup
y0∈BR/4(x0)

|∇u(y0)− qy0,ρ|γ0 + |∇u(z)− qx,ρ|γ0 + |∇u(z)− qy,ρ|γ0 .

We set ρ = |x− y|, take the average over z ∈ B(x, ρ) ∩ B(y, ρ), and then take the
γ0-th root to get

|∇u(x)−∇u(y)| ≤ C sup
y0∈BR/4(x0)

|∇u(y0)− qy0,ρ|+ Cϕ(x, ρ) + Cϕ(y, ρ)

≤ C sup
y0∈BR/4(x0)

∞∑
j=0

ϕ(y0, ε
jρ) + C sup

y0∈BR/4(x0)

ϕ(y0, ρ)

≤ C sup
y0∈BR/4(x0)

∞∑
j=0

ϕ(y0, ε
jρ). (4.23)

Here we used (4.7) in the second inequality.
If ρ < R/8, by using (4.23), (4.6) with R/8 in place of r, and the fact that

BR/4(y0) ⊂ BR/2(x0) ∀y0 ∈ BR/4(x0),
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we obtain

|∇u(x)−∇u(y)|

≤ C
( ρ
R

)α1

∥∇u∥L∞(BR/2(x0)) + C sup
y0∈BR/4(x0)

� ρ

0

h̃(y0, t)

t
dt

+ C
(
∥∇u∥L∞(BR/2(x0)) + s

)2−p

sup
y0∈BR/4(x0)

� ρ

0

g̃(y0, t)

t
dt

+ C
(
∥∇u∥L∞(BR/2(x0)) + s

) � ρ

0

ω̃(t)

t
dt.

(4.24)

Clearly, (4.24) still holds when ρ ≥ R/8.
We can simplify the terms in (4.24) as follows. For any y0 ∈ BR/4(x0) and

ρ ∈ (0, R/2), by the definition of g̃ in (4.4), we have

� ρ

0

g̃(y0, t)

t
dt =

∞∑
i=1

εα1i

� ρ

0

g(y0, ε
−it)

t
[ε−it ≤ R/2] dt

+

∞∑
i=1

εα1i

� ρ

0

g(y0, R/2)

t
[ε−it > R/2] dt.

Recalling the definition of Ĩ1 from (4.20), the first term above is equal to

∞∑
i=1

εα1i
(� ρ

0

g(y0, ε
−it)

t
dt[ε−iρ ≤ R/2] +

� εiR/2

0

g(y0, ε
−it)

t
dt[ε−iρ > R/2]

)
=

∞∑
i=1

εα1i
( � ε−iρ

0

g(y0, t)

t
dt[ε−iρ ≤ R/2] +

� R/2

0

g(y0, t)

t
dt[ε−iρ > R/2]

)
=

∞∑
i=1

εα1i
(
Iε

−iρ
1 (|µ|)(y0)[ε−iρ ≤ R/2] + I

R/2
1 (|µ|)(y0)[ε−iρ > R/2]

)
= Ĩρ1(|µ|)(y0).

The second term is equal to

∞∑
i=1

εα1i[ε−iρ > R/2] ln(2ε−iρ/R)g(y0, R/2).

Let K be the positive integer such that ε−Kρ > R/2 and ε−(K−1)ρ ≤ R/2. Then
we have

∞∑
i=1

εα1i[ε−iρ > R/2] ln(2ε−iρ/R) =

∞∑
i=K

εα1i ln(2ε−iρ/R)

= εα1K
∞∑

i=K

εα1(i−K)
(
ln(2ε−Kρ/R) + (i−K) ln(ε−1)

)
≤
(2ρ
R

)α1
∞∑

i=K

εα1(i−K)(i−K + 1) ln(ε−1) ≤ C
( ρ
R

)α1

.
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Therefore, � ρ

0

g̃(y0, t)

t
dt ≤Ĩρ1(|µ|)(y0) + C(ρ/R)α1g(y0, R/2)

≤Ĩρ1(|µ|)(y0) + C(ρ/R)α1IR1 (|µ|)(y0).
(4.25)

We can similarly get the following estimate

� ρ

0

h̃(y0, t)

t
dt ≤

∞∑
i=1

(
εα1i

� ε−iρ

0

h(y0, t)
dt

t
[ε−iρ ≤ R/2]

+

� R/2

0

h(y0, t)
dt

t
[ε−iρ > R/2]

)
+ C

( ρ
R

)α1

h(y0, R/2)

≤ W̃ρ
1/p,p(|µ|)(y0) + C(ρ/R)α1

(
IR1 (|µ|)(y0)

)1/(p−1)
.

(4.26)

Using (1.13), (4.25), and (4.26), from (4.24) we obtain (4.22). The theorem is
proved. □

Proof of Theorem 1.4. Since the set of Lebesgue points of ∇u is dense in Ω, it
suffices to show the right-hand side of (4.22) converges to zero when ρ→ 0. In fact,
we have

∥Ĩρ1(|µ|)∥L∞(BR/4(x0)) ≤
∞∑
i=1

εα1i
(
∥Iε

−iρ
1 (|µ|)∥L∞(BR/4(x0))[ε

−iρ ≤ R/2]

+∥IR/2
1 (|µ|)∥L∞(BR/4(x0))[ε

−iρ > R/2]
)
,

which must converge to 0 by using (1.14) and the dominated convergence theorem.
We can similarly prove the convergence of other terms in (4.22). □

Proof of Corollary 1.5. By [8, Lemma 3] with p = 2 and k = 1, the assumption
(1.15) implies (1.14). Therefore Corollary 1.5 follows from Theorem 1.4. □

Proof of Corollary 1.6. This is an immediate corollary of Theorem 1.4 since the
assumption (1.14) is verified by (1.16) and (1.17). □

Proof of Corollary 1.7. We choose α1 ∈ (β, α) in Theorem 4.3. Then Corollary 1.7
follows by a direct computation using (4.22). □

5. Global gradient estimates for the p-Laplacian equations

This section is devoted to the proof of the global pointwise gradient estimate in
Theorem 1.10, the Lipschitz estimate in Theorem 1.11, Corollary 1.12, as well as
the derivation of a global modulus of continuity estimate of ∇u stated in Theorem
5.10 for the following (possibly nondegenerate) p-Laplace equation with Dirichlet
boundary condition:{

−div
(
a(x)(|∇u|2 + s2)

p−2
2 ∇u

)
= µ in Ω,

u = 0 on ∂Ω,
(5.1)

where a(·) satisfies (1.5), (1.7), and (1.8), and Ω has a C1,Dini boundary character-
ized by R0 and ω0 as in Definition 1.9.
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First, we derive a gradient estimate around any point x0 ∈ ∂Ω. Without loss of
generality, we assume that x0 = 0 ∈ ∂Ω. Then we can choose a local coordinate
around x0 = 0 and a function χ as in Definition 1.9 such that χ(0′) = 0. Let

Γ(y) = (y1 + χ(y′), y′) and Λ(x) = Γ−1(x) = (x1 − χ(x′), x′).

Note that the determinants of the Jacobian of Γ(·) and Λ(·) are equal to 1. Since
Ω has C1,Dini boundary, from the proof of [3, Lemma 2.2], there exists R1 =
R1(ω0, R0) ∈ (0, R0) such that

|∇x′χ(x′)| ≤ 1/2 if |x′| ≤ R1, (5.2)

Ωr/2 ⊂ Γ(B+
r ) ⊂ Ω2r ∀ r ∈ (0, R1/2]. (5.3)

Therefore, there exist constants c1(n) and c2(n) depending only on n, such that for
any x ∈ Ω̄ and 0 < r ≤ R1,

c1(n)r
n ≤ |Ωr(x)| ≤ c2(n)r

n. (5.4)

Now we use the technique of flattening the boundary. We denote u1(y) =
u(Γ(y)), a1(y) = a(Γ(y)), and µ1(A) = µ(Γ(A)) for any Borel set A ⊂ Rn. Then
u1 satisfies{

divy

(
a1(y)(|DΛ Dyu1|2 + s2)

p−2
2 (DΛ)TDΛ Dyu1

)
= µ1 in B+

R1/2
,

u1 = 0 on BR1/2 ∩ ∂R
n
+.

(5.5)
We set

A1(y, ξ) = a1(y)(|DΛ ξ|2 + s2)
p−2
2 (DΛ)TDΛ ξ.

By direct computations with (5.2) in hand, A1 satisfies the following conditions
with ω1 = ω + ω0 and some constant λ1 = λ1(n, p, λ):

|A1(y, ξ)| ≤ λ1(s
2 + |ξ|2)(p−1)/2, |DξA1(y, ξ)| ≤ λ1(s

2 + |ξ|2)(p−2)/2, (5.6)

⟨DξA1(y, ξ)η, η⟩ ≥ λ−1
1 (s2 + |ξ|2)(p−2)/2|η|2, (5.7)

|A1(y, ξ)−A1(y0, ξ)| ≤ λ1ω1(|y − y0|)(s2 + |ξ|2)(p−1)/2 (5.8)

for every y, y0 ∈ B+
R1/2

and every (ξ, η) ∈ Rn × Rn\{(0, 0)}.
Suppose that 4r ≤ R1. We now consider the unique solution w ∈ u1+W

1,p
0 (B+

2r)
to the equation {

−divy(A1(y,∇yw)) =0 in B+
2r,

w =u1 on ∂B+
2r.

(5.9)

We first derive a boundary version of the reverse Hölder’s inequality.

Lemma 5.1. Let w be a solution to (5.9). There exists a constant θ1 > p depending
only on n, p, and λ, such that for any t > 0, the estimate( 

B+
ρ/2

(y0)

(|∇yw|+ s)θ1 dx

)1/θ1

≤ C

( 
B+

ρ (y0)

(|∇yw|+ s)t dx

)1/t

(5.10)

holds for all B+
ρ (y0) ⊂ B+

2r, where C = C(n, p, λ, t) > 0.
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Proof. For simplicity, we still denote ∇ = ∇y through this proof. First we prove
a Caccioppoli type inequality in half balls. Suppose that y0 ∈ B2r ∩ ∂Rn

+ and
B2ρ(y0) ⊂⊂ B2r. Let ζ be a nonnegative smooth function satisfying ζ = 1 in
Bρ(y0), |∇ζ| ≤ 2ρ−1, and ζ = 0 outside B2ρ(y0). Using ζpw as a test function in
(5.9), we get the following

0 =

�
B+

2r

⟨A1(y,∇w), ζp∇w⟩ dy + p

�
B+

2r

⟨A1(y,∇w), ζp−1w∇ζ⟩ dy := I + II. (5.11)

Using the fundamental theorem of calculus, (5.6), (5.7), and Young’s inequality
with exponents p and p/(p− 1), we have

I =

�
B+

2r

ζp
( � 1

0

⟨DξA1(y, t∇w)∇w,∇w⟩ dt+A1(y, 0)∇w
)
dy

≥
�
B+

2r

ζp
( � 1

0

λ−1
1 (s2 + |∇w|2t2)

p−2
2 |∇w|2 dt− λ1s

p−1|∇w|
)
dy

≥ c(λ1, p)

�
B+

2r

ζp|∇w|p dy − C ′(λ1, p)

�
B+

2r

ζpsp dy.

On the other hand, using (5.6) and Young’s inequality, we have

|II| ≤ pλ1

�
B+

2ρ(y0)

(s2 + |∇w|2)
p−1
2 ζp−1|w∇ζ| dy

≤ 1

2
c(λ1, p)

�
B+

2r

ζp(s2 + |∇w|2)
p
2 dy + C ′′(λ1, p)

�
B+

2ρ(y0)

|w∇ζ|p dy

≤ 1

2
c(λ1, p)

�
B+

2r

ζp(sp + |∇w|p) dy + C ′′(λ1, p)

�
B+

2ρ(y0)

|w∇ζ|p dy.

Therefore, (5.11) implies the following Caccioppoli type inequality�
B+

ρ (y0)

|∇w|p dx ≤ Cρnsp + Cρ−p

�
B+

2ρ(y0)

|w|p dx. (5.12)

Since w = u = 0 on B2r ∩ ∂Rn
+, by the Sobolev-Poincaré inequality,(�

B+
2ρ(y0)

|w|p dx

)1/p

≤ Cρ1+
n
p −n

q

(�
B+

2ρ(y0)

|∇w|q dx

)1/q

(5.13)

for any q such that max
{
1, np

n+p

}
≤ q < p. Thus by combining (5.12) and (5.13),

we have ( 
B+

ρ (y0)

(|∇w|+ s)p dx

)1/p

≤ C

( 
B+

2ρ(y0)

(|∇w|+ s)q dx

)1/q

.

Similarly, the following interior version of estimate( 
Bρ(y0)

(|∇w|+ s)p dx

)1/p

≤ C

( 
B2ρ(y0)

(|∇w|+ s)q dx

)1/q

holds for all B2ρ(y0) ⊂⊂ B+
2r. Therefore, by a standard covering argument and

Gehring’s lemma, we get (5.10). □
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We also have a boundary comparison result analogous to Lemma 3.2 by following
almost the same proof.

Lemma 5.2. Let w be a solution to (5.9) and assume that p ∈ (1, 2). Then for

any γ0 ∈ (0, 2− p] when p ∈
(
3n−2
2n−1 , 2

)
and γ0 ∈

(
0, (p−1)n

n−1

)
when p ∈

(
1, 3n−2

2n−1

]
, it

holds that ( 
B+

2r

|∇yu1 −∇yw|γ0 dx

)1/γ0

≤ C

[
|µ1|(B+

2r)

rn−1

] 1
p−1

+ C
|µ1|(B+

2r)

rn−1

 
B+

2r

(|∇yu1|+ s)2−p dx,

where C is a constant depending only on n, p, λ, and γ0.

We now let v ∈ w +W 1,p
0 (B+

r ) be the unique solution to{
−divy(A1(0,∇yv)) =0 in B+

r ,

v =w on ∂B+
r .

(5.14)

We also have an estimate for the difference∇v−∇w analogous to (3.10) by following
almost the same proof as that of [9, Eq. (4.35)]: 

B+
r

|∇yv −∇yw|p dx ≤ Cω0(r)
p

 
B+

r

(|∇yw|+ s)p dx.

Thus by (5.10) and Hölder’s inequality, we get 
B+

r

|∇yv −∇yw|γ0 dx ≤ Cω0(r)
γ0

 
B+

2r

(|∇yw|+ s)γ0 dx.

Next we prove an oscillation estimate for v.

Lemma 5.3. Let v be a solution to (5.14). There exists constant C > 1 depending
only on n, p, λ, and γ0, such that for any half ball B+

ρ ⊂ B+
R ⊂ B+

r , we have

inf
θ∈R

( 
B+

ρ

|Dy1v − θ|γ0 + |Dy′v|γ0

)1/γ0

≤ C
( ρ
R

)α
inf
θ∈R

( 
B+

R

|Dy1
v − θ|γ0 + |Dy′v|γ0

)1/γ0

,

(5.15)

where α ∈ (0, 1) is the same constant as in Theorem 2.1.

Proof. Let v̄ be an odd extension of v in Br, namely,

v̄(y) =

{
v(y) if y1 ≥ 0,

− v(−y1, y′) if y1 < 0.

Then since

A1(0, ξ) = a1(0)(|ξ|2 + s2)
p−2
2 ξ,

v̄ ∈W 1,p(Br) is a solution to the equation

−divy

(
a1(0)(|∇y v̄|2 + s2)

p−2
2 ∇y v̄

)
= 0 in Br.
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Thus we can apply Theorem 2.1 to v̄ to get

inf
q∈Rn

( 
Bρ

|∇y v̄ − q|γ0

)1/γ0

≤C
( ρ
R

)α
inf

q∈Rn

( 
BR

|∇y v̄ − q|γ0

)1/γ0

.

Since v̄ is an odd function in y1, by the triangle inequality, there exists θρ ∈ R such
that

( 
B+

ρ

|Dy1v − θρ|γ0 + |Dy′v|γ0

)1/γ0

≤ C inf
q∈Rn

( 
Bρ

|∇y v̄ − q|γ0

)1/γ0

.

By the triangle inequality again, it is easily seen that

inf
q∈Rn

( 
BR

|∇y v̄ − q|γ0

)1/γ0

≤ C inf
θ∈R

( 
B+

R

|Dy1
v − θ|γ0 + |Dy′v|γ0

)1/γ0

.

Then (5.15) is a direct consequence of the three inequalities above. □

Lemma 5.4. Suppose that u1 ∈ W 1,p(B+
R1

) is a solution to (5.5). Then for any
ε ∈ (0, 1) and r ∈ (0, R1/4], we have

inf
θ∈R

( 
B+

εr

|Dy1
u1 − θ|γ0 + |Dy′u1|γ0

)1/γ0

≤ Cεα inf
θ∈R

( 
B+

r

|Dy1
u1 − θ|γ0 + |Dy′u1|γ0

)1/γ0

+ Cε

(
|µ1|(B+

2r)

rn−1

) 1
p−1

+ Cεω1(r)

( 
B+

2r

(|∇yu1|+ s)2−p

) 1
2−p

+ Cε
|µ1|(B+

2r)

rn−1

 
B+

2r

(|∇yu1|+ s)2−p,

(5.16)

where α and γ0 are the same constants as in Proposition 3.3, Cε is a constant
depending on ε, n, p, λ, and γ0, and C is a constant depending on n, p, λ, and γ0.

Proof. By using Lemmas 5.1, 5.2, and 5.3, the proof is almost identical to that of
Proposition 3.3, so we omit it. □

We now define

ψ(x, r) = inf
θ∈R

( 
Ωr(x)

|D1u− θ|γ0 + |Dx′u|γ0

)1/γ0

.
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Let ε ∈ (0, 1) and r ∈ (0, R1/4]. By using change of variables, (5.3), (5.4), and the
triangle inequality, we have

inf
θ∈R

( 
B+

εr

|Dy1u1 − θ|γ0 + |Dy′u1|γ0

)1/γ0

= inf
θ∈R

( 
Γ(B+

εr)

|D1u− θ|γ0 + |D1u Dx′χ+Dx′u|γ0

)1/γ0

≥ C inf
θ∈R

( 
Ωεr/2

|D1u− θ|γ0 + |Dx′u|γ0

)1/γ0

− C ′

( 
Ωεr/2

|D1u Dx′χ|γ0

)1/γ0

≥ Cψ(0, εr/2)− C ′ω1(εr/2)

( 
Ωεr/2

|∇u|γ0

)1/γ0

,

(5.17)
where C and C ′ are positive constants depending only on n and γ0. Similarly,

inf
θ∈R

( 
B+

r

|Dy1
u1 − θ|γ0 + |Dy′u1|γ0

)1/γ0

= inf
θ∈R

( 
Γ(B+

r )

|D1u− θ|γ0 + |D1u Dx′χ+Dx′u|γ0

)1/γ0

≤ C ′′ inf
θ∈R

( 
Ω2r

|D1u− θ|γ0 + |Dx′u|γ0

)1/γ0

+ C ′′
( 

Ω2r

|D1u Dx′χ|γ0

)1/γ0

≤ C ′′ψ(0, 2r) + C ′′ω1(2r)

( 
Ω2r

|∇u|γ0

)1/γ0

,

(5.18)
where C ′′ is a positive constant depending only on n and γ0. Therefore, by using
(5.17), (5.18), (5.2), and (5.4), (5.16) implies that

ψ(0, εr/2) ≤ Cεαψ(0, 2r) + Cε

(
|µ|(Ω4r)

rn−1

) 1
p−1

+ Cεω1(2r)

( 
Ω4r

(|∇u|+ s)2−p

) 1
2−p

+ Cε
|µ|(Ω4r)

rn−1

 
Ω4r

(|∇u|+ s)2−p.

By replacing ε/4 and 2r with ε and r respectively, we obtain

Corollary 5.5. Suppose that u ∈ W 1,p
0 (Ω) is a solution to (5.1) and x0 ∈ ∂Ω.

Then for ε ∈ (0, 1/4), r ≤ R1/2, and α, C, Cε as above, we have

ψ(x0, εr) ≤ Cεαψ(x0, r) + Cε

(
|µ|(Ω2r(x0))

rn−1

) 1
p−1

+ Cεω1(r)

( 
Ω2r(x0)

(|∇u|+ s)2−p

) 1
2−p

+ Cε
|µ|(Ω2r(x0))

rn−1

 
Ω2r(x0)

(|∇u|+ s)2−p.

(5.19)
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As in Section 3, we define

ϕ(x, ρ) = inf
q∈Rn

( 
Ωρ(x)

|∇u− q|γ0

)1/γ0

and choose qx,r ∈ Rn such that( 
Ωr(x)

|∇u− qx,r|γ0

)1/γ0

= inf
q∈Rn

( 
Ωr(x)

|∇u− q|γ0

)1/γ0

. (5.20)

We remark that (3.12) still holds for any Lebesgue point x ∈ Ω of the vector-valued
function ∇u from the same argument as in Section 3. Moreover, if we assume
u ∈ C1(Ω̄), then (3.12) actually holds for any x ∈ Ω̄.

5.1. Global pointwise gradient estimates. To prove the pointwise gradient
estimate for p ∈

(
3n−2
2n−1 , 2

)
, we choose γ0 = 2 − p and ε = ε(n, p, λ, α) ∈ (0, 1/4)

sufficiently small such that Cεα ≤ 1/4 for both constants C in (3.13) and (5.19).
Fix x0 ∈ ∂Ω and R ≤ R1/2. For j ≥ 0, set rj = εjR, Ωj = Ω2rj (x0),

Tj =

( 
Ωj

(|∇u|+ s)2−p dx

) 1
2−p

, ϕj = ϕ(x0, rj), and ψj = ψ(x0, rj).

Applying (5.19) yields

ψj+1 ≤ 1

4
ψj + C

(
|µ|(Ωj)

rn−1
j

) 1
p−1

+ C
|µ|(Ωj)

rn−1
j

T 2−p
j + Cω1(rj)Tj .

Let j0 and m be positive integers such that j0 ≤ m. Summing the above inequality
over j ∈ {j0, j0 + 1, . . . ,m} and noting that ϕj ≤ ψj ≤ CTj , we obtain that

m+1∑
j=j0

ϕj ≤
m+1∑
j=j0

ψj ≤ CTj0 + C

m∑
j=j0

(
|µ|(Ωj)

rn−1
j

) 1
p−1

+ C

m∑
j=j0

|µ|(Ωj)

rn−1
j

T 2−p
j + C

m∑
j=j0

ω1(rj)Tj

(5.21)

for any x0 ∈ ∂Ω and R ≤ R1/2.
On the other hand, according to (3.17),

m+1∑
j=j0

ϕj ≤ Cϕj0 + C

m∑
j=j0

(
|µ|(Ωj)

rn−1
j

) 1
p−1

+ C

m∑
j=j0

|µ|(Ωj)

rn−1
j

T 2−p
j + C

m∑
j=j0

ω(rj)Tj

(5.22)

holds for any x0 ∈ Ω and R > 0 such that rj0 = εj0R < dist(x0, ∂Ω)/2.
We now define

Ω′
j = Ω8rj (x0), Zj =

( 
Ω′

j

(|∇u|+ s)2−p dx

) 1
2−p

.

Then we can obtain the following lemma.
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Lemma 5.6. Suppose that u ∈ W 1,p
0 (Ω) is a solution to (5.1), x0 ∈ Ω̄, and R ≤

R1/6. Then we have

m+1∑
j=j0

ϕj ≤ CZj0 + C

m∑
j=j0

(
|µ|(Ω′

j)

rn−1
j

) 1
p−1

+ C

m∑
j=j0

|µ|(Ω′
j)

rn−1
j

Z2−p
j + C

m+1∑
j=j0

ω1(rj)Zj ,

(5.23)

where C is a constant depending only on n, p, λ, and γ0.

Proof. First when x0 ∈ ∂Ω, since Ωj ⊂ Ω′
j , we have Tj ≤ CZj . Thus (5.21)

directly implies (5.23). It remains to prove the lemma for x0 ∈ Ω. Since (5.22)
holds when rj0 < dist(x0, ∂Ω)/2, we only need to show that (5.23) holds when
rj0 ≥ dist(x0, ∂Ω)/2. Now assume rj1 ≥ dist(x0, ∂Ω)/2 and rj1+1 < dist(x0, ∂Ω)/2.
By (5.22), we have

m+1∑
j=j1+1

ϕj ≤ Cϕj1+1 + C

m∑
j=j1+1

(
|µ|(Ωj)

rn−1
j

) 1
p−1

+ C

m∑
j=j1+1

|µ|(Ωj)

rn−1
j

T 2−p
j + C

m∑
j=j1+1

ω(rj)Tj .

(5.24)

By (5.4), we also have

ϕj1+1 ≤

( 
Ωrj1+1

(x0)

|∇u− qx0,rj1
|γ0

)1/γ0

≤ Cϕj1 . (5.25)

Now for any j ∈ {j0, j0+1, . . . , j1}, rj ≥ dist(x0, ∂Ω)/2. Choose y0 ∈ ∂Ω such that
d := dist(x0, ∂Ω) = |y0 − x0|, so that Ωrj (x0) ⊂ Ω3rj (y0) and Ω6rj (y0) ⊂ Ω8rj (x0).
Thus by using (5.21) at y0 ∈ ∂Ω, we have

j1∑
j=j0

ϕj ≤ C

j1∑
j=j0

ϕ(y0, 3rj)

≤ CYj0 + C

j1∑
j=j0

(
|µ|(Ω6rj (y0))

rn−1
j

) 1
p−1

+ C

j1∑
j=j0

|µ|(Ω6rj (y0))

rn−1
j

Y 2−p
j + C

j1+1∑
j=j0

ω1(3rj)Yj

≤ CZj0 + C

j1∑
j=j0

(
|µ|(Ω′

j)

rn−1
j

) 1
p−1

+ C

j1∑
j=j0

|µ|(Ω′
j)

rn−1
j

Z2−p
j + C

j1+1∑
j=j0

ω1(rj)Zj ,

(5.26)

where

Yj :=

( 
Ω6rj

(y0)

(|∇u|+ s)2−p dx

) 1
2−p

.

Recall that ω1 = ω + ω0. Combining (5.24), (5.25), and (5.26), we obtain (5.23).
The lemma is proved. □
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Proof of Theorem 1.10. With (5.23) in place of (3.17), we can easily get the global
pointwise gradient estimate (1.18) using the same ideas as in the proof of Theorem
1.1. □

5.2. Global Lipschitz estimates and modulus of continuity estimates of
the gradient. Let x0 ∈ Ω̄ and 0 < R ≤ R1. For any fixed α1 ∈ (0, α), let
α2 = (α1 + α)/2, and choose ε = ε(n, p, λ, γ0, α, α1) ∈ (0, 1/4) sufficiently small
such that εα2 < 1/4 and Cεα−α2 < 1 for both constants C in (3.13) and (5.19).
Next we define

g1(x, r) =
|µ|(Br(x) ∩BR/2(x0))

rn−1
, h1(x, r) = g1(x, r)

1
p−1 ,

ω∗
1(r) := ω1(r)[r ≤ R/2] + ω1(R/2)[r > R/2],

and

ĝ1(x, t) =

∞∑
i=1

εα2ig1(x, ε
−it), ğ1(x, t) =

∞∑
i=1

εα1ig1(x, ε
−it),

ĥ1(x, t) =

∞∑
i=1

εα2ih1(x, ε
−it), h̆1(x, t) =

∞∑
i=1

εα1ih1(x, ε
−it),

ω̂1(t) =

∞∑
i=1

εα2iω∗
1(ε

−it), ω̆1(t) =

∞∑
i=1

εα1iω∗
1(ε

−it),

Indeed, we have

ω̆1(t) =

∞∑
i=1

εα1i
(
ω1(ε

−it)[ε−it ≤ R/2] + ω1(R/2)[ε
−it > R/2]

)
:= ω̃1(t),

ğ1(x, t) ≤
∞∑
i=1

εα1i
(
g(x, ε−it)[ε−it ≤ R/2] + g(x0, R/2)[ε

−it > R/2]
)
,

h̆1(x, t) ≤
∞∑
i=1

εα1i
(
h(x, ε−it)[ε−it ≤ R/2] + h(x0, R/2)[ε

−it > R/2]
)
,

(5.27)

where the functions g and h are defined in (4.2).
Using the same iteration technique as in Lemma 4.1, we can obtain from (5.19)

that

ψ(x, ρ) ≤ C
(ρ
r

)α2

ψ(x, r) + Cĥ1(x, 2ρ)

+ Cĝ1(x, 2ρ)
(
∥∇u∥L∞(Ω2r(x)) + s

)2−p

+ Cω̂1(ρ)
(
∥∇u∥L∞(Ω2r(x)) + s

) (5.28)

holds for any x ∈ ∂Ω, B2r(x) ⊂ BR/2(x0), and 0 < ρ ≤ r.
Similarly, from (4.1) and the fact that ω ≤ ω1, we have

ϕ(x, ρ) ≤ C
(ρ
r

)α2

ϕ(x, r) + Cĥ1(x, 2ρ)

+ Cĝ1(x, 2ρ)
(
∥∇u∥L∞(Ω2r(x)) + s

)2−p

+ Cω̂1(ρ)
(
∥∇u∥L∞(Ω2r(x)) + s

) (5.29)

for any B2r(x) ⊂⊂ Ω, B2r(x) ⊂ BR/2(x0), and 0 < ρ ≤ r.
By combining (5.28) and (5.29), we will show the following estimates.
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Lemma 5.7. Let x ∈ Ω̄ and B2r(x) ⊂ BR/2(x0). There exists a constant C
depending only on ε, n, p, λ, γ0, and α1 such that, for any 0 < ρ ≤ r ≤ R1, we
have

(i)

ϕ(x, ρ) ≤C
(ρ
r

)α2

r−n/γ0∥∇u∥Lγ0 (Ωr(x)) + Ch̆1(x, ρ)

+ Cğ1(x, ρ)
(
∥∇u∥L∞(Ω2r(x)) + s

)2−p

+ Cω̆1(ρ)
(
∥∇u∥L∞(Ω2r(x)) + s

)
,

(5.30)

(ii)

∞∑
j=0

ϕ(x, εjρ) ≤C
(ρ
r

)α2

r−n/γ0∥∇u∥Lγ0 (Ωr(x)) + C

� ρ

0

h̆1(x, t)

t
dt

+ C
(
∥∇u∥L∞(Ω2r(x)) + s

)2−p
� ρ

0

ğ1(x, t)

t
dt

+ C
(
∥∇u∥L∞(Ω2r(x)) + s

) � ρ

0

ω̆1(t)

t
dt.

(5.31)

To prove Lemma 5.7, we also need the following technical lemma.

Lemma 5.8. Let x, y ∈ Ω̄ and p ∈ (1, 2). Then for g1, h1, ĝ1, ĥ1, ğ1, h̆1, ω̂1, ω̆1

defined as above, we have the following:

(i) There exist constants C1, C2 > 0 depending on ε, n, p, α and α1 such that

for any fixed x ∈ Ω̄, and any f ∈
{
ĝ1(x, ·), ĥ1(x, ·), ω̂1, ğ1(x, ·), h̆1(x, ·), ω̆1

}
,

we have

C1f(t) ≤ f(s) ≤ C2f(t), whenever 0 < εt ≤ s ≤ t.

(ii) There exists a constant C > 0 depending on ε, n, p, α and α1 such that for

any 0 < εr ≤ ρ ≤ r with Ωρ(x) ⊂ Ωr(y), and any F ∈ {ĝ1, ĥ1, ğ1, h̆1}, we
have

F (x, ρ) ≤ CF (y, r).

(iii) For any 0 < ρ ≤ r, there exists a constant C > 0 depending on ε, n, p, α
and α1 such that the following hold(ρ

r

)α2

ω̂1(r) ≤ Cω̆1(ρ),(ρ
r

)α2

ĝ1(x, r) ≤ Cğ1(x, ρ),(ρ
r

)α2

ĥ1(x, r) ≤ Ch̆1(x, ρ).

Proof. We will only show the proof for g since the other cases are similar. Noting
that

g1(x, s) ≤ ε1−ng1(x, t), g1(x, εt) ≤ ε1−ng1(x, s)

whenever εt ≤ s ≤ t and ĝ1(x, t) ≤ ε−α2 ĝ1(x, εt), assertion (i) follows. Assertion
(ii) follows similarly by observing the fact that Ωε−iρ(x) ⊂ Ωε−ir(y) whenever i ≥ 0
since Ωρ(x) ⊂ Ωr(y). It remains to prove assertion (iii). Since 0 < ρ ≤ r, there
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exists an integer j ≥ 0 such that ε−jρ ≤ r < ε−j−1ρ. Therefore, by part (i),(ρ
r

)α2

ĝ1(x, r) ≤ Cεα2j ĝ1(x, ε
−jρ)

≤ C

∞∑
j=0

∞∑
i=1

εα2(i+j)g1(x, ε
−i−jρ)

= C

∞∑
k=1

kεα2kg1(x, ε
−kρ) ≤ Cğ1(x, ρ),

where we used the fact that kεα2k ≤ Cεα1k in the last inequality, since α1 < α2. □

Now we are ready to prove Lemma 5.7.

Proof of Lemma 5.7. Without loss of generality, we may assume x = 0. Note that
if r/16 ≤ ρ ≤ r, then (5.30) follows from the definition of ϕ. Hence we only need
to consider the case when 0 < ρ < r/16. We consider the following three cases:

r/4 ≤ dist(0, ∂Ω), dist(0, ∂Ω) ≤ 4ρ, 4ρ < dist(0, ∂Ω) < r/4.

Case 1: r/4 ≤ dist(0, ∂Ω). Set r1 = r/16. Since B4r1 ⊂ Ω, from (5.29) we have

ϕ(0, ρ) ≤ C

(
ρ

r1

)α2

ϕ(0, r1) + Cĥ1(0, 2ρ)

+ Cĝ1(0, 2ρ)
(
∥∇u∥L∞(Ω2r1

) + s
)2−p

+ Cω̂1(ρ)
(
∥∇u∥L∞(Ω2r1

) + s
)
.

Thus we can easily get (5.30) from Lemma 5.8 and the fact that

ϕ(0, r1) ≤ Cr−n/γ0∥∇u∥Lγ0 (Ωr).

Case 2: dist(0, ∂Ω) ≤ 4ρ. Choose y0 ∈ ∂Ω such that dist(0, ∂Ω) = |y0|. Then
B10ρ(y0) ⊂ B14ρ ⊂ Br and from (5.28), we have

ϕ(0, ρ) ≤ Cψ(y0, 5ρ)

≤ C
(ρ
r

)α2

ψ(y0, r/2) + Cĥ1(y0, 10ρ)

+ Cĝ1(y0, 10ρ)
(
∥∇u∥L∞(Ωr(y0)) + s

)2−p
+ Cω̂1(5ρ)

(
∥∇u∥L∞(Ωr(y0)) + s

)
.

Thus from the fact that Ωr(y0) ⊂ Ω2r, Ωr/2(y0) ⊂ Ωr, and Ω10ρ(y0) ⊂ Ω14ρ, we get
(5.30) by using Lemma 5.8.

Case 3: 4ρ < dist(0, ∂Ω) < r/4. Set r1 = dist(0, ∂Ω)/4 > ρ. Using (5.29), we
obtain

ϕ(0, ρ) ≤ C

(
ρ

r1

)α2

ϕ(0, r1) + Cĥ1(0, 2ρ)

+ Cĝ1(0, 2ρ)
(
∥∇u∥L∞(Ω2r1 )

+ s
)2−p

+ Cω̂1(ρ)
(
∥∇u∥L∞(Ω2r1 )

+ s
)
.

On the other hand, choose y0 ∈ ∂Ω such that dist(0, ∂Ω) = |y0|. Therefore, Br1 ⊂
B5r1(y0), Br(y0) ⊂ B2r and from (5.28) we have

ϕ(0, r1) ≤ Cψ(y0, 5r1)

≤ C
(r1
r

)α2

ψ(y0, r/2) + Cĥ1(y0, 10r1)

+ Cĝ1(y0, 10r1)
(
∥∇u∥L∞(Ωr(y0)) + s

)2−p
+ Cω̂1(5r1)

(
∥∇u∥L∞(Ωr(y0)) + s

)
.
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Noting that Ωr(y0) ⊂ Ω2r, Ωr/2(y0) ⊂ Ωr, and Ω10r1(y0) ⊂ Ω14r1 , we get (5.30) by
combining the last two estimates and applying Lemma 5.8.

Finally, replacing ρ with εjρ and summing in j, we get (5.31) by using Lemma
5.8 and the comparison principle of Riemann integrals. The lemma is proved. □

Remark 5.9. We emphasize that Lemma 5.7 has a local nature. Indeed, it can
be seen from the proof that we only need Dirichlet boundary condition u = 0 on
∂Ω∩BR/2(x0) and C

1,Dini regularity of ∂Ω∩BR/2(x0) for these estimates to hold.
Therefore, our Lipschitz estimates and modulus of continuity estimates, which will
be deduced from Lemma 5.7, also have a local nature.

Recall the definition of qx,r from (5.20) and keep (5.4) in mind. By following
almost the same proof of (4.7), we obtain that for any Lebesgue point x ∈ Ω of the
vector-valued function ∇u and ρ ∈ (0, R1],

|∇u(x)− qx,ρ| ≤ C

∞∑
j=0

ϕ(x, εjρ), (5.32)

where C is a constant depending only on n and γ0.

Proof of Theorem 1.11. We will prove a boundary Lipschitz estimate

∥∇u∥L∞(ΩR/16(x0)) ≤ C
∥∥IR1 (|µ|)∥∥ 1

p−1

L∞(ΩR(x0))
+ CR− n

2−p ∥|∇u|+ s∥L2−p(ΩR(x0))

(5.33)
for any x0 ∈ ∂Ω and R ≤ R1, assuming that∥∥IR1 (|µ|)∥∥L∞(BR(x0))

<∞. (5.34)

Then (1.19) follows by a standard covering argument using (1.13) and (5.33). The
proof of (5.33) is similar to that of Theorem 1.3 so we will only focus on the
differences.

Step 1: The case when u ∈ C1(ΩR/2(x0)).
With (5.31) in place of (4.6), using the same iteration technique as in the proof

of Theorem 1.3, we get the following estimate:

∥∇u∥L∞(ΩR/4(x0)) + s ≤ CR−n/γ0∥∇u∥Lγ0 (ΩR/2(x0))

+ C sup
x∈ΩR/2(x0)

� R
2

0

h̆1(x, t)

t
dt+ C sup

x∈ΩR/2(x0)

(� R
2

0

ğ1(x, t)

t
dt

) 1
p−1

+ Cs.

(5.35)
Using (5.27) and direct computations, we have

� R/2

0

ğ1(x, t)

t
dt ≤ C IR1 (|µ|)(x) + C

|µ|(BR/2(x0))

Rn−1
,

� R/2

0

h̃1(x, t)

t
dt ≤ C

(
IR1 (|µ|)(x)

) 1
p−1 + C

( |µ|(BR/2(x0))

Rn−1

) 1
p−1

.

Therefore, from (5.35) and the fact that γ0 ≤ 2− p (cf. Lemma 5.2), we obtain

∥∇u∥L∞(ΩR/4(x0)) ≤ C
∥∥IR1 (|µ|)∥∥ 1

p−1

L∞(ΩR(x0))
+ CR− n

2−p ∥|∇u|+ s∥L2−p(ΩR(x0)).

(5.36)
Step 2: The general case.
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We use an approximation argument with the aid of the regularized distance
introduced by Lieberman [15]. Here we refer to a modified version in [7]. Let
d(·) be the regularized distance defined in [7, Lemma 5.1] (ψ(·) in that paper) and
Ωk = {x ∈ Ω : d(x) > 1/k}. Then from [7, Lemma 5.1], we know that Ωk has a
smooth boundary and the C1,Dini-properties of ∂Ωk are the same as those of ∂Ω
up to some constant independent of k. We take a sequence of standard mollifiers
{φk} and mollify µ and a by setting

µk(x) = (µ ∗ φk)(x), x ∈ Ω; ak(x) = (a ∗ φk)(x), x ∈ Ωk.

We know that µ ∈W−1,p′
(ΩR(x0)) and therefore

∥µk − µ∥W−1,p′ (ΩR(x0))
→ 0.

Recalling the fact that we have a C1,Dini coordinate in ΩR(x0) since R ≤ R1, we can
take a sequence of cut-off functions ζk ∈ C∞(Rn) satisfying ζk = 1 in Ωk/4∩BR(x0),
ζk = 0 in (Ω\Ωk/2) ∩BR(x0), and ∥∇ζk∥L∞ ≤ 16k.

Next we let uk ∈ uζk +W 1,p
0 (Ωk ∩BR(x0)) be the unique solution to−div

(
ak(x)(|∇uk|2 + s2)

p−2
2 ∇uk

)
=µk in Ωk ∩BR(x0),

uk =uζk on ∂(Ωk ∩BR(x0)).
(5.37)

Since uk = uζk = 0 on BR(x0) ∩ ∂Ωk, we can always assume uk ∈ uζk +

W 1,p
0 (ΩR(x0)) by taking the zero extension of uk in (Ω\Ωk)∩BR(x0). Since u = 0

on BR(x0) ∩ ∂Ω, by Hardy’s inequality, we have

∥u∇ζk∥
Lp
(
ΩR(x0)

) ≤ 16∥ku∥
Lp
(
(Ω\Ωk/4)∩BR(x0)

)
≤ C∥u(x)/d(x)∥

Lp
(
(Ω\Ωk/4)∩BR(x0)

) ≤ C∥∇u∥
Lp
(
(Ω\Ωk/4)∩BR(x0)

) → 0

as k → ∞. Therefore, we know that

∥u− uζk∥W 1,p(ΩR(x0)) → 0. (5.38)

Thus by choosing uk−uζk as a test function in (5.37), following the proof of (4.18),
and using (5.38), we can show that ∥∇uk∥Lp(ΩR(x0)) is uniformly bounded in k.
Also, choosing (uk −uζk)1ΩR(x0) as a test function in (5.1) and (5.37), similarly we
obtain �

ΩR(x0)

|V (∇uk)− V (∇u)|2 dx→ 0 as k → ∞,

which again implies

∇uk → ∇u strongly in Lp(ΩR(x0)).

By the classical boundary regularity theory (see, for instance, [16]), we have uk ∈
C1(Ωk ∩BR/2(x0)). Note that for sufficiently large k, there exists xk ∈ BR(x0) ∩
∂Ωk, such that |xk − x0| ≤ R/16. Thus BR/16(x0) ⊂ BR/8(xk), BR/4(xk) ⊂
BR/2(x0) and BR/2(xk) ⊂ B3R/4(x0). Therefore, using (5.36) in Step 1 and Remark
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5.9, we get

∥∇uk∥
L∞
(
Ωk∩BR/16(x0)

) ≤ ∥∇uk∥
L∞
(
Ωk∩BR/8(xk)

)
≤ C

∥∥IR/2
1 (|µk|)

∥∥ 1
p−1

L∞
(
Ωk∩BR/2(xk)

) + CR− n
2−p ∥|∇uk|+ s∥

L2−p
(
Ωk∩BR/2(xk)

)
≤ C

∥∥IR/2
1 (|µk|)

∥∥ 1
p−1

L∞
(
Ωk∩B3R/4(x0)

) + CR− n
2−p ∥|∇uk|+ s∥

L2−p
(
Ωk∩B3R/4(x0)

).
By extracting a subsequence and taking the limit as k → ∞, we obtain (5.33). □

Proof of Corollary 1.12. By testing (5.1) with u, following the proof of (4.18), we
obtain

∥∇u∥Lp(Ω) ≤ C∥µ∥
1

p−1

W−1,p′ (Rn)
+ Cs,

where p′ = p/(p− 1). From [12, Theorem 1], we also have

∥µ∥W−1,p′ (Rn) ≤ C
( �

Rn

W1
1,p(|µ|)d|µ|

) p−1
p ≤ C

∥∥I11(|µ|)∥∥L∞(Ω)
.

Therefore, Corollary 1.12 follows by combining (1.19), Hölder’s inequality, and the
last two inequalities. □

Now we turn to global modulus of continuity estimates of the gradient. Recall
that we fixed an ε ∈ (0, 1/4) sufficiently small such that

Cεα−α2 < 1 and εα2 < 1/4

for both constants C in (3.13) and (5.19), where α ∈ (0, 1) is the same constant as
in Theorem 2.1, α1 ∈ (0, α), and α2 = (α1 + α)/2. We also took R ∈ (0, R1] and
defined

ω̃1(t) =

∞∑
i=1

εα1i
(
ω1(ε

−it)[ε−it ≤ R/2] + ω1(R/2)[ε
−it > R/2]

)
,

Ĩρ1(|µ|)(x) =
∞∑
i=1

εα1i
(
Iε

−iρ
1 (|µ|)(x)[ε−iρ ≤ R/2] + I

R/2
1 (|µ|)(x)[ε−iρ > R/2]

)
,

W̃ρ
1/p,p(|µ|)(x)

=

∞∑
i=1

εα1i
(
Wε−iρ

1/p,p(|µ|)(x)[ε
−iρ ≤ R/2] +W

R/2
1/p,p(|µ|)(x)[ε

−iρ > R/2]
)
,

(5.39)
where we used the Iverson bracket notation, i.e., [P ] = 1 if P is true and [P ] = 0
otherwise, and I1 and W1/p,p are the Riesz and Wolff potentials defined in (1.9)
and (1.11), respectively.

Our global modulus of continuity estimate of the gradient is stated as follows.

Theorem 5.10. Assume the conditions of Theorem 1.11 and α1 ∈ (0, α), where
α is the constant in Theorem 2.1. Then there exist constants R1 = R1(R0, ω0) ∈
(0, R0) and C = C(n, p, λ, α1, ω,R0, ω0), such that for any x0 ∈ Ω̄, R ∈ (0, R1],
and x, y ∈ ΩR/4(x0) being Lebesgue points of the vector-valued function ∇u, it holds
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that

|∇u(x)−∇u(y)|

≤ CM1

[ ( ρ
R

)α1

+

� ρ

0

ω̃1(t)

t
dt
]
+ C

∥∥W̃ρ
1/p,p(|µ|)

∥∥
L∞(ΩR/4(x0))

+ CM2−p
1

∥∥Ĩρ1(|µ|)∥∥L∞(ΩR/4(x0))

(5.40)

where ρ = |x− y|, ω1 = ω + ω0, ω̃1, W̃1/p,p, and Ĩ1 are defined in (5.39), and

M1 := R− n
2−p ∥|∇u|+ s∥L2−p(ΩR(x0)) +

∥∥IR1 (|µ|)∥∥ 1
p−1

L∞(ΩR(x0))
.

Proof. For any x, y ∈ ΩR/4(x0) being Lebesgue points of ∇u and ρ > 0,

|∇u(x)−∇u(y)|γ0

≤ |∇u(x)− qx,ρ|γ0 + |∇u(y)− qy,2ρ|γ0 + |qx,ρ − qy,2ρ|γ0

≤ |∇u(x)− qx,ρ|γ0 + |∇u(y)− qy,2ρ|γ0 + |∇u(z)− qx,ρ|γ0 + |∇u(z)− qy,2ρ|γ0 .

We set ρ = |x − y|, take the average over z ∈ Ωρ(x), and then take the γ0-th root
to get

|∇u(x)−∇u(y)|
≤ C |∇u(x)− qx,ρ|γ0 + C |∇u(y)− qy,2ρ|γ0 + Cϕ(x, ρ) + Cϕ(y, 2ρ)

≤ C

∞∑
j=0

ϕ(x, εjρ) + C

∞∑
j=0

ϕ(y, 2εjρ) + Cϕ(x, ρ) + Cϕ(y, 2ρ)

≤ C sup
y0∈ΩR/4(x0)

∞∑
j=0

ϕ(y0, 2ε
jρ),

where we used the fact that Ωρ(x) ⊂ Ω2ρ(y) in the first inequality and (5.32) in the
second inequality.

If ρ < R/16, by using (5.31) with R/8 in place of r and the fact that

ΩR/4(y0) ⊂ ΩR/2(x0) ∀y0 ∈ ΩR/4(x0),

we obtain

|∇u(x)−∇u(y)|

≤ C
( ρ
R

)α2

∥∇u∥L∞(ΩR/2(x0)) + C sup
y0∈ΩR/4(x0)

� ρ

0

h̆1(y0, t)

t
dt

+ C
(
∥∇u∥L∞(ΩR/2(x0)) + s

)2−p

sup
y0∈ΩR/4(x0)

� ρ

0

ğ1(y0, t)

t
dt

+ C
(
∥∇u∥L∞(ΩR/2(x0)) + s

) � ρ

0

ω̆1(t)

t
dt.

(5.41)

Clearly, (5.41) still holds when ρ ≥ R/16. Using (5.27) and similar calculations as
in the proof of Theorem 4.3, for any y0 ∈ ΩR/4(x0) and ρ ∈ (0, R/2), we have� ρ

0

ğ1(y0, t)

t
dt ≤ Ĩρ1(|µ|)(y0) + C

( ρ
R

)α1 |µ|(BR/2(x0))

Rn−1
, (5.42)

� ρ

0

h̆1(y0, t)

t
dt ≤ W̃ρ

1/p,p(|µ|)(y0) + C
( ρ
R

)α1
( |µ|(BR/2(x0))

Rn−1

) 1
p−1

. (5.43)
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Using (1.19), (5.42), and (5.43), (5.41) implies (5.40). The theorem is proved. □
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